搜档网
当前位置:搜档网 › 飞机襟翼的作用

飞机襟翼的作用

飞机襟翼的作用
飞机襟翼的作用

飞机襟翼的作用

襟翼的作用.. 一架飞机在高空正常飞行的时候,机翼看起来好像是一个整体。其实不然,机翼前缘、后缘都装有长短、宽度不同的翼片,有的可向下偏转,有的可向前伸出,有的可向后滑退,可谓五花八门。由于这些翼片是机翼的附属物,并且可以偏折,正像我们穿的衣服下襟随风摆动一样,因此科学家给这些翼片起了一个十分形象的名称———襟翼。平时飞机停在机场上或在高空飞行时,襟翼都收拢在机翼前缘或后缘上,一旦飞机进入起飞或着陆阶段,它们的原形就显露了出来。飞机为什么要装襟翼呢?请看下文。

1、襟翼的奥秘在于提高升力机翼的作用就是产生足够的升力使飞机能飞上天空。如果机翼是一个整体的话,那么在机翼面积、翼型、展弦比确定的情况下,它的最大升力也就是确定不变的了。如果飞机的全部重量是50吨,机翼必须产生490千牛以上的升力才能飞起来。我们知道,机翼面积越大,升力越大;速度越大,升力也越大。换句话说就是:在升力一定的情况下,机翼面积越大,起飞速度可以越小;起飞速度越大,机翼面积可以越小。因此,为了把这50吨的飞机弄上天,我们可以采取这样两个办法:一是选用面积较小的机翼,通过加大起飞速度使升力超过490千牛;二是使起飞速度保持在较低的值上,通过采用大面积机翼以产生490千牛以上的升力。这两个办法行不行呢?第一个办法机翼面积较小,飞机的结构重量就较轻,这是优点,但起飞速度大是很不利的,一方面要求机场跑道很长,这很不合算,对舰载飞机更是不利;另一方面,高滑跑速度对安全的威胁极大。第二个方法起飞速度低,有利于缩短滑跑距离,但当飞机起飞后速度增加,大面积机翼便成了累赘,不但重量大使载重量大大减少,而且会使阻力剧增,飞机的耗油量因此显著增加。这种低速时升力小、高速时阻力大的问题称为飞机的高低速矛盾。怎样解决这一难题呢?这就要靠襟翼来实现。襟翼的一个主要作用是协调这个矛盾,既不需要很大、很重的机翼,也能在较低的起飞着陆速度下产生足够的升力,使载重、速度、阻力和油耗达到综合性的最佳化。用整体一块的方式设计机翼不能同时满足大载重量、低起飞和着陆速度、低阻力和低耗油率的要求。由于襟翼具体作用是大大提高飞机起飞和着陆等低速阶段的升力,因而统称增升装置。襟翼为什么能增加升力呢?在速度一定的情况下,提高升力的办法主要有4种:一是改变机翼剖面形状,增加翼型弯度;二是增加机翼面积;三是尽可能保持层流流动;四是在环绕机翼的气流中,增加一股喷气气流。襟翼就是通过改变翼型弯度、增加机翼面积、保持层流流动而增加升力的。

2、飞机襟翼样式众多襟翼概念出现得很早。第一次世界大战前,由于飞机速度提高,要求飞机在低速时也能产生足够的升力,于是有人开始了最简单的后缘襟翼的试验探索。为什么飞机要装襟翼?简单襟翼就是机翼后缘的一部分。它可以弯曲,这样就会改变机翼弯度,提高升力。不久,又出现了开裂式襟翼。当它放下时,一方面可使翼型变弯,一方面会在机翼后缘形成低压,两方面的效果都是增加了升力。通常,开裂式襟翼可使升力系数提高75%~85%。同时,开裂式襟翼还能增加阻力,对飞机安全、缓慢地着陆有利。 20世纪20年代,英国著名设计师汉德莱·佩奇和德国空气动力学家拉赫曼发明了开缝襟翼。它是一条或几条附着在机翼后缘的可动翼片,平时与机翼合为一体,飞机起飞或着陆时放下。襟翼片能够增加机翼的面积,改变机翼弯度,同时还会形

成一条或几条缝隙。增加面积可以提高升力,形成缝隙可使下表面的气流经缝隙流向上表面,使上表面的气流速度提高,可较大范围保持层流,也可使升力增加,并能减少失速现象的发生。开缝襟翼是襟翼中十分重要的一种。它也可以装在飞机前缘上,通常都是一条。目前大型飞机特别是客机都安装了双缝或三缝襟翼,可提高升力系数85%~95%,效果十分显著。还有两种襟翼也很常见,一种是富勒襟翼,一种是克鲁格襟翼。富勒襟翼是在机翼后缘安装的活动翼面,平时紧贴在机翼下表面上。使用时,襟翼沿下翼面安装的滑轨后退,同时下偏。使用富勒襟翼可以增加翼剖面的弯度,同时能大大增加机翼面积,增升效果非常明显,升力系数可提高85%~95%,个别大面积富勒襟翼的升力系数可提高110%~140%。这种襟翼结构较复杂,多在大、中型飞机上采用,可大大改善起降性能。克鲁格襟翼位于机翼前缘。它的外形相当于机翼前缘的一部分。使用时利用液压作动筒将克鲁格襟翼向前下方伸出,既改变了翼型,也增加了翼面积,增升效果也比较好。

3、飞机襟翼在发展中襟翼的发展并没有完结。上面介绍的襟翼装置发展比较成熟,还有一类襟翼概念提出的也很早,但直到现在仍不完善,这就是喷气襟翼。它的设计方案很多,基本思想都是通过从发动机或高压气瓶引出气体,吸向机翼或襟翼表面,达到增加升力、推迟分离、降低阻力、改善失速特性的目的。由于喷气襟翼十分复杂,目前只有个别飞机,如“鹞”式垂直起降飞机和F-

4、米格-21轻型战斗机使用了喷气襟翼。其试验工作仍在进行之中。

航空模型技术常用术语

1、翼展——机翼(尾翼)左右翼尖间的直线距离。(穿过机身部分也计算在内)。

2、机身全长——模型飞机最前端到最末端的直线距离。

3、重心——模型飞机各部分重力的合力作用点称为重心。

4、尾心臂——由重心到水平尾翼前缘四分之一弦长处的距离。

5、翼型——机翼或尾翼的横剖面形状。

6、前缘——翼型的最前端。

7、后缘——翼型的最后端。

8、翼弦——前后缘之间的连线。

9、展弦比——翼展与平均翼弦长度的比值。展弦比大说明机翼狭长

航空动力装置100

航空动力装置(100题) 1.一个物理大气压约为 A.14.3PSI B.29.92百帕斯卡 C.1013帕斯卡 2.温度为0摄氏度约合 A.9华氏度 B.0华氏度 C.32华氏度 3.在活塞发动机起动之前,进气压力表通常指示在29.9英寸汞柱,这是因为A.表的指针卡在此位上 B.油门关断,进气管道内有高压 C.进气管道压力和大气压力相等 4.发动机排出的废气温度与外界大气温度相比 A.更高 B.更低 C.相等 5.四行程活塞发动机输出功率的行程是 A.压缩行程

B.膨胀行程 C.排气行程 6.飞机的马赫数指的是 A.飞机的表速与当地的音速之比 B.当地的音速与飞机的速度之比 C.飞机的真空速与当地的音速之比 7.活塞发动机混合气的油/气比是指 A.进入气缸的燃油体积与空气体积之比 B.进入气缸的燃油重量与空气重量之比 C.进入汽化器的燃油重量与空气重量之比 8.活塞发动机的汽缸头温度过高将 A.增加燃油消耗率并增加功率 B.造成胶制受热部件损坏和气缸散热片翘曲 C.导致失去功率,滑油过度消耗 9.如果活塞发动机滑油温度和气缸头温度超过正常范围,是因为A.混合比过富油 B.使用了比规定牌号高的燃油 C.使用功率过大和混合气过贫油 10.如果飞机有燃油箱放油口和燃油滤油口,飞行前放油检查

A.只从油箱放油口放油检查 B.只从油滤放油口放油检查 C.应从油箱放油口和滤油口放油检查 11.如果活塞发动机使用的燃油牌号低于规定的牌号,将最有可能产生A.爆震 B.气缸头温度过低 C.在增加功率时,发动机内的部件应力过大 12.关于活塞发动机电嘴积碳,下列说法哪种正确 A.是因为混合气过富油造成的 B.是因为发动机气缸头温度太高造成的 C.是因为发动机内燃烧温度太高造成的 13.当给飞机加油时,为预防静电带来的危害,应注意 A.检查电瓶和点火电门是否关断 B.油车是否用接地线接地 C.将飞机、加油车和加油枪用连线接地 14.当飞机飞行高度增加,如果混合比杆没有向贫油位调整,将会使A.进入气缸的混合气变富油 B.进入气缸的混合气变贫油 C.进入气缸的混合气油气比不变

《襟翼、副翼和缝翼》

《缝翼、襟翼和副翼》 襟翼(Flap) 襟翼是安装在机翼后缘附近的翼面,是后缘的一部分。襟翼可以绕轴向后下方偏转,从而增大机翼的弯度,提高机翼的升力。襟翼的类型有很多,如简单襟翼、开缝襟翼、多缝襟翼、吹气襟翼等等。 副翼(Aileron) 是指安装在机翼翼梢后缘的一小块可动的翼面。飞行员操纵左右副翼差动偏转所产生的滚转力矩可以使飞机做横滚机动。 缝翼(Slat) 缝翼又称“前缘缝翼”英文名称:leading edge slat。 定义:装在机翼前缘,闭合时与机翼外形为一整体,可以前伸与机翼间形成缝隙的翼面形增升装置。 飞机的增升装置 飞机的增升装置有后缘襟翼、前缘缝翼、前缘襟翼和吹气襟翼。 吹气襟翼又有3种类型: (1)流向吹气边界层控制 (2)展向吹气襟翼 (3)喷气襟翼。 襟翼的另外定义方式: 襟翼分为后缘襟翼/前缘襟翼,原理不同,不同类型的后缘襟翼原理也有所不同。

一.后缘襟翼 襟翼位于机翼后缘,叫后缘襟翼。它的种类很多,较常用的有:分裂襟翼,简单襟翼、开缝襟翼、后退襟翼、后退开缝襟翼等。 放下襟翼既可提高升力,同时也增大阻力。所以多用于着陆。有的飞机为了缩短起飞滑跑距离,起飞也放襟翼,但放下角度很小。 (一)分裂襟翼 这种襟翼本身象一块薄板,紧贴于机翼后缘。放下襟翼,在后缘和机翼之间,形成涡流区,压力降低,对机翼上表面的气流有吸引作用,使其流速增大,上下压差增大,既增大了升力,同时又延缓了气流分离。另一方面,放下襟翼,机翼翼剖面变得更弯曲,使上、下表面压力差增大,升力增大。由于以上两方面的原因,放下分裂襟翼的增升效果相当好,一般最大升力系数可增大75-85%。但因大迎角放下襟翼,上表面的最低压力点的压力更小了,使气流更易提前分离,故临界迎角有所减小。 (二)简单襟翼 简单襟翼与副翼形状相似,放下简单襟翼,相当于改变了机切面形状,使机翼更加弯曲。这样,空气流过机翼上表面,流速加快,压力降低;而流过机翼下表面,流速减慢,压力提高。因而机翼上、下压力差增大,升力增大。可是,襟翼放下之后,机翼后缘涡流区扩大,机翼前后压力差增大,故阻力同时增大。襟翼放下角度越大,升力和阻力也增大得越多。 放下襟翼,升力和阻力虽然同时增大,但在一般情况下阻力增大的百分比要比升力增大的百分比要大些,所以升阻比是降低的。在大迎角下放襟翼,机翼上表面最低压力点的压力,比后缘部分的压力小得更多。这更促机翼后部附面层中的空气

飞行器动力工程-专业培养方案(新)

西北工业大学本科生培养方案专业名称飞行器动力工程 专业代码0203 0701 学院名称航天学院动力与能源学院 培养方案制定人签字年月日 院长签字年月日 校长签字年月日 西北工业大学 1 1

2 1

飞行器动力工程专业本科培养方案 一、专业介绍 西北工业大学飞行器动力工程专业以航空航天飞行器动力为对象,以航空宇航推进理论与工程、 动力工程与工程热物理学科为依托,以动力、能源、机械及控制等学科为延拓,历经60多年的发展,已成为我校最具航空航天特色的专业之一。本专业拥有2个国家级重点实验室、2个省部级重点实验 室和工程中心,是陕西省本科“名牌专业”、国防科工委“重点建设专业”和教育部“特色专业”。 本专业涵盖航空发动机和火箭发动机设计、燃烧与流动、叶轮机械、发动机结构与强度等多个研 究方向,参与并支持了我国多个航空飞行器动力装置、航天飞行器动力系统等方面的科研工作,已形 成了一支教学水平高、科研能力强的师资队伍。本专业以国民经济发展和国防建设需求为牵引,充分 发挥国防特色的突出优势,教学与科研紧密结合,培养的学生基础扎实、实践能力强、综合素质高、 创新意识强,得到用人单位的一致好评。 毕业生就业方向主要分布在航天、航空研究院(所)、大专院校、大型企业及部队,从事发动机设计、制造、试验、测试等方面的研究、开发和管理等工作;也可选择报考本专业及相关学科专业的硕 士研究生,近年来平均读研率在60%以上。 二、培养目标 培养适应社会主义现代化建设需要的德智体全面发展,掌握航空航天动力系统设计基本理论和工程应用等专门知识,具备航空航天热动力机械方面设计、分析和解决实际问题的能力,能从事航空航天动力系统总体设计、性能仿真、燃烧组织、流动模拟、传热分析及相关软件开发等,并能从事通用机械设计及制造的高级研究人员和工程技术人员。 三、培养要求 通过通识通修、学科专业和综合实践等培养环节,使学生具有高尚的人文素养、掌握宽广的基础科学理论、具备解决实际问题的基本方法和创新能力;并可结合自身的兴趣、爱好和就业取向,选修有助于拓展视野和提高能力的个性培养课程,从而达到综合素质的全面提升。 毕业生应获得以下几方面的知识和能力: 1、具有扎实的自然科学基础知识,良好的人文、艺术和社会科学基础及较强的语言表达和阅读写作能力。 3 1

《飞机动力装置》知识

一、单选题 1.对于燃油泵,按供油增压原理可分为: A.齿轮泵和柱塞泵 B.齿轮泵和容积式泵 C.叶轮式泵和容积式泵 D.叶轮式泵和柱塞泵 D 2.柱塞泵属于: A.叶轮式,定量泵 B.叶轮式,变量泵 C.容积式泵 ,变量泵 D.容积式泵 ,定量泵 C 3.柱塞泵供油量的多少由()决定。 A.转速和斜盘角度 B.转速和分油盘大小 C.齿数和斜盘角度 D.转速和齿数 A 4.发动机全功能(全权限)数字电子控制器的英文缩写是( )。 A.APU B.EEC C.FADEC D.FMU C 5.发动机启动过程是指: A.从接通启动电门到达到慢车转速 B.从接通启动电门到自维持转速 C.从接通启动电门到启动机脱开 D.从接通启动电门到点火断开 A 6.发动机点燃的标志是发动机的: A.滑油压力低灯灭 B.转速升高 C.进气温度升高 D.排气温度上升 D 7.发动机能够保持稳定工作的最小转速是: A 自持转速 B 慢车转速 C.巡航转速 D.最大连续转速 B

8.目前在干线客机上最广泛采用的启动机是: a 电动启动机 b 冲击启动机 c 空气涡轮启动机 d 燃气涡轮启动机 C 9.下列不是飞机用气气源的是: a APU b 发动机压气机 c 地面气源 d 客舱空调 D B 10.放气活门打开放掉()的空气来防喘。 A、风扇后 B、压气机前面级 C、压气机中间 D、压气机后面级 C 11、在双转子发动机中,可调静子叶片是调节()。 A、高压压气机进口导向叶片和前几级静子叶片 B、低压压气机进口导向叶片和前几级静子叶片 C、高压涡轮进口导向叶片和前几级静子叶片 D、低压涡轮进口导向叶片和前几级静子叶片 A 12 飞机空调、增压、除冰、加温用的空气来自何处: a 压气机引气 b 地面供气 c冲压空气 d 燃烧气体 A 13 燃烧室中用于冷却的气体约占其进气量的: A.1/5 B.1/4 C.1/3 D.3/4 D 14 涡喷发动机的冰部位有()。 A.进气整流罩,前整流锥和压气机的进气导向器 B.进气整流罩和压气机静子 C.前整流锥和压气机转子 D.压气机和尾喷管 A

襟翼

飞机襟翼运动分析 1 图1-1机翼组成(上表面)

图1-2机翼组成(下表面) 2襟翼(Flap)功能 襟翼是安装在机翼后缘内侧的翼面,襟翼可以绕轴向后下方偏转,主要是靠增大机翼的弯度来获得升力增加的一种增升装置。 当飞机在起飞时,襟翼伸出的角度较小,主要起到增加升力的作用,可以加速飞机的起飞,缩短飞机在地面的滑跑距离;当飞机在降落时,襟翼伸出的角度较大,可以使飞机的升力和阻力同时增大,以利于降低着陆速度,缩短滑跑距离。 在现代飞机设计中,当襟翼的位置移到机翼的前缘,就变成了前缘襟翼。前缘襟翼也可以看作是可偏转的前缘。在大迎角下,它向下偏转,使前缘与来流之间的角度减小,气流沿上翼面的流动比较光滑,避免发生局部气流分离,同时也可增大翼型的弯度。 前缘襟翼与后缘襟翼配合使用可进一步提高增升效果。一般的后缘襟翼有一个缺点,就是当它向下偏转时,虽然能够增大上翼面气流的流速,从而增大升力系数,但同时也使得机翼前缘处气流的局部迎角增大,当飞机以大迎角飞行时,容易导致机翼前缘上部发生局部的气流分离,使飞机的性能变坏。如果此时采用前缘襟翼,不但可以消除机翼前缘上部的局部

气流分离,改善后缘襟翼的增升效果,而且其本身也具有增升作用。 图2-1 B737-600的双开缝后缘襟翼 克鲁格襟翼(Krueger Flap):与前缘襟翼作用相同的还有一种克鲁格襟翼。它一般位于机翼前缘根部,靠作动筒收放。打开时,伸向机翼下前方,既增大机翼面积,又增大翼型弯度,具有较好的增升效果,同时构造也比较简单。 图2-2为波音777的驾驶舱中央操纵台部分,民航飞机的机翼各翼面的操作一般类似。 如本文前述,前缘缝翼没有专门的操纵装置,副翼的作动是依靠驾驶盘的左右转动。而襟翼、扰流板的操纵就在驾驶舱中央操纵台的油门杆两侧。 襟翼,用于飞行控制 襟翼是几乎所有飞机都使用的最常见高升力装置。对任何设定的迎角,这些安装在机翼后缘的控制面既增加了升力又增加了诱导阻力。襟翼容许在高巡航速度和低着陆速度之间折衷,因为它可以在需要的时候伸出,不需要的时候收起到机翼结构里。有四种常见类型的襟翼:简单襟翼,分裂襟翼,开缝襟翼和福勒(Fowler)襟翼。

A320系列飞机襟翼锁定和卡阻故障的分析与预防

A320系列飞机襟翼锁定和卡阻故障的分析与预防 摘要:本文针对空客A320系列飞机襟翼锁定和卡阻故障的现象,结合襟翼系统的结构组成和工作原理,以及飞机实际运营中出现的情况,详细分析了故障产生的原因,并提出故障预防的有效措施,对该机型的维护有一定的参考意义。 关键词:襟翼锁定襟翼卡阻原因分析预防措施 Abstract:Regarding the phenomenon of AIRBUS A320 family flaps locked and flaps jam,combined with the system composition and operating principle,as well as the actual operating situation of the aircraft,the paper analysis the frequent causes of the failure and proposes measures for prevention and trouble shooting. It has certain reference value for the maintenance of such type of aircraft. Key words:flap locked;flap jam;cause analysis;prevention measures 空客A320系列飞机是空客家族的主力机型,在日益繁荣的中国航空市场上,该型飞机已经逐步成为主流机型。2013年4月25日,中国航空器材集团公司和空中客车公司签署意向协议,订购60架空客飞机,其中包括42架单通道的A320系列飞机和18架双通道的A330系列飞机。截至2013年3月底,在中国,共有14家航空公司运营着750多架空客A320系列飞机,作为拥有国内最大机队的南方航空公司运行着超过200架空客A320系列飞机。 A320系列飞机安装了左右、内外共4块襟翼,用于在起飞下降过程中增加或者减少飞机升力。整个襟翼系统包括襟翼安装、襟翼驱动、襟翼控制、襟翼指示等子系统。内襟翼通过两个小车固定在1、2号滑轨上,外襟翼通过小车固定在3、4号滑轨上。每个滑轨处分别有一个臂与襟翼的驱动系统相连,使襟翼受驱动系统作用在滑轨上运动。另外,襟翼和小车之间通过偏心螺栓连接,襟翼驱动臂上也有一个偏心螺栓,通过螺栓偏心的位置就可以调节襟翼翼型的位置。如图所示,襟翼驱动系统包括一个动力控制组件(PCU),滑轨由一个旋转作动器与多段扭力管等部件组成。首先由PCU输出旋转力矩,然后通过扭力管将旋转力矩传递给各个滑轨上的旋转作动器,旋转作动器利用旋转力矩驱动作动器臂,在作动器臂的驱动下,襟翼可以在滑轨上自由运动。 襟翼控制系统使襟翼在襟翼手柄和缝翼/襟翼计算机(SFCC)的指令下正常工作,并在襟翼出现不正常情况时锁死襟翼。所以,在襟翼运动过程中,通过PCU上的反馈位置探测组件(FPPU)、仪表设备位置探测组件(IPPU)和扭力管末端的不对称位置探测组件(APPU)来保证PCU输出指令与襟翼实际位置一致,再通过内外襟翼之间的互联支柱来保证内外襟翼不错位。另外,扭力管上的扭矩限制器在襟翼超载时也会通过SFCC锁死襟翼。襟翼的指示主要显示在ECAM显示器上,由IPPU提供数据。 在A320 的运行过程中,作为飞机制造厂家的空客经常会收到关于襟翼锁定

航空器系统动力装置

1. 世界公认的第一次成功地进行带动力飞行的飞机制造和试飞者是 a A:莱特兄弟于1903年. B:兰利于1903年 C:莱特兄弟于1902年 D:蒙哥尔菲于1783年 2.某客机机身内设有240个座位,按客座数分类,该飞机属于 c A:小型客机. B:中型客机 C:大型客机 D:巨型客机 3.飞行安全即无飞行事故,在执行飞行任务时发生飞机失事的基本原因可以分为三大类: B A:单因素、双因素、多因素. B:人、飞机、环境 C:机场内、进场区、巡路上 D:机组、航管、签派 4. 飞机载荷是指: D A:升力 B:重力和气动力 C:道面支持力 D:飞机运营时所受到的所有外力 5.在研究旅客机典型飞行状态下的受载时,常将飞机飞行载荷分为B A:升力、重力、推力、阻力. B:平飞载荷、曲线飞行载荷、突风载荷 C:飞行载荷、地面载荷与座舱增压载荷 D:静载荷、动载荷 6.飞机等速平飞时的受载特点是: D A:没有向心力而只受升力、重力、推力和阻力作用. B:升力等于重力;推力等于阻力;飞机所有外力处于平衡状态 C:既有集中力,也有分布力 D:以上都对 7.飞机大速度平飞时,双凸翼型机翼表面气动力的特点是: A A:上下翼面均受吸力. B:上下翼面均受压力 C:上翼面受吸力,下翼面受压力 D:上翼面受压力,下翼面受吸力 8.飞机作曲线飞行时:A A:受升力、重力、推力、阻力作用 B:受升力、重力、推力、阻力及向心力作用 C:升力全部用来提供向心力 D:外力用以平衡惯性力 9.飞机水平转弯时所受外力有 A A:升力、重力、推力、阻力

B:升力、重力、推力、阻力、向心力 C:升力、重力、推力、阻力、惯性力 D:升力和重力、推力和阻力始终保持平衡 10.飞机转弯时的坡度的主要限制因素有: C A:飞机重量大小 B:飞机尺寸大小 C:飞机结构强度、发动机推力、机翼临界迎角 D:机翼剖面形状 11.某运输机在飞行中遇到了很强的垂直上突风,为了保证飞机结构受载安全,飞行员一般采用的控制方法是: A:适当降低飞行高度 B:适当增加飞行高度 C:适当降低飞行速度 D:适当增大飞行速度 正确答案: C 12.飞机平飞遇垂直向上突风作用时,载荷的变化量主要由 A:相对速度大小和方向的改变决定 B:相对速度大小的改变决定 C:相对速度方向的改变决定 D:突风方向决定 正确答案: C 13.在某飞行状态下,飞机升力方向的过载是指 A:装载的人员、货物超过规定 B:升力过大 C:该状态下飞机升力与重量之比值 D:该状态下飞机所受外力的合力在升力方向的分量与飞机重量的比值 正确答案: C 14.飞机水平转弯时的过载 A:与转弯半径有关 B:与转弯速度有关 C:随转弯坡度增大而减小 D:随转弯坡度增大而增大 正确答案: D 15.机翼外载荷的特点是 A:以分布载荷为主 B:主要承受接头传给的集中载荷 C:主要承受结构质量力 D:主要承受弯矩和扭矩 正确答案: A 16.在机翼内装上燃油,前缘吊装发动机,对机翼结构 A:会增大翼根部弯矩、剪力和扭矩 B:可减小翼根部弯矩、剪力和扭矩 C:有利于飞机保持水平姿态 D:有利于保持气动外形

2019飞行器动力工程专业怎么样

2019飞行器动力工程专业怎么样 1、飞行器动力工程专业简介 本专业设有航空宇航推进理论与工程、系统仿真与控制、机械设计及理论硕士点和博士点以及动力机械及工程、流体机械及工程硕士点等,并设有航空宇航科学与技术、力学博士后流动站。 2、飞行器动力工程专业主要课程 机械工程、力学、动力工程与工程热物理、高等数学。主要课程:机械原理及机械设计、电工与电子技术、工程力学、工程热力学、传热学、动力装置原理及结构、动力装置制造工艺学等。 3、飞行器动力工程专业培养目标 培养目标 本专业培养具备飞行器动力装置或飞行器动力装置控制系统等方面的知识,能在航空、航天、交通、能源、环境等部门从事飞行器动力装置及其它热动力机械的设计、研究、生产、实验、运行维护和技术管理等方面工作的高级工程技术人才。 培养要求 本专业学生主要学习有关飞行器动力装置的基础理论和基本知识,受到机械工程设计、实验测试和计算机应用等方面的基本训练,具有飞行器动力装置及控制系统的设计、实验和运行维护等方面的基本能力。 4、飞行器动力工程专业就业方向与就业前景

由于我国飞行器动力行业已得到国家多项专项计划支持,未来该专业将具有很好的发展前景。毕业生可在航空、航天发动机设计所、研究所高校、部队和企业的设计、生产部门等从事设计、试验、研究等方面的工作。 5、飞行器动力工程专业比较不错的大学推荐,排名不分先后 1.北京航空航天大学A++ 2.西北工业大学A++ 3.南京航空航天大学A+ 4.北京理工大学A+ 5.中国民航大学A+ 6.沈阳航空航天大学A+ 7.厦门大学A+ 8.南昌航空大学A 9.哈尔滨工业大学A 10.哈尔滨工程大学A 11.中国民用航空飞行学院A

飞机机翼各部分图解及专业术语

机翼各翼面的位置图 图片说明:上图为机翼各翼面的位置图,民航飞机的机翼各翼面位置一般类似。机翼上各操纵面是左右对称分布,部分由于图片受限未标出 机翼的基本概念 机翼的主要功用是产生升力,以支持飞机在空中飞行;同时也起一定的稳定和操纵作用。是飞机必不可少的部件,在机翼上一般安装有飞机的主操作舵面:副翼,还有辅助操纵机构襟翼、缝翼等。另外,机翼上还可安装发动机、起落架等飞机设备,机翼的主要内部空间经密封后,作为存储燃油的油箱之用。 相关名词解释: 1 翼型:飞机机翼具有独特的剖面,其横断面(横向剖面)的形状称为翼型,称为翼型 2 前缘:翼型最前面的一点。 3 后缘:翼型最后面的一点。 4 翼弦:前缘与后缘的连线。 5 弦长:前后缘的距离称为弦长。如果机翼平面形状不是长方形,一般在参数计算时采用制造商指定位置的弦长或平均弦长 6 迎角(Angle of attack) :机翼的前进方向(相当与气流的方向)和翼弦(与机身轴线不同)的夹角叫迎角,也称为攻角,它是确定机翼在气流中姿态的基准。 7 翼展:飞机机翼左右翼尖间的直线距离。 8 展弦比:机翼的翼展与弦长之比值。用以表现机翼相对的展张程度。 9上(下)反角:机翼装在机身上的角度,即机翼与水平面所成的角度。从机头沿飞机纵轴向后看,两侧机翼翼尖向上翘的角度。同理,向下垂时的角度就叫下反角。 10 上(中、下)单翼:目前大型民航飞机都是单翼机,根据机翼安装在机身上的部位把飞机分为上(中、下)单翼飞机也有称作高、中、低单翼。 11 机翼安装在机身上部(背部)为上单翼;机翼安装在机身中部的为中单翼,机翼安装在机身下部(腹部)为下单翼。 上单翼的飞机一般为运输机与水上飞机,由于高度问题,此时起落架等装置一般就不安装在机翼上,而改在机身上,使用上单翼的飞机一般采用下反角的安装。 中单翼因翼梁与机身难以协调,几乎只存在理论上; 下单翼的飞机是目前民航飞机常见的类型,由于离地面近,便于安装起落架,进行维护工作,使用下单翼的飞机一般采用上反角的安装。 机翼在使飞机升空飞行中的重要作用 飞机在飞行过程中受到四种作用力: 升力----由机翼产生的向上作用力 重力----与升力相反的向下作用力,由飞机及其运载的人员、货物、设备的重量产生 推力----由发动机产生的向前作用力 阻力----由空气阻力产生的向后作用力,能使飞机减速。

浅析737NG型飞机后缘襟翼倾斜系统——机务经验交流

浅析737NG型飞机后缘襟翼倾斜系统 浅析737NG型飞机后缘襟翼倾斜系统 南航广西维修厂邵帅 737NG系列飞机在后缘襟翼系统共安装了8个倾斜传感器,同后缘襟翼位置传感器一起向FSEU提供后缘襟翼位置信号,每边机翼分布4个倾斜传感器,每边的激励电源是各自独立的,通过倾斜传感器和后缘襟翼位置传感器的共同配合,FSEU就可以自动的调整后缘襟翼的位置,并时时监控后缘襟翼的不同步和倾斜状况。 襟翼倾斜的定义是任何一边的襟翼内侧末端和外侧末端不一致的时候就发生了襟翼倾斜,在后缘襟翼倾斜情况发生时,襟翼位置指示器会发生15度的分离,接着FSEU就会自动做出判断是发生在哪边的机翼上,是在收回的过程还是放出的过程。原理是FSEU先比较左边的倾斜传感器和左边的襟翼位置传感器,如果它们不同步,FSEU就会认为左边机翼发生了倾斜,如果左边同步,就认为是右边机翼发生了倾斜,同时襟翼倾斜系统通过FSEU发出数据信息给失速管理偏航阻尼器(SMYDS)用于失速警告,发出数据信息给临近店门电子组件(PSEU)用于起飞警告。 判断好了这些情况,然后FSEU对发生倾斜那边的机翼,作倾斜传感器和襟翼位置传感器的襟翼位置度数比较,如果倾斜传感器的位置大于襟翼位置传感器的位置,FSEU就会发出指令给襟翼位置指示器,使指示器的指针向襟翼伸出方向移动15个单位,,如果倾斜传感器的位置小于襟翼位置传感器的位置,FSEU就会发出指令给襟翼位置指示器,使指示器的指针向襟翼收回方向移动15个单位。 1

下图是后缘襟翼倾斜时的原理示意图: FSEU比较互相对应的两个倾斜传感器,倾斜传感器分别为1-8号,如果对应的传感器角度差超出它默认的范围,就会发生倾斜现象,导致后缘襟翼旁通活门旁通,阻止了液压操作后缘襟翼,也就是发生了卡阻现象。 互相比较的两个传感器差值超出的范围 1号和8号相比较差值大于28度就会发生襟翼卡阻 2号和7号相比较差值大于28度就会发生襟翼卡阻 3号和6号相比较差值大于26度就会发生襟翼卡阻 4号和5号相比较差值大于34度就会发生襟翼卡阻 如果互相比较的两个传感器角度差值小于13度,就会自动复位 倾斜传感器就是一种旋转变压器,随着输入驱动杆的变化,由内部的解相器将变化的电压信号解算出来,所以传输到FSEU内的信号值就发生了变化,当FSEU将接收到的两个互相比 2

飞行器动力工程专业认识

飞行器动力工程专业认识 一、培养目标 本专业方向培养航空、航天、民航、航海及机械、动力、能源等领域设计、制造、科研各部门从事航空动力、地面燃气轮机、热能工程、流体机械及工程机械方面的设计、制造、试验以及科学研究、技术开发、使用维护和技术管理等工作的高级专业技术人才。本专业学制四年,招收理科考生,毕业生授予工学学士学位。设有“航空宇航推进理论与工程”、“系统仿真与控制”、“机械设计及理论”硕士点和博士点以及“动力机械及工程”硕士点,并设有“航空宇航科学与技术”博士后流动站。 二、专业内容 本专业以飞行器动力(发动机)总体设计、部件设计、控制系统设计及热能工程中的动力机械为主要内容。 主干学科:工程热物理、流体力学、固体力学、机械学、电工与电子技术、自动控制。要求学生具有扎实的数理基础和流体力学、固体力学、机械学、工程热力学、传热学、计算机控制及电工与电子学等方面基础知识,以获得以下几方面的专业知识、综合能力和工程创新能力: ?发动机总体性能分析、总体与部件设计 ?发动机结构设计及强度和振动分析、计算、试验及测试 ?控制系统分析、设计及试验 ?热能系统部件与系统设计及试验 ?一般机械设备与装置的设计、工程分析及开发 相近专业:热力涡轮机、火箭发动机、热能工程、内燃机、机械设计与制造、热能动力机械与装置、工程热物理、流体控制与操纵系统、自动控制、 工业自动化。 三、主要专业课程 本专业学生主要学习高等数学、大学物理、工程图学、机械设计基础、理论力学、材料力学、工程热力学、工程流体力学、弹性力学、计算机语言与程序设计基础、电工与电子技术、自动控制原理、传热学、叶片机原

理与设计、发动机原理、发动机构造、发动机强度等基础与专业课程,五组分组专业课程:(1)粘性流体力学、计算流体力学、实验流体力学;(2)机械振动基础、强度振动测试技术、有限元基础;(3)发动机控制元件、发动机控制系统、计算机控制技术;(4)发动机燃烧技术、热工测量、传热应用与分析;(5)高超声速气动力学、冲压发动机、火箭发动机,以及 专业选修课程。 四、毕业生适应工作范围 本专业涉及面广,根据课程选修情况,可以有五个不同侧重方向:(1)性能与气动力学;(2)结构与强度;(3)控制与仿真;(4)燃烧与传热;(5)航天推进系统。这五个方向相互交叉,不完全独立,而是有所侧重,以便学生所从事的工作范围更为广泛。毕业生可以去研究所、设计所、高 校、部队、工厂、企业等单位工作。 侧重于性能与气动力学和航天推进系统的学生适合于航空、航天发动机设计所、研究所高校、部队和企业的设计、生产部门,可从事发动机的总体性能分析、总体与部件设计、故障分析等方面的工作,也可从事热能工程、轻型燃气轮机、热力涡轮机、鼓风机等机械的设计和试验研究,还可在民航、航天、航海、武器装备等相关单位从事动力装置性能与气动力学分析、设计、试验、研究等方面工作。 侧重于结构与强度的学生适合于航空、航天发动机设计所、研究所高校、部队和企业的设计、生产部门,可从事发动机结构设计及优化、强度、疲劳寿命、可靠性和振动分析及试验研究及机械故障分析等方面的工作,也可从事热能工程、轻型燃气轮机、热力涡轮机、鼓风机及一般机械的结构设计和试验研究,还可在民航、航天、航海、武器装备等相关单位从事动力装置结构设计、强度分析、试验研究、维护等方面工作。 侧重于控制与仿真方向的学生适合于航空、航天发动机设计所、研究所、高校、部队和企业的设计、生产部门,从事发动机控制系统及其元件、部件和发动机数字电子控制器的设计、性能分析和试验工作,控制系统装配、维护及故障分析,也可去民航、航天、航海、武器装备等相关单位从事热动力装置、生产过程自动化系统的设计和试验研究工作,或从事机电 液一体化产品的设计和开发工作。 侧重于燃烧与传热的学生适合于航空、航天发动机设计所、研究所高校、部队和企业的设计、生产部门,从事燃烧、传热、流动、机械维护、热能系统工程等方面的研究和设计工作,也适合电力机械、石油、化工、

襟翼和副翼的概念及作用

襟翼和副翼的概念及作用 襟翼是安装在机翼后缘内侧的翼面,襟翼可以绕轴向后下方偏转,主要是靠增大机翼的弯度来获得升力增加的一种增升装置。当飞机在起飞时,襟翼伸出的角度较小,主要起到增加升力的作用,可以加速飞机的起飞,缩短飞机在地面的滑跑距离;当飞机在降落时,襟翼伸出的角度较大,可以使飞机的升力和阻力同时增大,以利于降低 着陆速度,缩短滑跑距离。 在现代飞机设计中,当襟翼的位置移到机翼的前缘,就变成了前缘襟翼。前缘襟翼也可以看作是可偏转的前缘。在大迎角下,它向下偏转,使前缘与来流之间的角度减小,气流沿上翼面的流动比较光滑,避免发生局部气流分离,同时也可增大翼型的弯度。 前缘襟翼与后缘襟翼配合使用可进一步提高增升效果。一般的后缘襟翼有一个缺点,就是当它向下偏转时,虽然能够增大上翼面气流的流速,从而增大升力系数,但同时也使得机翼前缘处气流的局部迎角增大,当飞机以大迎角飞行时,容易导致机翼前缘上部发生局部的气流分离,使飞机的性能变坏。如果此时采用前缘襟翼,不但可以消除机翼前缘上部的局部气流分离,改善后缘襟翼的增升效果,而且其 本身也具有增升作用。 克鲁格襟翼(Krueger Flap):与前缘襟翼作用相同的还有一种克鲁格襟翼。它一般位于机翼前缘根部,靠作动筒收放。打开时,伸向机翼下前方,既增大机翼面积,又增大翼型弯度,具有较好的增升效 果,同时构造也比较简单。

副翼(Aileron): 副翼是指安装在机翼翼梢后缘外侧的一小块可动的翼面。为飞机的主操作舵面,飞行员操纵左右副翼差动偏转所产生的滚转力矩可以使飞机做横滚机动。翼展长而翼弦短。副翼的翼展一般约占整个机翼翼展的1/6到1/5左右,其翼弦占整个机翼弦长的1/5到1/4左右。 飞行员向左压驾驶盘,左边副翼上偏,右边副翼下偏,飞机向左滚转;反之,向右压驾驶盘右副翼上偏,左副翼下偏,飞机向右滚转。 作动筒是控制飞机上各类型控制面或者其他部件运动的驱动装置,它就是液压活塞,通过它的作用控制气动面或者是其他机构的动作,操作飞机的飞行动作。襟翼作动筒就是襟翼动作的驱动执行机构,通过它的实现襟翼的收放。副翼作动筒就是操作副翼上下动作。

737飞机后缘襟翼无法放出的排故总结

737-300飞机后缘襟翼无法放出的排故总结 故障现象: 液压B系统正常,但放襟翼时,后缘襟翼在1个单位时就发生无法放出的情况,前缘襟翼可正常放出。检查旁通活门在旁通位,使用电动方式可放出襟翼。 工作原理: 图一 如图一所示,后缘襟翼的收放共有正常液动和备用电动两种方式。 正常液动方式:操作者通过在驾驶舱操纵襟翼手柄,带动襟翼手柄下部的钢索来打开FCU内的控制活门,此时液压B系统顺序通过优先活门、流量限制器、后缘襟翼控制活门、旁通活门,到达后缘襟翼驱动组件内的液压马达,由液压马达带动后缘襟翼驱动机构来收放后缘襟翼。 备用电动方式:操作者将驾驶舱P5板上的备用襟翼预位电门置于ARM位,此时旁通活门转换到旁通位,直接将液压B系统旁通。而备用襟翼继电器吸合,接通后缘襟翼驱动组件内的电动马达,由电动马达来驱动后缘襟翼收放。 排故过程: 此故障排故过程较长,从故障初次出现到最终排除,先后更换过液压马达、旁通活门、控制活门、流量限制器、P5面板、襟翼位置指示器,并进行过后缘驱动机构和钢索张力电门的检查,最终在再次更换了襟翼位置指示器后才得以排除。 故障分析: 在此次排故过程中,其实有一个故障现象非常值得我们去注意,那就是旁通活门的位置。 每次故障出现时,首先要观察的就是旁通活门的位置,如果旁通活门在旁通位,那显然使用液动方式是无法收放襟翼的。那什么条件下,旁通活门会被旁通呢?如图二所示 图二 1、P5板备用襟翼预位电门在ARM位; 2、襟翼控制钢索断裂或张力不够导致钢索张力电门接通,如图三; 图三

3、襟翼位置指示器有剪刀差(左右襟翼不对称); 4、线路故障或R123继电器故障。 造成此次故障的原因就是襟翼位置指示器故障,如图四: 在一次故障再现时,排故人员不仅检查发现旁通活门在旁通位,还发现电子舱内襟翼不对称测试灯被点亮,但驾驶舱指示却没有偏差,且运动速度一致,于是便脱开襟翼位置指示器,发现旁通活门回到了正常位,不对称灯也灭了。对比测量左右襟翼位置传感器内位置输出同步电机电阻(1-2=4.7欧姆2-3=4.7欧姆 1-3=4.6欧姆3-11=15.6欧姆)一致。再在襟翼指示器后部插头D686上测量襟翼位置1、2、5单位时位置输出电压分别为(3-4=7.92VAC 7-9=7.76VAC)、 (3-4=12.2VAC 7-9=12.19VAC)、(3-4=11.64VAC 7-9=11.78VAC),由此判断为指示器内部的比较电机出现故障,输出虚假的不对称信息,因此接通指示器内部的不对称电门,使R123通电吸合,旁通活门旁通。在检查了第一次更换的襟翼位置指示器的翻修记录后,发现该指示器此前就是因为多次发生襟翼卡阻现象而返厂修理的。于是排故人员在再次更换了一个新的襟翼位置指示器后将故障故障,后续未再反映该故障。 图四 经验总结: 在今后碰到类似故障时,首先要明确以下几点 1、前缘襟翼能不能放出?如果能放出,可排除掉优先活门及流量限制器的可能。 2、电动方式能不能放出?如果能放出,可排除掉后缘襟翼驱动机构损坏的可能。 3、旁通活门在什么位置?如果在正常位,那应该就是控制活门或液压马达的故障。如果在旁通位,就按以上所分析的四个条件来逐一排除。如果检查电子舱内襟翼不对称灯亮了,那最大的可能就是襟翼位置指示器故障。

飞行器空气动力计算

第一章 飞行器基本知识 1.1飞行器几何参数 飞行器通常由机翼、机身、尾翼以及动力装置等部件组成。对于气动正问题及气动分析而言,已知飞行器几何外形,求其气动参数。要解决这一问题首先要计算出飞行器各部件及组合体的几何参数。 当机翼和机身组合成一体时,机翼中间一部分面积为机身所遮蔽。它外露在气流中的部分两边合起来,所构成的机翼为外露翼,由下标“wl ”表示 在组合体中把外露翼根部的前后缘向机身内延长并交于机身纵对称面,这样的机翼成为毛机翼。 第二章 机翼的气动特性分析 2.1机翼几何参数 2.1.1 翼型的几何参数 翼型的前缘点与后缘点的连线称为弦线。他们之间的距离称为弦长,用符号b 表示,是翼型的特征长度。可以想象翼型是由厚度分布)(x y c 和中弧线分布 )(x y f 叠加而成的,对于中等厚度和弯度的翼型,上下翼面方程可以写成 )()()(,x y x y x y c f L U (2—1) 式中的正号用于翼型上表面,负号用于下表面。b x x / ,b y y / 分别为纵、横向无量纲坐标。相对厚度和相对弯度b c c / ,b f f / 。最大厚度位置和最大弯度位置分别用c x 和f x 或用无量纲量b x c /和b x f /表示。翼型前缘的内切圆半径叫做前缘半径,用L r 表示,后缘角τ是翼型上表面和下表面在后缘处的夹角。

2.1.2 机翼的几何参数 1.机翼平面形状:根梢比、展弦比和后掠角 机翼面积S 是指机翼在xOz 平面上的投影面积,即 22 ()l l S b z dz - = ò (2—2) 式中,b (z )为当地弦长。几何平均弦长pj b 和平均气动弦长A b 分别定义为 /pj b S l = (2—3) 2 20 2()l A b b z dz S =ò (2—4) 显然,pj b 是面积和展长都与原机翼相等的当量矩形翼的弦长;而A b 是半翼面心所在的展向位置的弦长,通常取A b 作为纵向力矩的参考长度。除了上述几何参数外,还有根梢比、梢根比和展弦比。根梢比h 和梢根比e 定义为 01/b b h =,e =1/h (2—5) 展弦比l 是机翼展向伸长程度的量度,定义为 2//pj l b l S l == (2—6) 梯形后掠翼前缘与z 轴的夹角叫做前缘后掠角,用0c 表示,常用的还有1/4弦线、1/2弦线和后缘线的后掠角,分别用1/4c ,1/2c 和1c 表示。如图2—2所示。 2.2 翼型的低速气动特性 2.2.1 翼型的升力和力矩特性 黏性对失速前翼型升力特性的影响是可以忽略的。此外,只要翼型相对厚度c 和相对弯

(完整版)B737-800飞机极限数据.doc

737-800 长39.5M 翼展34.4M/ 35.79M 高12.5M 主轮距 5.7M 前后轮距15.6M 转弯半径24.1M 机头转弯半径20.1 M 机尾转弯半径21.7 M 翼尖转弯半径22.0 M/ 22.9 M 最大滑行重量70760/ 76203 / 79242 最大起飞重量70533/ 75976 / 79015 最大着陆重量65317/ 65317,66360/ 65317,66360 最大无油重量61688/ 61688,62731/ 61688,62731 跑道坡度正负 2% 颠簸速度280 节 /0.76M 最大飞行高度41000FT 最大起降高度8400FT 最大飞行维度N82 度 ;S82 度 .W80 度 -W130 度之间为 N70 度,E120-E160 度之间为 S60 度 . 最大压差9.1PSI 正常升限座舱高度8000FT(41000FT) 座舱高度警告喇叭响10000FT 氧气面罩自动放下高度14000FT 自动失效的条件 1.DC 电源失效 2. 控制器故障 3. 排气活门控制故障 4. 压差 >8.75PSI * 5. *压差变化 >2000FT/MIN 6. 座舱高度 >15800FT ( *如控制器未有恰当回复 ) 人工方式排气活门全开时间20 秒(DC) 巡航时的压差7.45PSI(28000F 以下 ) 7.8PSI (28000-37000) 8.35PSI(37000-41000) AC电压表正常范围115+/-5 伏 频率表的正常范围400+/-10 赫兹 电瓶电压范围22-30 伏 电瓶的供电能力60 分钟 ( 双电瓶 ) EGT最大起飞950(5 分钟 ) EGT最大连续925 EGT最大启动 ( 地面 ) 725 EGT最大启动 ( 空中 ) 950(双发) 725( 单发 )

课程设计报告飞机襟翼设计

课程设计(论文) 院(系)名称航空科学与工程学院专业名称飞行器设计与工程题目名称襟翼结构初步设计学生姓名 班级/学号 指导教师王立峰 成绩 2012年9 月

北京航空航天大学 本科生课程设计(论文)任务书 Ⅰ、课程设计(论文)题目:襟翼结构初步设计 Ⅱ、课程设计(论文)使用的原始资料(数据)及设计技术要求: 图1 1 机翼翼型参数(翼型,根弦长度br ,尖弦长度bt ,展长l ,后掠角A ) 2 襟翼基本参数(相对弦长b 襟翼/b 机翼,相对展长 l 襟翼/l 机翼,偏角 As) 襟翼离翼根均为30cm ; 3 襟翼设计载荷(前缘气动载荷P ,载荷分布直线,最大载荷点距襟翼前缘5cm ) Ⅲ、课程设计(论文)工作内容: 2、分析和确定襟翼的运动方式,画出运动图 3、根据给定的设计载荷设计襟翼结构。 4 、选择 3个以上关键部件进行强度分析。重量估算。 5、根据设计结果,绘制襟翼的装配图。选择3个以上的零件画出零件图。 图纸必须 6、符合规范。 7、完成课程设计报告。

一、襟翼的常见结构和载荷情况: 1.1 襟翼的常见结构: 简单襟翼:简单襟翼与副翼形状相似,放下简单襟翼,相当于改变了机切面形状,使机翼更加弯曲。这样,空气流过机翼上表面,流速加快,压力降低;而流过机翼下表面,流速减慢,压力提高。因而机翼上、下压力差增大,升力增大。可是,襟翼放下之后,机翼后缘涡流区扩大,机翼前后压力差增大,故阻力同时增大。襟翼放下角度越大,升力和阻力也增大得越多。 分裂襟翼 这种襟翼本身象一块薄板,紧贴于机翼后缘。放下襟翼,在后缘和机翼之间,形成涡流区,压力降低,对机翼上表面的气流有吸引作用,使其流速增大,上下压差增大,既增大了升力,同时又延缓了气流分离。另一方面,放下襟翼,机翼翼剖面变得更弯曲,使上、下表面压力差增大,升力增大。由于以上两方面的原因,放下分裂襟翼的增升效果相当好,一般最大升力系数可增大75-85%。但因大迎角放下襟翼,上表面的最低压力点的压力更小了,使气流更易提前分离,故临界迎角有所减小。

飞行器发动机的分类及工作原理

飞行器发动机的分类及工作原理 飞行器发动机的主要功用是为飞行器提供推进动力或支持力,是飞行器的心脏。自飞机问世以来的几十年中,发动机得到了迅速的发展,从早期的低速飞机上使用的 活塞式发动机,到可以推动飞机以超音速飞行的喷气式发动机,还有运载火箭上可以 在外太空工作的火箭发动机等。时至今日,飞行器发动机已经形成了一个种类繁多, 用途各不相同的大家族。飞行器发动机常见的分类原则有两个:按空气是否参加发动机工作和发动机产生推进动力的原理。按发动机是否需要空气参加工作,飞行器发动机可分为两类:吸气式发动机和火箭喷气式发动机。吸空气发动机简称吸气式发动机,它必须吸进空气作为燃料的氧化剂 (助燃剂,所以不能到稠密大气层之外的空间工作,只能作为航空器的发动机。一般所 说的航空发动机即指这类发动机。根据吸气式发动机工作原理的不同,吸气式发动机又分为活塞式发动机、燃气涡轮发动机、冲压喷气发动机和脉动喷气发动机等。火箭喷气发动机是—— 种不依赖空气工作的发动机。航天器由于需要飞到大气层外,所以必须安装这种发动机。它也可用作航空器的助推动力。按形成喷气流动能的能源不同,火箭喷气发动机又分为化学火箭发动机、电火箭发动机和核火箭发动机等。按产生推进动力的原理 不同,飞行器发动机又可分为直接反作用力发动机和间接反作用力发动机两类。直接反作用力发动机是利用向后喷射高速气流,产生向前的反作用力来推进飞行器。直接反作用力发动机又叫喷气式发动机,这类发动机有涡轮喷气发动机、冲压喷气式发动机,脉动喷气式发动机,火箭喷气式发动机等。间接反作用力发动机是由发动机带动 飞机的螺旋桨、直升机的旋翼旋转对空气作功,使空气加速向后(向下流动时,空气对 螺旋桨(旋翼产生反作用力来推进飞行器。这类发动机有活塞式发动机、涡轮螺旋桨发动机、涡轮轴发动机、涡轮螺旋桨风扇发动机等。而涡轮风扇发动机则既有直接反作用力,也有间接反作用力,但常将其划归直接反作用力发动机一类,所以也称其为涡 轮风扇喷气发动机。活塞式发动机空活塞式发动机是利用汽油与空气混合,在密闭的容器(气缸内燃烧,膨胀作功的机械。活塞式发动机必须带动螺旋桨,由螺旋桨产生推( 拉力。所以,作为飞机的动力装置发动机与螺旋桨是不能分割的。主要组成主要由气缸、活塞、连杆、曲气门机构、螺旋桨减速器、机匣等组成。气缸是混合气(汽油和空

飞机襟翼的作用

飞机襟翼的作用 襟翼的作用.. 一架飞机在高空正常飞行的时候,机翼看起来好像是一个整体。其实不然,机翼前缘、后缘都装有长短、宽度不同的翼片,有的可向下偏转,有的可向前伸出,有的可向后滑退,可谓五花八门。由于这些翼片是机翼的附属物,并且可以偏折,正像我们穿的衣服下襟随风摆动一样,因此科学家给这些翼片起了一个十分形象的名称———襟翼。平时飞机停在机场上或在高空飞行时,襟翼都收拢在机翼前缘或后缘上,一旦飞机进入起飞或着陆阶段,它们的原形就显露了出来。飞机为什么要装襟翼呢?请看下文。 1、襟翼的奥秘在于提高升力机翼的作用就是产生足够的升力使飞机能飞上天空。如果机翼是一个整体的话,那么在机翼面积、翼型、展弦比确定的情况下,它的最大升力也就是确定不变的了。如果飞机的全部重量是50吨,机翼必须产生490千牛以上的升力才能飞起来。我们知道,机翼面积越大,升力越大;速度越大,升力也越大。换句话说就是:在升力一定的情况下,机翼面积越大,起飞速度可以越小;起飞速度越大,机翼面积可以越小。因此,为了把这50吨的飞机弄上天,我们可以采取这样两个办法:一是选用面积较小的机翼,通过加大起飞速度使升力超过490千牛;二是使起飞速度保持在较低的值上,通过采用大面积机翼以产生490千牛以上的升力。这两个办法行不行呢?第一个办法机翼面积较小,飞机的结构重量就较轻,这是优点,但起飞速度大是很不利的,一方面要求机场跑道很长,这很不合算,对舰载飞机更是不利;另一方面,高滑跑速度对安全的威胁极大。第二个方法起飞速度低,有利于缩短滑跑距离,但当飞机起飞后速度增加,大面积机翼便成了累赘,不但重量大使载重量大大减少,而且会使阻力剧增,飞机的耗油量因此显著增加。这种低速时升力小、高速时阻力大的问题称为飞机的高低速矛盾。怎样解决这一难题呢?这就要靠襟翼来实现。襟翼的一个主要作用是协调这个矛盾,既不需要很大、很重的机翼,也能在较低的起飞着陆速度下产生足够的升力,使载重、速度、阻力和油耗达到综合性的最佳化。用整体一块的方式设计机翼不能同时满足大载重量、低起飞和着陆速度、低阻力和低耗油率的要求。由于襟翼具体作用是大大提高飞机起飞和着陆等低速阶段的升力,因而统称增升装置。襟翼为什么能增加升力呢?在速度一定的情况下,提高升力的办法主要有4种:一是改变机翼剖面形状,增加翼型弯度;二是增加机翼面积;三是尽可能保持层流流动;四是在环绕机翼的气流中,增加一股喷气气流。襟翼就是通过改变翼型弯度、增加机翼面积、保持层流流动而增加升力的。 2、飞机襟翼样式众多襟翼概念出现得很早。第一次世界大战前,由于飞机速度提高,要求飞机在低速时也能产生足够的升力,于是有人开始了最简单的后缘襟翼的试验探索。为什么飞机要装襟翼?简单襟翼就是机翼后缘的一部分。它可以弯曲,这样就会改变机翼弯度,提高升力。不久,又出现了开裂式襟翼。当它放下时,一方面可使翼型变弯,一方面会在机翼后缘形成低压,两方面的效果都是增加了升力。通常,开裂式襟翼可使升力系数提高75%~85%。同时,开裂式襟翼还能增加阻力,对飞机安全、缓慢地着陆有利。 20世纪20年代,英国著名设计师汉德莱·佩奇和德国空气动力学家拉赫曼发明了开缝襟翼。它是一条或几条附着在机翼后缘的可动翼片,平时与机翼合为一体,飞机起飞或着陆时放下。襟翼片能够增加机翼的面积,改变机翼弯度,同时还会形

相关主题