搜档网
当前位置:搜档网 › 2020高中数学回归课本校本教材6-7-解析几何

2020高中数学回归课本校本教材6-7-解析几何

2020高中数学回归课本校本教材6-7-解析几何
2020高中数学回归课本校本教材6-7-解析几何

高中数学回归课本校本教材6

——献给2009年赣马高级中学高三考生

直线和圆的方程

(一)基础知识

1. 定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan α(α≠90°);倾斜角为90°的直线没有斜率;直线的倾斜角α的范围是[0,π);在平面直角坐标系中,对于一条与x 轴相交的直线l ,如果把x 轴绕着交点按逆时针方向转到和直线l 重合时所转的最小正角记为α,那么α就叫做直线的倾斜角。当直线l 与x 轴重合或平行时,规定倾

斜角为0;异面直线所成角(0,]2π;直线与平面所成角[0,]2

π

;二面角和两向量的夹角[0,]π;平面向量的夹角:[0,]π;直线的

倾斜角[0,)π;1l 到2l 的角[0,)π;1l 与2l 的夹角(0,]2

π

.注意术语:坡度、仰角、俯角、方位角等.

若圆(x -1)2+(y +1)=R 2

上有且仅有两个点到直线4x +3y=11的距离等于1,则半径R 的取值范围是 (1,3) 。 2.直线方程五种形式:

⑴点斜式:已知直线过点00(,)x y 斜率为k ,则直线方程为00()y y k x x -=-,它不包括垂直于x 轴的直线. ⑵斜截式:已知直线在

y 轴上的截距为b 和斜率k ,则直线方程为y kx b =+,它不包括垂直于x 轴的直线.

⑶两点式:已知直线经过111(,)P x y 、222(,)P x y 两点,则直线方程为11

2121

y y x x y y x x =

----,它不包括垂直于坐标轴的直线. ⑷截距式:已知直线在x 轴和

y 轴上的截距为,a b ,则直线方程为1x y

a b

+=,它不包括垂直于坐标轴的直线和过原点的直线.

⑸一般式:任何直线均可写成0Ax By C ++= (,A B 不同时为0)的形式.

提醒:⑴直线方程的各种形式都有局限性.(如点斜式不适用于斜率不存在的直线,还有截距式呢?)

⑵直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等?直线的斜率为1-或直线过原点;直线两截距互为相

反数?直线的斜率为1或直线过原点;直线两截距绝对值相等?直线的斜率为1±或直线过原点.

⑶截距不是距离,截距相等时不要忘了过原点的特殊情形. 直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等?直线的斜率为 或直线过 ;直线两截距互为相反数?直线的斜率为 或直线过 ;直线两截距绝对值相等?直线的斜率为 或直线过 。

如: 已知在△ABC 中,∠ACB=90°,BC=3,AC=4,P 是AB 上的点,则点P 到AC 、BC 的距离乘积的最大值是 3; 过点

(1,4)A ,且纵横截距的绝对值相等的直线共有___条

4.直线1111:0l A x B y C ++=与直线2222:0l A x B y C ++=的位置关系:⑴平行?12210A B A B -=且12210B C B C -≠(在y 轴上

截距);⑵相交?12210A B A B -≠;(3)重合?12210A B A B -=且12210B C B C -=. 已知直线1212:6:(2)320,//l x ay l a x y a l l ++=-++=和则的充要条件是 (a=-1) 5.直线系方程:

①过两直线交点的直线系方程可设为111222()0A x B y C A x B y C λ+++++=;

②与直线:0l Ax By C ++=平行的直线系方程可设为0()Ax By m m c ++=≠; ③与直线:0l Ax By C ++=垂直的直线系方程可设为0Bx Ay n -+=.

6.点00(,)P x y 到直线0Ax By C ++=距离公式d ; 10Ax By C ++=与20Ax By C ++=平行线距离是d 设三角形ABC ?三顶点11(,)A x y ,22(,)B x y ,33(,)C x y ,则重心12

3123

(,)33

x x x y y y G ++++; 7. 圆的方程:

⑴圆的标准方程:222()()x a y b r -+-=.⑵圆的一般方程:220x y Dx Ey F ++++=

提醒:只有当2240D E F +->时,方程220x y Dx Ey F ++++=才表示圆心为(,)22D E --,的圆(二元二次方程220Ax Bxy Cy Dx Ey F +++++=表示圆0A C ?=≠,且220,40B D E AF =+->).

⑶圆的参数方程:cos sin x a r y b r θ

θ

=+??

=+?(θ为参数),其中圆心为(,)a b ,半径为r .

圆的参数方程主要应用是三角换元:222cos ,sin x y r x r y r θθ+=→==;.

⑷以11(,)A x y 、22(,)B x y 为直径的圆的方程1212()()()()0x x x x y y y y --+--=(0AP BP ?=

);

如:过(1,2)总能作出两条直线和已知圆2222150x y kx y k ++++-=相切,求k 的取值范围(3)k ∈- 8点和圆的位置关系的判断通常用几何法(计算圆心到直线距离).点00(,)P x y 及圆的方程222()()x a y b r -+-=.

①22200()()x a y b r -+->?点P 在圆外;②22200()()x a y b r -+-

9圆上一点的切线方程:点00(,)P x y 在圆222x y r +=上,则过点P 的切线方程为:200x x y y r +

=(000OP P P ?=

; 过圆222()()x a y b r -+-=上一点00(,)P x y 切线方程为200()()()()x a x a y b y b r --+--=.

过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与x 轴垂直的直线.

10直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.

①d r >?相离 ②d r =?相切 ③d r

11.圆与圆的位置关系,经常转化为两圆的圆心距与两圆的半径之间的关系.设两圆的圆心距为d ,两圆的半径分别为,r R :

d R r >+?两圆相离;d R r =+?两圆相外切; ||R r d R r -<<+?两圆相交;

||d R r =-?两圆相内切; ||d R r <-?两圆内含;0d =?两圆同心.

12.过圆

1C :221110x y D x E y F ++++=,2C :222220x y D x E y F ++++=交点的圆(相交弦)系方程为

2222111222()()0x y D x E y F x y D x E y F λ+++++++++=.1λ=-时为两圆相交弦所在直线方程.

13.解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等). (注意利用几何性质)

(二)基本计算

1. 求倾斜角:定义法:已知直线的倾斜角为α,且α≠90°,则斜率k =tan α.;直线方程法:ax+by+c=0的斜率a

k b

=-。直线的方向向量法:(1,)a k =

若a =(m ,n )为直线的方向向量,则直线的斜率k =

n

m

.过两点1122(,)(,)x y x y 的直线的斜率2121y y k x x -=-;求导数;点差法:如22221x y a b +=中,以00(,)P x y 为中点的弦所在直线斜率20

20b x k a y =-

2. 设直线方程的一些常用技巧:

(1)知直线纵截距b ,常设其方程为y kx b =+;

(2)知直线横截距0x ,常设其方程为0x my x =+(它不适用于斜率为0的直线);

(3)知直线过点00(,)x y ,当斜率k 存在时,常设其方程为00()y k x x y =-+,当斜率k 不存在时,则其方程为0x x =;

(4)与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=; (5)与直线:0l Ax By C ++=垂直的直线可表示为1

0Bx Ay C -+=.

提醒:求直线方程的基本思想和方法是恰当选择方程的形式,利用待定系数法求解; 3. 点()00,x y 关于直线A B C 0x y ++=的对称点(),x y 的求法:

0000

22y y B

x x A

x x y y A B C -?=?-??

++?++=??

点A 关于直线L 对称的点B :1)AB 中点在L 上;2)AB 垂直直线L ; 如:点A(4,5)关于直线l 的对称点为B(-2,7),则l 的方程是_________;

已知一束光线通过点A(-3,5),经直线l :3x -4y+4=0反射。如果反射光线通过点B(2,15),则反射光线所在直线的方程是_________

注意:⑴点(,)a b 关于x 轴、y 轴、原点、直线y x =的对称点分别是(,)a b -,(,)a b -,(,)a b --,(,)b a .

⑵曲线

(,)0f x y =关于下列点和直线对称的曲线方程为:

①点(,)a b :(2,2)0f a x b y --=;②x 轴:(,)0f x y -=;③y 轴:(,)0f x y -=;

④原点:(,)0f x y --=; ⑤直线y x =:(,)0f y x =; ⑥直线y x =-:(,)0f y x --=; ⑦直线x a =:(2,)0f a x y -=.

3. 圆的方程的求法:⑴待定系数法:设一般方程、设标准方程;⑵几何法;⑶圆系法。 4.求弦长:直线20x y +=被曲线2262x y x y +--150-=所截得的弦长等于 ; 5. 求切线方程:抓住圆心到直线的距离等于半径

如:椭圆22

143x y +=内有一点(1,1)P ,F 为右焦点,椭圆上的点M 使得2M P M F +的值最小,则点M

的坐标为1)

如:椭圆22

143

x y +=内有一点(1,1)P ,F 为右焦点,椭圆上的点M 使得M P M F +的值最小

高中数学回归课本校本教材7

——献给2009年赣马高级中学高三考生

圆锥曲线方程

(一)基础知识

1.椭圆:①定义12122PF PF a F F +=>方程为椭圆;12122PF PF a F F +=<无轨迹;12122PF PF a F F +==以12,F F 为端点

的线段。②椭圆方程22221x y a b += (a>b>0);???==θθsin b y cos a x ;一般方程:22

1(0,0)Ax By A B +=>> 如:已知椭圆221169x y +=,P 在椭圆

上,若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴距离为

4

(证明不存在以点P 为直角顶点的三角形)

③几何性质:顶点:A (,0)a ,B (,0)a -,C (0,)b 和D (0,)b -.轴:对称轴:x 轴,y 轴;长轴长AB =a 2,短轴长CD =b 2. 焦点:1F (,0)c -, 2F (,0)c 焦距:122F F c =,222a b c =+.离心率:(01)c e e a

=<<.

2.双曲线 :①1212121222PF PF a F F PF PF a F F -=<-=>方程为双曲线.无轨迹,1212122,PF PF a F F F F -==以端点一条射线

②一般方程:221(0)Ax Cy AC +=<,中心在原点,焦点在x 轴上:22

221(,0)x y a b a b -=>,焦点在y 轴上:22

221(,0)y x a b a b

-=>

③几何性质:i. 焦点在x 轴上:顶点:(,0),(,0)a a -;焦点:(,0),(,0)c c -;渐近线方程:0x y

a b ±=或22220x y a b

-=; ii. 焦点在y 轴上:顶点:(0,),(0,)a a -;焦点:(0,),(0,)c c -;渐近线方程:0y x

a b ±=或22220y x a b

-=, 轴:,x y 为对称轴,实轴长为2a , 虚轴长为2b ,焦距2c.;离心率c e a =

参数关系222,c c a b e a

=+=. ③特殊双曲线:等轴双曲线:双曲线222a y x ±=-称为等轴双曲线,其渐近线方程为x y ±=,离心率2=e .

(1)共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.2222

x y a b λ-=与

22

22x y a b λ-=- (2)互为共轭双曲线,它们具有共同的渐近线:

22

0x y a b -=.(3) 双曲线xy k =(0,)y c ad bc ax b cx d =≠≠++的图像是双曲线:

①两渐近线分别直线d c x =-(由分母为零确定)和直线

a c

y =(由分子、分母中x 的系数确定);②对称中心是点(,)d a c c

-;

(4)共渐近线的双曲线系方程:

22

22(0)x y a b λλ-=≠的渐近线方程为2

2

220x y a b

-=如果双曲线的渐近线为0x y a b ±=时,它的双曲线方程可设为22

22(0)x y a b

λλ-=≠若R k ∈,则3>

k

是方程22

133

x y k k -=-+表示双曲线的 条件.充分不必要

例如:若双曲线一条渐近线为x y 21=且过)2

1,3(-p ,求双曲线的方程?令双曲线的方程为:22

(0)4x y λλ-=≠,22182x y -

=. 3.抛物线 ①定义:|PF|=d 准;; ②方程y 2

=2px ③顶点为焦点到准线垂线段中点;x,y 范围?轴?焦点F(2p ,0),准线x=-2

p , ④焦半径2

A p AF x =+

; y 1y 2=-p 2

, x 1x 2=4

2p 其中A(x 1,y 1)、B(x 2,y 2

) 如:抛物线22y x =上的两点A 、B 到焦点的距离之和

是5,则线段AB 中点到y 轴的距离是 2;抛物线21(0)y x m m =

<的焦点坐标是 (0,m ) 4.直线与双曲线的位置关系:区域①:无切线,2条与渐近线平行的直线,合计2条; 区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计3条; 区域③:2条切线,2条与渐近线平行的直线,合计4条;

区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计2条;

区域⑤:过原点,无切线,无与渐近线平行直线.小结:过定点作直线与双曲线有且仅有一交点,可作直线数可有0、2、3、4条. 5.圆锥曲线中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解.在椭圆

22

22

1x y a b +=中,以00(,)P x y 为中点的弦所在直线斜率2020b x

k a y =-;在双曲线22221x y a b -=中,以00(,)P x y 为中点的弦所在直线斜率2

020

b x k a y =;在抛物

线22(0)y px p =>中,以00(,)P x y 为中点的弦所在直线的斜率0

p

k y =

. 6. 若22m n r +<,则点(),P m n 在圆22x y r +=的内部;椭圆22122

x y a b +=,内部任意一点

00(,),P x y 必22

00122

x y a b +<。抛物线

22(0)x py p =>内部一点00(,)p x y ,2002x py <。

已知对k R ∈,直线10y kx --=与椭圆

22

15x y m

+=恒有公共点,则实数m 的取值范围是[1,5)(5,)?+∞ 已知AD 是ABC ?中BC 边的中线.如:M 为椭圆

22

13

x y +=上任意一点,P 为线段OM 中点。则12PF PF ? =

8.特殊的双曲线: (二)基本计算

1.求圆锥曲线方程:①考虑圆锥曲线焦点位置,抛物线还应注意开口方向,以避免错误 ②求圆锥曲线方程常用待定系数法、定义法、轨迹法

过两点椭圆、双曲线标准方程可设为:122

=+ny mx

(n m ,同时大于0表示椭圆,0

; ③焦点、准线有关问题常用圆锥曲线定义来简化运算或证明过程

共渐近线x a b y ±=双曲线标准方程可设为λλ(b y a x 2

222=-为参数,λ≠0);抛物线y 2=2px 上点可设为(p 2y 20,y 0);

如:

中心在原点,焦点坐标为(0,±椭圆被直线320x y --=截得弦的中点横坐标为

2

1

,则椭圆方程 175

22=+y x

2.求离心率:i 公式法;e=22

a

b 1a

c +=,ii 方程法:建立关于,a c 的齐次;

如:已知点F 是双曲线)0,0(12

2

22>>=-b a b y a x 的左焦点,点E 是该双曲线的右顶点,过点F 且垂直于x 轴的直线与双曲线

交于A 、B 两点,若△ABF 是直角三角形,则该双曲线的离心率是 2;

以等边三角形顶点

AB 为焦点的椭圆经过两腰的中点,求其离心率: ;1

3,求渐近线:渐近线x a b y ±=或0b

y a x 22

22=-;求准线方程:x=c a 2±

4.求最短距离:①椭圆a-c ,远地a+c;②抛物线y 2=2px(p>0),对称轴上一定点)0,(a A ,则:当p a ≤<0时,顶点到点A 距离最

小,最小值为a ;当p a >时,有关于x 轴对称的两点到点A 距离最小,最小22p ap -

。③函数最值问题

5弦长 ⑴焦半径:椭圆:1020,PF a ex PF a ex =+=-(e 为离心率); (左“+”右“-”);抛物线:02

p

PF x =+

⑶通径a b 22

, 2p,焦点弦AB =x 1+x 2+p; 2)弦长]4))[(1(1212212122x x x x k x x k AB -++=-?+=]4)[()11(11212212

122y y y y k y y k -+?+=-?+=

6焦点三角形面积:公式:21F PF S ?=2

cot b 2θ

⑦21F PF S ?=2

tan

b 2θ

;定义、余弦定理、面积公式等;

7.直线与圆锥曲线问题解法:

⑴直接法(通法):联立直线与圆锥曲线方程,构造一元二次方程求解。 注意以下问题:①联立的关于“x ”还是关于“

y ”的一元二次方程?②直线斜率不存在时考虑了吗?③判别式验证了吗?⑵设而

不求(代点相减法):--------处理弦中点问题:步骤如下:①设点A(x 1,y 1)、B(x 2,y 2);②作差得 =--=

2

12

1x x y y k AB

8.求轨迹的常用方法:

(1)定义法: (2)直接法;(3)转移法;⑷待定系数法;(5)参数法;(6)交轨法。

高二数学《1.1回归分析的基本思想及其初步应用》教案 文

第一章统计案例 1.1回归分析的基本思想及其初步应用(一) 第一课时 教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 指数和残差分析. 教学难点:解释残差变量的含义,了解偏差平方和分解的思想. 教学过程: 一、复习准备: 1. 提问:“名师出高徒”这句彦语的意思是什么?有名气的老师就一定能教出厉害的学生吗?这两者之间是否有关? 2. 复习:函数关系是一种确定性关系,而相关关系是一种非确定性关系. 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,其步骤:收集数据→作散点图→求回归直线方程→利用方程进行预报. 二、讲授新课: 1. 教学例题: ①例1从某大学中随机选取8名女大学生,其身高和体重数据如下表所示: 编号 1 2 3 4 5 6 7 8 165 165 157 170 175 165 155 170 身高 /cm 体重 48 57 50 54 64 61 43 59 /kg 求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重. (分析思路→教师演示→学生整理) 第一步:作散点图第二步:求回归方程第三步:代值计算 ②提问:身高为172cm的女大学生的体重一定是60.316kg吗? 不一定,但一般可以认为她的体重在60.316kg左右. ③解释线性回归模型与一次函数的不同 事实上,观察上述散点图,我们可以发现女大学生的体重y和身高x之间的关系并不能用一=+来严格刻画(因为所有的样本点不共线,所以线性模型只能近似地刻画身次函数y bx a 高和体重的关系). 在数据表中身高为165cm的3名女大学生的体重分别为48kg、57kg和61kg,如果能用一次函数来描述体重与身高的关系,那么身高为165cm的3名女在学生的体重应相同. 这就说明体重不仅受身高的影响还受其他因素的影响,把这种影响的结果e(即 =++,其中残差残差变量或随机变量)引入到线性函数模型中,得到线性回归模型y bx a e 变量e中包含体重不能由身高的线性函数解释的所有部分. 当残差变量恒等于0时,线性回归模型就变成一次函数模型. 因此,一次函数模型是线性回归模型的特殊形式,线性回归模型是一次函数模型的一般形式. 2. 相关系数:相关系数的绝对值越接近于1,两个变量的线性相关关系越强,它们的散点图越接近一条直线,这时用线性回归模型拟合这组数据就越好,此时建立的线性回归模型是有意义. 3. 小结:求线性回归方程的步骤、线性回归模型与一次函数的不同. 备课人:张颖岳新霞王莉

高中数学平面解析几何知识点总结

平面解析几何 一、直线与圆 1.斜率公式 2121 y y k x x -=-(111(,)P x y 、222(,)P x y ). 2.直线的五种方程 (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121 y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). < (4)截距式 1x y a b +=(a b 、分别为直线的横、纵截距,0a b ≠、). (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 3.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ?=≠; ②12121l l k k ⊥?=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222 ||A B C l l A B C ? =≠; < ②1212120l l A A B B ⊥?+=; 4.点到直线的距离 d =(点00(,)P x y ,直线l :0Ax By C ++=). 5.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=. (2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).圆心??? ??--2,2E D ,半径r=2 422F E D -+. 6.点与圆的位置关系 点00(,)P x y 与圆2 22)()(r b y a x =-+-的位置关系有三种: . 若d =d r >?点P 在圆外;d r =?点P 在圆上;d r 相离r d ; 0=???=相切r d ; 0>???<相交r d . 其中22B A C Bb Aa d +++=. 8.两圆位置关系的判定方法 # 设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21 条公切线外离421??+>r r d ; 条公切线外切321??+=r r d ;

(整理)届高三数学总复习平面解析几何练习题目汇总

第8章 第1节 一、选择题 1.(2010·崇文区)“m =-2”是“直线(m +1)x +y -2=0与直线mx +(2m +2)y +1=0相互垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 [答案] A [解析] m =-2时,两直线-x +y -2=0、-2x -2y +1=0相互垂直;两直线相互垂直时,m(m +1)+2m +2=0,∴m =-1或-2,故选A. 2.(文)(2010·安徽文)过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0 D .x +2y -1=0 [答案] A [解析] 解法1:所求直线斜率为12,过点(1,0),由点斜式得,y =12(x -1),即x -2y -1=0. 解法2:设所求直线方程为x -2y +b =0, ∵过点(1,0),∴b =-1,故选A. (理)设曲线y =ax2在点(1,a)处的切线与直线2x -y -6=0平行,则a =( ) A .1 B.12 C .-12 D .-1 [答案] A [解析] y′=2ax ,在(1,a)处切线的斜率为k =2a , 因为与直线2x -y -6=0平行,所以2a =2,解得a =1. 3.点(-1,1)关于直线x -y -1=0的对称点是( ) A .(-1,1) B .(1,-1) C .(-2,2) D .(2,-2) [答案] D [解析] 一般解法:设对称点为(x ,y),则

????? x -12-y +12-1=0 y -1x +1=-1,解之得????? x =2y =-2, 特殊解法:当直线l :Ax +By +C =0的系数满足|A|=|B|=1时,点A(x0,y0)关于l 的对称 点B(x ,y)的坐标,x =-By0-C A ,y =-Ax0-C B . 4.(2010·惠州市模考)在平面直角坐标系中,矩形OABC ,O(0,0),A(2,0),C(0,1),将矩形折叠,使O 点落在线段BC 上,设折痕所在直线的斜率为k ,则k 的取值范围为( ) A .[0,1] B .[0,2] C .[-1,0] D .[-2,0] [答案] D [解析] 如图,要想使折叠后点O 落在线段BC 上,可取BC 上任一点D 作线段OD 的垂直平分线l ,以l 为折痕可使O 与D 重合,故问题转化为在线段CB 上任取一点D ,求直线OD 的斜率的取值范围问题, ∵kOD≥kOB =12,∴k =-1kOD ≥-2,且k<0, 又当折叠后O 与C 重合时,k =0,∴-2≤k≤0. 5.(文)已知点(3,1)和点(1,3)在直线3x -ay +1=0的两侧,则实数a 的取值范围是( ) A .(-∞,10) B .(10,+∞) C.??? ?-∞,43∪(10,+∞) D.??? ?43,10 [答案] D [解析] 将点的坐标分别代入直线方程左边,所得两值异号,∴(9-a +1)(3-3a +1)<0,∴43

高中平面解析几何知识点总结

高中平面解析几何知识点总结 一.直线部分 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把 x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α 叫做直线 的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率: αtan ),(211 21 2=≠--= k x x x x y y k .两点坐标为111(,)P x y 、222(,)P x y . 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:121 121x x x x y y y y --= -- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意 直线.

(4)截距式:1=+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式: B C x B A y - - =,即,直线的斜率: B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截距相等?直线的斜率为1-或直线过原点. (2)直线两截距互为相反数?直线的斜率为1或直线过原点. (3)直线两截距绝对值相等?直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+,有

高中数学回归课本(三角函数)

回归课本(五)三角函数 一.考试内容: 角的概念的推广.弧度制.任意角的三角函数.单位圆中的三角函数线. 同角三角函数的基本关系式.正弦、余弦的诱导公式. 两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切. 正弦函数、余弦函数的图像和性质.周期函数. 函数sin()y x ω?=+的图像.正切函数的图像和性质. 已知三角函数值求角. 正弦定理.余弦定理.斜三角形解法. 二.考试要求: (1)理解任意角的概念、弧度的意义.能正确地进行弧度与角度的换算. (2)掌握任意角的正弦、余弦、正切的定义.了解余切、正割、余割的定义.掌握同角三角函数的基本关系式.掌握正弦、余弦的诱导公式.了解周期函数与最小正周期的意义. (3)掌握两角和与两角差的正弦、余弦、正切公式.掌握二倍角的正弦、余弦、正切公式. (4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明. (5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(鵻+)的简图,理解A, ,的物理意义. (6)会由已知三角函数值求角,并会用符号arcsin x 、arccos x 、arctanx 表示. (7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角 【注意】近年的高考题中,三角函数主要考查基础知识、基本技能、基本方 法,一般都在选择题与填空题中考查,多为容易或中等难度的题目.其中,同角三角函数的 基本公式和诱导公式,三角函数的图像和性质,求三角函数式的值等为考查热点. 三.基础知识: 1.常见三角不等式 (1)若(0,)2 x π ∈,则sin tan x x x <<. (2) 若(0, )2 x π ∈ ,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥. 2.同角三角函数的基本关系式 22sin cos 1θθ+=,tan θ= θ θ cos sin ,tan 1cot θθ?=. 3.正弦、余弦的诱导公式 21 2(1)sin ,sin()2(1)s , n n n co απαα-? -?+=??-? 2 1 2(1s ,s ()2(1)s i n ,n n co n co απαα+? -?+=??-? 4.和角与差角公式 sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±=; tan tan tan()1tan tan αβ αβαβ ±±=. 22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-. sin cos a b αα+ )α?+(辅助角?所在象限由点(,)a b 的 象限决定,tan b a ?= ). 5.二倍角公式 sin 2sin cos ααα=. 2222cos 2cos sin 2cos 112sin ααααα=-=-=-. 2 2tan tan 21tan α αα =-. 6. 三倍角公式 3sin 33sin 4sin 4sin sin()sin()33 ππ θθθθθθ=-=-+.

高中数学平面解析几何的知识点梳理

平面解析几何 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针 方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率:αtan ),(211 212=≠--=k x x x x y y k .(111(,)P x y 、222(,)P x y ). 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:1 21121x x x x y y y y --=-- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1=+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式:B C x B A y -- =,即,直线的斜率:B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截距相等....?直线的斜率为1-或直线过原点. (2)直线两截距互为相反数.......?直线的斜率为1或直线过原点. (3)直线两截距绝对值相等.......?直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+ ① 212121,//b b k k l l ≠=?; ② 12121l l k k ⊥?=-. (2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有 ① 1221122121//C A C A B A B A l l ≠=?且.② 0212121=+?⊥B B A A l l . 5.平面两点距离公式: (111(,)P x y 、222(,)P x y ),22122121)()(y y x x P P -+-=.x 轴上两点间距离:A B x x AB -=. 线段21P P 的中点是),(00y x M ,则??? ????+=+=2221 0210y y y x x x .

高中数学平面解析几何知识点梳理

平面解析几何 一.直线部分 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线 重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α ,?=90α斜率不存在. (2)直线的斜率: αtan ),(211 21 2=≠--= k x x x x y y k .(111(,)P x y 、222(,)P x y ). 2.直线方程的五种形式: (1)点斜式: )(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式: 1 21 121x x x x y y y y --= -- ( 12y y ≠,12x x ≠). 注:① 不能表示与x 轴和 y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式: 1=+b y a x ( b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ) . 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式: 0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式:B C x B A y --=,即,直线的斜率:B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为 00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截距相等....?直线的斜率为1-或直线过原点. (2)直线两截距互为相反数.......?直线的斜率为1或直线过原点. (3)直线两截距绝对值相等.......?直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111: l y k x b =+,222:l y k x b =+ ① 212121,//b b k k l l ≠=?; ② 12121l l k k ⊥?=-. (2)若0:1111 =++C y B x A l ,0:2222=++C y B x A l ,有 ① 1221122121 //C A C A B A B A l l ≠=?且.② 0212121=+?⊥B B A A l l . 5.平面两点距离公式: (111(,)P x y 、222(,)P x y ),2 212212 1)()(y y x x P P -+-=.x 轴上两点间距离: A B x x AB -=. 线段2 1P P 的中点是),(00y x M ,则??? ???? +=+=22 2 10210y y y x x x .

高中数学回归课本的100问

回归课本的100个问题 1.区分集合中元素的形式:如:{}|lg x y x =—函数的定义域;{}|lg y y x =—函数的值域;{}(,)|lg x y y x =—函数图象上的点集。 2.在应用条件A ∪B =B?A ∩B =A?AB时,易忽略A是空集Φ的情况. 3,含n 个元素的集合的子集个数为2n ,真子集个数为2n -1;如满足{1,2}{1,2,3,4,5}M ??≠集合M 有______个。 (答:7) 4、C U (A ∩B)=C U A ∪C U B; C U (A ∪B)=C U A ∩C U B;card(A ∪B)=? 5、A ∩B=A ?A ∪B=B ?A ?B ?C U B ?C U A ?A ∩C U B=??C U A ∪B=U 6、注意命题p q ?的否定与它的否命题的区别: 命题p q ?的否定是p q ??;否命题是p q ???;命题“p 或q ”的否定是“┐P 且┐Q”,“p 且q ”的否定是“┐P 或┐Q” 7、指数式、对数式: m n a =,1m n m n a a -=,,0 1a =,log 10a =,log 1a a =,lg 2lg51+=,log ln e x x =,log (0,1,0)b a a N N b a a N =?=>≠>,log a N a N =。 8、二次函数①三种形式:一般式f(x)=ax 2+bx+c(轴-b/2a,a ≠0,顶点?);顶点f(x)=a(x-h)2 +k;零点式 f(x)=a(x-x 1)(x-x 2)(轴?);b=0偶函数;③区间最值:配方后一看开口方向,二讨论对称轴与区间的相对位置关系; b = (答:2) ; 910递减,在时)0,[],0(,0a a a -> 1112 13 14定义域含零的奇函数过原点 15()y f x =必是周期函数,且一周期为 T 期为a 的周期函数”:①函数()f x 满足 f -1 )(0)() a f x =≠恒成立,则2T a =;③若1 ()(0)() f x a a f x +=- ≠恒成立,则2T a =. 16、函数的对称性。①满足条件()()f x a f b x +=-的函数的图象关于直线2 a b x += 对称。(2)证明函数图像的对称性,即证明图像上任一点关于对称中心(对称轴)的对称点仍在图像上;(3)反比例函数:)0x (x c y ≠=平移?b x c a y -+ =(中心为(b,a)) 17.反函数:①函数存在反函数的条件一一映射;②奇函数若有反函数则反函数是奇函数③周期函数、定义域为非单

高三数学《平面解析几何》

高三数学《平面解析几何》 单元练习七 (考试时间120分 分值160分) 一、填空题(本大题共14小题,每小题5分,共70分.请把正确答案填在题中横线上) 1.抛物线y 2=ax (a ≠0)的焦点到其准线的距离是______. 2.过点A (4,a )与B (5,b )的直线与直线y =x +m 平行,则AB =________. 3.已知双曲线x 24-y 2 12=1的离心率为e ,抛物线x =2py 2的焦点为(e,0),则 p 的值为________. 4.若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,则1a +2 b 的最小值为______. 5.若双曲线x 2a 2-y 2 =1的一个焦点为(2,0),则它的离心率为________. 6.已知曲线上的每一点到点A (0,2)的距离减去它到x 轴的距离的差都是2,则曲线的方程为________. 7.(2010·淮安质检)抛物线y =-4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是________. 8.已知点A 、B 是双曲线 x 2- y 2 2 =1上的两点,O 为坐OA 标原点,且满足OA · OB =0,则点O 到直线AB 的距离等于________.

9.(2009·全国Ⅱ改编)双曲线x 26-y 2 3=1的渐近线与圆(x -3)2+y 2=r 2(r >0) 相切,则r =________. 10.(2009·四川高考改编)已知双曲线x 22-y 2 b 2=1(b >0)的左、右焦点分别为 F 1、F 2,其一条渐近线方程为y =x ,点P (3,y 0)在该双曲线上,则12PF PF ?=________. 11.(2009·天津高考改编)设抛物线y 2=2x 的焦点为F ,过点M (3,0)的直线与抛物线相交于A 、B 两点,与抛物线的准线相交于点C ,BF =2,则△BCF 与△ACF 的面积之比S △BCF S △ACF =________. 12.(2010·南京模拟)已知点(x 0,y 0)在直线ax +by =0(a ,b 为常数)上,则 (x 0-a )2+(y 0-b )2的最小值为________. 13.直线l 的方程为y =x +3,在l 上任取一点P ,若过点P 且以双曲线12x 2 -4y 2 =3的焦点为椭圆的焦点作椭圆,那么具有最短长轴的椭圆方程为 ___________________________________________________________. 14.过抛物线y 2=2px (p >0)的焦点F 的直线l 与抛物线在第一象限的交点为A ,与抛物线准线的交点为B ,点A 在抛物线准线上的射影为C ,若 AF FB =,,AF FB BA BC =?=48,则抛物线的方程为______________.

高中数学新人教版回归教材2-1

2014届高三数学回归教材(选修2-1) 一、知识网络 第一章 常用逻辑用语 1.1 命题及其关系 1.2 充分条件与必要条件 1.3 简单的逻辑联结词 1.4 全称量词与存在量词 第二章 圆锥曲线与方程 2.1 曲线与方程 2.2 椭圆 2.3 双曲线 2.4 抛物线 第三章 空间向量与立体几何 3.1 空间向量及其运算 3.2 立体几何中的向量方法 二、习题重温 1.(P8)证明:若03422 2 ≠--+-b a b a ,则1≠-b a . 2.(P12-3)下列各题中,q p 是的什么条件? (1)11:,1:-= -=x x q x p ; (2)51:,3|2:|≤≤-≤-x q x p ; (3)x x q x p -=-=33:,2:; (4):p 三角形是等边三角形,:q 三角形是等腰三角形. 3.(P 27-3)写出下列命题的否定: (1)2 3,x x N x >∈?; (2)所有可以被5整除的整数,末位数字都是0; (3)01,02 00≤+-∈?x x R x ; (4)存在一个四边形,它的对角线相互垂直.

4.(P31-1)在一次射击训练中,某战士连续射击了两次.设命题p 是“第一次射击击中目标”, q 是“第二次射击击中目标”.试用q p ,以及逻辑联结词“或”“且”“非”(或?∧∨,,)表示下列命题: (1)两次都击中目标; (2)两次都没有击中目标. 5.(P42-4)点A 、B 的坐标分别是)0,1(-,)0,1(,直线AM ,BM 相交于点M ,且直线AM 的斜率与直线BM 的斜率的商是2,点M 的轨迹是什么?为什么? 6.①(P48-5)比较下列每组中椭圆的形状,哪一个更圆,哪一个更扁?为什么? (1)112 163692 22 2 =+=+y x y x 与 ; (2)110 63692 22 2 =+=+y x y x 与 . ②(P72-2)在同一坐标系中画出下列抛物线,观察它们开口的大小,并说明抛物线开口大小与方程中x 的系数有怎样的关系: (1)x y 2 12 =;(2)x y =2;(3)x y 22=;(4)x y 42=. 7.(P49-8)已知椭圆 19 422=+y x ,一组平行直线的斜率是23. (1)这组直线何时与椭圆相交? (2)当它们与椭圆相交时,证明这些直线被椭圆截得的线段的中点在一条直线上.

(完整)高中数学知识点:线性回归方程,推荐文档

高中数学知识点:线性回归方程 1.回归直线方程 (1)回归直线:观察散点图的特征,发现各个大致分布在通过散点图中心的一条直线附近。如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线。求出的回归直线方程简称回归方程。 2.回归直线方程的求法 设与n 个观测点(,i i x y )()1,2,,i n =???最接近的直线方程为$ ,y bx a =+,其中a 、b 是待定系数. 则$,(1,2,,)i i y bx a i n =+=L .于是得到各个偏差 μ(),(1,2,,)i i i i y y y bx a i n -=-+=L . 显见,偏差$i i y y -的符号有正有负,若将它们相加会造成相互抵 消,所以它们的和不能代表几个点与相应直线在整体上的接近程度,故采用n 个偏差的平方和. 2222211)()()(a bx y a bx y a bx y Q n n --++--+--=Λ 表示n 个点与相应直线在整体上的接近程度. 记21()n i i i Q y bx a ==--∑. 上述式子展开后,是一个关于a 、b 的二次多项式,应用配方法,可求出使Q 为最小值时的a 、b 的值.即 1122211()()()n n i i i i i i n n i i i i x x y y x y nx y b x x x nx a y bx ====?---??==??--??=-??∑∑∑∑, ∑==n i i x n x 11,∑==n i i y n y 11

相应的直线叫做回归直线,对两个变量所进行的上述统计分析叫做回归分析 上述求回归直线的方法是使得样本数据的点到回归直线的距离的平方和最小的方法,叫做最小二乘法。 要点诠释: 1.对回归直线方程只要求会运用它进行具体计算a、b,求出回归直线方程即可.不要求掌握回归直线方程的推导过程. 2.求回归直线方程,首先应注意到,只有在散点图大致呈线性时,求出的回归直线方程才有实标意义.否则,求出的回归直线方程毫无意义.因此,对一组数据作线性回归分析时,应先看其散点图是否成线性. 3.求回归直线方程,关键在于正确地求出系数a、b,由于求a、b的计算量较大,计算时仔细谨慎、分层进行,避免因计算产生失误. 4.回归直线方程在现实生活与生产中有广泛的应用.应用回归直线方程可以把非确定性问题转化成确定性问题,把“无序”变为“有序”,并对情况进行估测、补充.因此,学过回归直线方程以后,应增强学生应用回归直线方程解决相关实际问题的意识.

高中平面解析几何 全一册

高中平面解析几何全一册 第二章圆锥曲线 第二单元圆 一、教法建议 【抛砖引玉】 本单元共有两小节,主要研究圆的标准方程和圆的一般方程。 在初中平面几何我们已经学习了圆的定义和性质,在这里我们根据圆是到定点(圆心)的距离等于定长(半径)的点的轨迹,建立了圆的标准方程:(x-a)2 + (y-b)2 = r2,它是由在直角坐标第中圆心的坐标(a、b)和半径r所确定的方程,又根据平面几何中所学圆的切线的定义和性质,由圆的标准方程研究了圆的切线方程,并由圆的标准方程解决了一些实际问题。 由于圆的标准方程实际上是一个二元二次方程,我们又研究了一般的二元二次方程与圆的方程的关系,得到了圆的一般方程,最后又研究了用待定系数法求圆的方程。 【指点迷津】 这一单元的重点是圆的标准方程和圆的一般方程,要求学生能由圆心坐标和半径长熟练地写出圆的标准方程,并能由圆的标准方程准确地写出它的圆心坐标和半径长。对于圆的一般方程,要求学生掌握它的特点,会用配方法把一般方程化为标准方程。 由于圆是平面几何中重点学习的图形,学习了圆的很多性质,特别是和圆有关的直线和线段(直线的一部分)的性质,如圆的切线,割线,弦等的性质在这一单元都会用到,教师可概括学习内容适当地复习有关性质,并启发学生在解题中运用性质,可以顺利解决有关问题。 圆的切线也是这个单元的重要内容,它主要研究了过圆上一点的圆的切线,过圆外一点的圆的切线,已知斜率的圆的切线,要求学生掌握求各种条件下切线的方法,在此基础上也可以总结出一些带规律性的东西,适当记忆,加快解题速度,特别是解选择题和填空题,如: 过圆x2 + y2 = r2上一点(x1,y1)的切线方程是x1x + y1y = r2 过圆(x-a)2 + (y-b)2 = r2上一点(x1、y1)的切线方程是(x1-a)(x-a) + (y1-b)(y -b) = r2 圆x2 + y2 = r2的斜率为k的切线的方程是y kx r k 12 =±+ 对于圆的一般方程应要求学生明确掌握,二元二次方程的一般形式 A x2 + B xy + C y2 + D x + D y + F = 0必须满足如下三个条件: (1)x2和y2项的系数相同,且不等于零,即A=C≠0 (2)不含xy项,即B = 0

高中生物必修一二三册回归课本资源

高中生物必修一、二、三册回归课本 一、教材科学史 1、人教版必修一册 细胞学说的建立过程(10页)细胞核的功能探究(52页) 对生物膜结构的探究历程(65页)关于酶本质的探索(81页) 光合作用的探究历程(101页) 2、人教版必修二册 对遗传物质的早期推测(42页) 3、人教版必修三册 促胰液素的发现(23页)生长素的发现历程(46页) 二、重要概念 1、人教版必修一册 单体:多糖、蛋白质、核酸等都是生物大分子,都是由许多基本的组成单位连接而成的,这些基本单位称为单体。 多聚体:每一个单体都以若干个相连的碳原子构成的碳链为基本骨架,由许多单体连接成多聚体。 生物膜系统:这些细胞器膜和细胞膜、核膜等结构,共同构成细胞的生物膜系统。 原生质层:细胞膜和液泡膜以及两层膜之间的细胞质。 活化能:分子从常态转变为容易发生化学反应的活跃状态所需要的能量称为活化能。 酶:是活细胞产生的具有催化作用的有机物,其中绝大多数是蛋白质,少数是RNA。 化能合成作用:自然界中的少数种类细菌,,虽然细胞内没有叶绿素,不能进行光合作用,但是能够利用体外环境中的某些无机物氧化分解时所释放的能量来制造有机物,这种合成作用加化能合成作用细胞周期:即连续分裂的细胞,从一次分裂完成时开始,到下一次分裂完成时为止,为一个细胞周期。无丝分裂:分裂过程中没有出现纺锤体和染色体的变化,所以叫无丝分裂。 细胞分化:在个体发育过程中,由一个或一种细胞增值产生的后代,在形态、结构和生理功能上发生稳定性差异的过程,叫做细胞分化。 细胞的全能性:是指已经分化的细胞,仍然具有发育成完整个体的潜能。 癌细胞:有的细胞受到致癌因子的作用,细胞中遗传物质发生变化,就变成不受机体控制的、连续进行分裂的恶性增殖细胞,这种细胞就是癌细胞。 2、人教版必修二册 联会:同源染色体两两配对的现象叫做联会。 四分体:联会后的每对同源染色体含有四条染色单体。 DNA的多样性:遗传信息蕴藏在4种碱基的排列顺序之中,碱基排列顺序的千变万化,构成可DNA分子的多样性。 DNA的特异性:碱基的特定排列顺序,又构成了每一个DNA分子的特异性。 转绿:RNA是在细胞核中,以DNA的一条链为模板合成的,这一过程称为转录 翻译:游离在细胞质中的各种氨基酸,就以mRNA为模板合成具有一定氨基酸顺序的蛋白质,这一过程叫做翻译。 基因突变:DNA分子中发生碱基对的替换、增添和缺失,而引起的基因结构的改变,加基因突变。染色体组:细胞中的一组非同源染色体,在形态和功能上各不相同,但又相互协调,共同控制生物的生长、发育、遗传和变异,这样的一组染色体,叫做一个染色体组。 人类遗传病:通常是指由于遗传物质改变而引起的人类疾病,主要可以分为单基因遗传病、多基因遗传病和染色体异常遗传病。 基因库:一个种群中全部个体所含有的全部基因,叫做这个种群的基因库。 物种:能够在自然状态下相互交配并且产生可育后代的一群生物称为一个物种。 生殖隔离:不同物种之间一般是不能相互交配的,即使交配成功,也不能产生可育的后代,这种现象叫做生殖隔离。 共同进化:不同物种之间、生物与无机环境之间在相互影响中不断进化和发展,这就是共同进化。3、人教版必修三册 渗透压:是指溶液中溶质微粒对水的吸引力,溶质微粒越多,溶液浓度越高,渗透压越高。血浆的渗透压大小主要与无机盐和蛋白质的含量有关。 稳态:正常机体通过调节作用,使各个器官、系统协调活动,共同维持内环境的相对稳定状态叫做稳态。 反馈调节:在一个系统中,系统本身工作的效果,反过来又作为信息调节该系统的工作,这种调节方式叫做反馈调节。 自生免疫病:是由于免疫系统异常敏感,反应过度,?敌我不分?地将自身物质当做外来异物进行攻击而引起的,这类疾病就是自身免疫病。 植物激素:由植物体内产生,能从产生部位运送到作用部位,对植物的生长发育有显着影响的微量有机物,称为植物激素。 植物生长调节剂:人工合成的对植物的生长发育有调节作用的化学物质称为植物生长调节剂。 种群密度:在单位面积或单位体积中的个体数就是种群密度,种群密度是种群的最基本的数量特征。出生率:是指在单位时间内新产生的个体数目占该种群个体总数的比率 死亡率:是指在单位时间内死亡的个体数目占该种群个体总数的比率 丰富度:群落中物种数目的多少称为丰富度。 初生演替:是指在一个从来没有被植物覆盖的地面,或者是原来存在过植被,但被彻底消灭的地方发生的演替。 次生演替:是指在原有植被虽已不存在,但原有土壤条件基本保留,甚至还保留了植物的种子或其他繁殖体的地方发生的演替。 能量流动:生态系统中能量的输入、传递、转化和散失的过程,称为生态系统的能量流动。 物质循环:组成生物体的C、H、O、N、P、S等元素,都不断进行着从无机环境到生物群落,又从生物群落到无机环境的循环过程,这就是生态系统的物质循环。 生态系统的稳定性:生态系统所具有的保持或恢复自身结构和功能相对稳定的能力,叫做生态系统的稳定性。 生物多样性:生物圈内所有的植物、动物和微生物,它们所拥有的全部基因以及各种各样的生态系统,共同构成了生物多样性。 三、与生产和生活有关 育种方法比较其他植物激素的作用光合作用/细胞呼吸的应用 质壁分离的应用信息传递的应用

高中数学 选修 非线性回归模型

2.非线性回归模型 教学目标 班级____姓名________ 1.进一步体会回归分析的基本思想. 2.通过非线性回归分析,判断几种不同模型的拟合程度. 教学过程 一、非线性回归模型. 非线性回归分析的步骤:(1)确定研究对象;(2)采集数据;(3)作散点图;(4)选取函数模型,并转化成线性回归模型,并转化数据;(5)求线性回归方程;(6)建线性回归模型,求残差,画残差图;(7)求2R ,刻画拟合效果. 二、例题分析. 例1:研究红铃虫产卵数与温度的关系. (例见教科书2P ) 1.确定研究对象:红铃虫产卵数与温度的关系. 2.采集数据: 3.作散点图: 4.选取函数模型,并转化成线性回归模型,并转化数据: (1)根据样本点的变化趋势,选取函 数模型:x c e c y 21=(指数函数模 型); (2)令y z ln =,将指数函数 模型转化成一次函数模型a bx z +=(1ln c a =,2c b =); (3)数据转化: (4)新散点图: 5.求线性回归方程: 温度C x ο/ 21 23 25 27 29 32 35 产卵数/y 个 7 11 21 24 66 115 325 21 23 25 27 29 32 35 1.946 2.398 3.045 3.178 4.190 4.745 5.784

运用公式求得272.0?=b ,849.3?=a ,线性回归方程为849.3272.0?-=x z , 而红铃虫的产卵数对温度的非线性回归方程为849.3272.0)1(?-=x e y . 6.建线性回归模型,求残差,画残差图; 残差849.3272.0)1() 1(??--=-=i x i i i i e y y y e 7.求2R ,刻画拟合效果. 注意事项: (1)根据样本点的变化趋势,选取函数模型时,可能的选择不止一个; (2)本例可选取二次函数模型423c x c y +=, (3)令2x t =,将二次函数模型转化成一次函数模型43c t c y +=; (4)不同模型拟合效果不同,可根据2R 来判断,2R 越大,拟合效果越好. 作业:为了研究某种细菌随时间x 变化时,繁殖个数y 的变化,收集数据如下: 天数x /天 1 2 3 4 5 6 繁殖个数y / 个 6 12 25 49 95 190 (1)用天数x 作解释变量,繁殖个数y 作预报变量,作出这些数据的散点图; (2)描述解释变量x 与预报变量y 之间的关系; (3)计算相关指数 2R .

人教版高中数学(理科)选修线性回归(一)

线性回归(一) 教学目的: 1 了解相关关系、回归分析、散点图的概念 2.明确事物间是相互联系的,了解非确定性关系中两个变量的统计方法;掌握散点图的画法及在统计中的作用,掌握回归直线方程的求解方法 3.会求回归直线方程 教学重点:散点图的画法,回归直线方程的求解方法 教学难点:回归直线方程的求解方法 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 客观事物是相互联系的过去研究的大多数是因果关系,但实际上更多存在的是一种非因果关系比如说:某某同学的数学成绩与物理成绩,彼此是互相联系的,但不能认为数学是“因”,物理是“果”,或者反过来说事实上数学和物理成绩都是“果”,而真正的“因”是学生的理科学习能力和努力程度所以说,函数关系存在着一种确定性关系但还存在着另一种非确定性关系——相关关系 二、讲解新课: 1.相关关系的概念 当自变量一定时,因变量的取值带有一定的随机性的两个变量之间的关系称为相关关系 相关关系是非随机变量与随机变量之间的关系,函数关系是两个非随机变量之间的关系,是一种因果关系,而相关关系不一定是因果关系,所以相关关系与函数关系不同,其变量具有随机性,因此相关关系是一种非确定性关系(有因果关系,也有伴随关系).因此,相关关系与函数关系的异同点如下: 相同点:均是指两个变量的关系 不同点:函数关系是一种确定的关系;而相关关系是一种非确定关系;函数关系是自变量与因变量之间的关系,这种关系是两个非随机变量的关系;而相关关系是非随机变量与随机变量的关系. 2.回归分析: 对具有相关关系的两个变量进行统计分析的方法叫做回归分析通俗地讲,回归分析是寻找相关关系中非确定性关系的某种确定性 3.散点图:表示具有相关关系的两个变量的一组数据的图形叫做散点图.散点图形象地反映了各对数据的密切程度粗略地看,散点分布具有一定的规律 4. 回归直线 设所求的直线方程为,^ a bx y +=,其中a 、 b 是待定系数. 则),,2,1(,^ n i a bx y i i =+= .于是得到各个偏差 ),,2,1(),(^ n i a bx y y y i i i i =+-=-. 显见,偏差i i y y ^ -的符号有正有负,若将它们相加会造成相互抵消,所以它们的和不能代表几个点与相应直线在整体上的接近程度,故采用n 个偏差的平方和. 2222211)()()(a bx y a bx y a bx y Q n n --++--+--= 表示n 个点与相应直线在整体上的接近程度.

相关主题