搜档网
当前位置:搜档网 › 上海高考数学:基本不等式应用技巧归纳(教师版)

上海高考数学:基本不等式应用技巧归纳(教师版)

上海高考数学:基本不等式应用技巧归纳(教师版)
上海高考数学:基本不等式应用技巧归纳(教师版)

基本不等式应用技巧归纳

高考数学真题分类汇编专题不等式理科及答案

专题七 不等式 1.【2015高考四川,理9】如果函数()()()()21 281002 f x m x n x m n = -+-+≥≥, 在区间122?????? ,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )812 【答案】B 【解析】 2m ≠时,抛物线的对称轴为82n x m -=--.据题意,当2m >时,8 22 n m --≥-即212m n +≤ .26,182 m n mn +≤ ≤∴≤Q .由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,81 22 n m -- ≤-即218m n +≤ .281 9,22 n m mn +≤ ≤∴≤Q .由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以 (182)(1828)816mn n n =-<-??=,所以最大值为18.选B.. 【考点定位】函数与不等式的综合应用. 【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现. 2.【2015高考北京,理2】若x ,y 满足010x y x y x -?? +??? ≤, ≤,≥,则2z x y =+的最大值为( ) A .0 B .1 C . 3 2 D .2 【答案】D 【解析】如图,先画出可行域,由于2z x y = +,则11 22 y x z =- +,令0Z =,作直线1 2 y x =- ,在可行域中作平行线,得最优解(0,1),此时直线的截距最大,Z 取

利用基本不等式求最值的类型及方法

1 利用基本不等式求最值的类型及方法 1 解析:y x 2(x 1) (x 2(x 1) 1) 芳 1(x 1) -1 ?」1(x 1) 2 2 2(x 1) 、几个重要的基本不等式: ① a 2 b 2 2ab a 2 b 2 ab (a 、b R ),当且仅当a = b 时,"=”号成立; 2 1 2 2(x 1) ② a b 2 ab 2 a b ab (a 、b R ),当且仅当a = b 时,“=”号成立; 2 当且仅当 1)即x 2时,“ 5 ”号成立,故此函数最小值是 -。 2 ③ a 3 b 3 c 3 3abc 3 abc ― b 3 3 3 c ( (a 、 立; ④ a b c 3v abc abc a b 3 c (a abc 3 a 、 b 、 c R ),当且仅当a = b = c 时,“=”号成 b 、 c R ),当且仅当a = b = c 时,“=”号 成立? 注:①注意运用均值不等式求最值时的条件:一 “正”、二“定”、三“等”; 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常 要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型n :求几个正数积的最大值。 例2、求下列函数的最大值: ①y x 2 (3 2x)(0 x 2 ② y sin xcosx(0 x ) 2 ② 熟悉一个重要的不等式链: b 2 2 解析:①Q 0 x - ,? 3 2 2x ?- y 当且仅当 (3 2x)(0 x 3 2x 即 x ,?? sin x 2 3 x x (3 2x) 3 )x x (3 2x) [ ] 1 , 2 3 1时,“=”号成立,故此函数最大值是 1 。 0,cos x 0,则y 0 ,欲求y 的最大值,可先求y 2的最大值。 二、函数 f(x) ax X b 0)图象及性质 (1)函数 f(x) ax b a 、 X b 0图象如图: ⑵函数 f(x) ax b a 、 X b 0性质: ①值域:( J 2 ab] [2 一ab,); ②单调递增区间:( 2 . 4 2 y sin x cos x 当且仅当 故此函数最大值是 sin 2 x sin 2 x coSx 1 2 2 2 (sin x sin x 2cosx) 2 1 sin 2 x sin 2x 2co^ x 3 4 「 -------- —) 刃 .2 sin x 2cos x (0 tan x 2,即 x arctan^^ 时“=”号成立, );单调递减区间: b ], a ,[ (0, ,0) ? 评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。通常要 通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。 类型川:用均值不等式求最值等号不成立。 4 x — x 例 3、若 x 、y R ,求 f (x ) (0 x 1)的最小 值。 三、用均值不等式求最值的常见类型 类型I :求几个正数和的最小值。 解法一:(单调性法)由函数 f(x) K ax - (a 、b 0)图象及性质知,当 x (0,1]时,函数 x 例1、求函数y 1 x 2^(x 1) 的最小值。 f (x ) x -是减函数。证明: x 任取 X 2 (0,1]且 0 禺 X 2 1,则 f(xj f(X 2) (X 1 X 2) (— —) (X 1 X 2)4 匹 为 (X 1 X 2)4 , x-1 X 2 X !X 2 X 1X 2

基本不等式练习题及答案解析

1.若xy>0,则对x y+ y x说法正确的是() A.有最大值-2B.有最小值2 C.无最大值和最小值D.无法确定 答案:B 2.设x,y满足x+y=40且x,y都是正整数,则xy的最大值是() A.400 B.100 C.40 D.20 答案:A 3.已知x≥2,则当x=____时,x+4 x有最小值____. 答案:2 4 4.已知f(x)=12 x+4x. (1)当x>0时,求f(x)的最小值; (2)当x<0 时,求f(x)的最大值. 解:(1)∵x>0,∴12 x,4x>0. ∴12 x+4x≥2 12 x·4x=8 3. 当且仅当12 x=4x,即x=3时取最小值83, ∴当x>0时,f(x)的最小值为8 3. (2)∵x<0,∴-x>0. 则-f(x)=12 -x +(-4x)≥2 12 -x ·?-4x?=83, 当且仅当12 -x =-4x时,即x=-3时取等号. ∴当x<0时,f(x)的最大值为-8 3. 一、选择题 1.下列各式,能用基本不等式直接求得最值的是() A.x+1 2x B.x 2-1+ 1 x2-1 C.2x+2-x D.x(1-x) 答案:C 2.函数y=3x2+ 6 x2+1 的最小值是() A.32-3 B.-3 C.6 2 D.62-3

解析:选D.y=3(x2+ 2 x2+1 )=3(x2+1+ 2 x2+1 -1)≥3(22-1)=62-3. 3.已知m、n∈R,mn=100,则m2+n2的最小值是() A.200 B.100 C.50 D.20 解析:选A.m2+n2≥2mn=200,当且仅当m=n时等号成立.4.给出下面四个推导过程: ①∵a,b∈(0,+∞),∴b a+ a b≥2 b a· a b=2; ②∵x,y∈(0,+∞),∴lg x+lg y≥2lg x·lg y; ③∵a∈R,a≠0,∴4 a+a≥2 4 a·a=4; ④∵x,y∈R,,xy<0,∴x y+ y x=-[(- x y)+(- y x)]≤-2?- x y??- y x?=-2. 其中正确的推导过程为() A.①②B.②③C.③④D.①④解析:选D.从基本不等式成立的条件考虑. ①∵a,b∈(0,+∞),∴b a, a b∈(0,+∞),符合基本不等式的条件,故①的推导 过程正确; ②虽然x,y∈(0,+∞),但当x∈(0,1)时,lg x是负数,y∈(0,1)时,lg y是负数,∴ ②的推导过程是错误的; ③∵a∈R,不符合基本不等式的条件, ∴4 a+a≥24 a·a=4是错误的; ④由xy<0得x y, y x均为负数,但在推导过程中将全体 x y+ y x提出负号后,(- x y)均 变为正数,符合基本不等式的条件,故④正确. 5.已知a>0,b>0,则1 a+ 1 b+2ab的最小值是() A.2 B.2 2 C.4 D.5 解析:选 C.∵1 a+ 1 b+2ab≥ 2 ab +2ab≥22×2=4.当且仅当 ?? ? ??a=b ab=1 时, 等号成立,即a=b=1时,不等式取得最小值4. 6.已知x、y均为正数,xy=8x+2y,则xy有()

一元一次不等式---教师版

不等式的俩边都乘上(或除去)同一个正数,不等号的方向不变。不等式的俩边都乘上(或除去)同一个负数,不等号的方向改变。“>”填空。若a>b 且m≠0,则 ___a b (2) 2 2 ____ a b m m ___m a m b (4) ___a m b m 1. 若0,a 则下列各式错误的是(C ) 1a B 10a 10a 2a 0,m 那么(20032004m m 3.14m m C 2003 200420042003m m D 1 1 23 m m 关于x 的方程7 45ax x 的解是正数,求的取值范围。 解: ax+7=4x-5 ax-4x=-12 x=-12÷(a-4)>0 a b a m b m m>0am>bm: a b a b m m 且m<0am

2 1 32 x x 2)36 x x 436 x x 364 x x 合并同类项得2 x 把系数化为1得2 x 解不等式: 221 23 x x 2)2(21) x x 622 x x 226 x x 合并同类项得8 x 把系数化为1得8 x 解关于x的不等式:(m m-1>0,m>1时,

变式 不等式-2x<4的解集表示在数轴上,正确的是(B ) A C 四.一元一次不等式组 一元一次不等式组解集的确定主要是借助数轴直观找到.共分四种情况,“同大取大,同小取小,大小小大取中间,大大小小解不见”, 例6 不等式组 2110 x x >-?? -≤?的解集是_1 12x -<≤-____________________ 不等式组 图示 解集 x a x b b a x a >(同大取大) x a x b ? b a b x a <<(大小交叉取中间) x a x b >??

高考数学真题分类汇编专题不等式理科及答案

高考数学真题分类汇编专题不等式理科及答案 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

专题七 不等式 1.【2015高考四川,理9】如果函数()()()()21 281002 f x m x n x m n = -+-+≥≥, 在区间122?? ???? ,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )812 【答案】B 【解析】 2m ≠时,抛物线的对称轴为82n x m -=- -.据题意,当2m >时,8 22 n m --≥-即212m n +≤.226,182 m n m n mn +?≤ ≤∴≤.由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,81 22 n m -- ≤-即218m n +≤.281 29,22 n m n m mn +?≤ ≤∴≤.由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以 (182)(1828)816mn n n =-<-??=,所以最大值为18.选B.. 【考点定位】函数与不等式的综合应用. 【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现. 2.【2015高考北京,理2】若x ,y 满足010x y x y x -?? +??? ≤, ≤,≥,则2z x y =+的最大值为 ( ) A .0 B .1 C .32 D .2 【答案】D

基本不等式求最值的类型与方法,经典大全

专题:基本不等式求最值的类型及方法 一、几个重要的基本不等式: ①,、)(2 22 22 2 R b a b a a b ab b a ∈+≤ ?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链: b a 11 2 +2 a b +≤≤≤2 2 2b a +。 二、函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+=b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ; ②单调递增区间:(,-∞ ,)+∞ ;单调递减区间:(0, ,[0). 三、用均值不等式求最值的常见类型 类型Ⅰ:求几个正数和的最小值。 例1、求函数2 1 (1)2(1) y x x x =+ >-的最小值。 解析:21(1)2(1)y x x x =+ >-21(1)1(1)2(1)x x x =-++>-2 111 1(1)222(1)x x x x --=+++>- 1≥312≥+52=, 当且仅当 2 11 (1) 22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型Ⅱ:求几个正数积的最大值。 例2、求下列函数的最大值: ①2 3 (32)(0)2 y x x x =-<< ②2sin cos (0)2y x x x π=<< 解析:① 3 0,3202 x x <<->∴, ∴2 3(32)(0)(32)2y x x x x x x =-<<=??-3(32)[ ]13 x x x ++-≤=, 当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。 ② 0,sin 0,cos 02 x x x π << >>∴,则0y >,欲求y 的最大值,可先求2y 的最大值。 2 4 2 sin cos y x x =?2 2 2 sin sin cos x x x =??222 1(sin sin 2cos )2x x x =??22231sin sin 2cos 4( )2327 x x x ++≤?=, 当且仅当22 sin 2cos x x =(0)2 x π < < tan x ?=tan x arc =时 “=”号成立,故 评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。通常要 通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。 类型Ⅲ:用均值不等式求最值等号不成立。 例3、若x 、y + ∈R ,求4 ()f x x x =+ )10(≤、图象及性质知,当(0,1]x ∈时,函数 4 ()f x x x =+是减函数。证明:任取12,(0,1]x x ∈且1201x x <<≤,则

基本不等式练习题及标准答案

基本不等式练习题及答案

————————————————————————————————作者:————————————————————————————————日期:

双基自测 1.(人教A 版教材习题改编)函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.1 2 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 考向一 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2+1 的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x + 1 x -1 的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 考向二 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . .

不等式复习资料(教师)

不等式复习资料 1 ?已知f3为R 上的减函数,贝IJ 满足f (丄)>f (l )的实数W 的取值范围是( ) X A. (—8,1) B ?(1,+8) C ?(―8,0)U (0,1) D ?(―8, 0)U (I, + 8) 【答案】D fx>0 2x-2y+l<0 【答案】B 5. 当XG (1,2)时,不等式x 2+/m+4<0恒成立,则加的取值范围是 ________________ 。 【答案】(一8,—5] 6. 在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇,现有4俩甲型货车和 8辆乙型货车可供使用,每辆甲型货车运输费用400元,可装洗衣机20台:每辆乙型货 车 运输费用300元,可装洗衣机10台,若每辆至多只运一次,则该厂所花的最少运输费 用为( ) A. 2000 元 B. 2200 元 C. 2400 元 D. 2800 元 【答案】B 0100 2.在约束条件! y0且XH I 时,lgx+ 1 >2 lgx C.当x>2^.x +丄的最小值为2 x B ?当x>0时,肩+4=?2 D.当0VXS2时,兀一丄无最大值 x 4.已知正数X 、 y 满足v 2x-y<0 x-3v+5>0 则z = 2 2x+y 的最大值为( A. 8 【答案】 B. 16 C. 32 D. 64

高考数学不等式专题

基本不等式专题 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若*,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 5、常用结论 (1)若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) (4)若R b a ∈,,则2 )2(222b a b a ab +≤ +≤ (5)若*,R b a ∈,则22111 22b a b a ab b a +≤+≤≤+ (6),、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; (7))(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时, “ =”号成立. (1)若,,,a b c d R ∈,则22222()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 22222221231123112233()()()a a a b b b a b a b a b ++++≥++

利用基本不等式求最值的类型及方法

利用基本不等式求最值的类型及方法 一、几个重要的基本不等式: ①, 、)(2 22 222R b a b a a b ab b a ∈+≤ ?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链: b a 11 2 +2 a b +≤≤≤2 2 2b a +。 二、函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+=b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ; ②单调递增区间:(,-∞ ,)+∞ ;单调递减区间:(0, ,[0). 三、用均值不等式求最值的常见类型 类型Ⅰ:求几个正数和的最小值。 例1、求函数2 1 (1)2(1) y x x x =+ >-的最小值。 解析:21(1)2(1)y x x x =+ >-21(1)1(1)2(1)x x x =-++>-2 111 1(1)222(1)x x x x --=+++>- 1≥312≥+52=, 当且仅当 2 11 (1)22(1) x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型Ⅱ:求几个正数积的最大值。 例2、求下列函数的最大值: ①2 3(32)(0)2y x x x =-<< ②2sin cos (0)2 y x x x π =<< 解析:① 3 0,3202 x x <<->∴, ∴2 3(32)(0)(32)2y x x x x x x =-<<=??-3(32)[ ]13 x x x ++-≤=, 当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。 ② 0,sin 0,cos 02 x x x π << >>∴,则0y >,欲求y 的最大值,可先求2y 的最大值。 2 4 2 sin cos y x x =?2 2 2 sin sin cos x x x =??222 1(sin sin 2cos )2x x x =??22231sin sin 2cos 4( )2327 x x x ++≤?=, 当且仅当22 sin 2cos x x =(0)2 x π < < tan x ?tan x arc =时 “=”号成立,故 评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。通常要 通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。 类型Ⅲ:用均值不等式求最值等号不成立。 例3、若x 、y + ∈R ,求4 ()f x x x =+ )10(≤、图象及性质知,当(0,1]x ∈时,函数 4 ()f x x x =+是减函数。证明:任取12,(0,1]x x ∈且1201x x <<≤,则

广东高考数学(理)一轮题库:7.4-基本不等式(含答案)

第4讲基本不等式一、选择题 1.若x>0,则x+4 x 的最小值为( ). A.2 B.3 C.2 2 D.4 解析∵x>0,∴x+4 x ≥4. 答案 D 2.已知a>0,b>0,a+b=2,则y=1 a + 4 b 的最小值是( ). A.7 2 B.4 C. 9 2 D.5 解析依题意得1 a + 4 b = 1 2? ? ? ? ? 1 a + 4 b( a+b)= 1 2? ? ? ? ? ? 5+ ? ? ? ? ? b a + 4a b≥ 1 2? ? ? ? ? 5+2 b a × 4a b =9 2 ,当且仅当 ?? ? ?? a+b=2 b a = 4a b a>0,b>0 ,即a= 2 3 , b=4 3 时取等号,即 1 a + 4 b 的最小值是 9 2 . 答案 C 3.小王从甲地到乙地的时速分别为a和b(a

又v -a =2ab a + b -a =ab -a 2a +b >a 2-a 2a +b =0,∴v >a . 答案 A 4.若正实数a ,b 满足a +b =1,则( ). A.1a +1 b 有最大值4 B .ab 有最小值1 4 C.a +b 有最大值 2 D .a 2+b 2有最小值 22 解析 由基本不等式,得ab ≤a 2+b 2 2 = a +b 2 -2ab 2 ,所以ab ≤1 4 ,故B 错; 1 a +1 b =a +b ab =1ab ≥4,故A 错;由基本不等式得a +b 2 ≤ a +b 2 = 1 2 ,即a +b ≤ 2,故C 正确;a 2+b 2=(a +b )2-2ab =1-2ab ≥1-2×14=1 2, 故D 错. 答案 C 5.已知x >0,y >0,且2x +1 y =1,若x +2y >m 2+2m 恒成立,则实数m 的取值范围是 ( ). A .(-∞,-2]∪[4,+∞) B .(-∞,-4]∪[2,+∞) C .(-2,4) D .(-4,2) 解析 ∵x >0,y >0且2x +1 y =1, ∴x +2y =(x +2y )? ???? 2x +1y =4+4y x +x y ≥4+2 4y x ·x y =8,当且仅当4y x =x y , 即x =4,y =2时取等号, ∴(x +2y )min =8,要使x +2y >m 2+2m 恒成立, 只需(x +2y )min >m 2+2m 恒成立, 即8>m 2+2m ,解得-4

不等式及其性质(教师版)

一、不等式及其性质 【学习目标】 1.了解不等式的意义,认识不等式和等式都刻画了现实世界中的数量关系; 2. 理解不等式的三条基本性质,并会简单应用; 3.理解并掌握一元一次不等式的概念及性质; 【要点梳理】 要点一、不等式的概念 一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式. 要点诠释: (1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大. (2)五种不等号的读法及其意义: 符号读法意义 “≠”读作“不等于”它说明两个量之间的关系是不相等的,但不能确定哪个大,哪个小 “<”读作“小于”表示左边的量比右边的量小“>”读作“大于”表示左边的量比右边的量大 “≤”读作“小于或等 于” 即“不大于”,表示左边的量不大于右边的量 “≥”读作“大于或等 于” 即“不小于”,表示左边的量不小于右边的量 (3)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x 表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立. 类型一、不等式的概念 例1. 判断下列各式哪些是等式,哪些是不等式. (1)4<5; (2)x2+1>0; (3)x<2x-5; (4)x=2x+3; (5)3a2+a; (6)a2+2a≥4a-2. 变式练习: 1.(2017春?城关区校级期末)贵阳市今年5月份的最高气温为27℃,最低气温为18℃,已知某一天的气温为t℃,则下面表示气温之间的不等关系正确的是() A.18<t<27 B.18≤t<27 C.18<t≤27D.18≤t≤27 2.(2017春?未央区校级月考)下列式子:①a+b=b+a;②-2>-5;③x≥-1;④

2017-18全国卷高考真题 数学 不等式选修专题

2017-2018全国卷I -Ⅲ高考真题 数学 不等式选修专题 1.(2017全国卷I,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集; (2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围. 【答案解析】 解:(1)当1a =时,()24f x x x =-++,是开口向下,对称轴12 x = 的二次函数. ()211121121x x g x x x x x >??=++-=-??-<-?,,≤x ≤,, 当(1,)x ∈+∞时,令242x x x -++= ,解得x =()g x 在()1+∞, 上单调递增,()f x 在()1+∞,上单调递减 ∴此时()()f x g x ≥ 解集为1? ?? . 当[]11x ∈-, 时,()2g x =,()()12f x f -=≥. 当()1x ∈-∞-, 时,()g x 单调递减,()f x 单调递增,且()()112g f -=-=. 综上所述,()()f x g x ≥ 解集1?-??? . (2)依题意得:242x ax -++≥在[]11-, 恒成立. 即220x ax --≤在[]11-, 恒成立. 则只须()()2211201120 a a ?-?-??----??≤≤,解出:11a -≤≤. 故a 取值范围是[]11-, .

2.(2017全国卷Ⅱ,文/理.23)(10分) [选修4-5:不等式选讲](10分) 已知0a >,222ba b +==2.证明: (1)()22()4a b a b ++≥; (2)2a b +≤. 【答案解析】 3.(2017全国卷Ⅱ,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=│x +1│–│x –2│. (1)求不等式f (x )≥1的解集; (2)若不等式f (x )≥x 2–x +m 的解集非空,求m 的取值范围. 【答案解析】 解:(1)()|1||2|f x x x =+--可等价为()3,121,123,2--??=--<

基本不等式与最大最小值资料讲解

3.2 基本不等式与最大(小)值 1.已知a >0,b >0,则1a +1b +2ab 的最小值是 ( ). A .2 B .2 2 C .4 D .5 解析 ∵1a +1b +2ab ≥2ab +2ab ≥4. 当且仅当????? a = b ,ab =1, 即a =b =1时,原式取得最小值4. 答案 C 2.函数y =3x 2+6x 2+1的最小值是 ( ). A .32-3 B .-3 C .6 2 D .62-3 解析 y =3? ????x 2+2x 2+1=3? ?? ??x 2+1+2x 2+1-1≥3·(22-1)=62-3. 答案 D 3.下列函数中,最小值为4的函数是 ( ). A .y =x +4x B .y =sin x +4sin x (0<x <π) C .y =e x +4e -x D .y =log 3x +log x 81 解析 对于A ,x +4x ≥4或者x +4x ≤-4;对于B ,等号成立的条件不满足;对于D ,也 是log 3x +log x 81≥4或者log 3x +log x 81≤-4,所以答案为C. 答案 C 4.当x =________时,函数f (x )=x 2(4-x 2)(0<x <2)取得最大值________. 解析 ∵f (x )=x 2·(4-x 2)≤? ?? ??x 2+4-x 222=4,当且仅当x 2=4-x 2,即x =2时取等号, ∴f (x )max =4. 答案 2 4 5.某公司一年购买某种货物200吨,分成若干次均匀购买,每次购买的运费为2万元,一年存储费用恰好为每次的购买吨数(单位:万元),要使一年的总运费与总存储费用之和最小,则每次应购买________吨. 解析 设每次都购买x 吨,则需要购买200x 次,则一年的总运费为200x ×2=400x 万元,一

基本不等式及其应用知识梳理及典型练习题(含答案)

基本不等式及其应用 1.基本不等式 若a>0,,b>0,则 a + b 2 ≥ab ,当且仅当 时取“=”. 这一定理叙述为:两个正数的算术平均数 它们的几何平均数. 注:运用均值不等式求最值时,必须注意以下三点: (1)各项或各因式均正;(一正) (2)和或积为定值;(二定) (3)等号成立的条件存在:含变数的各项均相等,取得最值.(三相等) 2.常用不等式 (1)a 2+b 2≥ab 2(a ,b ∈R ). 2 a b +()0,>b a 注:不等式a 2+b 2≥2ab 和 2 b a +≥a b 它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.其等价变形:ab≤(2 b a +)2 .

(3)ab≤ 2 2 ? ? ? ? ?+b a (a,b∈R). (4) b a + a b ≥2(a,b同号且不为0). (5) 2 2 ? ? ? ? ?+b a ≤ a2+b2 2 (a,b∈R). (6) b a ab b a b a 1 1 2 2 2 2 2 + ≥ ≥ + ≥ +()0 ,> b a (7)abc≤ a3+b3+c3 3 ;() ,,0 a b c> (8) a+b+c 3 ≥ 3 abc;() ,,0 a b c> 3.利用基本不等式求最大、最小值问题 (1)求最小值:a>0,b>0,当ab为定值时,a+b,a2+b2有,即a +b≥,a2+b2≥. (2)求最大值:a>0,b>0,当a+b为定值时,ab有最大值,即;或a2+b2为定值时,ab有最大值(a>0,b>0),即.

设a,b∈R,且a+b=3,则2a +2b的最小值是( ) 解:因为2a>0,2b>0,由基本不等式得2a+2b≥22a·2b=22a+b=42, 当且仅当a=b=3 2 时取等号,故选B. 若a>0,b>0,且a+2b-2=0, 则ab的最大值为( ) 解:∵a>0,b>0,a+2b=2,∴a+2b=2≥22ab,即ab≤1 2 .当且仅当a =1,b=1 2 时等号成立.故选A.

不等式及其性质(教师版)

不等式及其性质(教师 版) https://www.sodocs.net/doc/956945749.html,work Information Technology Company.2020YEAR

一、不等式及其性质 【学习目标】 1.了解不等式的意义,认识不等式和等式都刻画了现实世界中的数量关系; 2. 理解不等式的三条基本性质,并会简单应用; 3.理解并掌握一元一次不等式的概念及性质; 【要点梳理】 要点一、不等式的概念 一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式. 要点诠释: (1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大. (2) (3)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立. 类型一、不等式的概念 例1.判断下列各式哪些是等式,哪些是不等式. 例2.(1)4<5; 例3.(2)x2+1>0; 例4.(3)x<2x-5; 例5.(4)x=2x+3; 例6.(5)3a2+a;

例7. (6)a 2+2a≥4a -2. 变式练习: 1.(2017春?城关区校级期末)贵阳市今年5月份的最高气温为27℃,最低气温为18℃,已知某一天的气温为t ℃,则下面表示气温之间的不等关系正确的是( ) A .18<t <27 B .18≤t <27 C .18<t≤27 D .18≤t≤27 2.(2017春?未央区校级月考)下列式子:①a+b=b+a ;②-2>-5;③x≥-1;④ 31y-4<1;⑤2m≥n ;⑥2x-3,其中不等式有( ) A .2个 B .3个 C .4个 D .5个 3.(2017春?南山区校级月考)下面给出了6个式子:?3>0; x+3y >0; x=3;④x-1;⑤x+2≤3;⑥2x≠0;其中不等式有( ) A .2个 B .3个 C .4个 D .5个 4.(2017春?太原期中)学校组织同学们春游,租用45座和30座两种型号的客车,若租用45座客车x 辆,租用30座客车y 辆,则不等式“45x+30y≥500”表示的实际意义是( ) A .两种客车总的载客量不少于500人 B .两种客车总的载客量不超过500人 C .两种客车总的载客量不足500人 D .两种客车总的载客量恰好等于500人 5.已知有理数m ,n 的位置在数轴上如图所示,用不等号填空. (1)n-m 0;(2)m+n 0;(3)m-n 0;(4)n+1 0;(5)m?n 0; (6)m+1 0. 例2.用不等式表示: (1)x 与-3的和是负数; (2)x 与5的和的28%不大于-6; (3)m 除以4的商加上3至多为5. 举一反三: 【变式】a a 的值一定是( ).

高考数学专题练习:不等式与线性规划

高考数学专题练习:不等式与线性规划 1。若不等式(-2)n a -3n -1-(-2)n <0对任意正整数n 恒成立,则实数a 的取值范围是( ) A 。? ? ???1,43 B 。? ???? 12,43 C 。? ? ???1,74 D 。? ?? ??12,74 答案 D 解析 当n 为奇数时,要满足2n (1-a )<3n -1恒成立, 即1-a <13× ? ????32n 恒成立,只需1-a <13×? ????321,解得a >1 2; 当n 为偶数时,要满足2n (a -1)<3n -1恒成立, 即a -1<13× ? ????32n 恒成立,只需a -1<13×? ????322,解得a <7 4。 综上,12<a <7 4,故选D 。 2。已知a >0,b >0,且a ≠1,b ≠1,若log a b >1,则( ) A 。(a -1)(b -1)<0 B 。(a -1)(a -b )>0 C 。(b -1)(b -a )<0 D 。(b -1)(b -a )>0 答案 D 解析 取a =2,b =4,则(a -1)(b -1)=3>0,排除A ;则(a -1)(a -b )=-2<0,排除B ;(b -1)(b -a )=6>0,排除C,故选D 。 3。设函数f (x )=??? x 2-4x +6,x ≥0, x +6,x <0,则不等式f (x )>f (1)的解集是( ) A 。(-3,1)∪(3,+∞) B 。(-3,1)∪(2,+∞) C 。(-1,1)∪(3,+∞) D 。(-∞,-3)∪(1,3) 答案 A 解析 f (1)=3。由题意得??? x ≥0,x 2-4x +6>3或??? x <0, x +6>3, 解得-33。 4。 若a ,b ,c 为实数,则下列命题为真命题的是( ) A 。若a >b ,则ac 2>bc 2 B 。若a <b <0,则a 2>ab >b 2

基本不等式求最值技巧

基本不等式求最值技巧 一. 加0 在求和的最小值时,为了利用积的定值,有时需要加上零的等价式。 例1. 已知,且,求的最小值。 解:因为,所以,所以, ,所以。式中等号当且仅当时成立,此时。所以当时, 取最小值。 例2. 设,且,求的最小值。 解:因为,,所以,所以,且。 所以 式中等号当且仅当时成立,此时。将它代入 中得。所以当时,取最小值 。

2. 乘1 在求积的最大值时,为了凑出和的定值,有时需要乘上1的等价式。 例3. 已知,且,求xyz的最大值。 解:因为,且, 所以 式中等号当且仅当时成立,此式可写为,令其比值为t,则,,,把它们代入,解得。所以当, 时,xyz取最大值。 3. 拆式 在运用基本不等式求最值时,为满足解题需要,有时要进行拆式。 例4. 求函数的最小值。 解:因为,所以, 所以

式中等号当且仅当时成立,解得,所以当时,。例5. 设且,求的最小值。 解:因为, 所以 式中等号当且仅当时成立,此时,所以当时,取最小值3。 4. 拆幂 在求积的最大值时,为了满足和为定值时对项数的要求,有时要拆幂。 例6. 设,求函数的最大值。 解:因为,所以 所以 式中等号当且仅当时即时成立。所以当时,。例7. 设,且为定值,求的最大值。

解:因为 所以 式中等号当且仅当时成立,此时。 所以当,取最大值。 5. 平方 在求积的最大值时,有时要凑出和的定值很困难,但积式平方后却容易凑出和的定值。 例8. 设,且为定值,求的最大值。 解:因为, 所以 所以 式中等号当且仅当时成立,此时

所以当时,取最大值。 例9. 已知,求的最大值。 解:因为,所以, 所以 所以。式中等号当且仅当,即时成立。所以当时,。

相关主题