搜档网
当前位置:搜档网 › 基于平面波算法的二维正方点阵声子晶体禁带研究

基于平面波算法的二维正方点阵声子晶体禁带研究

β-FeSi2 的能带结构及光学性质的第一性原理研究

β-FeSi 2 的能带结构及光学性质的第一性原理研究? 闫万珺1,2,谢泉1 1.贵州大学电子科学与信息技术学院,贵阳,550025 2.安顺师范高等专科学校物理系,安顺,561000 摘 要:利用基于第一性原理的赝势平面波方法系统地计算了β-FeSi 2基态的几何结构、能带结构和光学性质。几何优化结果表明平衡时的晶格常数与实验值符合得较好;能带结构的计算表明β-FeSi 2属于一种准直接带隙半导体,禁带宽度为0.74eV ;计算了光学性质,给出了β-FeSi 2的介电函数实部1ε、虚部2ε以及相关光学参量。 关键词:β-FeSi 2,几何优化,能带结构,光学特性 PACC :7125, 7115H, 7820D 1. 引 言 铁硅化合物β-FeSi 2,是由资源寿命较长的Fe 、Si 元素组成,能循环利用,对地球无污染,称为环境半导体材料,对这一材料的研究,对人类的生存和发展具有重要的意义。 β-FeSi 2具有Jahn-Teller 晶格匹配的荧光构造,在Si (100)基板上外延生长的格子错配度为 5.5%,和Si 、GaAs 材料比较,β-FeSi 2具有一系列优越特性,β-FeSi 2在红外的带隙为Eg=0.83~0.87eV [1,2],光吸收系数很大(>105cm -1), 因此,是作为光传感器、太阳能电池 的理想材料,而且,能够在Si(001)和Si(111)上外延生长[3,4,5,6]。目前在环境半导体材料β -FeSi 2薄膜的研究方面,还存在很多问题没有解决,如能带构造、吸收-发光机理、载流子密度的控制等光电子物性的正确把握,因此,深入研究β-FeSi 2的能带结构与光学特性是研究β-FeSi 2光电特性所不可缺少的理论基础。 尽管大量的文献对β-FeSi 2进行了研究,对于其带隙性质的争论仍然存在。有部分文献声称β-FeSi 2是属于直接带隙半导体[7,8,9,10,11],但是也有作者认为存在只比直接带隙低几十毫电子伏左右的间接带隙[12,13],把β-FeSi 2称为准直接带隙半导体。 自从20世纪60年代密度泛函理论(DFT)建立并在局域密度近似(LDA)下导出著名的 Kohn -Sham(KS)方程以来,DFT 一直是凝聚态物理领域计算电子结构及其特性最有力的工具。在基于DFT 的第一性原理的计算方法中赝势平面波方法,是目前计算机模拟实验中最先进、最重要的赝势能带方法之一,这些方法在对一些重要的 光电子材料特性认识起着越来越明显的作用。在这篇文章中 我们对β-FeSi 2在体系平衡时的结构进行了优化,第一性原理的赝势平面波方法对能带结构和光学特性进行了 计算。 2. 计算方法 β-FeSi 2属于正交晶系,空间群为(Cmca ),晶 格常数 h D 218图1 β-FeSi 2的原胞 ? 贵州省教育厅重点基金(批准号:05JJ002),教育部博士点专项科研基金(批准号:20050657003)贵州大学人才引进基金(批准号:04RCJJ001),教育部留学回国科研基金(批准号:教外司(2005)383),贵州省留学人员科技项目(批准号:黔人项目(2004)03),科技厅国际合作项目(批准号:黔科合G(2005)400102)及省委组织部高层人才科研特助项目资助。

声子晶体研究的若干进展

声子晶体研究的若干进展 倪青, 程建春 (近代声学教育部重点实验室,南京大学声学研究所,南京 210093) 1 引言 20世纪初半导体材料的出现引发了一场轰轰烈烈的电子工业革命,使我们进入了信息时代。半导体的原子呈周期性排列,电子在半导体中运动时,电子与原子周期势场相互作用使得半导体具有电子禁带,能够操控电子的流动。以硅晶体为代表的半导体带来了一次科学技术革命。随着晶体管、集成电路、大规模集成电路甚至超大规模集成电路的开发运用,半导体技术对人类文明的进步产生了深远的影响。我们知道,半导体的理论依据是固体电子的能带理论,即电子在周期性势场的作用下会形成价带和导带,带与带之间有能隙。量子阱、半导体超晶格等模拟实际晶体设计的相关材料与器件的成功应用,使电子能带理论突破了原有天然材料的限制,进入了一个新的阶段。 约二十年前,人们开始触及对结构功能材料光学特性的研究。理论和实验证明,如果结构功能材料中的介电常数在光波长尺度上周期性变化,光子与周期结构相互作用,会使得该材料具有类似半导体中电子禁带的能带结构,称之为光子禁带。具有光子禁带的周期性电介质结构功能材料称为光子晶体。光子能量落在光子禁带中的光波不能在光子晶体中传播,当光子晶体中存在(或引入)点缺陷或线缺陷时,则禁带内的光波将被局域在点缺陷内或只能沿线缺陷传播。通过对光子晶体周期结构及其缺陷的设计,可以人为地调控光子的流动。1987年,Yablonovithch和John两人分别独立地提出了光子晶体的概念[1, 2],Yablonovitch还通过实验验证了微波波段光子禁带的存在[3]。光子晶体迅速成为光电子以及信息技术领域研究的热点。 随后,人们发现当弹性波在周期性弹性复合介质中传播时,也会产生类似的弹性波禁带,于是提出了声子晶体的概念。声子晶体具有丰富的物理内涵及潜在的广阔应用前景。声子晶体的研究引起了各国研究机构的高度关注。 2 声子晶体研究概况 2.1 声子晶体概念及基本特征 声子晶体是具有不同弹性性质的材料周期复合而成的介质。在声子晶体内部材料组分(或称为组元)的弹性常数、质量密度等参数周期性变化。随着材料组分搭配的不同,以及周期结构形式的不同,声子晶体的弹性波禁带特性也就不同。 声子晶体同光子晶体有着相似的基本特征:当弹性波频率落在禁带范围内时,弹性波被禁止传播;当存在点缺陷或线缺陷时,弹性波会被局域在点缺陷处,或只能沿线缺陷传播。同样,通过对声子晶体周期结构及其缺陷的设计,可以人为地调控弹性波的传播。 弹性波是由纵波和横波耦合的张量波,在每个组元中具有3个独立的弹性参数,即质量密度ρ、纵波波速c l和横波波速c t(在流体介质中c t=0);光波是矢量波(只有横波),在每个组元中只有一个独立的参数即介电常数(忽略材料的磁性)。因此,声子晶体的研究比光子晶体更困难,且具有更丰富的物理内涵。比较(电子)晶体、光子晶体及声子晶体的有关特性,

赝势平面波方法

第3章 赝势平面波方法(I) 基于密度泛函理论的赝势平面波方法可以计算很大范围不同体系的基态属性,它采用了平面波来展开晶体波函数,用赝势方法作有效的近似处理。由于平面波具有标准正交化和能量单一性的特点,对任何原子都适用且等同对待空间中的任何区域,不需要修正重叠误差。因此平面波函数基组适合许多体系,其简单性使之成为求解Kohn-Sham 方程的高效方案之一。另外,赝势的引入可以保证计算中用较少的平面波数就可以获得较为可靠的结果。该方法具有较高的计算效率,使之日益发展成为有效的计算方法。本章首先对赝势平面波方法进行重点讨论,其次介绍了基于第一性原理计算软件一般步骤,最后结合Materials Studio 软件包应用,对锐钛矿型TiO 2(101)表面及其点缺陷结构进行建模和计算。 3.1 基本原理 基于密度泛函理论的第一性原理计算实质是求解Kohn-Sham 方程。实际求解Kohn-Sham 方程时,由于原子核产生的势场项在原子中心是发散的,波函数变化剧烈,需要采用大量的平面波展开,因而计算成本变得非常大,所以在计算中选取尽可能少的基函数。计算中选择的基函数与最终波函数较接近则收敛较快,当然包含的维度也应该尽量少。众所周知,根据研究对象不同,选择基函数的方法也不同的,如原子轨道线性组合法(LCAO-TB)、正交平面波法(OPW)、平面波赝势法(PW-PP)、缀加平面波法(APW)、格林函数法(KKR)、线性缀加平面波法(LAPW)、Muffin-tin 轨道线性组合法(LMTO)等,选取典型代表方法在随后的章节中重点展开讨论。与LAPW ,LMTO 等精度较高的第一性原理计算方法比较,平面波赝势法是计算量较少的方法,适用于计算精度要求不严格,因原胞较复杂而导致计算量陡增加的体系。为此,本章将重点学习赝势平面波方法,先学习电子能带的平面波基底展开以及赝势等相关基本概念,然后再讨论赝势引入原理。 3.1.1 平面波展开与截断能 1. 平面波展开 平面波是自由电子气的本征函数,由于金属中离子芯与类似的电子气有很小的作用,因此很自然的选择是用它描述简单金属的电子波函数。众所周知,最简单的正交、完备的函数集是平面波exp[())i k G r +?,这里G 是原胞的倒格矢。根据晶体的空间平移对称性,布洛赫(Bloch)定理(将在第节中说明)证明,能带电子的波函数(,)r k ψ总是能够写成 (,)()exp()r k r ik r ψμ=? 式中k 是电子波矢,()r μ是具有晶体平移周期性的周期函数。对于理想晶体的计算,这是很自然的,因为其哈密顿量本身具有平移对称性,只要取它的一个原胞就行了。对于无序系统(如无定型结构的固体或液体)或表面、界面问题,只要把原胞取得足够大,以至于不影响系统的动力学性质,还是可以采用周期性边界条件的。因此,这种利用平移对称性来计算电子结构的方法,对有序和无序系统都是适用的。采用周期性边界条件后,单粒子轨道波函数可

声子晶体

Waveguiding in two-dimensional piezoelectric phononic crystal plates J. O. Vasseur, A.-C. Hladky-Hennion, B. Djafari-Rouhani, F. Duval, B. Dubus, Y. Pennec, and P. A. Deymier Citation: Journal of Applied Physics 101, 114904 (2007); doi: 10.1063/1.2740352 View online: https://www.sodocs.net/doc/a89804885.html,/10.1063/1.2740352 View Table of Contents: https://www.sodocs.net/doc/a89804885.html,/content/aip/journal/jap/101/11?ver=pdfcov Published by the AIP Publishing Articles you may be interested in Vibration band gaps in double-vibrator pillared phononic crystal plate J. Appl. Phys. 119, 014903 (2016); 10.1063/1.4939484 Acoustic beam splitting in two-dimensional phononic crystals using self-collimation effect J. Appl. Phys. 118, 144903 (2015); 10.1063/1.4932138 Surface acoustic wave band gaps in a diamond-based two-dimensional locally resonant phononic crystal for high frequency applications J. Appl. Phys. 111, 014504 (2012); 10.1063/1.3673874 Propagation of acoustic waves and waveguiding in a two-dimensional locally resonant phononic crystal plate Appl. Phys. Lett. 97, 193503 (2010); 10.1063/1.3513218 Lamb waves in plates covered by a two-dimensional phononic film Appl. Phys. Lett. 90, 021909 (2007); 10.1063/1.2431569

二维TM波讨论平面波源(使用直接算方法)的加入

! TM波FDTD讨论平面波源的加入 module data_module implicit none integer,parameter::nx0=0,nx1=360,ny0=0,ny1=360,nz0=-100,nz1=1200 integer,parameter::nxl1=nx0+80,nxl2=nx1-80,nyl1=ny0+80,nyl2=ny1-80 !连接边界 real,parameter::f=2.0e8,c=3.0e8,delt=0.0177,deltt=delt/6.0e8,eps0=8.85e-12,miu0=1.2566e-6,pi= 3.14159 real,parameter::w=2*pi*f,s=-0.477369 real,parameter::p=-1.0/3.0,q=-miu0*c/6,r=-miu0*c/2,p1=1/(2*miu0*c),p2=1/(2*eps0*c) real,parameter::tal=2e-9,t0=0.8*tal,fai=pi/3.0 real cez,chx,chy integer,parameter::nt=2000,m0=200 integer n complex Ez3(nx0:nx1,ny0:ny1) real Ez4(nx0:nx1,ny0:ny1),Ez2(nx0:nx1,ny0:ny1) !记录幅值提取时的实部和虚部 real sita(nx0:nx1,ny0:ny1),Ez0(nx0:nx1,ny0:ny1) !记录幅值和相位 real Ez(nx0:nx1,ny0:ny1),Hx(nx0:nx1,ny0:ny1),Hy(nx0:nx1,ny0:ny1),Ez1(nx0:nx1,ny0:ny1) real Ei0(nz0:nz1),Hi0(nz0:nz1),Ei1(nz0:nz1) real Ezi(nx0:nx1,ny0:ny1),Hxi(nx0:nx1,ny0:ny1),Hyi(nx0:nx1,ny0:ny1) end module data_module !///////////////////////////////////////////////////////////////////////////////////////////////// subroutine inc() use data_module implicit none integer i,j,k real t,d t=n*deltt Ei1=Ei0 do k=nz0,nz1-1 Hi0(k)=Hi0(k)-p1*(Ei1(k+1)-Ei1(k)) end do !Ezi do i=nxl1,nxl2 do j=nyl1,nyl2 d=real(i-nxl1)*cos(fai)+real(j-nyl1)*sin(fai) Ezi(i,j)=(d-int(d))*Ei0(m0+int(d)+1)+(1-(d-int(d)))*Ei0(m0+int(d)) end do end do do k=nz0+1,nz1-1 Ei0(k)=Ei1(k)-p2*(Hi0(k)-Hi0(k-1)) ! 入射波的场量 end do

第二章 波函数和 Schrodinger 方程

第二章 波函数和 Schrodinger 方程 §1 波函数的统计解释__量子力学的第一条假设:量子状态公设 一个微观粒子的状态可以由波函数来描述,波函数的模方为为粒子的概率密度,波函数满足归一化条件。简言之:波函数完全描述微观粒子状态 (一)波函数 描写自由粒子的平 面 波 称为 de Broglie 波。此式称为自由粒子的波函数。 如果粒子处于随时间和位臵变化的力场中运动,他的动量和能量不再是常量,粒子的状态就不能用平面波描写,而必须用 较复杂的波描写,一般记为: ,它通常是一个复函数。 如果用波函数描述粒子状态,则必须解决3个问题? (1) ψ 是怎样描述粒子的状态? (2) ψ 如何体现波粒二象性的? (3) ψ 描写的是什么样的波呢? (二)波函数的解释 波函数对微观粒子的描写统一了粒子性与波动性的关键在于波函数的统计解释: 如果微观粒子的波函数是 则某一时刻粒子出现在位臵r 处,体积元dV 中的粒子的概率,与波函数模的平方成正比。 exp ()i A Et ?? ψ=?-???? p r (,)t ψr (,)t ψr ()2 ,,,dW x y z t dV =ψ概率密度 /dW dV

所以, 与经典物理学中的波动不同,它不是某种实际的物理量振幅在空间的分布,而只是一种几率振幅。 波函数Ψ(x,y,z,t )的统计解释(哥本哈根解释):波函数模的平方代表某时刻t 在空间某点(x,y,z )附近单位体积内发现粒子的概率,即|Ψ| 2 代表概率密度。 波函数的统计意义是波恩于1926年提出的。由于波恩在量子力学所作的基础研究,特别是波函数的统计解释,他与博特共享了1954年的诺贝尔物理学奖。 玻恩对波函数的统计诠释—哥本哈根学派(以玻尔和海森伯为首)观点。 玻恩假定: 描述粒子在空间的概率分布的“概率振幅” ,而 则表示概率密度 例题1:电子的自由平面波波函数 在空间各点发现光子的概率相同 用电子双缝衍射实验说明概率波的含义 (1)入射强电子流 干涉花样取决于概率分布,而概率分 布是确定的。 (2)入射弱电子流 入射电子流强度小,开始显示电子的微粒性,长时间将显示衍射图样。电子干涉不是电子之间相互作用引起的,是电子波动 (,)t ψr (,)t ψr ()()()2* ,,,t t t ψ=ψψr r r (),exp ()i t A Et ??ψ=?-?? ?? r p r ()2 ,t ψ=r 常数

一维声子晶体缺陷态的研究

第34卷第3期 人 工 晶 体 学 报 Vol.34 No.3 2005年6月 JOURNAL OF SY NTHETI C CRYST ALS June,2005 一维声子晶体缺陷态的研究 朱 敏1,方云团2,沈廷根1 (1.江苏大学物理系,镇江212003;2.镇江船艇学院物理系,镇江212003) 摘要:用特征矩阵法计算了声波在包含缺陷的一维声子晶体中的传播规律。其带隙结构与不包含缺陷结构的带隙结构相比有明显的不同,系统的透射率不仅与掺杂或替换的介质种类和层数有关,而且与介质的厚度有关。对于通带中的固定频率,透射率随介质厚度的增加呈周期性变化。 关键词:声子晶体;特征矩阵;缺陷;带隙结构 中图分类号:O77 文献标识码:A 文章编号:10002985X(2005)0320536206 Study on One D i m en si on Phonon i c Crysta l w ith D efects ZHU M in1,FAN G Yun2tuan2,SHEN Ting2gen1 (1.Depart m ent of Physics,Jiangsu University,Zhenjiang212003,China; 2.Depart m ent of Physics,Zhenjiang W atercraft College,Zhenjiang212003,China) (R eceived13Septe m ber2004,accepted9O ctober2004) Abstract:The acoustic wave p r opagati on in one di m ensi on phononic crystal with defects was studied by eigen matrix https://www.sodocs.net/doc/a89804885.html,paring with the peri odical structure,its band2gap structure has s ome characteristics.The trans m itting rate of the syste m is great related t o not only the f or m of defect but als o the kind and thickness of the media.The trans m itting rate of the syste m varies in peri od for the fixed frequency lying in the pass band when the thickness of media continuously increases. Key words:phononic crystal;eigen matrix;defects;band2gap structure 1 引 言 自从M.S.Kushwaha等人明确提出了声子晶体的概念[1]以来,人们通过材料弹性常数的特定分布和设计,对一维、二维和三维声子晶体进行了大量研究[227],在声波频段逐步实现了与光子晶体[8210]相类似的性质:发现声子晶体会有完全带隙出现。在技术上,利用完全带隙特性,在一定频率范围内可防止一些特殊的振动,比如在变频器和声波测定仪等精密仪器设备中,同时声子晶体可以作为声音滤波器或作为隔音材料,可以有效地隔离噪音,因此,具有广阔的应用前景。近年来,人们对光子晶体的缺陷模进行了详细的研究[9,10],但对声子晶体缺陷态的研究相对较少。为此,本文在文献研究[4,5]一维声子晶体的基础上,用特征矩阵法研究了声波在包含缺陷的一维声子晶体中的传播规律。 2 模型和计算原理 本文讨论的一维周期系统是由水(W)和空气(G)两种介质在x方向上以一定的次序排列而形成的(图1(a))。由于各介质在垂直x方向的平面内是均匀各向同性的,仅在x方向上表现出结构的不同,因此可看 收稿日期:2004209213;修订日期:2004210209 基金项目:江苏省自然科学基金(BK2004059)资助 作者简介:朱敏(19642),男,江苏省人,副教授。E2mail:zhum in64@https://www.sodocs.net/doc/a89804885.html,

第3章 赝势平面波方法(I)

第3章 赝势平面波方法(I) 基于密度泛函理论的赝势平面波方法可以计算很大范围不同体系的基态属性,它采用了平面波来展开晶体波函数,用赝势方法作有效的近似处理。由于平面波具有标准正交化和能量单一性的特点,对任何原子都适用且等同对待空间中的任何区域,不需要修正重叠误差。因此平面波函数基组适合许多体系,其简单性使之成为求解Kohn-Sham 方程的高效方案之一。另外,赝势的引入可以保证计算中用较少的平面波数就可以获得较为可靠的结果。该方法具有较高的计算效率,使之日益发展成为有效的计算方法。本章首先对赝势平面波方法进行重点讨论,其次介绍了基于第一性原理计算软件一般步骤,最后结合Materials Studio 软件包应用,对锐钛矿型TiO 2(101)表面及其点缺陷结构进行建模和计算。 3.1 基本原理 基于密度泛函理论的第一性原理计算实质是求解Kohn-Sham 方程。实际求解Kohn-Sham 方程时,由于原子核产生的势场项在原子中心是发散的,波函数变化剧烈,需要采用大量的平面波展开,因而计算成本变得非常大,所以在计算中选取尽可能少的基函数。计算中选择的基函数与最终波函数较接近则收敛较快,当然包含的维度也应该尽量少。众所周知,根据研究对象不同,选择基函数的方法也不同的,如原子轨道线性组合法(LCAO-TB)、正交平面波法(OPW)、平面波赝势法(PW-PP)、缀加平面波法(APW)、格林函数法(KKR)、线性缀加平面波法(LAPW)、Muffin-tin 轨道线性组合法(LMTO)等,选取典型代表方法在随后的章节中重点展开讨论。与LAPW ,LMTO 等精度较高的第一性原理计算方法比较,平面波赝势法是计算量较少的方法,适用于计算精度要求不严格,因原胞较复杂而导致计算量陡增加的体系。为此,本章将重点学习赝势平面波方法,先学习电子能带的平面波基底展开以及赝势等相关基本概念,然后再讨论赝势引入原理。 3.1.1 平面波展开与截断能 1. 平面波展开 平面波是自由电子气的本征函数,由于金属中离子芯与类似的电子气有很小的作用,因此很自然的选择是用它描述简单金属的电子波函数。众所周知,最简单的正交、完备的函数集是平面波exp[())i k G r +?,这里G 是原胞的倒格矢。根据晶体的空间平移对称性,布洛赫(Bloch)定理(将在第4.1.1节中说明)证明,能带电子的波函数(,)r k ψ总是能够写成 (,)()exp()r k r ik r ψμ=? (3.1) 式中k 是电子波矢,()r μ是具有晶体平移周期性的周期函数。对于理想晶体的计算,这是很自然的,因为其哈密顿量本身具有平移对称性,只要取它的一个原胞就行了。对于无序系统(如无定型结构的固体或液体)或表面、界面问题,只要把原胞取得足够大,以至于不影响系统的动力学性质,还是可以采用周期性边界条件的。因此,这种利用平移对称性来计算电子结构的方法,对有序和无序系统都是适用的。采用周期性边界条件后,单粒子轨道波函数可

声子晶体在机械振动和噪声中的应用浅析剖析

本科生设计(论文) 论文题目:声子晶体在机械振动和噪声中的应用浅析姓名: 学院:海洋港口学院 专业:12机械制造及其自动化(港口)(师范)学号: 指导教师:丁红星

声子晶体在机械振动和噪声中的应用浅析 一、绪论 1.1课题背景 现代社会对噪声防治和处理的各种要求,促进了当代噪声控制工程技术的迅猛发展。工程中对噪声进行处理最常用而有效的技术措施就是安装适当的隔声材料。因此,对隔声材料进行开发研究具有十分重要的意义。 声子晶体是一种新型隔声材料,存在弹性波禁带,落在禁带范围内的弹性波在声子晶体中传播时会强烈的衰减,其衰减程度远远大于质量密度定理的预测值。因此声子晶体在噪声与振动的控制方面有着巨大的潜力。本文以声子晶体在中低频隔声的实际应用为切入点,针对布拉格散(Bragg)射型声子晶体和局域共振声子晶体,系统地研究其禁带的产生以及影响禁带特性的各种因素,通过有限元仿真与实验验证完成声子晶体在隔声功能上的应用尝试。 声子晶体复合材料的自身特性决定了其带隙影响因素的多样性,因此有必要对其带隙的影响因素进行全面的研究分析,通过对各个参数对带隙的影响情况的分析来判断声子晶体在中低频范围内隔声应用的可行性,为下一步的仿真计算和实验验证中声子晶体各参数的选择提供理论依据。 传统的隔声材料种类繁多,从定义上讲所有的对声波有阻隔作用的材料都可以称为隔声材料,实际的隔声工程实施中经常采用的隔声材料有各种金属板、石膏板、木板以及复合板材。由于它们大多都属于均匀介质结构,其隔声量都遵循质量密度定理,即材料的隔声性能与面密度有关,面密度增加一倍隔声量将会增大 6 分贝。因此要获得较好的隔声效果就必须要增加隔声材料的密度。然而在实际的应用当中,增加隔声材料密度会带来施工成本以及施工难度的急剧增大,这也限制了传统隔声材料的应用范围。因此工程应用当中对新型轻质隔声材料的需求非常迫切。 声子晶体材料是近几十年研究状况非常热门的一种新型功能性隔声材料,其本质是

一维功能梯度材料声子晶体弹性波带隙研究

助锨材抖2010年增刊II(41)卷一维功能梯度材料声子晶体弹性波带隙研究’ 宿星亮,高原文 (兰州大学西部灾害与环境力学教育部重点实验室,土木工程与力学学院,甘肃兰州730000) 摘要:应用平面波展开法研究了由功能梯度材料周期复合而成的一维声子晶体中存在的弹性波带隙特征,并得到第一阶带隙归一化起始频率、截止频率和宽度随功能梯度材料表面材料常数、指数因子和组分比变化的关系图。并对功能梯度材料声子晶体与常规材料声子晶体带隙特征进行了比较,结果表明,功能梯度材料声子晶体较常规材料声子晶体在相同范围内能够出现更多阶带隙结构。这些结果为功能梯度材料声子晶体在工程实际中的广泛应用提供了理论依据和指导。 关键词:声子晶体;功能梯度材料;弹性波带隙 中图分类号:0481.1:TB53文献标识码:A文章编号:1001-9731(2010)增刊Ⅱ一0368-03 1引言 功能梯度材料是一种多相材料,其材料宏观特性在空间位置上呈现梯度变化,消除了材料的物理性能突变现象,较好地避免或降低应力集中,达到优化结构整体使用性能的目的。功能梯度材料在航空航天、电子器件、人造脏器、汽车发动机等诸多方面都有广泛的应用。 声子晶体是由弹性性质不同的材料周期复合而成,对弹性波具有禁带效应的周期性结构“晶体,,[¨。声子晶体因其在减振、降噪、声学器件等方面有着广泛的潜在应用前景,已经引起了众多学者的关注。自1993年Kushwsha等[23提出声子晶体概念以来,众多学者在声子晶体带隙形成原理、计算方法和实验验证等方面展开了一系列的研究"d¨。1995年,Matrinez—Sala等口1第一次从实验角度证实了弹性波带隙的存在;1998年,MonterodeEspinosa等H3在实验中观察到了完全带隙的存在;1999年,Lu等∞1制备了离子型声子晶体并进行了实验研究;2000年,Liu等邙1首先提出了声子晶体的局域共振带隙机理;之后,温熙森等[1’7’16。1胡在声子晶体带隙计算方法、实验研究和减振特性等方面取得了一系列成果。近年来,含有新型功能材料的声子晶体研究越来越多的受到学者的关注,Wang等[13]研究了压电、压磁现象对声子晶体带隙的影响,以期通过外加的电磁信号来控制带隙特征;Zhao等[143研究了含有粘弹性材料声子晶体的带隙结构,讨论了粘弹性对带隙的影响。 由两种或两种以上材料交替排列而成的声子晶体结构模型,材料性质会在交界面出现突变现象,极易出现应力集中、材料疲劳断裂等问题,给工程应用带来极大不便。而功能梯度材料构成的声子晶体在材料宏观性质上呈连续变化,能够有效地避免以上缺陷,从而扩宽工程应用领域,因此该材料必将受到极大关注。而目前这一领域的研究还十分缺乏,当今研究仅有Wu等f153将功能梯度材料作为连接层应用于声子晶体中。基于此,本文研究了指数型功能梯度材料构成的一维声子晶体的带隙特征及影响因素。应用平面波展开法计算揭示了一维功能梯度材料声子晶体中存在弹性波带隙,探讨了功能梯度材料表面材料常数、指数因子和组分比等因数对带隙宽度的影响,比较了其与常规材料构成的声子晶体带隙特征的异同。所得结果对功能梯度材料声子晶体在工程实际中的设计和应用提供了依据和参考。 2一维功能梯度材料声子晶体模型 研究的一维功能梯度材料声子晶体是由材料常数按指数形式分布的功能梯度材料沿z轴方向周期排列而成。该功能梯度材料单元两端表面材料常数相同,在口处达到材料常数峰值,周期排列后构成材料常数宏观上连续变化的一维结构,如图1所示。 图1一维功能梯度材料声子晶体模型 Fig1Modelofone-dimensionphononiecrystalcon—sistedofFGM 图1中L为晶格常数,即为一个功能梯度材料单元,其中密度和弹性模量按指数形式分布,分别满足式(1),(2): 加,=髻鬣篡n<L㈣ 阢,一篇鬣≤:L㈤ 以d一气踟,惴,:≤z<LQ’ *基金项目:国家自然科学基金资助项目(10672070);新世纪优秀人才支持计划资助项目(NCET-06—0896)收到初稿日期:2010—04—20收到修改稿日期:2010—08—12通讯作者:高原文 作者简介:宿星亮(1986一),男,山西太原人,在读硕士,师承高原文副教授,从事智能材料与声子晶体研究。万方数据

声子晶体在机械振动和噪声

设计题目:声子晶体 姓名: 学院:海洋港口学院 专业:机械设计及其自动化班级、学号: 指导教师:丁老师

1:机械振动与噪声及其控制与利用 机械或结构在平衡位置附近的往复运动称为机械运动。 机械振动的分类方法:1.按振动系统的自由度数分类(单自由度系统振动,多自由度系统振动,连续系统振动);2.按振动系统所受的激励类型分类(自由振动,受迫振动,自激振动);3.按系统的响应分类(简谐振动,周期震动,瞬态震动,随机振动);4.按描述系统的微分方程分类(线性振动,非线性振动) 解决机械振动问题可采用理论分析和试验研究两种方法 简谐振动可由下面三个参数唯一确定(三要素):振幅、周期(角速度或频率)和初相位 声波是由生源振动引起的,这是声波与振动的联系;声波与振动也有区别,振动量只是时间的函数,而声波的波动量则不仅是时间的函数,同时还是空间的函数,声波波动量存在的空间称为声场。 机械噪声可以从噪声源与噪声传递的媒质去分类。 从声源形成的机理出发,机械噪声主要分为两大类:一类是机械结构振动性噪声,另一类是流体动力性噪声 按声波传递的媒质分类,噪声可以分为空气噪声和结构噪声 从噪声的定义知道,可从声源、路径和受者三个环节控制机械噪声 对机械噪声的控制,最根本的办法是对噪声源本身的控制 不需要使用额外的能源的噪声控制办法,如戴耳塞、耳罩或头盔以及建造隔声控制室,以上称为噪声被动控制;可利用声的波动性,根据声波干涉原理,由电子线路产生一个与噪声相位相反的声波,通过声波的干扰抵消噪声,达到降低噪声的目的,这是噪声的主动控制办法 振动系统离散化的力学模型由质量元件、弹性元件和阻尼元件组成,它们是理想化的元件。 完全确定系统在任何瞬时位置所需的独立坐标数称为自由度 单自由度系统振动微分方程的建立有两种方法:一种是力学,利用牛顿第二定律和质系动量矩定理;另一种是能量法,利用能量守恒定律 在矩阵形式表示的方程组中,如果质量矩阵和刚度矩阵不全是对角矩阵,这时称振动微分方程组中的坐标有耦合。若矩阵是非对角矩阵,称为动力耦合或惯性耦合,而刚度矩阵是非对角矩阵,称为静力耦合或弹性耦合。 所谓解耦是指通过坐标变换使系统振动微分方程组的质量矩阵和刚度矩阵都转变为对角矩阵。使振动微分方程组解耦的坐标称为主坐标。 有阻尼单自由度系统受迫振动稳态响应的特性如下:1.简谐振动,系统在简谐激励下的响应是简谐的2.受迫振动频率与激励的频率w相同3.受迫振动的振幅与初始条件无关4.增加阻尼可以有效的抑制共振时的振幅,但阻尼尽在共振区附近作用明显,在共振区以外,其作用很小5.相位特性和振幅一样,相位ψ也仅为? 和ξ的函数 所谓隔振,就是在振源和设备或其他物体之间用弹性或阻尼装置连接,使振源产生的大部分能量由隔振装置吸收,以减小振源对设备的干扰 隔振可分为两类:一类为主动隔振(积极隔振);另一类为被动隔振(消极隔振)

Bi2Se3拓扑绝缘体材料的电子结构研究

毕业论文 题目:Bi2Se3拓扑绝缘体材料的电子结构研究院(系): 年级: 专业:物理学 班级: 学号: 姓名: 指导教师: 完成日期:

摘要采用基于第一性原理的赝势平面波方法系统地计算了Bi2Se3基态的电子结构、态密度和能带结构以及理论模型,为Bi2Se3的设计与应用提供了理论依据.计算结果表明Bi2Se3属于间接带隙半导体, 禁带宽度为0.3 eV,其能带图中有18条价带,6条导带; 其价带主要由Se的6p以及Bi的6p态电子构成,导带主要由Mg的6p以及Si的6p态电子构成;其能带图中有18条价带,6条导带. 关键词Bi2Se3 第一性原理电子结构理论模型态密度能带结构 一、引言 按照导电性质的不同,材料可分为“金属”和“绝缘体”两大类;而更进一步,根据电子态的拓扑性质的不同“绝缘体”和“金属”还可以进行更细致的划分。拓扑绝缘体就是根据这样的新标准而划分的区别于普通绝缘体的一类新型绝缘体材料。它的体内与普通绝缘体一样,是绝缘的,但是在它的边界或表面总是存在导电的边缘态,这也是它有别于普通绝缘体的最独特的性质.这样的导电边缘态是稳定存在的,且不同自旋的导电电子的运动方向是相反的,传统上固体材料可以按照其导电性质分为绝缘体和导体,其中绝缘体材料在它的费米能处存在着有限大小的能隙,因而没有自由载流子;金属材料在费米能级处存在着有限的电子态密度,进而拥有自由载流子,信息的传递可以通过电子的自旋,而不像传统导电材料通过电荷,这样不涉及能量耗散过程,从而克服了传统材料的发热问题。拓扑绝缘体作为一种新的量子物质态,完全不同于传统意义上的金属和绝缘体,其体电子结构为有带隙的绝缘体,但表面或边界却为无带隙的金属态.近年来,拓扑绝缘体因其独特的物理性质及良好的应用前景在凝聚态物理和材料科学领域引起了广泛的研究. 到目前为止,用于制作纳米材料的方法有很多种,如快速凝固技术[1]、分离法[2]、球磨法[3]、表面活性合成法[4]和热还原法[5],等等. 与这些方法相比,水热合成法有很多优势,它具有较低的成本和较高的效率,而且不需要高纯度的原材料[6],热压的样品在623K和80MPa具有高密度,高导电率和模式。目前,为实现量子计算机和自旋电子器件的应用人们正努力研发基于各种单晶衬底与

声子晶体及其物理效应的研究

附件2 论文中英文摘要格式 作者姓名:卢明辉 论文题目:声子晶体及其物理效应的研究 作者简介:卢明辉,男,1979年10月出生,2004年9月师从于南京大学陈延峰教授,于2007年9月获博士学位。 中文摘要 当前声子晶体(Sonic Crystal or Phononic Crystal)是个研究热点,发现了各种新奇的现象和物理效应。声子晶体是一种人工周期性复合结构材料,由于周期性的Bragg散射和Mie’s 散射的联合作用,形成了声子能带结构。声子带隙的存在给人们提供了控制声波传播的手段,在许多领域具有重要的应用前景。 最近负折射正吸引越来越多人的关注,它带来了许多新奇的效应,并扩展了人类以往对波传播的认识,加深对波传播本性的理解。现今负折射可以分别在左手材料和人工带隙材料中实现。 本论文对声子晶体中声波的传播进行了理论和实验的研究。主要涉及声子晶体中的负折射现象、声子晶体负折射成像、声子晶体双折射等新奇的物理效应和一维声栅中声波的异常透射现象。 1.系统地研究了声子晶体中复杂的声波负折射现象。通过波矢空间等频线的方法来分析声子晶体中声波的传播。本文详细地讨论了声子晶体第一能带的群速度负折射效应,并研究了声子晶体第二能带的回波负折射效应。仔细地分析了负折射和频率以及入射角的关系及变化规律。 2.通过四角柱子声子晶体制备了可调谐的声子晶体,通过旋转四方柱子的角度,实现声子晶体的可调谐折射效应。即利用旋转四方柱子,改变波散射截面的大小,从而实现能带和波传播方向的调节。并利用可调谐声子晶体实现了可调谐负折射成像。 3.系统地研究了声子晶体内部声波传播的相速度和群速度。我们提出了一种新型的测量声子晶体相速度的简单方法,即通过改变声子晶体层数利用稳态相位延迟方法来测量相位信息。利用该方法,我们测量了声子晶体中声波的相速度,并且证实了在第一能带中声波相位的传播是和能流传播方向一致的。而在第二能带中声波相位的传播和能流传播方

声子晶体理论及应用调研报告

声子晶体理论及应用调研报告 摘要:声子晶体是一种新型的声学功能材料,声子晶体的研究对于固体物理学、材料科学、声学等产生了深刻的影响,并为我们进声波控制和振动控制提供全新的思路。本文主要对声子晶体的概念和基本特征、研究现状以及声子晶体的应用前景进行了重点论述。 关键词:声子晶体、声子禁带、声学滤波器、隔振降噪 一、引言 光子晶体概念于1987年提出,它是一种介电常数周期性分布的电介质复合结构,可以阻止某一种频率的光波在其中的传播,被阻止的光波频率称为“光子禁带”,由此提供了一种独一无二的制裁光和电磁波的方式。声波与光波在波动性上具有共性之处,因此可以推断由弹性材料(或振动介质)构成的周期性结构,也具有阻止某些频率的弹性振动波传播的性能。Sigahs和Eeonomou在1992年理论研究中证明了这种推断的正确性,并发现当弹性波在周期性弹性复合介质中传播时,会产生类似光子禁带的弹性波禁带——“声子禁带”。1993年Kushwaha等人提出了声子晶体的概念。从此声子晶体研究,引起了世界各国的高度关注。声子晶体是一种弹性常数周期性分布的复合结构,是一种新型的声学功能材料,在振动与噪声控制方面,具有广阔的工程技术应用前景。 二、声子晶体的概念及基本特征 存在弹性波带隙、弹性常数及密度周期分布的材料或结构被称为声子晶体。声子晶体的概念是类比光子晶体的概念提出来的。 弹性波在声子晶体中传播时,受其内部周期结构的作用,形成特殊的色散关系(能带结构),色散关系曲线之间的频率范围称为带隙。理论上,带隙频率范围的弹性波传播被抑制,而其它频率范围(通带)的弹性波将在色散关系的作用下无损耗地传播。当声子晶体的周期结构存在缺陷时,带隙频率范围内的弹性波将被局域在缺陷处,或沿缺陷传播。 在声子晶体中,与弹性波传播相关的密度和弹性常数不同的材料按结构周期性复合在一起,分布在格点上相互不连通的材料称为散射体,连通为一体的背景介质材料称为基体。声子晶体按其周期结构的维数可分为一维、二维和三维。 理想的声子晶体模型一般认为在非周期方向上具有无限尺寸,这种假设只有在波长远

第二章波函数和薛定谔方程

第二章波函数和薛定谔方程 ●§2.1 波函数的统计解释 ●§2.2 态叠加原理 ●§2.3 薛定谔方程 ●§2.4 粒子流密度和粒子数守恒定律●§2.5 定态薛定谔方程 ●§2.6 一维无限深势阱 ●§2.7 线性谐振子 ●§2.8势垒贯穿

本章主要介绍了波函数的统计解释、薛定谔方程的建立过程、用定态薛定方程处理势阱问题和线性谐振子问题。

§2.1 波函数的统计解释(一)波函数 (二)波函数的解释 (三)波函数的性质

?? ????-?=ψ)(exp Et r p i A ?3个问题? 描写自由粒子的 平面波 ),(t r ψ?如果粒子处于随时间和位置变化的力场中运动,他的动量和能量不再是常量(或不同时为常量)粒子的状态就不能用平面波 描写,而必须用较复杂的波描写,一般记为: 描写粒子状态的 波函数,它通常 是一个复函数。 称为de Broglie 波。此式称为自由粒子的 波函数。 (1) ψ是怎样描述粒子的状态呢? (2) ψ如何体现波粒二象性的? (3) ψ描写的是什么样的波呢? (一)波函数

电子源感 光 屏(1)两种错误的看法 1. 波由粒子组成 如水波,声波,由分子密度疏密变化而形成的一种分布。 这种看法是与实验矛盾的,它不能解释长时间单个电子衍射实验。 电子一个一个的通过小孔,但只要时间足够长,底片上增 加呈现出衍射花纹。这说明电子的波动性并不是许多电子在空间聚集在一起时才有的现象,单个电子就具有波动性。 波由粒子组成的看法夸大了粒子性的一面,而抹杀 了粒子的波动性的一面,具有片面性。 P P O Q Q O 事实上,正是由于单个电子具有波动性,才能理解氢原子 (只含一个电子!)中电子运动的稳定性以及能量量子化这样一些量子现象。

波函数的复数表示

§3.3 波函数的复数表示 复振幅 一.波函数的复数表示 简谐函数和复指数函数之间存在着对应关系,可用复指数函数来表示简谐函数。 不论复指数函数的实部或虚部都可以用来描写简谐波,习惯上都选用其实部,即余弦函数 平面波波函数为 图3.3-1 复数的图示 )cos(0),(?ω+??r k t =A t p E )]}(exp[{0?ω+???=r k t i A R e 平面波复数表示:)}(exp{),(0?ω+???=r k t i A t p E 球面波复数表示:0(,)()exp{()}E p t A r i t k r ω?=???+ 注意: 1.复数表示是对应关系,不是相等关系。 2.作简谐波函数的线性运算(加、减、乘常数、微分、积分)时,可用复指数函数来表示波函数,并通过复数运算后,从计算的最后结果取相应的实部即为所求。 二.复振幅 复指数函数表示波函数 t i i e Ae t p E ω?????=)(0),(r k 某点在 t 时刻的振动完全由该点的振幅和初相所决定。 平面波场中任一点 P 的复振幅 0()()()()()i k r i p E p A p e A p e φφ???== 沿x 方向传播的一维平面波的复振幅为 )(0)(~φ?=kz i Ae p E 球面波的复振幅为 0()()i kr A E p e r φ±?= 强调:相位因子的表示会聚与发散 ±高斯波束的复振幅为 )]()) (2(exp[))(exp()()(~0222220z i z r y x z ik z w y x t w A p E φ+++??+?=

小结:复振幅是一个复量,其模量表示波场中某点的振幅,其辐角表示该点初相位的负值。复振幅包含了我们所关心的振幅和相位两个空间分布,所以可以用它来描写单色光波场。 三.共轭波 设某一波的复振幅为 r k ?=i e p A p E )()(~ 复共轭函数 ()()i E p A p e ??= k r ——共轭波 意义:共轭波与原波是互为共轭的,它们的实振幅空间分布相同,只是其波矢量由k 变为-k ,即传播方向反转。 例如发散的球面波,其共轭波变成了会聚球面波。 四.光强的复振幅表示 *2~~E E A I ==

相关主题