搜档网
当前位置:搜档网 › 第一讲黑体辐射讲义

第一讲黑体辐射讲义

第一讲黑体辐射讲义
第一讲黑体辐射讲义

量子论

第一讲黑体辐射

1.热辐射

在上一章中,我们已经提到,开尔文勋爵所说的两朵乌云的第二朵是黑体辐射的实验结果被拔开时,人们发现了近代物理学的两个基础理论的另一个理论即量子力学论.

量子论

由于温度升高而发射能量的辐射源,通常称为热辐射.热辐射体中原子和分子不发生运动状态变化.热辐射能量来自物体的热运动.物体在任何温度下(只要不是绝对零度)都向四周进行热辐射,也从周围吸收这种辐射.热辐射的光谱是连续光谱.一般情况下,热辐射的光谱不仅与辐射源的温度有关,还与它的表面特征有关.

为了定量的描述热辐射与温度和物体特性的关系,首先引入下列概念:

(1)辐射出射度(简称辐出度)

温度为T的热辐射体,在单位间内从单位面积向各个方向辐射出的所有频率的辐射能量.又称为辐射能通量密度.

(2)单色辐射出射度

温度为T的热辐射体, 在单位时间内从单位面积向各个方向所发射的、在某一频率附近的单位间隔内辐射能量(即功率)叫做该物体的单色辐射出射度.单色辐射出射度与温度、频率和物体的表面特性有关.

(3)吸收本领

入射到物体上的辐射通量,一部分被物体散射或反射(对透明物体,还会有一部分透射), 其余的为物体所吸收.

2.黑体

热辐射的规律是很复杂的,我们知道,各种物体由于它有不同的结构,因而它对外来辐射的吸收以及它本身对

外的辐射都不相同.但是有一类物体其表面不反射光,它们能够在

任何温度下,吸收射来的一切电磁辐射,这类物体就叫做绝对黑体,

简称黑体.

绝对黑体是我们研究热辐射时为使问题简化的理想模型.实际

上黑体只是一种理想情况,但如果做一个闭合的空腔,在空腔表面开一个小孔,小孔表面就可以模拟黑体表面.这是因为从外面射来的辐射,经小孔射入空腔,要在腔壁上经过多次反射,才可能有机会射出小孔.因此,在多次反射过程中,外面射来的辐射几乎全部被腔壁吸收.在实验中,可在绕有电热丝的空腔上开一个小孔来实现,正因为实验所用的绝对黑体都是空腔辐射,因此,黑体辐射又称为空腔辐射.

3.黑体的经典辐射定律

1879年,斯忒藩(J.Stefan,1835~1893年)从实验观察到黑体的辐出度与绝对温度T的四次方成正比,即:

4J T σ=

1884年玻尔兹曼从理论上给出这个关系式.其中8245.6703210/()W m K δ-=??. 对一般物体而言,()

412

J T Js m εσ--=,ε为发射率,J 为辐出度, ()

412

J T Js m εσ--=,式中

()81245.67010Js m K σ----=?,称为斯特藩-玻尔兹曼常数.通常ε<1,但对黑体而言,e = 1 (即为完全辐射).

如果物体周围的环境温度为0T ,则须考虑物体表面对入射辐射能的吸收.假定入射的辐射能通量密度为40T σ,a 为物体表面的吸收率,则该物体表面所吸收的辐射能通量密度为40J a T σ'=,通常a < 1,但对黑体而言,1a =(即为完全吸收).因此物体表面对入射能量的反射率为1r a =-.

从理论上我们不难证明物体表面的放射率和吸收率相等,即e a =,此称为我们可以说:容易辐射能量的物体,也容易吸收入射的能量.

处于热平衡时,黑体具有最大的吸收比,因而它也就有最大的单色辐出度. 4.紫外灾难

(1)基尔霍夫定律(Kirchhoff's Law):

热平衡状态时,任何物体的单色辐出度与单色吸收比之比,等于同温度条件下绝对黑体的单色辐出度 因此,“绝对黑体的单色辐出度”,是当时研究的尖端课题. 推论:

a.若T A =T B ,则辐射多的吸收也多,不能辐射亦不能吸收;

b.λ一定时,绝对黑体辐射和吸收的能量比同温度下的其它物体都多. 经典理论在短波段的这种失败成为“紫外灾难”. (2)普朗克假设:

a.空腔黑体可用一些线性谐振子来代表.

b.谐振子只能处于某些特殊的不连续的状态中,它们的能量只能是h εν=的整数倍.

c.发射和吸收的能量只能是ε的整数倍.

【例1】(1)有一金属圆柱体的表面积为S ,其内部装有电热丝,通电流后可以生热,供热的功率为0P ,起始时圆柱体的表面以砂纸磨亮,其辐射发射率可视为零.经通电加热后,利用热电偶测得圆柱体表面达成热平衡时的温度为1T .现利用蜡烛将该圆柱体表面熏黑,其辐射发射率可视为1,以同样的方式通电加热,则圆柱体表面的热平衡温度为T.设当时金属圆柱体周围的环境温度为0T ,在实验期间稳定不变.因热传导和对流而损失的热量功率,可合理假设为正比于圆柱体表面温度和环境温度的差值.试求T 和上述已知量,即S 、P 、1T 、和0T ,之间的数学关系式为何?

(2)下列为已知量的数值:

电热丝的供热功率15.0P W = 金属圆柱体的表面积224.8S cm =

金属圆柱体表面磨亮时的热平衡温度121244T C = 环境温度025T C =.

试求圆柱体表面熏黑时的热平衡温度T 为何?

【解析】(1)当金属圆柱体表面磨亮时,没有因辐射而致的热损失,只有因传导和对流而致的热损失.后者根据题中的假设,与圆柱表面温度1T 和环境温度0T 之间的差值成正比,故

10()P k T T =- (1)

式中k 为比例常数.当圆柱体表面熏黑时,除了因传导和对流的热损失外,还须加计辐射的热损失.设圆柱体表面的热平衡温度为T ,则

4400()()P S T T k T T σ=-+- (2)

由上两式消去比例常数k ,可得

440010

()

()P T T P S T T T T σ-=-+

-

()

441010()0P

T T T T S T T σ+

--=- (3)

(2)将已知数值代入(3)式,可得

()

()448

4

15.0

48529805.6701024.810485298T T --+

--=????- 利用逼近求根法如下表:

若取三位有效数字,则C K T 163436== 【总结】

第二讲 光电效应

普朗克提出了能量子概念以后,许多物理学家都想从经典物理学中求得解释,但始终无法成功.为了尽量缩小与经典物理学之间的差距,普朗克把能量子的概念局限于振子辐射能量的过程,而认为辐射场本身仍然是连续的电磁波.直到1905年爱因斯坦在光电效应的研究中,才突破了普朗克的认识,看到了电磁波能量普遍都以能量子的形式存在.从光和微观粒子相互作用的角度来看,各种频率的电磁波都是能量为的光粒子(称作光子)体系,这就是说,光不仅有波的性质而且有粒子的性质.

1.光电效应及其实验规律

在1886年~1887年,赫兹在证实电磁波的存在和光的麦克斯韦电磁理论的实验过程中,已经注意到:当两个电极之一受到紫外光照射时,两电极之间的放电现象就比较容易发生.然而当时赫兹对这个现象并没有继续研究下去.直到电子发现后,人们才知道这是由于紫外光的照射,使大量电子从金属表面逸出的缘故.这种电子在光的作用下从金属表面发射出来的现象,称为光电效应,逸出来的电子称为光电子.

研究光电效应的实验装置如图所示,阴极K 和阳极A 封闭在真空管内,在两板之间加一可变电压,用以加速或阻挡释放出来的电子.光通过石英小窗W 照到电极K 上,在光的作用下,电子从电极K 逸出,并受电场加速而形成电流,这种电流称为光电流.

实验结果发现光和光电流之间有一定的关系.

首先在入射光的强度与频率不变的情况下,电流—电压的实验曲线如图8—9所示.曲线表明,当加速电压V 增加到一定值时,光电流达到饱和值,这是因为单位时间内从阴极K 射出的光电子全部到达阳极A .若单位时间内从电极K 上击出的光电子数目为n ,则饱和电流I =ne .

另一方面,当电位差V 减小到零,并逐渐变负时,光电流并不降为零,就表明从电极K 逸出的光电子具有初动能.所以尽管有电场阻碍它运动,仍有部分光电子到达电极K .但是当反向电位差等于—Ve 时,就能阻止所有的光电子飞向电极A ,光电流降为零,这个电压叫遏止电压.它使具有最大初速度的电子也不能到达电极A .如果不考虑在测量遏止电压时回路中的接触电势差,那么我们就能根据遏止电压 g V -来确定电子的最大速度和最大动能,即

在用相同频率不同强度的光去照射电极时,得到的电流—电压曲线如图所示.它表示出对于不同强度的光,Vg 是相同的,这说明同一种频率不同强度的光所产生的光电子的最大初动能是相同的.

此外,用不同频率的光去照射电极K时,实验结果是频率愈高,Vg愈大.并且与Vg成直线关系,频率低于的光,不论强度多大,都不能产生光电子,因此不同的材料,阈频率不同.

总结所有的实验结果,光电效应的规律可归纳为如下几点:

1.饱和电流I的大小与入射光的强度成正比,也就是单位时间内被击出的光电子数目与入射光的强度成正比.(光电效应第一定律)

2.光电子的最大初动能(或遏止电压)与入射光的强度无关,而只与入射光的频率有关.频率越大,光电子的能量就越大.(光电效应第二定律)

3.入射光的频率低于遏止频率(极限频率,红限频率)的光,不论光的强度如何,照射时间多长,都没光电子发射.(光电效应第三定律)

4.光的照射和光电子的释放几乎是同时的,在测量的精度范围内10-9s观察不出这两者间存在滞后现象.

2.光电效应和波动理论的矛盾

光能使金属中的电子释放,从经典理论来看,是不难理解的.我们知道金属里面有大量的自由电子,这些电子通常受到正电荷的引力作用,而被束缚在金属表面以内,它们没有足够的能量逸出金属表面.但因光是电磁波,在它的照射下,光波中的电场作用于电子,迫使电子振动,给电子以能量,使电子有足够的能力挣脱金属的束缚而释放出去.因此按照光的电磁理论可以预测:

(1)光愈强,电子接受的能量愈多,释放出去的电子的动能也愈大.

(2)释放电子主要决定于光强,应当与频率等没有关系.但是,实验测量的结果却并不如此.

(3)关于光照的时间问题,波动观点更是陷于困境.从波动观点来看,光能量是均匀分布,在它传播的空间内,由于电子截面很小,积累足够能量而释放出来必须要经过较长的时间,合实验事实完全完全不符.

3.爱因斯坦光电效应方程

为了解释光电效应的所有实验结果,1905年爱因斯坦推广了普朗克关于能量子的概念.前面已经指出普朗克在处理黑体辐射问题时,只是把器壁的振子能量量子化,腔壁内部的辐射场仍然看作是电磁波.然而爱因斯坦在光电

效应的研究中指出:光在传播过程中具有波动的特性,而在光和物质相互作用的过程中,光能量是集中在一些叫做光量子(简称光子)的粒子上.从光子的观点来看,产生光电效应的光是光子流,单个光子的能量与频率成正比即:

h εν=

式中h 是普朗克常数.

把光子的概念应用于光电效应时,爱因斯坦还认为一个光子的能量是传递给金属中的单个电子的.电子吸收一个光子后,把能量的一部分用来挣脱金属对它的束缚,余下的一部分就变成电子离开金属表面后的动能,按能量守恒和转换定律应有:

21

2

h mv W ν=+

上式称为爱因斯坦光电效应方程.其中212

mv 为光电子的动能,W 为光电子逸出金属表面所需的最小能量,称为脱出功.

对光电效应四个定律的解释: (1)光电效应第一定律的解释

Ne I ∝:光子数↑?光电子数↑I ?↑

(2)光电效应第二定律的解释:

022

1U k U A

h mv a -=-=νν0

0eU A A h ek h ===???ν

a

U :遏止电压,

U :逸出电位

(3)光电效应第三定律的解释:

ek A h A ==

光电子动能不小于零

(4)光电效应第四定律的解释:

s t 810-≤:光子能量?电子,无须能量积累时间

1921年,爱因斯坦因对物理学的贡献,特别是光电效应获诺贝尔物理学奖 爱因斯坦理论的验证

1916年,密立根进行了精密的测量,证明~a U ν确为直线,且直线的斜率为h e

.1923年获诺贝尔物理学奖

4.光子的质量和动量

2

c

h

m

h

P

h

ν

λ

ν

ε

=

=

=

?

?

?

光子既具有一定的能量,就必须具有质量.但是光子以光的速度运动,牛顿力学便不适用.按照狭义相对论质量和能量的关系式,就可以决定一个光子的质量

在狭义相对论中,质量和速度的关系为

m0为静止质量,光子永远以不变的速度c运动,因而光子的静止质量必然等于零,否则m将为无穷大.因为相对于光子静止的参照系是不存在的,所以光子的静止质量等于零也是合理的.而原子组成的一般物质的速度总是远小于光速的,故它们的静止质量不等于零.在m0是否等于零这一点上光子和普通的物质有显著的区别.在狭义相对论中,任何物体的能量和动量的关系为

光子的静止质量为0,故光子的动量为

h

p

c c

εν

==

这是和光子的质量为

2

p h

m

c c

ν

==,速度为c.

光电效应明确了光的行为像粒子,并且可用动力学的变量(动量和能量)来描述粒子的行为;在光和物质相互作用过程中,光子是整体在起作用.另一方面,在讨论衍射和干涉现象时,需要把光作为波动来处理,于是用波长来阐明问题.

波动特征和粒子特征是互相对立的,但并不是矛盾的.

光的波长既适宜于显示波动特征,同时又也容易显示粒子特征.对于电磁波谱的长波段,表示其波动特征的物理量T和较大,而表示其粒子特征的物理量ε和p 较小,因而容易显示波动特征,反之,对于电磁波谱的短波段,表示其波动特征的物理量T和较小,而表示其粒子特征的物理量ε和p较大,因而容易显示粒子特征.

【例1】将一块金属板放在离单色点光源5米远的地方,光源的光功率输出为10-3瓦.假设被打出的光电子可以从半径为10-8米(约相当于原子直径的十倍)的圆面上以从光源取得它所得的能量,已知打出一个电子需要5.0eV.现在将光认为是经典波动,对这种装置的一个“靶”来说,打出一个光电子需要多长时间?

【解析】电子接受能量的靶面积为92

(10)

π-

?,半径为5米的球面面积为,前者是后者的,故每秒投射于靶面积上的能量为

3201010--?焦耳.

打出一个电子需要能量5eV ,即 19810-?焦耳,故积累这些能量需时

19

23

81010--?秒=22.22小时.

实际上光电效应是几时的,根本不需要这么长的时间.这说明光与光电阴极电子的作用决不是经典波动模型中能量积累的那种形式

【例2】若—个光子的能量等于一个电子的静能量,试问该光子的动量和波长是多少?在电磁波谱中它是属何种射线?

【解析】—个电子的静能量为m 0c 2,按题意

2h mc ν=

光子的动量

光子的波长

因电磁波谱中γ射线的波长在300~10-4A 范围内,所以该光子在电磁波谱中属于γ射线. 5.康普顿效应

(1)散射现象:光通过不均匀物质时,向各个方向发射的现象 实验发现:X 射线→金属或石墨时,也有散射现象 1922、1923年康普顿及其学生吴有顺进行了系统研究 (2)实验装置:如图

(3)实验结果:

a.散射光中除有与入射线波长0λ相同的,还有比0λ大的波长λ,0λλλ?=-随散射角θ而异,θ增大时,λ的

强度增加,0λ的强度减小.

b.当散射角θ确定时,波长的增加量

与散射物质的性质无关.

c.康普顿散射的强度与散射物质有关.原子量小的散射物质,康普顿散射较强,原波长的谱线强度较低.反之相反. 按经典电磁理论,光的散射是带电粒子在入射光电场作用下作受迫振动,散射光与入射光应该有相同波长. 按照光子理论,一个光子与散射物中的一个自由电子发生碰撞,散射光子将沿某一方向进行——康普顿散射,光子与电子之间碰撞遵守能量守恒和动量守恒,电子受到反冲而获得一定的动量和动能,因此散射光子能量要小于入射光子能量.由光子的能量与频率间的关系

可知,散射光的频率要比入射光的频率低,因此散射光的波长

.如果入射光子与原子中被束缚得很紧的电子碰撞,光子将与整个原子作弹性碰撞(如乒乓球碰铅球),散射

光子的能量就不会显著地减小,所以观察到的散射光波长就与入射光波长相同.

下图为光子与自由电子弹性碰撞的示意图.应用相对论质量、能量、动量关系,有

式中m 0、m 为电子的静质量和质量,02

1()m

v

c

=

-.将上式第二式写成分量式

00

cos cos h h mv c c νν?θ=

- sin sin h mv c

ν

?θ=

解以上联立方程组,消去?,即得

22002sin 2sin 22

c h m c θθλλλλ?=-=

= 式中

叫做电子的康普顿波长.上式表明λ?与散射物质的性质无关.

康普顿散射进一步证实了光子论,证明了光子能量、动量表示式的正确性,光确实具有波粒两象性.另外证明在光电相互作用的过程中严格遵守能量、动量守恒定律.

在基元相互作用过程中,能量、动量守恒.1927年,康普顿因此获诺贝尔物理学奖 【例1】求nm 5001=λ的可见光光子和nm .102=λ的X 射线光子的能量、动量和质量?

J .19110983-?=ε,s /m kg .P ??=-27

110

331,kg .m 36110424-?=

J .15210991-?=ε,s /m kg .P ??=-24210636,kg .m 32210212-?=

【例2】nm .0100=λ的X 射线,射向静止的自由电子,观察方向o 90=?,求:①?=λ②反冲电子的动能和动量?

(①nm .012430=λ

②eV .J .E k 41510421083?=?=-, )s /m kg (j .i .P e ??-?=--

2323

1053510

636 或:',s /m kg .P o e 443810

51823=??=-θ) 【例3】已知X 光光子的能量为MeV .60,在康普顿散射之后,波长变化了20%,求反冲电子的能量.(MeV .E e 610=)

练习

1.下列各物体,哪个是绝对黑体? A.不辐射可见光的物体 B.不辐射任何光线的物体; C.不能反射可见光的物体 D.不能反射任何光线的物体.

2.以金属表面用绿光照射开始发射电子,当用下列光照射时,有电子发出的为: A.紫光 B.橙色光 C.蓝光 D.红光

3.钾金属表面被蓝光照射,发出光电子,若照射的蓝光光强增加,则 A.单位时间内发出光电子数增加; B.光电子的最大动能增加; C.发出光电子的红限增加; D.光电效应的发生时间后滞缩短.

4.波长为0.5微米的绿光频率为_________Hz ,其电子能量为________焦耳,合______电子伏特;频率为1兆赫的无线电量子能量为___________焦耳.

5.已知从铯表面发射出的光电子最大动能为2eV ,铯的脱出功为1.8eV ,则入射光光子能量为________eV ,即________焦耳,其波长为_________埃.

第三讲 波粒二象性

1.光的波粒二象性

波动性:干涉、衍射、偏振 粒子性:热辐射,光电效应,散射等 同时具有,不同时显现 2.德布罗意假设

(1)假设:质量为m 的粒子,以速度v 运动时,不但具有粒子的性质,也具有波动的性质; 粒子性:可用E 、P 描述

νh mc E ==2, λ

h

mv P =

=

波动性:可用νλ,描述

22021βν-==h c m h mc ,v m h mv h

21βλ-==-------德布罗意公式

(2)电子的德布罗意波长 加速电势差为U ,则:

20221m eU

v ,eU v m == U

em h eUm h v m h 1

22000?===

λ nm U

.225

1=

λ 如:nm .,V U 10150==λ(与x 射线的波长相当)

)

c m eU (eU hc 2

02+=

λ

nm U .E E k 225

10=

?>>λ k

k E hc E E =

?>>λ0 3.德布罗意假设的实验验证

德布罗意关于物质波的假设在微观粒子的衍射实验中得到了验证。其中最有代表性的是电子散射实验、透射实

验和双缝干涉实验。这些实验有力地证明了德布罗意物质波假说的正确性。

实物粒子的衍射效应在近代科技中有广泛的应用,例如中子衍射技术,已成为研究固体微观结构的最有效的手段之一。

光学仪器的分辨率与波长成正比,而电子的德布罗意波长比光波长短很多,例如在10万伏的加速电压下,电子的波长只有0.004 m ,比可见光短10万倍左右,因而利用电子波代替光波制成电子显微镜就可以有极高的分辨本领。现代的电子显微镜不仅可以直接看到如蛋白质一类的大分子,而且能分辨单个原子的尺寸,为研究物质结构提供了有力的工具。

(1) 电子散射实验

电子散射实验的典型代表是戴维孙-革末实验。1927年戴维孙和革末用电子束垂直投射到镍单晶,电子束被散射。电子经晶格散射后在某一特定方向衍射极大,这一结果与X 射线散射相似,其强度分布可用德布罗意关系和衍射理论给以解释,从而验证了物质波的存在。

衍射加强时的电子德布罗意波长应满足布拉格公式

式中是入射电子束对晶面的掠射角,d 是晶面间距。晶面间距d 与镍原子的间隔l 的关系是,考虑第

一级衍射极大,有

由图知电子相对于入射方向的散射角与掠射角之间有关系,因此上式可写成sin l ?λ=

当加速电压U=54伏,加速电子的能量:212

eU mv = 电子的德布罗意波长:16.72h nm p meU

λ=

== 镍的原子间隔是21.5nm ,由此求出衍射第一极大的散射角度:16.7

arcsin

5121.5

?== 实验测量出的值50?=,是理论值比实验值稍大的原因是电子受正离子的吸引,在晶体中的波长比在真空中稍小(动量稍大)。经修正后,理论值与实验结果完全符合。

(2) 电子透射实验

电子穿过晶体薄片后产生的衍射,与X 射线通过晶体的衍射极其类似。汤姆逊实验证明了电子在穿过金属片后也象X 射线一样产生衍射现象。下图是电子射线通过多晶时的衍射图样。

戴维逊和汤姆逊因验证电子的波动性分享1937年的物理学诺贝尔奖金。 (3) 电子双缝干涉实验

1960年,约恩孙直接做了电子双缝干涉实验,从屏上摄得了类似杨氏双缝干涉图样的照片。干涉图样如下图所示。

在电子波动性获得证实以后,在其它一些实验中也观察到中性粒子如分子、原子和中子等微观粒子,也具有波动性,1988年蔡林格等做了中子的双缝实验。德布罗意公式也同样正确,德布罗意公式成了波粒二象性的统一性的基本公式,德布罗意由于发现电子的波动性,荣获1929年诺贝尔物理学奖。

【例1】求波长都等于0.2nm 的光子与电子的总能量和动量

【例2】电子通过单缝的实验中,加速电压V U 100=,垂直穿过nm a 2=的单缝,求: ① 加速后的速率; ② 电子相应的波长; ③ 中央明纹的半角宽度? 解:① s /m .m eU v 610952?==

② nm .U

.12250225

1==λ ③

o .)a

arcsin(

5123==λ

?

第一章 量子力学基础知识

《结构化学基础》 讲稿 第一章 孟祥军

第一章 量子力学基础知识 (第一讲) 1.1 微观粒子的运动特征 ☆ 经典物理学遇到了难题: 19世纪末,物理学理论(经典物理学)已相当完善: ? Newton 力学 ? Maxwell 电磁场理论 ? Gibbs 热力学 ? Boltzmann 统计物理学 上述理论可解释当时常见物理现象,但也发现了解释不了的新现象。 1.1.1 黑体辐射与能量量子化 黑体:能全部吸收外来电磁波的物体。黑色物体或开一小孔的空心金属球近似于黑体。 黑体辐射:加热时,黑体能辐射出各种波长电磁波的现象。 ★经典理论与实验事实间的矛盾: 经典电磁理论假定:黑体辐射是由黑体中带电粒子的振动发出的。 按经典热力学和统计力学理论,计算所得的黑体辐射能量随波长变化的分布曲线,与实验所得曲线明显不符。 按经典理论只能得出能量随波长单调变化的曲线: Rayleigh-Jeans 把分子物理学中能量按自由度均分原则用到电磁辐射上,按其公式计算所得结果在长波处比较接近实验曲线。 Wien 假定辐射波长的分布与Maxwell 分子速度分布类似,计算结果在短波处与实验较接近。 经典理论无论如何也得不出这种有极大值的曲线。 ? 1900年,Planck (普朗克)假定: 黑体中原子或分子辐射能量时作简谐振动,只能发射或吸收频率为ν, 能量为 ε=h ν 的整数倍的电磁能,即振动频率为 ν 的振子,发射的能量只能是 0h ν,1h ν,2h ν,……,nh ν(n 为整数)。 ? h 称为Planck 常数,h =6.626×10-34J ?S ? 按 Planck 假定,算出的辐射能 E ν 与实验观测到的黑体辐射能非常吻合: ●能量量子化:黑体只能辐射频率为 ν ,数值为 h ν 的整数倍的不连续的能量。 能量波长 黑体辐射能量分布曲线 () 1 /81 3 3 --= kt h c h e E ννπν

光电效应测普朗克常数-实验报告

综合、设计性实验报告 年级 ***** 学号********** 姓名 **** 时间********** 成绩 _________

一、实验题目 光电效应测普朗克常数 二、实验目的 1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律; 2、掌握用光电管进行光电效应研究的方法; 3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。 三、仪器用具 ZKY—GD—3光电效应测试仪、汞灯及电源、滤色片(五个)、光阑(两个)、光电管、测试仪 四、实验原理 1、光电效应与爱因斯坦方程 用合适频率的光照射在某些金属表面上时,会有电子从金属表面逸出,这种现象叫做光电效应,从金属表面逸出的电子叫光电子。为了解释光电效应现象,爱因斯坦提出了“光量子”的概念,认为对于频率为的光波,每个光子的能量为 式中,为普朗克常数,它的公认值是= 。 按照爱因斯坦的理论,光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子,电子所获得的能量,一部分用来克服金属表面对它的约束,其余的能量则成为该光电子逸出金属表面后的动能。爱因斯坦提出了著名的光电方程: (1)式中, 为入射光的频率,m为电子的质量,v为光电子逸出金属表面的初

速度, 为被光线照射的金属材料的逸出功,2 21mv 为从金属逸出的光电子的最 大初动能。 由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子都不能到达阳极,光电流才为零。这个相对于阴极为负值的阳极电位0 U 被称为 光电效应的截止电压。 显然,有 (2) 代入(1)式,即有 (3) 由上式可知,若光电子能量W h <γ,则不能产生光电子。产生光电效应的最 低频率是h W = 0γ,通常称为光电效应的截止频率。不同材料有不同的逸出功, 因而 0γ也不同。由于光的强弱决定于光量子的数量,所以光电流与入射光的强 度成正比。又因为一个电子只能吸收一个光子的能量,所以光电子获得的能量与光强无关,只与光子γ的频率成正比,,将(3)式改写为 (4) 上式表明,截止电压 U 是入射光频率γ的线性函数,如图2,当入射光的频 率 γγ=时,截止电压 0=U ,没有光电子逸出。图中的直线的斜率 e h k = 是一 个正的常数: (5)

光电效应测普朗克常数-实验报告要点

光电效应测普朗克常数-实验报告要点

综合、设计性实验报告 年级***** 学号********** 姓名**** 时间********** 成绩_________

一、实验题目 光电效应测普朗克常数 二、实验目的 1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律; 2、掌握用光电管进行光电效应研究的方法; 3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。 三、仪器用具 ZKY—GD—3光电效应测试仪、汞灯及电源、滤色片(五个)、光阑(两个)、光电管、测试仪 四、实验原理 1、光电效应与爱因斯坦方程 用合适频率的光照射在某些金属表面上时,会有电子从金属表面逸出,这种现象叫做光电效应,从金属表面逸出的电子叫光电子。为了解释光电效应现象, 爱因斯坦提出了“光量子”的概念,认为对于频率为的光波,每个光子的能 量为 式中,为普朗克常数,它的公认值是=6.626 。 按照爱因斯坦的理论,光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子,电子所获得的能量,一部分用来克服金属表面对它的约束,其余的能量则成为该光电子逸出金属表面后的动能。爱因斯坦提出了著名的光电方程: (1) 式中, 为入射光的频率,m为电子的质量,v为光电子逸出金属表面的初 速度,为被光线照射的金属材料的逸出功, 2 2 1 mv 为从金属逸出的光电子的

最大初动能。 由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子都不能到达阳极,光电流才为零。这个相对于阴极为负值的阳极电位0 U 被称为光电效应的截止电压。 显然,有 (2) 代入(1)式,即有 (3) 由上式可知,若光电子能量W h <γ,则不能产生光电子。产生光电效应的最 低频率是h W = 0γ,通常称为光电效应的截止频率。不同材料有不同的逸出功, 因而 0γ也不同。由于光的强弱决定于光量子的数量,所以光电流与入射光的强 度成正比。又因为一个电子只能吸收一个光子的能量,所以光电子获得的能量与光强无关,只与光子γ的频率成正比,,将(3)式改写为 (4) 上式表明,截止电压 U 是入射光频率γ的线性函数,如图2,当入射光的频 率 0γγ=时,截止电压00=U ,没有光电子逸出。图中的直线的斜率 e h k = 是一 个正的常数: (5) 由此可见,只要用实验方法作出不同频率下的 γ -0U 曲线,并求出此曲线的 斜率,就可以通过式(5)求出普朗克常数h 。其中 是电子的电 量。

普朗克黑体辐射公式推导

普朗克黑体辐射公式推 导 The document was finally revised on 2021

普朗克黑体辐射公式的推导 所谓的黑体是指能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。 黑体辐射:由这样的空腔小孔发出的辐射就称为黑体辐射。 辐射热平衡状态: 处于某一温度 T 下的腔壁,单位面积所发射出的辐射能量和它所吸收的辐射能量相等时,辐射达到热平衡状态。 实验发现: 热平衡时,空腔辐射的能量密度,与辐射的波长的分布曲线,其形状和位置只与黑体的绝对温度 T 有关而与黑体的形状和材料无关。 实验得到: 1. Wien 公式 从热力学出发加上一些特殊的假设,得到一个分布公式: ννννρνd T C C d )/ex p(231-=

Wien 公式在短波部分与实验还相符合,长波部分则明显不一致。 2. Rayleigh-Jeans 公式 ννπνρνd kT C d Jeans Rayleigh 2 38= -公式 Rayleigh-Jeans 公式在低频区和实验相符,但是在高频区公式与实验不符,并且 ∞→=?∞ v v d E E ,既单位体积的能量发散,而实验测得的黑体辐射的能量密度是 4T E σ=,该式叫做Stefan-Bolzmann 公式,σ叫做Stefan-Bolzmann 常数。 3. Planck 黑体辐射定律 1900年12月14日Planck 提出如果空腔内的黑体辐射和腔壁原子处于平衡,那么辐射的能量分布与腔壁原子的能量分布就应有一种对应。作为辐射原子的模型,Planck 假定: (1)原子的性能和谐振子一样,以 给定的频率 v 振荡; (2)黑体只能以 E = hv 为能量单位不连续的发射和吸收辐射能量,而不是象经典理论所要求的那样可以连续的发射和吸收辐射能量。 得到: νννπνρνd kT h C h d ??? ? ??-=1)/exp(1 833该式称为 Planck 辐射定律 h 为普朗克常数,h=s j .10 626.634 -? 4,普朗克的推导过程: 把空窖内的电磁波分解为各个频率的简振振动,简振模的形式最后为 ).(),(wt r K i k k e C t r -=αβψ,为常系数振方向,表示两个互相垂直的偏α αk C 2,1=

黑体辐射实验

黑体辐射实验 (一)、实验目的要求 1、掌握黑体基本理论 2、掌握黑体辐射能量的测量和任意发射光源的辐射能量的测量 3、学会利用相同的装置验证黑体的辐射定律 (二)、实验原理与设备 黑体的基本理论 物体在一定的温度下发出电磁辐射,如果理想热辐射体表面温度已知,那么其辐射特性就可以完全确定。 黑体在温度T时的光谱辐射出射度M等于普适函数。1900年,普朗克根据他提出的量子理论建立了的准确表达式,得到了与实验完全相同的结果。这就是著名的普朗克辐射公式。 式中:__第一辐射常量,其值为3.7418 ___第二辐射常量,其值为1.4388; M__单位为. 普朗克公式是光辐射的一个重要的基本公式。从这个公式出发,可以推导出其他有关的辐射公式。 根据基尔霍夫定律可知,绝对黑体的总辐射出射度只是温度的函数,1879年斯忒藩根据实验得到一条经验定律:绝对黑体的积分辐射出射度与其热力学温度的四次方成正比。1884年,玻尔兹曼根据热力学理论推导出了与斯忒藩经验定律相一致的结果,因此,称为斯-玻定律。 将上式对所有波长积分,就得到绝对黑体的积分辐射出射度, 即=

此式为斯忒藩-玻耳兹曼定律,其中称为斯忒藩-玻尔兹曼常量。斯忒藩-玻尔兹曼定律表明,黑体的全辐射出射度与热力学温度的四次方成正比。因此,温度T微小的变化,就会引起辐射出射度很大的变化。 凡温度在绝对零度以上的物体均能够发出红外辐射,其辐射的峰值波长与物体的温度有确定的关系: 式中λm ——物体辐射的峰值波长 T——物体的温度 B——常数(2898μm·K) 此为辐射度学中的维恩位移定律,意为只要物体有温度,则一定有固定波长的辐射,自然界的物体温度如果在 -40℃~3000℃(233K~3273K)范围,则根据上述公式,峰值辐射波长在0.88~12μm之间,即人们通常所说的红外波段。 2.实验装置及工作原理 WGH–10性黑体实验装置,油光栅单色仪,接受单元,扫描系统,电子放大器,A/D采集单元,电压可调的稳压溴钨灯光源,计算机及打印机组成.该设备集光学,精密机械,电子学,计算机技术与一体. 溴钨灯光源,可调溴钨灯供电源,红外光栅单色器,红外滤光片,硫化铅(PbS)光接收器,光调制器,信号采集单元,数据采集与单色仪控制软件及计算机等。 主机部分有以下几部分组成:单色器,狭缝,接收单元,光学系统以及光栅驱动系统等。红外单色器光路采用C -T型,如图1。

第一讲黑体辐射

量子论 第一讲 黑体辐射 1.热辐射 在上一章中,我们已经提到,开尔文勋爵所说的两朵乌云的第二朵是黑体辐射的实验结果被拔开时,人们发现了近代物理学的两个基础理论的另一个理论即量子力学论. 量子论 由于温度升高而发射能量的辐射源,通常称为热辐射.热辐射体中原子和分子不发生运动状态变化.热辐射能量来自物体的热运动.物体在任何温度下(只要不是绝对零度)都向四周进行热辐射,也从周围吸收这种辐射.热辐射的光谱是连续光谱.一般情况下,热辐射的光谱不仅与辐射源的温度有关,还与它的表面特征有关. 为了定量的描述热辐射与温度和物体特性的关系,首先引入下列概念: (1)辐射出射度(简称辐出度) 温度为T的热辐射体,在单位间内从单位面积向各个方向辐射出的所有频率的辐射能量.又称为辐射能通量密度. (2)单色辐射出射度 温度为T的热辐射体, 在单位时间内从单位面积向各个方向所发射的、在某一频率附近的单位间隔内辐射能量(即功率)叫做该物体的单色辐射出射度.单色辐射出射度与温度、频率和物体的表面特性有关. (3)吸收本领 入射到物体上的辐射通量,一部分被物体散射或反射(对透明物体,还会有一部分透射), 其余的为物体所吸收. 2.黑体 热辐射的规律是很复杂的,我们知道,各种物体由于它有不同的结

构,因而它对外来辐射的吸收以及它本身对外的辐射都不相同.但是有一类物体其表面不反射光,它们能够在任何温度下,吸收射来的一切电磁辐射,这类物体就叫做绝对黑体,简称黑体. 绝对黑体是我们研究热辐射时为使问题简化的理想模型.实际上黑体只是一种理想情况,但如果做一个闭合的空腔,在空腔表面开一个小孔,小孔表面就可以模拟黑体表面.这是因为从外面射来的辐射,经小孔射入空腔,要在腔壁上经过多次反射,才可能有机会射出小孔.因此,在多次反射过程中,外面射来的辐射几乎全部被腔壁吸收.在实验中,可在绕有电热丝的空腔上开一个小孔来实现,正因为实验所用的绝对黑体都是空腔辐射,因此,黑体辐射又称为空腔辐射. 3.黑体的经典辐射定律 1879年,斯忒藩(J.Stefan,1835~1893年)从实验观察到黑体的辐出度与绝对温度T的四次方成正比,即: 1884年玻尔兹曼从理论上给出这个关系式.其中. 对一般物体而言,,为发射率,J为辐出度, ,式中,称为斯特藩-玻尔兹曼常数.通常<1,但对黑体而言,e = 1 (即为完全辐射). 如果物体周围的环境温度为,则须考虑物体表面对入射辐射能的吸收.假定入射的辐射能通量密度为,为物体表面的吸收率,则该物体表面所吸收的辐射能通量密度为,通常a < 1,但对黑体而言,(即为完全吸收).因此物体表面对入射能量的反射率为. 从理论上我们不难证明物体表面的放射率和吸收率相等,即,此称为我们可以说:容易辐射能量的物体,也容易吸收入射的能量. 处于热平衡时,黑体具有最大的吸收比,因而它也就有最大的单色辐出度. 4.紫外灾难 (1)基尔霍夫定律(Kirchhoff's Law): 热平衡状态时,任何物体的单色辐出度与单色吸收比之比,等于同温度条件下绝对黑体的单色辐出度

黑体辐射实验

黑体辐射实验 任何物体都有辐射和吸收电磁波的本领。物体所辐射电磁波的强度按波长的分布与温度有关,称为热辐射。处于热平衡状态物体的热辐射光谱为连续谱。一切温度高于0K 的物体都能产生热辐射。黑体是一种完全的温度辐射体,能吸收投入到其面上的所有热辐射能,黑体的辐射能力仅与温度有关。任何普通物体所发射的辐射通量都小于同温度下的黑体发射的辐射通量;其辐射能力不仅与温度有关,还与表面的材料的性质有关。所有黑体在相同温度下的热辐射都有相同的光谱,这种热辐射特性称为黑体辐射。黑体辐射的研究对天文学、红外线探测等有着重要的意义。黑体是一种理想模型,现实生活中是不存在的,但却可以人工制造出近似的人工黑体。辐射能力小于黑体,但辐射的光谱分布与黑体相同的温度辐射体称为灰体。 [实验目的] 1.理解黑体辐射的概念。 2.验证普朗克辐射定律。 3.验证斯特藩一玻耳兹曼定律。 4.验证维恩位移定律。 5. 学会测量一般发光光源的辐射能量曲线。 [实验原理] 1.黑体辐射的光谱分布—普朗克辐射定律 德国物理学家普朗克1900年为了克服经典物理学对黑体辐射现象解释上的困难,推导出一个与实验结果相符合的黑体辐射公式,他创立了物质辐射(或吸收)的能量只能是某一最小能量单位(能量量子)的整数倍的假说,即量子假说,对量子论的发展有重大影响。他利用内插法将适用于短波的维恩公式和适用于长波的瑞利—金斯公式衔接,提出了关于黑体辐射度的新的公式—普朗克辐射定律,解决了“紫外灾难”的问题。在一定温度下,单位面积的黑体在单位时间、单位立体角内和单位波长间隔内辐射出的能量定义为单色辐射度,普朗克黑体辐射定律为: 式中:第一辐射常数) (1074.3221621m W hc C ??==-π第二辐射常数)(104398.122K m k hc C ??== -其中,h 为普朗克常数,c 为光速,k 为玻耳兹曼常数。 黑体光谱辐射亮度由下式给出: 图1-1给出了T L λ随波长变化的图形。每一条曲线上都标出黑体的绝对温度。与诸曲线的最大值相交的对角直线表示维恩位移定律。

光电效应实验报告书

光电效应测普朗克常量 姓名:梁智健 学院:材料成型及控制工程166班 学号:5901216163 台号:22 时间:2017-10-16 实验教室:309 【实验目的】 1、验证爱因斯坦光电效应方程,并测定普朗克常量h。 2、了解光电效应规律,加深对光的量子性的理解。 3、学会用作图法处理数据。 4、研究光电管的伏安特性及光电特性。 【实验仪器】 1.光电效应测定仪 2.光电管暗箱 3.汞灯灯箱以及汞灯电源箱。 【实验原理】 1、当光照射在物体上时,光的能量只有部分以热的形式被 物体所吸收,而另一部分则转换 为物体中某些电子的能量,使这 些电子逸出物体表面,这种现象 称为光电效应。在光电效应这一 现象中,光显示出它的粒子性, 所以深入观察光电效应现象,对 认识光的本性具有极其重要的意 义。普朗克常数h是1900年普朗克 为了解决黑体辐射能量分布时提 出的“能量子”假设中的一个普

适常数,是基本作用量子,也是粗略地判断一个物理体系是否需要用量子力学来描述的依据。 1905年爱因斯坦为了解释光电效应现象,提出了“光量子”假设,即频率为v 的光子其能量为h v ?。当电子吸收了光子能量h v ?之后,一部分消耗与电子的逸出功W ,另一部分转换为电子的动能212 m v ?,即爱因斯坦光电效应方程 212m hv mv W =+(1) 2、光电效应的实验示意图如图1所示,图中GD 是光电管, K 是光电管阴极,A 为光电管阳 极,G 为微电流计,V 为电压表, E 为电源,R 为滑线变阻器,调 节R 可以得到实验所需要的加 速电位差AK U 。不同的电压AK U ,回路中有不同的电流I 与之对 应,则可以描绘出如图2所示的 AK U -I 伏安特性曲线。 (1)饱和电流的强度与光强成 正比 加速电压AK U 越大,电流I 越大,当AK U 增加到一定值后,电流达到最大值H I ,H I 称为饱和电流,而且H I 的大小只与光强成正比。 (2)遏制电压的大小与照射光的频率成正比 如图3所示,电源E 反向连接,即当加速电压AK U 变为负值时,电流I 会迅速较少,当加速电压AK U 负到一定值Ua 时,电流0I =,这个电压Ua 叫做遏制电压,4所示。 212 a mv e U =?(2)

第一讲黑体辐射

量子论 第一讲 黑体辐射 1.热辐射 在上一章中,我们已经提到,开尔文勋爵所说的两朵乌云的第二朵是黑体辐射的实验结果被拔开时,人们发现了近代物理学的两个基础理论的另一个理论即量子力学论. 量子论 由于温度升高而发射能量的辐射源,通常称为热辐射.热辐射体中原子和分子不发生运动状态变化.热辐射能量来自物体的热运动.物体在任何温度下(只要不是绝对零度)都向四周进行热辐射,也从周围吸收这种辐射.热辐射的光谱是连续光谱.一般情况下,热辐射的光谱不仅与辐射源的温度有关,还与它的表面特征有关. 为了定量的描述热辐射与温度和物体特性的关系,首先引入下列概念: (1)辐射出射度(简称辐出度) 温度为T 的热辐射体,在单位间内从单位面积向各个方向辐射出的所有频率的辐射能量.又称为辐射能通量密度. (2)单色辐射出射度 温度为T 的热辐射体, 在单位时间内从单位面积向各个方向所发射的、在某一频率附近的单位间隔内辐射能量(即功率)叫做该物体的单色辐射出射度.单色辐射出射度与温度、频率和物体的表面特性有关. (3)吸收本领 入射到物体上的辐射通量,一部分被物体散射或反射(对透明物体,还会有一部分透射), 其余的为物体所吸收. 2.黑体 热辐射的规律是很复杂的,我们知道,各种物体由于它有不同的结构,因而它对外来辐射的吸收以及它本身 对外的辐射都不相同.但是有一类物体其表面不反射光,它们能够在任何温度下,吸收射来的一切电磁辐射,这类物体就叫做绝对黑体,简称黑体. 绝对黑体是我们研究热辐射时为使问题简化的理想模型.实际 上黑体只是一种理想情况,但如果做一个闭合的空腔,在空腔表面开一个小孔,小孔表面就可以模拟黑体表面.这是因为从外面射来的辐射,经小孔射入空腔,要在腔壁上经过多次反射,才可能有机会射出小孔.因此,在多次反射过程中,外面射来的辐射几乎全部被腔壁吸收.在实验中,可在绕有电热丝的空腔上开一个小孔来实现,正因为实验所用的绝对黑体都是空腔辐射,因此,黑体辐射又称为空腔辐射. 3.黑体的经典辐射定律 1879年,斯忒藩(J .Stefan ,1835~1893年)从实验观察到黑体的辐出度与绝对温度T 的四次方成正比,即: 4J T σ=

大学物理实验报告

实验五、光电效应测普朗克常量 普朗克常量是量子力学当中的一个基本常量,它首先由普朗克在研究黑体辐射问题时提 出,其值约为s J h ??=-34 10626069 .6,它可以用光电效应法简单而又较准确地求出。 光电效应是这样一种实验现象,当光照射到金属上时,可能激发出金属中的电子。激发方式主要表现为以下几个特点:1、光电流与光强成正比2、光电效应存在一个阈值频率(或称截止频率),当入射光的频率低于某一阈值频率时,不论光的强度如何,都没有光电子产生3、光电子的动能与光强无关,与入射光的频率成正比4、光电效应是瞬时效应,一经光线照射,立刻产生光电子(延迟时间不超过9 10-秒),停止光照,即无光电子产生。传统的电磁理论无法对这些现象对做出解释。 1905年,爱因斯坦借鉴了普朗克在黑体辐射研究中提出的辐射能量不连续观点,并应用于光辐射,提出了“光量子”概念,建立了光电效应的爱因斯坦方程,从而成功地解释了光电效应的各项基本规律,使人们对光的本性认识有了一个飞跃。1916年密立根用实验验证了爱因斯坦的上述理论,并精确测量了普朗克常数,证实了爱因斯坦方程。因光电效应等方面的杰出贡献,爱因斯坦与密立根分别于1921年和1923年获得了诺贝尔奖。 实验目的 1、 通过实验理解爱因斯坦的光电子理论,了解光电效应的基本规律; 2、 掌握用光电管进行光电效应研究的方法; 3、 学习对光电管伏安特性曲线的处理方法、并以测定普朗克常数。 实验仪器 GD-3型光电效应实验仪(GD Ⅳ型光电效应实验仪)

图1 光电效应实验仪 实验原理 1、 光电效应理论:爱因斯坦认为光在传播时其能量是量子化的,其能量的量子称为光子,每个 光子的能量正比于其频率,比例系数为普朗克常量,在与金属中的电子相互作用时,只表现为单个光子: h εν= (1) 2 12 h mv W ν= + (2) 上式称为光电效应的爱因斯坦方程,其中的W 为金属对逃逸电子的束缚作用所作的功,对特定种类的金属来说,是常数。 2、实验原理示意图 图2 图3

黑体辐射公式的推导

普朗克和瑞利-金斯黑体辐射公式的推导 1 引言 马克斯·普朗克于1900年建立了黑体辐射定律的公式,并于1901年发表。其目的是改进由威廉·维恩提出的维恩近似(至于描述黑体辐射的另一公式:由瑞利勋爵和金斯爵士提出的瑞利-金斯定律,其建立时间要稍晚于普朗克定律。由此可见瑞利-金斯公式所导致的“紫外灾难”并不是普朗克建立黑体辐射定律的动机)。维恩近似在短波范围内和实验数据相当符合,但在长波范围内偏差较大;而瑞利-金斯公式则正好相反。普朗克得到的公式则在全波段范围内都和实验结果符合得相当好。在推导过程中,普朗克考虑将电磁场的能量按照物质中带电振子的不同振动模式分布。得到普朗克公式的前提假设是这些振子的能量只能取某些基本能量单位的整数倍,这些基本能量单位只与电磁波的频率有关,并且和频率成正比。 这即是普朗克的能量量子化假说,这一假说的提出比爱因斯坦为解释光电效应而提出的光子概念还要至少早五年。然而普朗克并没有像爱因斯坦那样假设电磁波本身即是具有分立能量的量子化的波束,他认为这种量子化只不过是对于处在封闭区域所形成的腔(也就是构成物质的原子)内的微小振子而言的,用半经典的语言来说就是束缚态必然导出量子化。普朗克没能为这一量子化假设给出更多的物理解释,他只是相信这是一种数学上的推导手段,从而能够使理论和经验上的实验数据在全波段范围内符合。不过最终普朗克的量子化假说和爱因斯坦的光子假说都成为了量子力学的基石。

2 公式推导 2.1 普朗克公式和瑞利-金斯公式的推导 黑体是指在任何温度下,对于各种波长的电磁辐射的吸收系数恒等于1的物体。黑体辐射的能量是由电磁场的本征振动引起的,为简化推导过程,在此将黑体简化为边长为L 的正方形谐振腔。则腔内的电磁场满足亥姆霍兹方程: 2222u+k u 0 (k )ωμε?== (1) 用分离变量法,令u(x,y,z)X(x)Y(y)Z(z)= 则(1)式可分解为三个方程: 22 2 22 222200 0x y z d X k X dx d Y k Y dy d Z k Z dz ?+=???+=???+=?? 其中2222x y z k k k ωμε++= 得(1)式的驻波解为: 112233(,,)(cos sin )(cos sin )(cos sin ) x x y y z z u x y z c k x d k x c k y d k y c k z d k z =+++由在x=0,x=L,y=0,y=L,z=0,z=L 上的边界条件0n E n ?=?及0D E ?=可得:

黑体辐射实验

实验十 黑体辐射实验 实验者:头铁的小甘 引言: 任何物体,只要温度大于绝对零度,就会向周围发生辐射,这称为温度辐射。 黑体是指能够完全吸收所有外来辐射的物体,处于热平衡时,黑体吸收的能量等 于辐射的能量,由于黑体具有最大的吸收本领,因而黑体也就具有最大的辐射本 领。这种辐射是一种温度辐射,辐射的光谱分布只与辐射体的温度有关,而与辐 射方向及周围环境无关。 6000o K 5000o K 4000o K 3000o K 图 1 黑体辐射能量分布曲线 黑体辐射 p lanck 公式 十九世纪末,很多著名的科学家包括诺贝尔奖获得者,对黑体辐射进行了 大量实验研究和理论分析,实验测出黑体的辐射能量在不同温度下与辐射波长的 关系曲线如图 1 所示,对于此分布曲线的理论分析,历上曾引起了一场巨大的风 波,从而导致物理世界图像的根本变革。维恩试图用热力学的理论并加上一些特 定的假设得出一个分布公式-维恩公式。这个分布公式在短波部分与实验结果符 合较好,而长波部分偏离较大。瑞利和金斯利用经典电动力学和统计物理学也得 出了一个分布公式,他们得出的公式在长波部分与实验结果符合较好,而在短波 部分则完全不符。如图 2。因此经典理论遭到了严重失败,物理学历史上出现了 一个变革的转折点。 实验原理: Planck 提出:电磁辐射的能量只能是量子化的。他认为以频率ν做谐振动 的振子其能量只能取某些分立值,在这些分立值决定的状态中,对应的能量应该 是某一最小能量的 h ν整数倍,即 E=nh ν,n=1,2,3,…,h 即是普朗克常数。在 此能量量子化的假定下,他推导出了著名的普朗克公式 )() 1(35 1 2--= Wm e C E T C T λλλ

第一讲 黑体辐射

量子论 第一讲黑体辐射 1.热辐射 在上一章中,我们已经提到,开尔文勋爵所说的两朵乌云的第二朵是黑体辐射的实验结果被拔开时,人们发现了近代物理学的两个基础理论的另一个理论即量子力学论. 量子论 由于温度升高而发射能量的辐射源,通常称为热辐射.热辐射体中原子和分子不发生运动状态变化.热辐射能量来自物体的热运动.物体在任何温度下(只要不是绝对零度)都向四周进行热辐射,也从周围吸收这种辐射.热辐射的光谱是连续光谱.一般情况下,热辐射的光谱不仅与辐射源的温度有关,还与它的表面特征有关. 为了定量的描述热辐射与温度和物体特性的关系,首先引入下列概念: (1)辐射出射度(简称辐出度) 温度为T的热辐射体,在单位间内从单位面积向各个方向辐射出的所有频率的辐射能量.又称为辐射能通量密度. (2)单色辐射出射度 温度为T的热辐射体, 在单位时间内从单位面积向各个方向所发射的、在某一频率附近的单位间隔内辐射能量(即功率)叫做该物体的单色辐射出射度.单色辐射出射度与温度、频率和物体的表面特性有关. (3)吸收本领 入射到物体上的辐射通量,一部分被物体散射或反射(对透明物体,还会有一部分透射), 其余的为物体所吸收. 2.黑体 热辐射的规律是很复杂的,我们知道,各种物体由于它有不同的结构,因而它对外来辐射的吸收以及它本身对外的 辐射都不相同.但是有一类物体其表面不反射光,它们能够在任 何温度下,吸收射来的一切电磁辐射,这类物体就叫做绝对黑体,

简称黑体. 绝对黑体是我们研究热辐射时为使问题简化的理想模型.实际上黑体只是一种理想情况,但如果做一个闭合的空腔,在空腔表面开一个小孔,小孔表面就可以模拟黑体表面.这是因为从外面射来的辐射,经小孔射入空腔,要在腔壁上经过多次反射,才可能有机会射出小孔.因此,在多次反射过程中,外面射来的辐射几乎全部被腔壁吸收.在实验中,可在绕有电热丝的空腔上开一个小孔来实现,正因为实验所用的绝对黑体都是空腔辐射,因此,黑体辐射又称为空腔辐射. 3.黑体的经典辐射定律 1879年,斯忒藩(J .Stefan ,1835~1893年)从实验观察到黑体的辐出度与绝对温度T 的四次方成正比,即: 4J T σ= 1884年玻尔兹曼从理论上给出这个关系式.其中8245.6703210/()W m K δ-=??. 对一般物体而言,() 412 J T Js m εσ--=,ε为发射率,J 为辐出度, () 412 J T Js m εσ--=,式中 ()81245.67010Js m K σ----=?,称为斯特藩-玻尔兹曼常数.通常ε<1,但对黑体而言,e = 1 (即为完全辐射). 如果物体周围的环境温度为0T ,则须考虑物体表面对入射辐射能的吸收.假定入射的辐射能通量密度为40T σ,a 为物体表面的吸收率,则该物体表面所吸收的辐射能通量密度为40J a T σ'=,通常a < 1,但对黑体而言,1a =(即为完全吸收).因此物体表面对入射能量的反射率为1r a =-. 从理论上我们不难证明物体表面的放射率和吸收率相等,即e a =,此称为我们可以说:容易辐射能量的物体,也容易吸收入射的能量. 处于热平衡时,黑体具有最大的吸收比,因而它也就有最大的单色辐出度. 4.紫外灾难 (1)基尔霍夫定律(Kirchhoff's Law): 热平衡状态时,任何物体的单色辐出度与单色吸收比之比,等于同温度条件下绝对黑体的单色辐出度 因此,“绝对黑体的单色辐出度”,是当时研究的尖端课题. 推论:

ht黑体辐射出射度曲线绘制实验报告..

黑体辐射出射度曲线绘制 实验报告 姓名: 学号: 班级:

黑体辐射出射度曲线绘制 一、 实验目的: 学习和巩固黑体辐射定律,验证普朗克辐射定律、斯蒂芬—玻尔兹曼定律、维恩位移定律;了解单色仪的工作原理及基本结构。 二、 实验内容: 按照实验指导书的要求和步骤操作仿真黑体实验的装置,验证黑体相关定律。 三、 实验设备: WHS-型黑体实验装置,计算机,打印机等。 四、 实验原理: 黑体是一个能完全吸收并向外完全辐射入射在它上面的辐射能的理想物体。黑体的光谱辐射量和温度之间存在精确的定量关系,确定了黑体的温度,就可以确定其他的辐射量,因此黑体辐射定律在辐射度学中起了基准作用,占据十分重要的地位。 自然界中不存在绝对黑体,用人工的的方法可以制成尽可能接近绝对黑体的辐射源。钨的熔点约为3695K ,充气钨灯丝的光谱辐射分布和黑体十分相近,因此可以用来仿真黑体。CIE 规定分布温度2856K 的充气钨丝灯作为标准A 光源,以此实现绝对温度为2856K 的完全辐射题的辐射,即标准照明体A 。本次试验所用的WHS-1黑体实验装置就是以溴钨灯模拟黑体的辐射源,通过改变灯丝的电流来模拟改变黑体的色温。 描述黑体辐射定律的普朗克公式以波长表示的形式为: 1)exp(1),(2510-=T c c T M λλλ (1) 其中第一辐射常数21621m W 107418.32??==-hc c π;第二辐射常数K m 104388.122??==-k hc c ,k 为玻尔兹曼常数,c 为光速。 由于黑体是朗伯辐射体,因此可以得到黑体的光谱辐亮度表示式如下: 1)e x p (1 ),(2510-=T c c T L λπλλ (2)

普朗克黑体辐射公式推导

普朗克黑体辐射公式的推导 所谓的黑体是指能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。 黑体辐射:由这样的空腔小孔发出的辐射就称为黑体辐射。 辐射热平衡状态:处于某一温度T 下的腔壁,单位面积所发射出的辐射能量和它所吸收的辐射能量相等时,辐射达到热平衡状态。 实验发现: 热平衡时,空腔辐射的能量密度,与辐射的波长的分布曲线,其形状和位置只与黑体的绝对温度T 有关而与黑体的形状和材料无关。 实验得到: 1.W ien 公式 从热力学出发加上一些特殊的假设,得到一个分布公式: Wien 公式在短波部分与实验还相符合,长波部分则明显不一致。 2. Rayleig h-Jeans 公式 Raylei gh-Je ans 公式在低频区和实验相符,但是 在高频区公式与实验不符,并且 ∞→=?∞ v v d E E ,既单位体积的能量发散,而 实 验测得的黑体辐射的能量密度是4 T E σ=,该式 叫 做Stefa n-Bolz mann 公式,σ叫做St efan-Bol zman n常数。 3. Planc k黑体辐射定律 1900年12月14日Plan ck提出如果空腔内的黑体辐射和腔壁原子处于平衡,那么辐射的能量分布与腔壁原子的能量分布就应有一种对应。作为辐射原子的模型,P lanck 假定: (1)原子的性能和谐振子一样,以给定的频率v 振荡; (2)黑体只能以E=hv 为能量单位不连续的发射和吸收辐射能量,而不是象经典理论所要求的那样可以连续的发射和吸收辐射能量。 得到: νννπνρνd kT h C h d ??? ? ??-=1)/exp(1 833该式称为P lanck 辐射定律 h为普朗克常数,h=s j .10626.634 -? 4,普朗克的推导过程: 把空窖内的电磁波分解为各个频率的简振振动,简振模的形式最后为) .(),(wt r K i k k e C t r -=αβψ, 为常系数振方向,表示两个互相垂直的偏ααk C 2,1=

黑体辐射实验

黑体测量实验 【实验目的】1、理解和掌握黑体辐射的基本规律,加深对能量量子性的理解; 2、验证斯忒藩—波尔兹曼定律; 3、验证维恩—位移定律。【实验仪器】 WGH-10型黑体实验装置 【实验原理】 1、黑体辐射 任何物体,只要其温度在绝对零度以上,就向周围发射辐射,这称为温度辐射。黑体是一种完全的温度辐射体,即任何非黑体所发射的辐射通量都小于同温度下的黑体发射的辐射通量;并且非黑体的辐射能力不仅与温度有关,而且与表面的材料性质有关。而黑体的辐射能力则仅与温度有关。黑体的辐射亮度在各个方向都相同,即黑体是一个完全的余弦辐射体。 辐射能力小于黑体,但辐射的光谱分布与黑体相同的温度辐射体称为灰体。 2、黑体辐射定律 (1)黑体辐射的光谱分布—普朗克辐射定律 黑体的光谱辐射出射度为:???? ?? -=1251 T C T e C M λλλ 式中:第一辐射常数:2161m w 1074.3??=-C 第二辐射常数:K w 104396.122??=-C (2)黑体的全辐射出射度—忒藩—波尔兹曼定律 黑体的全辐射出射度为: 40 T d M M T b δλλ?∞ == T 为黑体的绝对温度,δ为 忒藩—波尔兹曼常数, () 428234 5K m w/10670.5152??==-c h k πδ

k 为波尔兹曼常数,h 为普朗克常数,c 为光速。 (3)维恩—位移定律 光谱亮度的最大值的波长λmax 与它的绝对温度T 成反比, T b =m a x λ b 为常数,K m 10896.23??=-b 【实验步骤】 1、将WGH-10型黑体实验装置电源的电压凋节旋钮凋节至最小值,然后打开电源和接收器的电源,过1~2分钟后,可以打开桌面上WGH-10型黑体实验系统的软件。 2、根据溴钨灯工作电流--色温对应表,凋节光源的驱动电流(不能超过 2.5A !)。 3、实验中要测量两个温度下的黑体 辐射曲线。学生可任意测两个温度(不 要高过2940K ,即不能使光源的驱动电 流超过2.5A )下的黑体辐射曲线。过高 的温度,对溴钨灯的工作寿命有很大的 影响,建议测量在2.5A 以下进行。 4、以驱动电流为2.5A ,对应溴钨灯(近 似为黑体)的色温为2940K 为例。先测 量一组仪器的基线,参数设置如图所示

《量子力学》的诞生(知识点总结)

第一讲 量子力学的诞生 ★重点与难点解析 一、经典物理碰到的严重困难(不能解释的典型物理现象) 1. 无法解释黑体辐射问题 (1)一些基本概念 黑体;热辐射;单色辐出度;辐射出射度。 (2)单色辐出度的一些理论公式与实验结果的差异 维恩(Wien )公式只在短波波段(高频部分)与实验符合,而在长波波段(低频部分)与实验差别较大。 瑞利—金斯(Rayleigh-Jeans )公式只在长波波段(低频部分)与实验符合,而在短波波段(高频部分)与实验有明显差异,历史上称为“紫外灾难”。 普朗克通过改进维恩公式,得到了一个辐射公式(后称为普朗克公式),其与实验符合的很好。但无法用经典物理来解释这个公式 2. 无法解释光电效应 (1)什么是光电效应;什么是光电子 (2)光电效应的特点 A )对于一定的金属材料做成的(表面光洁的)电极,有一个确定的临界频率0ν,当照射光频率0νν<时,无论光的强度多大,都不会观测到光电子从电极上逸出; B )每个光电子的能量只与照射光的频率有关,而与光强度无关。光强度只影响到光电流的强度,即单位时间从金属电极单位面积上逸出的电子的数目; C )当入射光频率0νν>时,不管光多微弱,只要光一照上,几乎立刻观测到光电子。这与经典电磁理论计算结果不一致。 以上三个特点中,C )是定量上的问题,而A )和B )在原则上无法用经典物理学来解释。 3. 无法解释原子结构 经典理论无法解释原子的线状光谱和稳定性等: (1)根据经典理论,原子向外辐射电磁波,随电子运动轨道的半径不断减小,辐射电磁波的频率将连续变化。而实验发现,原子光谱是离散的线状光谱,并非连续; (2)原子的核型结构是不稳定的,绕核旋转的电子最终将落到原子核上,但实际原子是稳定的,电子不会落到原子核上。 4. 无法解释极低温下固体与分子的比热问题 在极低温下,由经典统计力学的能量均分定理等得到的固体与分子的比热与实验不符。 二、能量量子化思想对上述问题的解释 1. 普朗克(Planck )能量子假说 1900年,普朗克发现:如作下列假设,就可以根据玻尔兹曼分布律从理论上导出与实验结果相符合的普朗克黑体辐射公式。

实验七 黑体辐射

实验七 黑体辐射 Black-body Radiation 任何物体,只要其温度在绝对零度以上,就向周围发射辐射,这称为温度辐射;只要其温度在绝对零度以上,也要从外界吸收辐射的能量。处在不同温度和环境下的物体,都以电磁辐射形式发出能量,而黑体是一种完全的温度辐射体,即任何非黑体所发射的辐射通量都小于同温度下的黑体发射的辐射通量;并且,非黑体的辐射能力不仅与温度有关,而且与表面的材料的性质有关,而黑体的辐射能力则仅与温度有关。在黑体辐射中,存在各种波长的电磁波,其能量按波长的分布与黑体的温度有关。 实验目的(experimental purpose) 1.了解黑体实验的发展历史,明确光谱辐射曲线的广泛应用; 2.了解黑体实验仪器组件,明确测量过程与分析要素; 3.明确黑体实验设计思想,掌握黑体辐射原理与定律。 实验原理(experimental principle) 任何物体都具有不断辐射、吸收、发射电磁波的本领。辐射出去的电磁波在各个波段是不同的,也就是具有一定的谱分布。这种谱分布与物体本身的特性及其温度有关,因而被称之为热辐射。为了研究不依赖于物质具体物性的热辐射规律,物理学家们定义了一种理想物体——黑体(black body),以此作为热辐射研究的标准物体。 所谓黑体是指入射的电磁波全部被吸收,既没有反射,也没有 透射( 当然黑体仍然要向外辐射)。显然自然界不存在真正的黑体, 但许多地物是较好的黑体近似( 在某些波段上)。 黑体不仅仅能全部吸收外来的电磁辐射,且发射电磁辐 射的 能力比同温度下的任何其它物体强。 黑体辐射指黑体发出的电磁辐射。黑体辐射能量按波长的分布仅与温度有关。对于黑体的研究,使得自然现象中的量子效应被发现。

04111202 黑体辐射出射度曲线绘制实验报告

黑体辐射出射度曲线绘制 一、目的:学习和巩固黑体辐射定律,验证普朗克辐射定律、斯蒂芬-玻尔兹曼等定律;了解单色仪的工作原理及基本结构。 二、内容:按照实验指导书的要求和步骤操作仿真黑体实验装置,验证黑体相关定律。 三、设备:WHS-型黑体实验装置,计算机,打印机等。四、 原理: 黑体是一个能完全吸收并向外完全辐射入射在它上面的辐射能的理想物体。 黑体的光谱辐射量和温度之间存在精确的定量关系,确定了黑体的温度,就可以确定其他的辐射量,因此黑体辐射定律在辐射度学中起了基准的作用,占据十分重要的地位。 自然界不存在绝对黑体,用人工的方法可以制成尽可能接近绝对黑体的辐射源。钨的熔点约为3695K ,充气钨丝灯的光谱辐射分布和黑体十分接近,因此可以用来仿真黑体。CIE 规定分布温度2856K 的充气钨丝灯作为标准A 光源,以此实现绝对温度为2856K 的完全辐射体的辐射,即标准照明体A 。本次实验所用的WHS-1黑体实验装置就是以溴钨灯模拟黑体的辐射源,通过改变灯丝的电流来模拟改变黑体的色温。 描述黑体辐射定律的普朗克公式以波长表示的形式为: (1) M 0(λ,T)= c 1 λ51 exp (c 2λT )?1式(1)中,第一辐射常数;第二辐射常数c 1=2π?c 2=3.7418?10?16W ?m 2 ;;为光速。 c 2=?c k =1.4388?10?2 m ?K k 为玻尔兹曼常数c 由于黑体是朗伯辐射体,因此可以得到黑体的光谱辐亮度表示式如下: (2) L 0(λ,T)= c 1 πλ51 exp (c 2λT )?1斯蒂芬-玻尔兹曼定律描述的是黑体的辐射出射度与温度之间的关系: (3) M 0(T )=σT 4 (W m 2)式(3)中, 称为斯蒂芬-玻尔兹曼常σ=c 1π415c 42=5.6696?10?8(W ?m 2?K ?4 )数。 黑体光谱辐射是单峰函数,其峰值波长满足维恩位移定律: (4) λm T =b (μm ?K)式(4)中,常数。 b = c 24.9651=2898 μm ?K 保护层查所有复杂设况进行自

相关主题