搜档网
当前位置:搜档网 › 第一讲黑体辐射

第一讲黑体辐射

第一讲黑体辐射
第一讲黑体辐射

1.热辐射

量子论

第一讲黑体辐射

在上一章中,我们已经提到,开尔文勋爵所说的两朵乌云的第二朵是黑体辐射的实验结果被拔开时, 人们发现了近代物理学的

两个基础理论的另一个理论即量子力学论

量子论

由于温度升高而发射能量的辐射源,通常称为热辐射?热辐射体中原子和分子不发生运动状态变化.热辐射能量来自物体的

热运动?物体在任何温度下(只要不是绝对零度)都向四周进行热辐射,也从周围吸收这种辐射?热辐射的光谱是连续光谱.一般

情况下,热辐射的光谱不仅与辐射源的温度有关,还与它的表面特征有关

为了定量的描述热辐射与温度和物体特性的关系,首先引入下列概念:

(1)辐射出射度(简称辐出

度)

温度为T的热辐射体,在单位间内从单位面积向各个方向辐射出的所有频率的辐射能量?又称为辐射能通量密度.

⑵单色辐射出射度

温度为T的热辐射体,在单位时间内从单位面积向各个方向所发射的、在某一频率附近的单位间隔内辐射能量(即功率)

叫做该物体的单色辐射出射度.单色辐射出射度与温度、频率和物体的表面特性有关

(3)吸收本

入射到物体上的辐射通量,一部分被物体散射或反射(对透明物体,还会有一部分透射),其余的为物体所吸收.

2.黑体

热辐射的规律是很复杂的, 我们知道,各种物体由于它有不同的结构,因而它对外来辐射的吸收以及它本身对外的辐射都

不相同.但是有一类物体其表面不反射光,它们能够在任何温度下,

吸收射来的一切电磁辐射,这类物体就叫做绝对黑体,简称黑体

绝对黑体是我们研究热辐射时为使问题简化的理想模型.实际

上黑体只是一种理想情况,但如果做一个闭合的空腔, 在空腔表面

开一个小孔,小孔表面就可以模拟黑体表面.这是因为从外面射来的辐射,经小孔射入空腔,要在腔壁上经过多次反射,才可能有机会射出小孔.因此,在多次反射过程中,外面射来的辐射几乎全部被腔壁吸收.在实验中,可在绕有电热丝的空腔上开一个小

孔来实现,正因为实验所用的绝对黑体都是空腔辐射,因此,黑体辐射又称为空腔辐射.

3.黑体的经典辐射定律

1879年,斯忒藩(J. Stefan, 1835~1893年)从实验观察到黑体的辐出度与绝对温度T的四次方成正比,即:

J =町4

1884年玻尔兹曼从理论上给出这个关系式.其中冠=5.67032X10」W/(m2 *4).

对一般物体而言,J = eo T4(Js」m2 ), S为发射率,J为辐出度,J =旳丁4(Js’m,),式中=5.670"0」(Js

为斯特藩-玻尔兹曼常数通常E<1,但对黑体而言,e = 1 (即为完全辐射).

如果物体周围的环境温度为T o,则须考虑物体表面对入射辐射能的吸收.假定入射的辐射能通量密度为bT o4a为物体表面

的吸收率,则该物体表面所吸收的辐射能通量密度为j' = aDT o4,通常a < 1,但对黑体而言,a =1(即为完全吸收).因此物体

面对入射能量的反射率为r =1 _a .

从理论上我们不难证明物体表面的放射率和吸收率相等,即e=a,此称为我们可以说:容易辐射能量的物体,也容易吸收

入射的能量.

处于热平衡时,黑体具有最大的吸收比,因而它也就有最大的单色辐出度

4.紫外灾难

(1)基尔霍夫定律(Kirchhoff's Law):

热平衡状态时,任何物体的单色辐出度与单色吸收比之比,等于同温度条件下绝对黑体的单色辐出度

因此,绝对黑体的单色辐出度”,是当时研究的尖端课题

推论:

a.若T A = T B,则辐射多的吸收也多,不能辐射亦不能吸收;

b.兀一定时,绝对黑体辐射和吸收的能量比同温度下的其它物体都多

经典理论在短波段的这种失败成为紫外灾难”.

⑵普朗克假设:

a.空腔黑体可用一些线性谐振子来代表

b.谐振子只能处于某些特殊的不连续的状态中,它们的能量只能是z=h v的整数倍.

C.发射和吸收的能量只能是S的整数倍.

【例1】(1)有一金属圆柱体的表面积为S,其内部装有电热丝,通电流后可以生热,供热的功率为P0,起始时圆柱体的表面以砂纸磨亮,其辐射发射率可视为零.经通电加热后,利用热电偶测得圆柱体表面达成热平衡时的温度为T1 .现利用蜡烛将该圆柱体表面熏黑,其辐射发射率可视为1,以同样的方式通电加热,则圆柱体表面的热平衡温度为T.设当时金属圆柱体周围的环境

温度为T o,在实验期间稳定不变.因热传导和对流而损失的热量功率,可合理假设为正比于圆柱体表面温度和环境温度的差值

试求T和上述已知量,即S、P、X、和T o,之间的数学关系式为何?

⑵下列为已知量的数值:

电热丝的供热功率P =15.0W

金属圆柱体的表面积S =24.8cm2

金属圆柱体表面磨亮时的热平衡温度T1 =212 C44

环境温度T o =25 C.

试求圆柱体表面熏黑时的热平衡温度T为何?

【解析】(1)当金属圆柱体表面磨亮时,没有因辐射而致的热损失,只有因传导和对流而致的热损失.后者根据题中的假设, 与圆柱表面温度h和环境温度T0之间的差值成正比,故

-T。) (1)

式中k为比例常数.当圆柱体表面熏黑时, 除了因传导和对流的热损失外,还须加计辐射的热损失.设圆柱体表面的热平衡温

P=bS(T4 -T o4)+k(T -T o)

由上两式消去比例常数k,可得

第二讲光电效应

普朗克提出了能量子概念以后,许多物理学家都想从经典物理学中求得解释,但始终无法成功.为了尽量缩小与经典物理 学之间的差距,普朗克把能量子的概念局限于振子辐射能量的过程,而认为辐射场本身仍然是连续的电磁波.直到 斯坦在光电效应的研究中,才突破了普朗克的认识,看到了电磁波能量普遍都以能量子的形式存在.从光和微观粒子相互作用 的角度来看,各种频率的电磁波都是能量为的光粒子

(称作光子)体系,这就是说,光不仅有波的性质而且有粒子的性质.

1.光电效应及其实验规律

在1886年~1887年,赫兹在证实电磁波的存在和光的麦克斯韦电磁理论的实验过程中,已经注意到:当两个电极之一受到 紫外光照射时,两电极之间的放电现象就比较容易发生.然而当时赫兹对这个现象并没有继续研究下去.直到电子发现后,人 们才知道这是由于紫外光的照射,使大量电子从金属表面逸出的缘故.这种电子在光的作用下从金属表面发射出来的现象,称 为光电效应,逸出来的电子称为光电子.

研究光电效应的实验装置如图所示,阴极

K 和阳极A 封闭在真空管内,在两板之间加一可变电压,用以加速或阻挡释放出

来的电子.光通过石英小窗 W 照到电极K 上,在光的作用下,电子从电极

K 逸出,并受电场加速而形成电流,这种电流称为

P =crS(T 4 _T o 4

) +

P(T -T o

) T 1 -T 0

T4

+^^^T

f Z

(2)将已知数值代入(3)式,可得

5.670X 10 2>C 24.8X 10S485 _298

15.0

4

吓-48^-298 =Q

1905年爱因

利用逼近求根法如下表:

【总

光电流.

实验结果发现光和光电流之间有一定的关系.

首先在入射光的强度与频率不变的情况下, 电流一电压的实验曲线如图8—9所示.曲线表明,当加速电压V增加到一定值

时,光电流达到饱和值,这是因为单位时间内从阴极K射出的光电子全部到达阳极 A ?若单位时间内从电极K上击出的光电子

数目为n则饱和电流1 = ne.

另一方面,当电位差V减小到零,并逐渐变负时,光电流并不降为零,就表明从电极K逸出的光电子具有初动能?所以尽

管有电场阻碍它运动,仍有部分光电子到达电极K.但是当反向电位差等于一Ve时,就能阻止所有的光电子飞向电极A,光电流降为零,这个电压叫遏止电压.它使具有最大初速度的电子也不能到达电极 A ?如果不考虑在测量遏止电压时回路中的接触

电势差,那么我们就能根据遏止电压-Vg来确定电子的最大速度和最大动能,即

3 rr

严7

在用相同频率不同强度的光去照射电极时,得到的电流—电压曲线如图所示.它表示出对于不同强度的光,

Vg是相同的,

这说明同一种频率不同强度的光所产生的光电子的最大初动能是相同的.

此外,用不同频率的光去照射电极K时,实验结果是频率愈高,Vg愈大.并且与Vg成直线关系,频率低于的光,不论强

度多大,都不能产生光电子,因此不同的材料,阈频率不同

.

总结所有的实验结果,光电效应的规律可归纳为如下几点:

1.饱和电流I的大小与入射光的强度成正比,也就是单位时间内被击出的光电子数目与入射光的强度成正比. (光电效应第

定律)

2 .光电子的最大初动能(或遏止电压)与入射光的强度无关,而只与入射光的频率有关. 频率越大,光电子的能量就越大.(光

电效应第二定律)

3 ?入射光的频率低于遏止频率(极限频率,红限频率)的光,不论光的强度如何,照射时间多长,都没光电子发射. (光电效应第三定律)

4 .光的照射和光电子的释放几乎是同时的,在测量的精度范围内-9

10 s观察不出这两者间存在滞后现象.

2.光电效应和波动理论的矛盾

光能使金属中的电子释放,从经典理论来看,是不难理解的?我们知道金属里面有大量的自由电子,这些电子通常受到正

电荷的引力作用,而被束缚在金属表面以内,它们没有足够的能量逸出金属表面.但因光是电磁波,在它的照射下,光波中的

电场作用于电子,迫使电子振动,给电子以能量,使电子有足够的能力挣脱金属的束缚而释放出去?因此按照光的电磁理论可

以预测:

⑴光愈强,电子接受的能量愈多,释放出去的电子的动能也愈大.

(2)释放电子主要决定于光强,应当与频率等没有关系?但是,实验测量的结果却并不如此

(3)关于光照的时间问题,波动观点更是陷于困境.从波动观点来看,光能量是均匀分布,在它传播的空间内,由于电子截面很小,积累足够能量而释放出来必须要经过较长的时间,合实验事实完全完全不符

3. 爱因斯坦光电效应方程

为了解释光电效应的所有实验结果,

1905年爱因斯坦推广了普朗克关于能量子的概念.前面已经指出普朗克在处理黑体辐

射问题时,只是把器壁的振子能量量子化,腔壁内部的辐射场仍然看作是电磁波.然而爱因斯坦在光电效应的研究中指出:光

的观点来看,产生光电效应的光是光子流,单个光子的能量与频率成正比即:

式中h 是普朗克常数.

把光子的概念应用于光电效应时,爱因斯坦还认为一个光子的能量是传递给金属中的单个电子的.电子吸收一个光子后, 把能量的一部分用来挣脱金属对它的束缚,余下的一部分就变成电子离开金属表面后的动能,按能量守恒和转换定律应有:

1 2

hv =- mv +W

2

1 2

-mv 为光电子的动能,W 为光电子逸出金属表面所需的最小能量,称为脱出功. 2

对光电效应四个定律的解释: (1)

光电效应第一定律的解释

(2)

光电效应第二定律的解释:

(3) 光电效应第三定律的解释:

光电子动能不小于零 (4)

光电效应第四定律的解释:

8

t <10 S :光子能量二 电子,无须能量积累时间

1921年,爱因斯坦因对物理学的贡献,特别是光电效应获诺贝尔物理学奖 爱因斯坦理论的验证

1916年,密立根进行了精密的测量,证明

U a ~v 确为直线,且直线的斜率为

-.1923年获诺贝尔物理学奖 e

4. 光子的质量和动量

P

hv m = —2" c

光子既具有一定的能量,就必须具有质量.但是光子以光的速度运动,牛顿力学便不适用.按照狭义相对论质量和能量的 关系式 E 二沁,就可以决定一个光子的质量

£- Av 叫二;7 二 7"

在传播过程中具有波动的特性,

而在光和物质相互作用的过程中, 光能量是集中在一些叫做光量子 (简称光子)的粒子上.从光子

上式称为爱因斯坦光电效应方程.其中

1

X Ne :光子数=光电子数

—::

^mv 2

=hv-A

2

U a =k V —U 0 h = ek

h v 0 = A I A =eU o

U a

:遏止电压,

U

o :逸出电位

在狭义相对论中,质量和速度的关系为

m- ■

m o为静止质量,光子永远以不变的速度c运动,因而光子的静止质量必然等于零,否则m将为无穷大.因为相对于光子静

止的参照系是不存在的,所以光子的静止质量等于零也是合理的.而原子组成的一般物质的速度总是远小于光速的,故它们的

静止质量不等于零. 在m0是否等于零这一点上光子和普通的物质有显著的区别. 在狭义相对论中,任何物体的能量和动量的关

系为

光子的静止质量为0,故光子的动量为

z hv

P =-=— c

c

m =卫=—y,速度为c.

这是和光子的质量为

c c

光电效应明确了光的行为像粒子,并且可用动力学的变量(动量和能量)来描述粒子的行为;在光和物质相互作用过程中, 光子是整体在起作用.另一方面,在讨论衍射和干涉现象时,需要把光作为波动来处理,于是用波长来阐明问题

波动特征和粒子特征是互相对立的,但并不是矛盾的

光的波长既适宜于显示波动特征,同时又也容易显示粒子特征.对于电磁波谱的长波段,表示其波动特征的物理量T和较大,

而表示其粒子特征的物理量£和P较小,因而容易显示波动特征,反之,对于电磁波谱的短波段,表示其波动特征的物理量

和较小,而表示其粒子特征的物理量£和P较大,因而容易显示粒子特征

【例1】将一块金属板放在离单色点光源5米远的地方,光源的光功率输出为10-3瓦.假设被打出的光电子可以从半径为10-8

米(约相当于原子直径的十倍)的圆面上以从光源取得它所得的能量,已知打出一个电子需要 5.0eV.现在将光认为是经典波动,

对这种装置的一个靶”来说,打出一个光电子需要多长时间?

兀(10卫)2,半径为5米的球面面积为4打G)米=100咪2,前者是后者的1讦【解析】电子接受能量的靶面积为

故每秒投射于靶面积上的能量为

10^ 10^ 焦耳.

打出一个电子需要能量5eV,即8咒10」9焦耳,故积累这些能量需时

O X10 3

8 '0

秒=22.22 小时.

3

10公

实际上光电效应是几时的,根本不需要这么长的时间?这说明光与光电阴极电子的作用决不是经典波动模型中能量积累的那

种形式

【例2】若一个光子的能量等于一个电子的静能量,试问该光子的动量和波长是多少?在电磁波谱中它是属何种射线?

【解析】一个电子的静能量为m o c2,按题意

2

hv =mc

光子的动量

£督'

p- — - ------- = mf

C C

= 9.11xl0'^\3xl0? =

2.73x10'^^

光子的波长

因电磁波谱中丫射线的波长在3OO~1O-4A范围内,所以该光子在电磁波谱中属于丫射线.

5.康普顿效应

(1)散射现象:光通过不均匀物质时,向各个方向发射的现象

实验发现:X射线7金属或石墨时,也有散射现象

1922、1923年康普顿及其学生吴有顺进行了系统研究

⑵实验装置:如图

X射线谱仪

F图为光子与自由电子弹性碰撞的示意图.应用相对论质量、能量、动量关系,有

h% hu

冷=——--——n

C C

茁h% h% a

mvcos^ =———cos 廿

c c

-cp - A

mvsin^ =—sinf

c

解以上联立方程组,消去W,即得

AZ=Z-/.^-2L si n2? =2A si n2-

rnioC 2 2

(3)实验结果:

X射线源

石墨

a.散射光中除有与入射线波长A o相同的,还有比礼大的波长k,心—弋随散射角e而异,9增大时,几的强度增加,打

的强度减小.

b.当散射角0确定时,波长的增加量色4与散射物质的性质无关

C.康普顿散射的强度与散射物质有关.原子量小的散射物质,康普顿散射较强,原波长的谱线强度较低.反之相反.

按经典电磁理论,光的散射是带电粒子在入射光电场作用下作受迫振动,散射光与入射光应该有相同波长

按照光子理论,一个光子与散射物中的一个自由电子发生碰撞,散射光子将沿某一方向进行康普顿散射,光子与电子

之间碰撞遵守能量守恒和动量守恒,电子受到反冲而获得一定的动量和动能,因此散射光子能量要小于入射光子能量.由光子的能量与频率间的关系£ =必2可知,散射光的频率要比入射光的频率低,因此散射光的波长兑> 入.如果入射光子与原子中被束

缚得很紧的电子碰撞,光子将与整个原子作弹性碰撞(如乒乓球碰铅球) ,散射光子的能量就不会显著地减小,所以观察到的散

射光波长就与入射光波长相同

式中mo、m为电子的静质量和质量, m= , g =.将上式第二式写成分量式

2

第一章 量子力学基础知识

《结构化学基础》 讲稿 第一章 孟祥军

第一章 量子力学基础知识 (第一讲) 1.1 微观粒子的运动特征 ☆ 经典物理学遇到了难题: 19世纪末,物理学理论(经典物理学)已相当完善: ? Newton 力学 ? Maxwell 电磁场理论 ? Gibbs 热力学 ? Boltzmann 统计物理学 上述理论可解释当时常见物理现象,但也发现了解释不了的新现象。 1.1.1 黑体辐射与能量量子化 黑体:能全部吸收外来电磁波的物体。黑色物体或开一小孔的空心金属球近似于黑体。 黑体辐射:加热时,黑体能辐射出各种波长电磁波的现象。 ★经典理论与实验事实间的矛盾: 经典电磁理论假定:黑体辐射是由黑体中带电粒子的振动发出的。 按经典热力学和统计力学理论,计算所得的黑体辐射能量随波长变化的分布曲线,与实验所得曲线明显不符。 按经典理论只能得出能量随波长单调变化的曲线: Rayleigh-Jeans 把分子物理学中能量按自由度均分原则用到电磁辐射上,按其公式计算所得结果在长波处比较接近实验曲线。 Wien 假定辐射波长的分布与Maxwell 分子速度分布类似,计算结果在短波处与实验较接近。 经典理论无论如何也得不出这种有极大值的曲线。 ? 1900年,Planck (普朗克)假定: 黑体中原子或分子辐射能量时作简谐振动,只能发射或吸收频率为ν, 能量为 ε=h ν 的整数倍的电磁能,即振动频率为 ν 的振子,发射的能量只能是 0h ν,1h ν,2h ν,……,nh ν(n 为整数)。 ? h 称为Planck 常数,h =6.626×10-34J ?S ? 按 Planck 假定,算出的辐射能 E ν 与实验观测到的黑体辐射能非常吻合: ●能量量子化:黑体只能辐射频率为 ν ,数值为 h ν 的整数倍的不连续的能量。 能量波长 黑体辐射能量分布曲线 () 1 /81 3 3 --= kt h c h e E ννπν

普朗克黑体辐射公式推导

普朗克黑体辐射公式推 导 The document was finally revised on 2021

普朗克黑体辐射公式的推导 所谓的黑体是指能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。 黑体辐射:由这样的空腔小孔发出的辐射就称为黑体辐射。 辐射热平衡状态: 处于某一温度 T 下的腔壁,单位面积所发射出的辐射能量和它所吸收的辐射能量相等时,辐射达到热平衡状态。 实验发现: 热平衡时,空腔辐射的能量密度,与辐射的波长的分布曲线,其形状和位置只与黑体的绝对温度 T 有关而与黑体的形状和材料无关。 实验得到: 1. Wien 公式 从热力学出发加上一些特殊的假设,得到一个分布公式: ννννρνd T C C d )/ex p(231-=

Wien 公式在短波部分与实验还相符合,长波部分则明显不一致。 2. Rayleigh-Jeans 公式 ννπνρνd kT C d Jeans Rayleigh 2 38= -公式 Rayleigh-Jeans 公式在低频区和实验相符,但是在高频区公式与实验不符,并且 ∞→=?∞ v v d E E ,既单位体积的能量发散,而实验测得的黑体辐射的能量密度是 4T E σ=,该式叫做Stefan-Bolzmann 公式,σ叫做Stefan-Bolzmann 常数。 3. Planck 黑体辐射定律 1900年12月14日Planck 提出如果空腔内的黑体辐射和腔壁原子处于平衡,那么辐射的能量分布与腔壁原子的能量分布就应有一种对应。作为辐射原子的模型,Planck 假定: (1)原子的性能和谐振子一样,以 给定的频率 v 振荡; (2)黑体只能以 E = hv 为能量单位不连续的发射和吸收辐射能量,而不是象经典理论所要求的那样可以连续的发射和吸收辐射能量。 得到: νννπνρνd kT h C h d ??? ? ??-=1)/exp(1 833该式称为 Planck 辐射定律 h 为普朗克常数,h=s j .10 626.634 -? 4,普朗克的推导过程: 把空窖内的电磁波分解为各个频率的简振振动,简振模的形式最后为 ).(),(wt r K i k k e C t r -=αβψ,为常系数振方向,表示两个互相垂直的偏α αk C 2,1=

黑体辐射与光的量子性

黑体辐射与光的量子性 § 8-1 黑体辐射 黑体辐射即为热辐射,是物体由于自身温度高于环境温度而产生的向外辐射电磁波的现象。 一、 热辐射 1、有关热辐射的物理量 (1)辐射能量分布函数:,时刻t 、空间点r 附近单位体积内的辐射场 中,方向为轴的 立体角内、频率附近内的能量为 辐射场的能量密度:U ,单位体积内的辐射能量 辐射场的谱密度:单位体积、单位频率内的辐射能量u 即 ,而 辐射场的亮度B :沿s 方向单位立体角内的辐射能流密度 辐射场的亮度的谱密度: 通过面元 的辐射通量 及其谱密度 辐射本领:单位表面积发出的辐射通量R 。 辐射本领的谱密度。 , 辐射照度:照射在物体上的单位表面积的辐射通量E 及其谱密度e : , (各向同性辐射场) 吸收本领

辐射通量:温度为T时,频率附近单位频率间隔内的辐射能量。 ,:辐射谱密度、辐射本领。) 吸收本领、吸收比:照射到物体上的通量,其中被物体吸收的通量,比例 ,称为吸收本领或吸收比。 基尔霍夫热辐射定律:热平衡状态下物体的辐射本领与吸收本领成正比,比值只与有关。 即,是普适函数,与物质无关。 吸收大,辐射也大。 二、黑体辐射 1.绝对黑体:只有吸收,没有反射。即吸收本领。 则此时, =,通过研究辐射本领就可以得知普适函数的特性,使 得对物质热辐射 的研究大为方便。 只开有一个小口的空腔,对于射入其中的光,可以完全吸收,故该空腔的开口可以作为绝对黑体。 2.绝对黑体热辐射的实验规律,可以用辐射本领与波场的关系描述。

三、黑体辐射的定律 1. Stefan-Boltzmann定律 ,, Stefan-Boltzmann常数。 辐射的总能量,即曲线下的面积与成正比。 2. Wien位移定律 ,函数的极大值满足, 3. Rayleigh-Jeans定律 绝对黑体空腔内的光以驻波的形式存在,单位体积内、频率在到之间的驻波数为 ,而从小孔辐射出的驻波数为,辐射出的能量,即辐射本领为 或。 ,与实验结果偏离。称为"紫外灾难"。 四、Plank的量子假设(1900年提出,1918年获Nobel奖) 空腔中的驻波是一系列的谐振子,只能取一些分立的能量,即 , 且,,Plank常数。

普朗克黑体辐射公式推导(精.选)

普朗克黑体辐射公式的推导 所谓的黑体是指能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。 黑体辐射:由这样的空腔小孔发出的辐射就称为黑体辐射。 辐射热平衡状态:处于某一温度T 下的腔壁,单位面积所发射出的辐射能量和它所吸收的辐射能量相等时,辐射达到热平衡状态。 实验发现: 热平衡时,空腔辐射的能量密度,与辐射的波长的分布曲线,其形状和位置只与黑体的绝对温度T 有关而与黑体的形状和材料无关。 实验得到: 1.Wien 公式 从热力学出发加上一些特殊的假设,得到一个分布公式: Wien 公式在短波部分与实验还相符合,长波部分则明显不一致。 2. Rayleigh-Jeans 公式 Rayleigh-Jeans 公式在低频区和实验相符,但是在 高频区公式与实验不符,并且 ∞→=?∞ v v d E E ,既单位体积的能量发散,而 实 验测得的黑体辐射的能量密度是4 T E σ=,该 式 叫做Stefan-Bolzmann 公式,σ叫做Stefan-Bolzmann 常数。 3. Planck 黑体辐射定律 1900年12月14日Planck 提出如果空腔内的黑体辐射和腔壁原子处于平衡,那么辐射的能量分布与腔壁原子的能量分布就应有一种对应。作为辐射原子的模型,Planck 假定: (1)原子的性能和谐振子一样,以给定的频率v 振荡; (2)黑体只能以E=hv 为能量单位不连续的发射和吸收辐射能量,而不是象经典理论所要求的那样可以连续的发射和吸收辐射能量。 得到: νννπνρνd kT h C h d ??? ? ??-=1)/exp(1 833该式称为Planck 辐射定律 h 为普朗克常数,h=s j .10626.634 -? 4,普朗克的推导过程: 把空窖内的电磁波分解为各个频率的简振振动,简振模的形式最后为) .(),(wt r K i k k e C t r -=αβψ, 为常系数振方向,表示两个互相垂直的偏ααk C 2,1= 每一个简振模在力学上等价于一个自由度,记频率在( )νννd +,内的自由度数为()ννd g ,

黑体辐射公式的推导

普朗克和瑞利-金斯黑体辐射公式的推导 1 引言 马克斯·普朗克于1900年建立了黑体辐射定律的公式,并于1901年发表。其目的是改进由威廉·维恩提出的维恩近似(至于描述黑体辐射的另一公式:由瑞利勋爵和金斯爵士提出的瑞利-金斯定律,其建立时间要稍晚于普朗克定律。由此可见瑞利-金斯公式所导致的“紫外灾难”并不是普朗克建立黑体辐射定律的动机)。维恩近似在短波范围内和实验数据相当符合,但在长波范围内偏差较大;而瑞利-金斯公式则正好相反。普朗克得到的公式则在全波段范围内都和实验结果符合得相当好。在推导过程中,普朗克考虑将电磁场的能量按照物质中带电振子的不同振动模式分布。得到普朗克公式的前提假设是这些振子的能量只能取某些基本能量单位的整数倍,这些基本能量单位只与电磁波的频率有关,并且和频率成正比。 这即是普朗克的能量量子化假说,这一假说的提出比爱因斯坦为解释光电效应而提出的光子概念还要至少早五年。然而普朗克并没有像爱因斯坦那样假设电磁波本身即是具有分立能量的量子化的波束,他认为这种量子化只不过是对于处在封闭区域所形成的腔(也就是构成物质的原子)内的微小振子而言的,用半经典的语言来说就是束缚态必然导出量子化。普朗克没能为这一量子化假设给出更多的物理解释,他只是相信这是一种数学上的推导手段,从而能够使理论和经验上的实验数据在全波段范围内符合。不过最终普朗克的量子化假说和爱因斯坦的光子假说都成为了量子力学的基石。

2 公式推导 2.1 普朗克公式和瑞利-金斯公式的推导 黑体是指在任何温度下,对于各种波长的电磁辐射的吸收系数恒等于1的物体。黑体辐射的能量是由电磁场的本征振动引起的,为简化推导过程,在此将黑体简化为边长为L 的正方形谐振腔。则腔内的电磁场满足亥姆霍兹方程: 2222u+k u 0 (k )ωμε?== (1) 用分离变量法,令u(x,y,z)X(x)Y(y)Z(z)= 则(1)式可分解为三个方程: 22 2 22 222200 0x y z d X k X dx d Y k Y dy d Z k Z dz ?+=???+=???+=?? 其中2222x y z k k k ωμε++= 得(1)式的驻波解为: 112233(,,)(cos sin )(cos sin )(cos sin ) x x y y z z u x y z c k x d k x c k y d k y c k z d k z =+++由在x=0,x=L,y=0,y=L,z=0,z=L 上的边界条件0n E n ?=?及0D E ?=可得:

第一讲黑体辐射

量子论 第一讲 黑体辐射 1.热辐射 在上一章中,我们已经提到,开尔文勋爵所说的两朵乌云的第二朵是黑体辐射的实验结果被拔开时,人们发现了近代物理学的两个基础理论的另一个理论即量子力学论. 量子论 由于温度升高而发射能量的辐射源,通常称为热辐射.热辐射体中原子和分子不发生运动状态变化.热辐射能量来自物体的热运动.物体在任何温度下(只要不是绝对零度)都向四周进行热辐射,也从周围吸收这种辐射.热辐射的光谱是连续光谱.一般情况下,热辐射的光谱不仅与辐射源的温度有关,还与它的表面特征有关. 为了定量的描述热辐射与温度和物体特性的关系,首先引入下列概念: (1)辐射出射度(简称辐出度) 温度为T的热辐射体,在单位间内从单位面积向各个方向辐射出的所有频率的辐射能量.又称为辐射能通量密度. (2)单色辐射出射度 温度为T的热辐射体, 在单位时间内从单位面积向各个方向所发射的、在某一频率附近的单位间隔内辐射能量(即功率)叫做该物体的单色辐射出射度.单色辐射出射度与温度、频率和物体的表面特性有关. (3)吸收本领 入射到物体上的辐射通量,一部分被物体散射或反射(对透明物体,还会有一部分透射), 其余的为物体所吸收. 2.黑体 热辐射的规律是很复杂的,我们知道,各种物体由于它有不同的结

构,因而它对外来辐射的吸收以及它本身对外的辐射都不相同.但是有一类物体其表面不反射光,它们能够在任何温度下,吸收射来的一切电磁辐射,这类物体就叫做绝对黑体,简称黑体. 绝对黑体是我们研究热辐射时为使问题简化的理想模型.实际上黑体只是一种理想情况,但如果做一个闭合的空腔,在空腔表面开一个小孔,小孔表面就可以模拟黑体表面.这是因为从外面射来的辐射,经小孔射入空腔,要在腔壁上经过多次反射,才可能有机会射出小孔.因此,在多次反射过程中,外面射来的辐射几乎全部被腔壁吸收.在实验中,可在绕有电热丝的空腔上开一个小孔来实现,正因为实验所用的绝对黑体都是空腔辐射,因此,黑体辐射又称为空腔辐射. 3.黑体的经典辐射定律 1879年,斯忒藩(J.Stefan,1835~1893年)从实验观察到黑体的辐出度与绝对温度T的四次方成正比,即: 1884年玻尔兹曼从理论上给出这个关系式.其中. 对一般物体而言,,为发射率,J为辐出度, ,式中,称为斯特藩-玻尔兹曼常数.通常<1,但对黑体而言,e = 1 (即为完全辐射). 如果物体周围的环境温度为,则须考虑物体表面对入射辐射能的吸收.假定入射的辐射能通量密度为,为物体表面的吸收率,则该物体表面所吸收的辐射能通量密度为,通常a < 1,但对黑体而言,(即为完全吸收).因此物体表面对入射能量的反射率为. 从理论上我们不难证明物体表面的放射率和吸收率相等,即,此称为我们可以说:容易辐射能量的物体,也容易吸收入射的能量. 处于热平衡时,黑体具有最大的吸收比,因而它也就有最大的单色辐出度. 4.紫外灾难 (1)基尔霍夫定律(Kirchhoff's Law): 热平衡状态时,任何物体的单色辐出度与单色吸收比之比,等于同温度条件下绝对黑体的单色辐出度

普朗克公式

普朗克公式的那些事 材料科学与工程学院材料物理张培学号:1043011023 19世纪末,经典统计物理学在研究黑体辐射时遇到了巨大的困难:由经典的能量均分定理导出的瑞利-金斯公式在短波方面得出同黑体辐射光谱实验结果相违背的结论。同时,维恩公式则仅适用于黑体辐射光谱能量分布的短波部分。也就是说,当时还未能找到一个能够成功描述整个实验曲线的黑体辐射公式。为了解决经典物理学19世纪末面临的“紫外灾难”,普朗克吸收了维恩公式和瑞利-金斯公式的长处,利用热力学理论和熵能关系,于1900年10月19日“猜测”出了普朗克公式,经鲁本斯实验验证完全正确,很好地解决了前人的黑体辐射理论与实验结果的矛盾。b5E2RGbCAP 物理学中,普朗克黑体辐射定律<也简称作普朗克定律或黑体辐射定律)<英文:Planck's law, Blackbody radiation law)是用于描述在任意温度下,从一个黑体中发射的电磁辐射的辐射率与电磁辐射的频率的关系公式。这里辐射率是频率的函数: p1EanqFDPw 这个函数在时达到峰值。 如果写成波长的函数,在单位立体角内的辐射率为

注意这两个函数具有不同的单位:第一个函数是描述单位频率间隔内的辐射率,而第二个则是单位波长间隔内的辐射率。因而和并不等价。它们之间存在有如下关系:DXDiTa9E3d 通过单位频率间隔和单位波长间隔之间的关系,这两个函数可以相互转换: 下表中给出了函数中每一个物理量的意义和单位: 物理量 含义 国际单位制 厘M-克-秒制 辐射率,在单位时 间内从单位表面积和单 位立体角内以单位频率 间隔或单位波长间隔辐 射出的能量 焦耳·秒-1·M -2·球面度 -1·赫兹-1,或焦耳·秒-1·M -2·球面度- 1·M -1 尔格·秒-1·厘M-2·赫兹-1·球面度-1 频率 赫兹 (Hz> 赫兹 波长 M (m> 厘M 开尔文 普朗克常数 焦耳·秒 (J·s> 尔格·秒 厘M /秒 尔格/开 尔文 (erg/K>

普朗克黑体辐射公式推导

量子力学结课论文: 对普朗克黑体辐射公式的推证及总结

摘要:黑体辐射现象是指当黑体(空腔)与内部辐射处于平衡时,腔壁单位面积所发射出的辐射能量与它所吸收的辐射能量相等。实验得出的平衡时辐射能量密度按波长分布的曲线,其形状和位置只与黑体的绝对温度有关,而与空腔的形状和组成物质无关。基于能量量子化的假设,普朗克提出了与实验结果相符的黑体辐射能量公式: ρv dν=8πhν3 3 ? 1 e hv kT?1 普朗克的理论很好地解释了黑体辐射现象,并且突破了经典物理学在微观领域内的束缚,打开了人类认识光的微粒性的途径[1]。本文主要介绍了普朗克公式的推导过程及其能量假设并将普朗克对黑体辐射的解释做了总结。 关键词:黑体辐射能量量子化普朗克公式麦克斯韦-玻尔兹曼分布 1.普朗克的量子化假设: 黑体以hν为能量单位不连续地发射和吸收频率为ν的光子的能量. 且能量单位hν称为能量子,h为普朗克常量(h=6.62606896×10?34J?S) 2.普朗克公式的推导过程: 2.1任意频率ν下的辐射能量:

假设有一处于平衡状态的黑体,其内有数量为N 的原子可吸收或发出频率为ν的光子,其中N g 为这些原子中处在基态的原子数,N e 为处在激发态(此处指可由基态原子受频率为ν的光子激发达到的能态)的原子数,n 为频率为ν的光子平均数。则由统计力学中的麦克斯韦-玻尔兹曼公式[2]知: N e ∝N e ?E e N g ∝ N e ?E g 由此可得 N e N g =e ?Ee ?Eg =e ?h ν(2.1.1) 平衡状态下,体系内原子在两能级间相互转化的速率相等,且其速率正比于转化的概率和该状态下的原子数目。结合爱因斯坦系数关系[3]可得:N g n=N e (n+1)(2.1.2) 结合(2.1.1),可解得:n =1 e h νkT ?1(2.1.3) 则该状态下光子总能量为: ε0= nhv =hv e h νkT ?1 (2.1.4) 2.2 v ~v +d v 频率段中可被体系接收的频率数目 设所求黑体为规整的立方体,其长,宽,高分别为L x ,L y ,L z 。体积为V 0。不妨先讨论一维情况: 体系线宽为L ,则L 必为光子半波长的整数倍,设其波数为K ,有

第一讲黑体辐射

量子论 第一讲 黑体辐射 1.热辐射 在上一章中,我们已经提到,开尔文勋爵所说的两朵乌云的第二朵是黑体辐射的实验结果被拔开时,人们发现了近代物理学的两个基础理论的另一个理论即量子力学论. 量子论 由于温度升高而发射能量的辐射源,通常称为热辐射.热辐射体中原子和分子不发生运动状态变化.热辐射能量来自物体的热运动.物体在任何温度下(只要不是绝对零度)都向四周进行热辐射,也从周围吸收这种辐射.热辐射的光谱是连续光谱.一般情况下,热辐射的光谱不仅与辐射源的温度有关,还与它的表面特征有关. 为了定量的描述热辐射与温度和物体特性的关系,首先引入下列概念: (1)辐射出射度(简称辐出度) 温度为T 的热辐射体,在单位间内从单位面积向各个方向辐射出的所有频率的辐射能量.又称为辐射能通量密度. (2)单色辐射出射度 温度为T 的热辐射体, 在单位时间内从单位面积向各个方向所发射的、在某一频率附近的单位间隔内辐射能量(即功率)叫做该物体的单色辐射出射度.单色辐射出射度与温度、频率和物体的表面特性有关. (3)吸收本领 入射到物体上的辐射通量,一部分被物体散射或反射(对透明物体,还会有一部分透射), 其余的为物体所吸收. 2.黑体 热辐射的规律是很复杂的,我们知道,各种物体由于它有不同的结构,因而它对外来辐射的吸收以及它本身 对外的辐射都不相同.但是有一类物体其表面不反射光,它们能够在任何温度下,吸收射来的一切电磁辐射,这类物体就叫做绝对黑体,简称黑体. 绝对黑体是我们研究热辐射时为使问题简化的理想模型.实际 上黑体只是一种理想情况,但如果做一个闭合的空腔,在空腔表面开一个小孔,小孔表面就可以模拟黑体表面.这是因为从外面射来的辐射,经小孔射入空腔,要在腔壁上经过多次反射,才可能有机会射出小孔.因此,在多次反射过程中,外面射来的辐射几乎全部被腔壁吸收.在实验中,可在绕有电热丝的空腔上开一个小孔来实现,正因为实验所用的绝对黑体都是空腔辐射,因此,黑体辐射又称为空腔辐射. 3.黑体的经典辐射定律 1879年,斯忒藩(J .Stefan ,1835~1893年)从实验观察到黑体的辐出度与绝对温度T 的四次方成正比,即: 4J T σ=

黑体与黑体辐射

科技名词定义 中文名称:黑体辐射 英文名称:blackbody radiation;black body radiation 定义1:黑体发出的电磁辐射。它比同温度下任何其他物体发出的电磁辐射都强。 应用学科:大气科学(一级学科);大气物理学(二级学科) 定义2:研究实际物体吸收和发射辐射能量的性能时的一种理想化的比较标准。 应用学科:电力(一级学科);通论(二级学科) 8-1 黑体辐射 黑体辐射即为热辐射,是物体由于自身温度高于环境温度而产生的向外辐射电磁波的现象。 一、热辐射 1、有关热辐射的物理量 (1)辐射能量分布函数:,时刻t、空间点r附近单位体积内的辐射场中,方向为轴的 立体角内、频率附近内的能量为 辐射场的能量密度:U,单位体积内的辐射能量 辐射场的谱密度:单位体积、单位频率内的辐射能量u 即,而 辐射场的亮度B:沿s方向单位立体角内的辐射能流密度

辐射场的亮度的谱密度: 通过面元的辐射通量及其谱密度 辐射本领:单位表面积发出的辐射通量R。 辐射本领的谱密度。, 辐射照度:照射在物体上的单位表面积的辐射通量E及其谱密度e: ,(各向同性辐射场) 吸收本领 辐射通量:温度为T时,频率附近单位频率间隔内的辐射能量。 ,:辐射谱密度、辐射本领。)吸收本领、吸收比:照射到物体上的通量,其中被物体吸收的通量,比例 ,称为吸收本领或吸收比。 基尔霍夫热辐射定律:热平衡状态下物体的辐射本领与吸收本领成正比,比值只与有关。 即,是普适函数,与物质无关。

吸收大,辐射也大。 二、黑体辐射 1.绝对黑体:只有吸收,没有反射。即吸收本领。 则此时,=,通过研究辐射本领就可以得知普适函数的特性,使得对物质热辐射 的研究大为方便。 只开有一个小口的空腔,对于射入其中的光,可以完全吸收,故该空腔的开口可以作为绝对黑体。 2.绝对黑体热辐射的实验规律,可以用辐射本领与波场的关系描述。 三、黑体辐射的定律 1.Stefan-Boltzmann定律

黑体辐射定律

基尔霍夫热辐射定律 基尔霍夫热辐射定律(Kirchhoff热辐射定律),德国物理学家古斯塔夫·基尔霍夫于1859年提出的传热学定律,它用于描述物体的发射率与吸收比之间的关系。 简介一般研究辐射时采用的黑体模型由于其吸收比等于1(α=1),而实际物体的吸收比则小于1(1>α>0)。基尔霍夫热辐射定律则给出了实际物体的辐射出射度与吸收比之间的关系。 ?M为实际物体的辐射出射度,M b为相同温度下黑体的辐射出射度。 而发射率ε的定义即为 所以有ε=α。 所以,在热平衡条件下,物体对热辐射的吸收比恒等于同温度下的发射率。 而对于漫灰体,无论就是否处在热平衡下,物体对热辐射的吸收比都恒等于同温度下的发射率。 不同层次的表达式 对于定向的光谱,其基尔霍夫热辐射定律表达式为 对于半球空间的光谱,其基尔霍夫热辐射定律表达式为 对于全波段的半球空间,其基尔霍夫热辐射定律表达式为 ?θ为纬度角,φ为经度角,λ为光谱的波长,T为温度。 参考文献

?杨世铭,陶文铨。《传热学》。北京:高等教育出版社,2006年:356-379。 ?王以铭。《量与单位规范用法辞典》。上海:上海辞书出版社 普朗克黑体辐射定律 普朗克定律描述的黑体辐射在不同温度下的频谱 物理学中,普朗克黑体辐射定律(也简称作普朗克定律或黑体辐射定律)(英 文:Planck's law, Blackbody radiation law)就是用于描述在任意温度T下,从一个黑体中发射的电磁辐射的辐射率与电磁辐射的频率的关系公式。这里辐射率就是频率的函数[1]: 这个函数在hv=2、82kT时达到峰值[2]。 如果写成波长的函数,在单位立体角内的辐射率为[3]

第一讲 黑体辐射

量子论 第一讲黑体辐射 1.热辐射 在上一章中,我们已经提到,开尔文勋爵所说的两朵乌云的第二朵是黑体辐射的实验结果被拔开时,人们发现了近代物理学的两个基础理论的另一个理论即量子力学论. 量子论 由于温度升高而发射能量的辐射源,通常称为热辐射.热辐射体中原子和分子不发生运动状态变化.热辐射能量来自物体的热运动.物体在任何温度下(只要不是绝对零度)都向四周进行热辐射,也从周围吸收这种辐射.热辐射的光谱是连续光谱.一般情况下,热辐射的光谱不仅与辐射源的温度有关,还与它的表面特征有关. 为了定量的描述热辐射与温度和物体特性的关系,首先引入下列概念: (1)辐射出射度(简称辐出度) 温度为T的热辐射体,在单位间内从单位面积向各个方向辐射出的所有频率的辐射能量.又称为辐射能通量密度. (2)单色辐射出射度 温度为T的热辐射体, 在单位时间内从单位面积向各个方向所发射的、在某一频率附近的单位间隔内辐射能量(即功率)叫做该物体的单色辐射出射度.单色辐射出射度与温度、频率和物体的表面特性有关. (3)吸收本领 入射到物体上的辐射通量,一部分被物体散射或反射(对透明物体,还会有一部分透射), 其余的为物体所吸收. 2.黑体 热辐射的规律是很复杂的,我们知道,各种物体由于它有不同的结构,因而它对外来辐射的吸收以及它本身对外的 辐射都不相同.但是有一类物体其表面不反射光,它们能够在任 何温度下,吸收射来的一切电磁辐射,这类物体就叫做绝对黑体,

简称黑体. 绝对黑体是我们研究热辐射时为使问题简化的理想模型.实际上黑体只是一种理想情况,但如果做一个闭合的空腔,在空腔表面开一个小孔,小孔表面就可以模拟黑体表面.这是因为从外面射来的辐射,经小孔射入空腔,要在腔壁上经过多次反射,才可能有机会射出小孔.因此,在多次反射过程中,外面射来的辐射几乎全部被腔壁吸收.在实验中,可在绕有电热丝的空腔上开一个小孔来实现,正因为实验所用的绝对黑体都是空腔辐射,因此,黑体辐射又称为空腔辐射. 3.黑体的经典辐射定律 1879年,斯忒藩(J .Stefan ,1835~1893年)从实验观察到黑体的辐出度与绝对温度T 的四次方成正比,即: 4J T σ= 1884年玻尔兹曼从理论上给出这个关系式.其中8245.6703210/()W m K δ-=??. 对一般物体而言,() 412 J T Js m εσ--=,ε为发射率,J 为辐出度, () 412 J T Js m εσ--=,式中 ()81245.67010Js m K σ----=?,称为斯特藩-玻尔兹曼常数.通常ε<1,但对黑体而言,e = 1 (即为完全辐射). 如果物体周围的环境温度为0T ,则须考虑物体表面对入射辐射能的吸收.假定入射的辐射能通量密度为40T σ,a 为物体表面的吸收率,则该物体表面所吸收的辐射能通量密度为40J a T σ'=,通常a < 1,但对黑体而言,1a =(即为完全吸收).因此物体表面对入射能量的反射率为1r a =-. 从理论上我们不难证明物体表面的放射率和吸收率相等,即e a =,此称为我们可以说:容易辐射能量的物体,也容易吸收入射的能量. 处于热平衡时,黑体具有最大的吸收比,因而它也就有最大的单色辐出度. 4.紫外灾难 (1)基尔霍夫定律(Kirchhoff's Law): 热平衡状态时,任何物体的单色辐出度与单色吸收比之比,等于同温度条件下绝对黑体的单色辐出度 因此,“绝对黑体的单色辐出度”,是当时研究的尖端课题. 推论:

黑体辐射

量子(quantum): 现代物理的重要概念。最早是由德国物理学家M·普朗克在1900年提出的。他假设黑体辐射中的辐射能量是不连续的,只能取能量基本单位的整数倍,从而很好地解释了黑体辐射的实验现象。 后来的研究表明,不但能量表现出这种不连续的分离化性质,其他物理量诸如角动量、自旋、电荷等也都表现出这种不连续的量子化现象。这同以牛顿力学为代表的经典物理有根本的区别。量子化现象主要表现在微观物理世界。描写微观物理世界的物理理论是量子力学。 量子一词来自拉丁语Quantus,意为“有多少”,代表“相当数量的某物质”。自从普朗克提出量子这一概念以来,经爱因斯坦、玻尔、德布罗意、海森伯、薛定谔、狄拉克、玻恩等人的完善,在20世纪的前半期,初步建立了完整的量子力学理论。绝大多数物理学家将量子力学视为理解和描述自然的基本理论。 任何物体都具有不断辐射、吸收、反射电磁波的本领。辐射出去的电磁波在各个波段是不同的,也就是具有一定的谱分布。这种谱分布与物体本身的特性及其温度有关,因而被称之为热辐射。为了研究不依赖于物质具体物性的热辐射规律,物理学家们定义了一种理想物体——黑体(black body),以此作为热辐射研究的标准物体。 黑体: 在任何条件下,对任何波长的外来辐射完全吸收而无任何反射的物体,即吸收比为1的物体。 在黑体辐射中,随着温度不同,光的颜色各不相同,黑体呈现由红——橙红——黄——黄白——白——蓝白的渐变过程。某个光源所发射的光的颜色,看起来与黑体在某一个温度下所发射的光颜色相同时,黑体的这个温度称为该光源的色温。“黑体”的温度越高,光谱中蓝色的成份则越多,而红色的成份则越少。例如,白炽灯的光色是暖白色,其色温表示为4700K,而日光色荧光灯的色温表示则是6000K。 黑体辐射: 指由理想放射物放射出来的辐射,在特定温度及特定波长放射最大量之辐射。同时,黑体是可以吸收所有入射辐射的物体,不会反射任何辐射,但黑体未必是黑色的,例如太阳为气体星球,可以认为射向太阳的电磁辐射很难被反射回来,所以认为太阳是一个黑体(绝对黑体是不存在的)。理论上黑体会放射频谱上所有波长之电磁波。维恩位移定律是描述黑体电磁辐射能流密度的峰值波长与自身温度关系的定律。

4.1普朗克黑体辐射理论

4.1普朗克黑体辐射理论 【学习目标】 1.了解什么是热辐射及热辐射的特性,了解黑体与黑体辐射。 2.了解黑体辐射的实验规律,了解黑体热辐射的强度与波长的关系。 3.了解能量子的概念。 【学习过程】 一、黑体与黑体辐射 1.热辐射:我们周围的一切物体都在辐射__________,这种辐射与__________有关,所以叫热辐射。2.黑体 如果某种物体能够____________入射的各种波长的电磁波而不发生________,这种物体就是绝对黑体,简称黑体。 3.黑体辐射:黑体虽然不反射___________,却可以_________________电磁波。 注意:①一般物体的辐射与__________、____________、_______________有关,但黑体辐射电磁波的强度按波长的分布只与黑体的______________有关。 ②绝对黑体不存在,是理想化的模型 二、黑体辐射的实验规律 1.辐射强度按波长分布与温度的关系 特点:随温度的升高 ①各种波长的辐射强度都在_____________; ②辐射强度的最大值向_____________方向移动。 2.经典物理学所遇到的困难 (1)维恩的经验公式:__________符合,____________不符合。 (2)瑞利-金斯公式:___________符合,_____________荒唐。 3.超越牛顿的发现 1900年10月,_______________在德国物理学会会议上提出黑体辐射公式与实验结果非常吻合。 三、能量子 (1)普朗克的假设: 组成黑体的振动着的带电微粒能量只能是某一最小能量值ε的__________, 这个不可再分的最小能量值ε叫做__________。 (2)能量子公式: ε=hν,其中ν是电磁波的频率,h称为______________,h=6.62607015×10-34J·s。 (3)能量的量子化: 在微观世界中能量是量子化的,或者说是微观粒子的能量是________的。

《量子力学》的诞生(知识点总结)

第一讲 量子力学的诞生 ★重点与难点解析 一、经典物理碰到的严重困难(不能解释的典型物理现象) 1. 无法解释黑体辐射问题 (1)一些基本概念 黑体;热辐射;单色辐出度;辐射出射度。 (2)单色辐出度的一些理论公式与实验结果的差异 维恩(Wien )公式只在短波波段(高频部分)与实验符合,而在长波波段(低频部分)与实验差别较大。 瑞利—金斯(Rayleigh-Jeans )公式只在长波波段(低频部分)与实验符合,而在短波波段(高频部分)与实验有明显差异,历史上称为“紫外灾难”。 普朗克通过改进维恩公式,得到了一个辐射公式(后称为普朗克公式),其与实验符合的很好。但无法用经典物理来解释这个公式 2. 无法解释光电效应 (1)什么是光电效应;什么是光电子 (2)光电效应的特点 A )对于一定的金属材料做成的(表面光洁的)电极,有一个确定的临界频率0ν,当照射光频率0νν<时,无论光的强度多大,都不会观测到光电子从电极上逸出; B )每个光电子的能量只与照射光的频率有关,而与光强度无关。光强度只影响到光电流的强度,即单位时间从金属电极单位面积上逸出的电子的数目; C )当入射光频率0νν>时,不管光多微弱,只要光一照上,几乎立刻观测到光电子。这与经典电磁理论计算结果不一致。 以上三个特点中,C )是定量上的问题,而A )和B )在原则上无法用经典物理学来解释。 3. 无法解释原子结构 经典理论无法解释原子的线状光谱和稳定性等: (1)根据经典理论,原子向外辐射电磁波,随电子运动轨道的半径不断减小,辐射电磁波的频率将连续变化。而实验发现,原子光谱是离散的线状光谱,并非连续; (2)原子的核型结构是不稳定的,绕核旋转的电子最终将落到原子核上,但实际原子是稳定的,电子不会落到原子核上。 4. 无法解释极低温下固体与分子的比热问题 在极低温下,由经典统计力学的能量均分定理等得到的固体与分子的比热与实验不符。 二、能量量子化思想对上述问题的解释 1. 普朗克(Planck )能量子假说 1900年,普朗克发现:如作下列假设,就可以根据玻尔兹曼分布律从理论上导出与实验结果相符合的普朗克黑体辐射公式。

黑体辐射定律.

基尔霍夫热辐射定律 基尔霍夫热辐射定律(Kirchhoff热辐射定律),德国物理学家古斯塔夫·基尔霍夫于1859年提出的传热学定律,它用于描述物体的发射率与吸收比之间的关系。 简介一般研究辐射时采用的黑体模型由于其吸收比等于1(α=1),而实际物体的吸收比则小于1(1>α>0)。基尔霍夫热辐射定律则给出了实际物体的辐射出射度与吸收比之间的关系。 ?M为实际物体的辐射出射度,M b为相同温度下黑体的辐射出射度。 而发射率ε的定义即为 所以有ε=α。 所以,在热平衡条件下,物体对热辐射的吸收比恒等于同温度下的发射率。 而对于漫灰体,无论是否处在热平衡下,物体对热辐射的吸收比都恒等于同温度下的发射率。 不同层次的表达式 对于定向的光谱,其基尔霍夫热辐射定律表达式为 对于半球空间的光谱,其基尔霍夫热辐射定律表达式为 对于全波段的半球空间,其基尔霍夫热辐射定律表达式为 ?θ为纬度角,φ为经度角,λ为光谱的波长,T为温度。

参考文献 ?杨世铭,陶文铨。《传热学》。北京:高等教育出版社,2006年:356-379。 ?王以铭。《量和单位规范用法辞典》。上海:上海辞书出版社 普朗克黑体辐射定律 普朗克定律描述的黑体辐射在不同温度下的频谱 物理学中,普朗克黑体辐射定律(也简称作普朗克定律或黑体辐射定律)(英文:Planck's law, Blackbody radiation law)是用于描述在任意温度T下,从一个黑体中发射的电磁辐射的辐射率与电磁辐射的频率的关系公式。这里辐射率是频率 的函数[1]: 这个函数在hv=2.82kT时达到峰值[2]。 如果写成波长的函数,在单位立体角内的辐射率为[3]

黑体辐射公式及基尔霍夫公式重新推导论证

实际原子的热辐射公式及爱因斯坦吸收系数确定 彭国良 福建省武夷山市环保局 ( 354300 ) E-mail (pengguoliang513@https://www.sodocs.net/doc/6718525705.html, ) 摘要:本文通过假定绝对黑体同一般物质一样由分子组成,称为黑体分子。黑体分子满足在截面内所有频率的光子都被吸收,在截面外全部不吸收,也称为绝对黑体分子的吸收截面。对所有频率的光子都相同,所有真实的物质原子的吸收截面都不大于黑体分子的吸收截面,黑体分子的吸收截面也是黑体分子的辐射截面,所有实际原子的辐射截面都相同,都与黑体分子的吸收截面相等。在此基础上,根据基尔霍夫公式和普朗克公式可以推导出一个实际原子在各种温度下辐射热能谱的公式;根据原子中电子跃迁的几率与原子吸收相应光子的速率存在对应关系,可确定爱因斯坦吸收系数A ,吸收系数B 的函数关系。本文还推导了在两个不同温度原子之间辐射与吸收光子的相应关系。 关键词:黑体辐射;活化光子吸收截面;辐射截面;爱因斯坦吸收系数。 1引言 所有物体都能发射热辐射,而热辐射与光辐射一样,都是一定频率范围内的电磁波。1859年 【1】 ,基 尔霍夫(G.R.Kirchhoff )证明,黑体与热辐射达到平衡时,辐射能量密度),(T f u 随频率变化曲线的形状与位置只与黑体的绝对温度有关,而与空腔的形状及组成的物质无关。1893年,维恩(W.Wien )发现黑体辐射的位移律实验测得黑体辐射本领在不同温度下,随波长的变化规律。根据维恩位移公式,可以确定黑体的辐射本领极大值所对应的频率f m 与黑体绝对温度成正比。1900年10月19日,基尔霍夫的学生普朗克,在德国物理学会会议上提出了一个黑体辐射能量密度的分布公式。但普朗克黑体辐射公式只能应用于黑体辐射情况,而不能对实际原子的热辐射情况进行预测,实际上,现代就没有各种物质原子的热能谱辐射公式。 原子能级之间的跳跃一般伴随着辐射的吸收和发射,这是原子体系与辐射场相互作用的结果。爱因斯坦在1917年提出的辐射的发射和吸收理论,他用清晰的物理概念简洁地给出了受激发射与自发发射,吸收系数三者之关系,即著名的A 、B 系数;并推导出A 、B 系数之间的关系,但爱因斯坦没能给出A 、B 系数单独存在的物理函数关系;本文将推导和阐明A 、B 系数单独存在的物理公式及其物理意义。 2. 黑体原子或黑体分子的热辐射场 原子之间的碰撞也可以改变原子内部运动状态,引起原子激发,从而发出电磁辐射。原子动能越大,通过碰撞引起的原子激发就越高,从而发出的辐射量子的频率也就越高。而这种辐射量子的频率,则与辐射原子的内部能级结构有关[1][2][3][4][5]。 考虑由大量原子组成的宏观系统。一定温度下,原子的动能有一个分布,则发出的辐射量子的频率也有一个分布。这时的辐射场,是由大量具有不同频率的辐射量子组成的宏观体系。其中具有哪些频率,

第一讲黑体辐射

1.热辐射 量子论 第一讲黑体辐射 在上一章中,我们已经提到,开尔文勋爵所说的两朵乌云的第二朵是黑体辐射的实验结果被拔开时, 人们发现了近代物理学的 两个基础理论的另一个理论即量子力学论 量子论 由于温度升高而发射能量的辐射源,通常称为热辐射?热辐射体中原子和分子不发生运动状态变化.热辐射能量来自物体的 热运动?物体在任何温度下(只要不是绝对零度)都向四周进行热辐射,也从周围吸收这种辐射?热辐射的光谱是连续光谱.一般 情况下,热辐射的光谱不仅与辐射源的温度有关,还与它的表面特征有关 为了定量的描述热辐射与温度和物体特性的关系,首先引入下列概念: (1)辐射出射度(简称辐出 度) 温度为T的热辐射体,在单位间内从单位面积向各个方向辐射出的所有频率的辐射能量?又称为辐射能通量密度. ⑵单色辐射出射度 温度为T的热辐射体,在单位时间内从单位面积向各个方向所发射的、在某一频率附近的单位间隔内辐射能量(即功率) 叫做该物体的单色辐射出射度.单色辐射出射度与温度、频率和物体的表面特性有关 (3)吸收本 领 入射到物体上的辐射通量,一部分被物体散射或反射(对透明物体,还会有一部分透射),其余的为物体所吸收. 2.黑体 热辐射的规律是很复杂的, 我们知道,各种物体由于它有不同的结构,因而它对外来辐射的吸收以及它本身对外的辐射都 不相同.但是有一类物体其表面不反射光,它们能够在任何温度下, 吸收射来的一切电磁辐射,这类物体就叫做绝对黑体,简称黑体 绝对黑体是我们研究热辐射时为使问题简化的理想模型.实际 上黑体只是一种理想情况,但如果做一个闭合的空腔, 在空腔表面 开一个小孔,小孔表面就可以模拟黑体表面.这是因为从外面射来的辐射,经小孔射入空腔,要在腔壁上经过多次反射,才可能有机会射出小孔.因此,在多次反射过程中,外面射来的辐射几乎全部被腔壁吸收.在实验中,可在绕有电热丝的空腔上开一个小 孔来实现,正因为实验所用的绝对黑体都是空腔辐射,因此,黑体辐射又称为空腔辐射. 3.黑体的经典辐射定律 1879年,斯忒藩(J. Stefan, 1835~1893年)从实验观察到黑体的辐出度与绝对温度T的四次方成正比,即: J =町4 1884年玻尔兹曼从理论上给出这个关系式.其中冠=5.67032X10」W/(m2 *4). 对一般物体而言,J = eo T4(Js」m2 ), S为发射率,J为辐出度,J =旳丁4(Js’m,),式中=5.670"0」(Js 为斯特藩-玻尔兹曼常数通常E<1,但对黑体而言,e = 1 (即为完全辐射). 如果物体周围的环境温度为T o,则须考虑物体表面对入射辐射能的吸收.假定入射的辐射能通量密度为bT o4a为物体表面 的吸收率,则该物体表面所吸收的辐射能通量密度为j' = aDT o4,通常a < 1,但对黑体而言,a =1(即为完全吸收).因此物体 表

普朗克黑体辐射公式推导修订稿

普朗克黑体辐射公式推 导 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

普朗克黑体辐射公式的推导 所谓的黑体是指能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。 黑体辐射:由这样的空腔小孔发出的辐射就称为黑体辐射。 辐射热平衡状态: 处于某一温度 T 下的腔壁,单位面积所发射出的辐射能量和它所吸收的辐射能量相等时,辐射达到热平衡状态。 实验发现: 热平衡时,空腔辐射的能量密度,与辐射的波长的分布曲线,其形状和位置只与黑体的绝对温度 T 有关而与黑体的形状和材料无关。 实验得到: 1. Wien 公式 从热力学出发加上一些特殊的假设,得到一个分布公式: ννννρνd T C C d )/ex p(231-=

Wien 公式在短波部分与实验还相符合,长波部分则明显不一致。 2. Rayleigh-Jeans 公式 ννπνρνd kT C d Jeans Rayleigh 2 38= -公式 Rayleigh-Jeans 公式在低频区和实验相符,但是在高频区公式与实验不符,并且 ∞→=?∞ v v d E E ,既单位体积的能量发散,而实验测得的黑体辐射的能量密度是 4T E σ=,该式叫做Stefan-Bolzmann 公式,σ叫做Stefan-Bolzmann 常数。 3. Planck 黑体辐射定律 1900年12月14日Planck 提出如果空腔内的黑体辐射和腔壁原子处于平衡,那么辐射的能量分布与腔壁原子的能量分布就应有一种对应。作为辐射原子的模型,Planck 假定: (1)原子的性能和谐振子一样,以 给定的频率 v 振荡; (2)黑体只能以 E = hv 为能量单位不连续的发射和吸收辐射能量,而不是象经典理论所要求的那样可以连续的发射和吸收辐射能量。 得到: νννπνρνd kT h C h d ??? ? ??-=1)/exp(1 833该式称为 Planck 辐射定律 h 为普朗克常数,h=s j .10 626.634 -? 4,普朗克的推导过程: 把空窖内的电磁波分解为各个频率的简振振动,简振模的形式最后为 ).(),(wt r K i k k e C t r -=αβψ,为常系数振方向,表示两个互相垂直的偏α αk C 2,1=

相关主题