搜档网
当前位置:搜档网 › 基本不等式教案(新人教必修)

基本不等式教案(新人教必修)

基本不等式教案(新人教必修)
基本不等式教案(新人教必修)

§3.4基本不等式2

a b

ab +≤

第1课时

授课类型:新授课 【教学目标】

1.知识与技能:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等; 2.过程与方法:通过实例探究抽象基本不等式;

3.情态与价值:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣 【教学重点】

应用数形结合的思想理解不等式,并从不同角度探索不等式2

a b

ab +≤的证明过程; 【教学难点】 基本不等式2

a b

ab +≤等号成立条件 【教学过程】

1.课题导入

基本不等式2

a b

ab +≤

的几何背景: 如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不等关系吗?

教师引导学生从面积的关系去找相等关系或不等关系。

2.讲授新课

1.探究图形中的不等关系

将图中的“风车”抽象成如图,在正方形ABCD 中右个全等的直角三角形。设直角三角形的两条直角边长为a,b 那么正方形的边长为22a b +。这样,4个直角三角形的面积的和是2ab ,正方形的面积为2

2

a b +。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:2

22a b ab +≥。

当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有

222a b ab +=。

2.得到结论:一般的,如果)""(2R,,2

2

号时取当且仅当那么==≥+∈b a ab b a b a 3.思考证明:你能给出它的证明吗? 证明:因为 2

2

2

)(2b a ab b a -=-+

22,()0,,()0,a b a b a b a b ≠->=-=时当时

所以,0)(2≥-b a ,即.2)(2

2ab b a ≥+ 4.1)从几何图形的面积关系认识基本不等式2

a b

ab +≤

特别的,如果a>0,b>0,我们用分别代替a 、b ,可得2a b ab +≥,

通常我们把上式写作:(a>0,b>0)2

a b

ab +≤ 2)从不等式的性质推导基本不等式2

a b

ab +≤

用分析法证明:

要证

2

a b

ab +≥ (1) 只要证 a+b ≥ (2) 要证(2),只要证 a+b- ≥0 (3)

要证(3),只要证 ( - )2 (4) 显然,(4)是成立的。当且仅当a=b 时,(4)中的等号成立。 3)理解基本不等式2

a b

ab +≤

的几何意义 探究:课本第110页的“探究”

在右图中,AB 是圆的直径,点C 是AB 上的一点,AC=a,BC=b 。过点C 作垂直于AB 的弦DE ,连接AD 、BD 。你能利用这个图形得出基本不等式2

a b

ab +≤的几何解释吗?

易证Rt △A CD ∽Rt △D CB ,那么CD 2

=CA ·CB

即CD =ab . 这个圆的半径为

2b a +,显然,它大于或等于CD ,即ab b

a ≥+2

,其中当且仅当点C 与圆心重合,即a =b 时,等号成立. 因此:基本不等式2

a b

ab +≤几何意义是“半径不小于半弦” 评述:1.如果把

2

b

a +看作是正数a 、

b 的等差中项,ab 看作是正数a 、b 的等比中项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项.

2.在数学中,我们称

2

b

a +为a 、

b 的算术平均数,称ab 为a 、b 的几何平均数.本节定理还可叙述为:两个正数的算术平均数不小于它们的几何平均数. [补充例题]

例1 已知x 、y 都是正数,求证:

(1)

y

x

x y +≥2;

(2)(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3

. 分析:在运用定理:

ab b

a ≥+2

时,注意条件a 、b 均为正数,结合不等式的性质(把握好每条性质成立的条件),进行变形.

解:∵x ,y 都是正数 ∴

y x >0,x

y >0,x 2>0,y 2>0,x 3>0,y 3

>0 (1)

x

y

y x x y y x ?≥+2=2即x y y x +≥2.

(2)x +y ≥2xy >0 x 2+y 2≥222y x >0 x 3+y 3≥23

3y x >0

∴(x +y )(x 2

+y 2

)(x 3

+y 3

)≥2xy ·222y x ·233y x =8x 3y 3

即(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3

.

3.随堂练习

1.已知a 、b 、c 都是正数,求证

(a +b )(b +c )(c +a )≥8abc

分析:对于此类题目,选择定理:ab b

a ≥+2

(a >0,b >0)灵活变形,可求得结果.

解:∵a ,b ,c 都是正数 ∴a +b ≥2ab >0

b +

c ≥2bc >0 c +a ≥2ac >0

∴(a +b )(b +c )(c +a )≥2ab ·2bc ·2ac =8abc 即(a +b )(b +c )(c +a )≥8abc .

4.课时小结

本节课,我们学习了重要不等式a 2

+b 2

≥2ab ;两正数a 、b 的算术平均数(2

b

a +),几何平均数(a

b )及它们的关系(

2

b

a +≥a

b ).它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.它们既是不等式变形的基本工具,又是求函数最值

的重要工具(下一节我们将学习它们的应用).我们还可以用它们下面的等价变形来解决问

题:ab ≤222b a +,ab ≤(2

b a +)2

.

5.评价设计

课本第113页习题[A]组的第1题

课题: §3.42

a b

+≤

第2课时

授课类型:新授课 【教学目标】

1.知识与技能:2

a b

+≤;会应用此不等式求某些函数的最值;能够解决一些简单的实际问题

22

a b

+≤

,并会用此定理求某些函数的最大、最小值。

3.情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德。 【教学重点】

2

a b

+≤的应用 【教学难点】

2

a b

+≤求最大值、最小值。 【教学过程】

1.课题导入

1.重要不等式:

如果)""(2R,,2

2

号时取当且仅当那么==≥+∈b a ab b a b a 2.基本不等式:如果a,b 是正数,那么).""(2

号时取当且仅当==≥+b a ab b

a 3. ??

b a b

a ,2

为+的算术平均数,称b a ab ,为的几何平均数. ab b a ab b a ≥+≥+2

222和

成立的条件是不同的:前者只要求a,b 都是实数,而后者

要求a,b 都是正数。

2.讲授新课

例1(1)用篱笆围成一个面积为100m 2

的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短。最短的篱笆是多少?

(2)段长为36 m 的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?

解:(1)设矩形菜园的长为x m ,宽为y m ,则xy=100,篱笆的长为2(x+y ) m 。由

2

x y

+≥,

可得 x y +≥ 2()40x y +≥。等号当且仅当x=y 时成立,此时x=y=10.

因此,这个矩形的长、宽都为10m 时,所用的篱笆最短,最短的篱笆是40m. (2)解法一:设矩形菜园的宽为x m ,则长为(36-2x )m ,其中0<x <

2

1

,其面积S =x (36-2x )=21·2x (36-2x )≤2

12

2236236()28x x +-=

当且仅当2x =36-2x ,即x =9时菜园面积最大,即菜园长9m ,宽为9 m 时菜园面积最

大为81 m 2

解法二:设矩形菜园的长为x m.,宽为y m ,则2(x+y)=36, x+y=18,矩形菜园的面积为xy m 2。由

18

922

x y +≤

==,可得 81xy ≤ 当且仅当x=y,即x=y=9时,等号成立。

因此,这个矩形的长、宽都为9m 时,菜园的面积最大,最大面积是81m 2

归纳:1.两个正数的和为定值时,它们的积有最大值,即若a ,b ∈R +

,且a +b =M ,M

为定值,则ab ≤4

2

M ,等号当且仅当a =b 时成立.

2.两个正数的积为定值时,它们的和有最小值,即若a ,b ∈R +

,且ab =P ,P 为

定值,则a +b ≥2P ,等号当且仅当a =b 时成立.

例2 某工厂要建造一个长方体无盖贮水池,其容积为4800m 3,深为3m ,如果池底每1m 2的造价为150元,池壁每1m 2的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元?

分析:此题首先需要由实际问题向数学问题转化,即建立函数关系式,然后求函数的最值,其中用到了均值不等式定理。

解:设水池底面一边的长度为x m ,水池的总造价为l 元,根据题意,得

)1600

(720240000x

x l +

+= 297600

4027202400001600

2720240000=??+=?

?+≥x

x 当.2976000,40,1600

有最小值时即l x x

x ==

因此,当水池的底面是边长为40m 的正方形时,水池的总造价最低,最低总造价是297600元

评述:此题既是不等式性质在实际中的应用,应注意数学语言的应用即函数解析式的建立,

又是不等式性质在求最值中的应用,应注意不等式性质的适用条件。

归纳:用均值不等式解决此类问题时,应按如下步骤进行:

(1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数; (2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题; (3)在定义域内,求出函数的最大值或最小值; (4)正确写出答案.

3.随堂练习

1.已知x ≠0,当x 取什么值时,x 2

+281

x

的值最小?最小值是多少? 2.课本第113页的练习1、2、3、4

4.课时小结

本节课我们用两个正数的算术平均数与几何平均数的关系顺利解决了函数的一些最值问题。在用均值不等式求函数的最值,是值得重视的一种方法,但在具体求解时,应注意考查下列三个条件:(1)函数的解析式中,各项均为正数;(2)函数的解析式中,含变数的各项的和或积必须有一个为定值;(3)函数的解析式中,含变数的各项均相等,取得最值即用均

值不等式求某些函数的最值时,应具备三个条件:一正二定三取等。

5.评价设计

课本第113页习题[A]组的第2、4题

课题: §3.42

a b

+≤

第3课时

授课类型:习题课 【教学目标】

1.知识与技能:2

a b

+≤

;会用此不等式证明不等式,会应用此不等式求某些函数的最值,能够解决一些简单的实际问题;

22

a b

+,并会用此定理求某些函数的最大、最小值。

3.情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德。 【教学重点】

2

a b

+≤

,会用此不等式证明不等式,会用此不等式求某些函数的最值 【教学难点】

利用此不等式求函数的最大、最小值。 【教学过程】

1.课题导入

1.基本不等式:如果a,b 是正数,那么

).""(2

号时取当且仅当==≥+b a ab b

a

22

a b

+≤

求最大(小)值的步骤。 2.讲授新课

1)利用基本不等式证明不等式

例1 已知m>0,求证

24

624m m

+≥。 [思维切入]因为m>0,所以可把24

m

和6m 分别看作基本不等式中的a 和b, 直接利用基本不

等式。

[证明]因为 m>0,,由基本不等式得

24

6221224m m +≥==?= 当且仅当

24

m

=6m ,即m=2时,取等号。 规律技巧总结 注意:m>0这一前提条件和

24

6m m

?=144为定值的前提条件。 3.随堂练习1

[思维拓展1] 已知a,b,c,d 都是正数,求证()()4ab cd ac bd abcd ++≥.

[思维拓展2] 求证2

2

2

2

2

()()()a b c d ac bd ++≥+.

例2 求证:

4

73

a a +≥-. [思维切入] 由于不等式左边含有字母a,右边无字母,直接使用基本不等式,无法约掉字母a,而左边

44(3)333

a a a a +=+-+--.这样变形后,在用基本不等式即可得证.

[证明]

443(3)333733a a a +=+-+≥==-- 当且仅当

4

3

a -=a-3即a=5时,等号成立. 规律技巧总结 通过加减项的方法配凑成基本不等式的形式.

2)利用不等式求最值

例3 (1) 若x>0,求9

()4f x x x =+

的最小值; (2)若x<0,求9

()4f x x x

=+的最大值.

[思维切入]本题(1)x>0和9

4x x

?

=36两个前提条件;(2)中x<0,可以用-x>0来转化. 解 1) 因为 x>0 由基本不等式得

9

()412f x x x =+

≥==,当且仅当94x x =即x=32时, 9()4f x x x

=+取最小值12.

(2)因为 x<0, 所以 -x>0, 由基本不等式得:

99

()(4)(4)()12f x x x x x -=-+=-+-≥==,

所以 ()12f x ≤. 当且仅当94x x -=-即x=-32时, 9

()4f x x x

=+取得最大-12.

规律技巧总结 利用基本不等式求最值时,个项必须为正数,若为负数,则添负号变正.

随堂练习2

[思维拓展1] 求9

()45

f x x x =+-(x>5)的最小值.

[思维拓展2] 若x>0,y>0,且28

1x y

+=,求xy 的最小值.

4.课时小结

2

a b

+证明不等式和求函数的最大、最小值。

5.评价设计

1.证明:2

2

222a b a b ++≥+

2.若1->x ,则x 为何值时1

1

++x x 有最小值,最小值为几?

必修五 3.1不等式与不等关系(第一课时)教案

§3.1不等式与不等关系 【教学目标】 1.知识与技能:通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)的实际背景,掌握不等式的基本性质; 2.过程与方法:通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法; 3.情态与价值:通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯。 【教学重点】 用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题。理解不等式(组)对于刻画不等关系的意义和价值。 【教学难点】 用不等式(组)正确表示出不等关系。 【教学过程】 1.课题导入 在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系。如两点之间线段最短,三角形两边之和大于第三边,等等。人们还经常用长与短、高与矮、轻与重、胖与瘦、大与小、不超过或不少于等来描述某种客观事物在数量上存在的不等关系。在数学中,我们用不等式来表示不等关系。 下面我们首先来看如何利用不等式来表示不等关系。 2.讲授新课 1)用不等式表示不等关系 引例1:限速40km/h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40km/h ,写成不等式就是: 40v ≤ 引例2:某品牌酸奶的质量检查规定,酸奶中脂肪的含量应不少于2.5%,蛋白质的含量p 应不少于2.3%,写成不等式组就是——用不等式组来表示 2.5%2.3% f p ≤??≥? 问题1:设点A 与平面α的距离为d,B 为平面α上的任意一点,则||d AB ≤。 问题2:某种杂志原以每本2.5元的价格销售,可以售出8万本。据市场调查,若单价每提高0.1元,销售

《基本不等式》教案

《基本不等式》教案 教学三维目标: 1、知识与能力目标:掌握基本不等式及会应用基本不等式求最值. 2、过程与方法目标:体会基本不等式应用的条件:一正二定三相等;体会应用基本不等式求最值问题解题策略的构建过程;体会习题的改编过程. 3、情感态度与价值观目标:通过解题后的反思,逐步培养学生养成解题反思的习惯;通过变式练习,逐步培养学生的探索研究精神. 教学重点、难点: 重点:基本不等式在解决最值问题中的应用. 难点:利用基本不等式失效(等号取不到)的情况下采用函数的单调性求解最值. 学情分析与学法指导: 基本不等式是求最值问题中的一种很重要的方法,但学生在运用过程中“一正、二定、三相等”的应用条件一方面容易被忽视,另一方面某些问题看似不符合前面的三个条件,但经过适当的变形又可以转化成运用基本不等式的类型学生解决起来有一定的困难。在本节高三复习课中,结合学生的实际编制了教学案,力求在学生的“最近发展区”设计问题,逐步启发、引导学生课前自主预习、小组合作学习. 教学过程: 一、基础梳理 基本不等式:如果a,b 是正数,那么2a b + (当且仅当a b 时取""=号 ) 代数背景:如果22a b + 2ab (,,a b R ∈当且仅当a b 时取""=号 )(用代换思 想得到基本不等式) 几何背景:半径不小于半弦。 常见变形: (1)ab 22 2a b + (2)222a b + 2 2a b +?? ??? (3)b a a b + 2(a ,b 同号且不为0) 3、算术平均数与几何平均数

如果a 、b 是正数,我们称 为a 、b 的算术平均数,称 的a 、b 几何平均数. 4、利用基本不等式求最值问题(建构策略) 问题: (1)把4写成两个正数的积,当这两个正数取什么值时,它们的和最小? (2)把4写成两个正数的和,当这两个正数取什么值时,它们的积最大? 请根据问题归纳出基本不等式求解最值问题的两种模式: 已知x ,y 都大于0则 (1)“积定和最小”:如果积xy 是定值P ,那么当 时,和x +y 有最小值 ; (2)“和定积最大”:如果和x +y 是定值S ,那么当 时,积xy 有最大值 . 二、课前热身 1、已知,(0,1)a b a b ∈≠且,下列各式最大的是( ) A. 22a b + B. C. 2ab D. a b + 2、已知,,a b c 是实数,求证222a b c ab bc ac ++≥++ 3、.1,0)1(的最小值求若x x x +> .)1(,10)2(的最大值求若x x x -<< 4、大家来挑错 (1)2121=?≥+ x x x x 21的最小值是x x +∴ (2)2121,2=?≥+ ≥x x x x x 则 21,2的最小值是时x x x +≥∴ 5、的最小值求若31,3-+ >a a a 三、课堂探究 1、答疑解惑 方法:小组提交预习中存在的疑问,由其他组学生或教师有针对性地答疑。 2、典例分析 例1、设02,x <<求函数y =. 例2、41,3lg lg x y x x >=++ 设求函数的最值. 变式1:将条件改为01x << 变式2:去掉条件1x > 变式3:将条件改为1000≥x 例3、若正数,3,a b ab a b ab =++满足则的取值范围是 . 变式:求a b +的取值范围.

高中数学必修五-不等关系与不等式-教案

第三章不等式 必修5 3.1 不等关系与不等式 一、教学目标 1.通过具体问题情境,让学生感受到现实生活中存在着大量的不等关系; 2.通过了解一些不等式(组)产生的实际背景的前提下,学习不等式的相关内容; 3.理解比较两个实数(代数式)大小的数学思维过程. 二、教学重点: 用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题.理解不等式(组)对于刻画不等关系的意义和价值. 三、教学难点: 使用不等式(组)正确表示出不等关系. 四、教学过程: (一)导入课题 现实世界和生活中,既有相等关系,又存在着大量的不等关系我们知道,两点之间线段最短,三角形两边之和大于第三边,两边之差小于第三边,等等.人们还经常用长与短,高与矮,轻与重,大与小,不超过或不少于等来描述某种客观事物在数量上存在的不等关系. 在数学中,我们用不等式来表示这样的不等关系.

提问: 1.“数量”与“数量”之间存在哪几种关系?(大于、等于、小于). 2.现实生活中,人们是如何描述“不等关系”的呢?(用不等式描述) 引入知识点: 1.不等式的定义:用不等号<、>、≤、≥、≠表示不等关系的式子叫不等式. 2.不等式a b ≥的含义. 不等式a b ≥应读作“a 大于或者等于b ”,其含义是指“或者a >b ,或者a =b ”,等价于“a 不小于b ,即若a >b 或a =b 之中有一个正确,则a b ≥正确. 3.实数比较大小的依据与方法. (1)如果a b -是正数,那么a b >;如果a b -等于零,那么a b =;如果a b -是负数,那么a b <.反之也成立,就是(a b ->0?a >b ;a b -=0?a =b ;a b -<0?a

高中数学基本不等式及其应用教案设计

实用标准 文档大全基本不等式及其应用教案 教学目的 (1)使学生掌握基本不等式a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)和a3+b3+c3≥3abc(a、b、c∈R+,当且仅当a=b=c时取“=”号)及其推论,并能应用它们证明一些不等式. (2)通过对定理及其推论的证明与应用,培养学生运用综合法进行推理的能力. 教学过程一、引入新课 师:上节课我们学过证明不等式的哪一种方法?它的理论依据是什么? 生:求差比较法,即 师:由于不等式复杂多样,仅有比较法是不够的.我们还需要学习一些有关不等式的定理及证明不等式的方法. 如果a、b∈R,那么(a-b)2属于什么数集?为什么? 生:当a≠b时,(a-b)2>0,当a=b时,(a-b)2=0,所以(a-b)2≥0.即(a-b)2∈ R+∪{0} .. 师:下面我们根据(a-b)2∈R+∪{0}这一性质,来推导一些重要的不等式,同时学习一些证明不等式的方法. 实用标准 文档大全二、推导公式 1.奠基 师:如果a、b∈R,那么有 (a-b)2≥0. ① 把①左边展开,得 a2-2ab+b2≥∴a2+b2≥2ab .. ② ②式表明两个实数的平方和不小于它们的积的2倍.这就是课本中介绍的定理1,它是一个很重要的绝对不等式,对任何两实数a、b都成立.由于取“=”号这种特殊情况,在以后有广泛的应用,因此通常要指出“=”号成立的充要条件.②式中取等号的充要条件是什么呢? 师:充要条件通常用“当且仅当”来表达.“当”表示条件是充分的,“仅当”表示条件是必要的.所以②式可表述为:如果a、b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=”号).

数学苏教版必修5基本不等式(教案)

基本不等式(一) 教学目标: 1. 学会推导并掌握均值不等式定理; 2. 能够简单应用定理证明不等式并解决一些简单的实际问题。 教学重点:均值不等式定理的证明及应用。 教学难点:等号成立的条件及解题中的转化技巧。 教学过程: 重要不等式:如果a 、b ∈R ,那么a 2+b 2 ≥2ab (当且仅当a =b 时取“=”号) 证明:a 2+b 2-2ab =(a -b )2 当a ≠b 时,(a -b )2>0,当a =b 时,(a -b )2=0 所以,(a -b )2≥0 即a 2+b 2 ≥2ab 由上面的结论,我们又可得到 定理:如果a ,b 是正数,那么 a +b 2 ≥ab (当且仅当a =b 时取“=”号) 证明:∵(a )2+(b )2≥2ab 4a +b ≥2ab 即 a +b 2 ≥ab 显然,当且仅当a =b 时,a +b 2 =ab 说明:1)我们称a +b 2 为a ,b 的算术平均数,称ab 为a ,b 的几何平均数,因而, 此定理又可叙述为:两个正数的算术平均数不小于它们的几何平均数. 2)a 2+b 2≥2ab 和a +b 2 ≥ab 成立的条件是不同的:前者只要求a ,b 都是实数,而后者要求a ,b 都是正数. 3)“当且仅当”的含义是充要条件. 4)数列意义 问:a ,b ∈R -? 例题讲解: 例1 已知x ,y 都是正数,求证: (1)如果积xy 是定值P ,那么当x =y 时,和x +y 有最小值2P ; (2)如果和x +y 是定值S ,那么当x =y 时,积xy 有最大值14 S 2 证明:因为x ,y 都是正数,所以 x +y 2 ≥xy (1)积xy 为定值P 时,有x +y 2 ≥P ∴x +y ≥2P 上式当x =y 时,取“=”号,因此,当x =y 时,和x +y 有最小值2P . (2)和x +y 为定值S 时,有xy ≤S 2 ∴xy ≤ 14 S 2 上式当x=y 时取“=”号,因此,当x=y 时,积xy 有最大值14 S 2.

人教版高中数学必修五教案1

第一章解三角形 1.1正弦定理和余弦定理 1.1.1正弦定理 知识结构梳理 几何法证明 正弦定理的证明 向量法证明 已知两角和任意一边 正弦定理正弦定理 正弦定理的两种应用 已知两边和其中一角的对角 解三角形 知识点1 正弦定理及其证明 1正弦定理: 2.正弦定理的证明: (1)向量法证明 (2)平面几何法证明 3.正弦定理的变形 知识点2 正弦定理的应用 1.利用正弦定理可以解决以下两类有关三角形的问题: (1)已知两角和任意一边,求其他两边和另一角; (2)已知两边和其中一边的对角,求另一边的对角,从而进一步求出其他的边和角。 2.应用正弦定理要注意以下三点: (1) (2) (3) 知识点3 解三角形

1.1.2余弦定理 知识点1 余弦定理 1. 余弦定理的概念 2. 余弦定理的推论 3. 余弦定理能解决的一些问题: 4. 理解应用余弦定理应注意以下四点: (1) (2) (3) (4) 知识点2 余弦定理的的证明 证法1: 证法2: 知识点3 余弦定理的简单应用 利用余弦定理可以解决以下两类解三角的问题: (1)已知三边求三角; (2)已知两边和它们的夹角,可以求第三边,进而求出其他角。 例1(山东高考)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,tanC=73. (1) 求C cos ; (2) 若 =2 5 ,且a+b=9,求c.

1.2应用举例 知识点1 有关名词、术语 (1)仰角和俯角: (2)方位角: 知识点2 解三角形应用题的一般思路 (1)读懂题意,理解问题的实际背景,明确已知和所求,准确理解应用题中的有关术语、名称,如仰角、俯角、视角、方位角等,理清量与量之间的关系; (2)根据题意画出示意图,将实际问题抽象成解三角形模型; (3)合理选择正弦定理和余弦定理求解; (4)将三角形的解还原为实际问题,注意实际问题中的单位、结果要求近似等。 1.3实习作业 实习作业的方法步骤 (1)首先要准备皮尺、测角仪器,然后选定测量的现场(或模拟现场),再收集测量数据,最后解决问题,完成实习报告。要注意测量的数据应尽量做到准确,为此可多测量几次,取平均值。要有创新意识,创造性地设计实施方案,用不同的方法收集数据,整理信息。 (2)实习作业中的选取问题,一般有:○1距离问题,如从一个可到达点到一个不可到达点之间的距离,或两个不可到达点之间的距离;②高度问题,如求有关底部不可到达的建筑物的高度问题。一般的解决方法就是运用正弦定理、余弦定理解三角形。

2019-2020年高中数学《 3.4 基本不等式 》教案1 新人教A版必修5

2019-2020年高中数学《 3.4 基本不等式 》教案1 新人教A 版必修5 主备人: 执教者: 【学习目标】 1.知识与技能:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等; 2.过程与方法:通过实例探究抽象基本不等式; 3.情态与价值:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣 【学习重点】应用数形结合的思想理解不等式,并从不同角度探索不等式的证明; 【学习难点】基本不等式等号成立条件 【授课类型】 新授课 【学习方法】 讲练结合 【学习过程】 1.课题导入 基本不等式的几何背景: 如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不等关系吗? 教师引导学生从面积的关系去找相等关系或不等关系。 2.讲授新课 1.探究图形中的不等关系 将图中的“风车”抽象成如图,在正方形ABCD 中右个全等的直角三角形。设直角三角形的两条直角边长为a,b 那么正方形的边长为。这样,4个直角三角形的面积的和是2ab ,正方形的面积为。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:。 当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有。 2.得到结论:一般的,如果 )""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a 3.思考证明:你能给出它的证明吗? 证明:因为 当 22,()0,,()0, a b a b a b a b ≠->=-=时当时 所以,,即 个性设计

基本不等式及其应用-沪教版必修1教案

基本不等式是每年的高考热点,主要考察命题的判定,不等式的证明以及求 最值问题。特别是求最值问题往往在基本不等式的使用条件上设置一些问题。 考 察学生恒等变形的能力,运用基本不等式的和与积转化作用的能力。 教学目标 1. 知识与技能 理解基本不等式,了解变式结构;理解基本不等式的“和”、“积”放缩作用。 会运用基本不等式解决相关的问题。 2. 过程与方法 通过师生互动、学生主动的探究过程,让学生体会研究数学问题的基本思想 方法,学会学习,学会探究。 3. 情感态度与价值观 鼓励学生大胆探索,增强学生的信心,获得探索问题的成功情感体验。逐步 养成学生严谨的科学态度及良好的思维习惯。 重点:运用基本不等式求最值 难点:恰当变形转化,构建出满足运用基本不等式的条件 教学过程: 一、 要点梳理 1、基本不等式 若a 、b € R,则a 2+b 2> 2ab,当且仅当a=b 时取“=” b 2(a 、b 同号) a 3、求最大值、最小值问题 (1) __________________________________________________________ 如果x 、y € (0,+ g ),且xy=p(定值),那么当x=y 时,x+y 有 _______________ (2) __________________________________________________________ 如果x 、y € (0,+ g ),且x+y=s(定值),那么当x=y 时,xy 有 _______________ 例题精讲 例1、若正数a 、b 满足ab=a+b+3,求ab 的取值范围, 1 9 例2、已知x>0、y>0,且一 一 1,求x+y 的最小值 x y 2、 若 a 、b € R',则 常用变形形式: 宁,ab ,当且仅当a=b 时取 ■- ab 2 b 2 ——b a 0,b 0 ④ 2 b 2 2ab ab 2 a 2 b 2 2 概括为:

【新教材】 新人教A版必修一 基本不等式 教案

基本不等式 1.了解基本不等式的证明过程,理解基本不等式及等号成立的条件. 2.会用基本不等式证明简单的不等式及解决简单的最大(小)值问题. 知识梳理 1.基本不等式错误!≥错误! (1)基本不等式成立的条件:a〉0,b〉0 . (2)等号成立的条件:当且仅当a=b时不等式取等号. 2.几个重要不等式 (1)a2+b2≥2ab(a,b∈R); (2)错误!+错误!≥ 2 (a,b同号); (3)ab≤(错误!)2(a,b∈R); (4)错误!≥(错误!)2。 3.基本不等式求最值 (1)两个正数的和为定值,当且仅当它们相等时,其积最大. (2)两个正数的积为定值,当且仅当它们相等时,其和最小. 利用这两个结论可以求某些函数的最值,求最值时,要注意“一正、二定、三相等”的条件. 热身练习 1.若a,b∈R,且ab〉0,则下列不等式中,恒成立的是(D) A.a2+b2>2ab B.a+b≥2错误! C。错误!+错误!〉错误! D。错误!+错误!≥2 A、C中,a=b时不成立,B中,当a与b均为负数时不成立,而对于D,利用基本不等式x+y≥2错误!(x>0,y〉0)成立,故选D. 2.已知a,b为正数,则下列不等式中不成立的是(D) A.ab≤错误! B.ab≤(错误!)2 C。错误!≥错误! D。错误!≥错误! 易知A,B成立,

对于C ,因为a 2+b 2≥2ab ,所以2(a 2+b 2)≥(a +b )2, 所以错误!≥(错误!)2,所以错误!≥错误!,故C 成立. 对于D,取a =4,b =1,代入可知,不等式不成立,故D 不成立. 由以上分析可知,应选D. 3.周长为60的矩形面积的最大值为(A) A .225 B .450 C .500 D .900 设矩形的长为x ,宽为y , 则2(x +y )=60,所以x +y =30, 所以S =xy ≤(x +y 2)2 =225,即S max =225. 当且仅当x =y =15时取“=",故选A 。 4.设函数f (x )=2x +错误!-1(x <0),则f (x )(A) A .有最大值 B .有最小值 C .是增函数 D .是减函数 f (x )=-[(-2x )+(-错误!)]-1≤-2错误!-1, 当且仅当x =-错误!时,等号成立, 所以函数f (x )有最大值,所以选A 。 5.(2017·山东卷)若直线x a +错误!=1(a >0,b 〉0)过点(1,2),则2a +b 的最小值为 8 。 因为直线错误!+错误!=1(a >0,b 〉0)过点(1,2), 所以1a +错误!=1, 所以2a +b =(2a +b )(错误!+错误!)=4+错误!+错误!≥4+2错误!=8, 当且仅当b a =4a b ,即a =2,b =4时,等号成立. 故2a +b 的最小值为8. 利用基本不等式判断大小关系 下列不等式一定成立的是

高中数学必修五基本不等式题型(精编)

高中数学必修五基本不等式题型(精编) 变 2.下列结论正确的是 ( ) A .若a b >,则ac bc > B .若a b >,则22a b > C .若a c b c +<+,0c <,则a b > D >a b > 3. 若m =(2a -1)(a +2),n =(a +2)(a -3),则m ,n 的大小关系正确的是 例2、解下列不等式 (1)2230x x --≥ (2)2280x x -++> (3) 405x x ->- (4)405 x x -≥- (5)112x ≥ (6)已知R a ∈,解关于x 的不等式()()01<--x x a .

变、若不等式02<--b ax x 的解集为{} 32<

例5、 1. 积为定值 (1)函数1y x x =+ (x >0)的最小值是 . (2)设2a >,12 p a a =+-的最大值是 . (3)函数1y x x =+ (x <0)的最小值是 . (4) 变、 (1 )2y = 的最小值是 . (2) . 2. 和为定值 (1) ,y=x(4-x) 的最大值是 . (2), 的最大值是 . 例6、“1”的妙用 1. 2.已知正数,x y 满足21x y +=,则 y x 11+的最小值为______

高中数学《基本不等式》优质课教学设计

《基本不等式》教学设计 一、教学内容解析: 1、本节内容选自《普通高中课程标准实验教科书》(人教A版教材)高中数学必修5第三章第4节基本不等式,是在学习了不等式的性质、一元二次不等式的解法、线性规划的基础上对不等式的进一步的研究,本节是教学的重点,学生学习的难点,内容具有条件约束性、变通灵活性、应用广泛性等的特点; 2、本节主要学习基本不等式的代数、几何背景及基本不等式的证明和应用,为选修4-5进一步学习基本不等式和证明不等式的基本方法打下基础,也是体会数形结合、分类讨论等数学思想,提升数学抽象、直观想象、逻辑推理等数学核心素养的良好素材; 3、在学习了导数之后,可用导数解决函数的最值问题,但是,借助基本不等式解决某些特殊类型的最值问题简明易懂,仍有其独到之处; 4、在高中数学中,不等式的地位不仅特殊,而且重要,它与高中数学很多章节都有联系,尤其与函数、方程联系紧密,因此,不等式才自然而然地成为高考中经久不衰的热点、重点,有时也是难点. 二、学情分析: 1、学生已经掌握的不等式的性质和作差比较法证明不等式对本节课的学习有很大帮助; 2、学生逻辑推理能力有待提高,没有系统学习过证明不等式的基本方法,尤其对于分析法证明不等式的思路以前接触较少; 3、对于最值问题,学生习惯转化为一元函数,根据函数的图像和性质求解,对于根据已知不等式求最值接触较少,尤其会忽略取等号的条件。 三、教学目标: 1、知识与技能:会从不同角度探索基本不等式,会用基本不等式解决简单的最值问题; 2、过程与方法:经历基本不等式的推导过程,体会数形结合、分类讨论等数学思想,提升数学抽象、直观想象、逻辑推理等数学核心素养; 3、情感态度价值观:培养学生主动探索、勇于发现的科学精神,并在探究的过

高中数学必修五基本不等式学案

高中数学必修五基本不等式:ab≤a+b 2(学案) 学习目标:1.了解基本不等式的证明过程.2.能利用基本不等式证明简单的不等式及比较代数式的大小(重点、难点).3.熟练掌握利用基本不等式求函数的最值问题(重点). [自主预习·探新知] 1.重要不等式 如果a,b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=”). 思考:如果a>0,b>0,用a,b分别代替不等式a2+b2≥2ab中的a,b,可得到怎样的不等式? [提示]a+b≥2ab. 2.基本不等式:ab≤a+b 2 (1)基本不等式成立的条件:a,b均为正实数; (2)等号成立的条件:当且仅当a=b时取等号. 思考:不等式a2+b2≥2ab与ab≤a+b 2成立的条件相同吗?如果不同各是 什么? [提示]不同,a2+b2≥2ab成立的条件是a,b∈R;ab≤a+b 2成立的条件 是a,b均为正实数. 3.算术平均数与几何平均数 (1)设a>0,b>0,则a,b的算术平均数为a+b 2,几何平均数为 (2)基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数. 思考:a+b 2≥ab与? ? ? ? ? a+b 2 2 ≥ab是等价的吗? [提示]不等价,前者条件是a>0,b>0,后者是a,b∈R. 4.用基本不等式求最值的结论 (1)设x,y为正实数,若x+y=s(和s为定值),则当x=y=s 2时,积xy有最

小值为2xy . (2)设x ,y 为正实数,若xy =p (积p 为定值),则当x =y =p 时,和x +y 有最大值为(x +y )2 4. 5.基本不等式求最值的条件 (1)x ,y 必须是正数. (2)求积xy 的最大值时,应看和x +y 是否为定值;求和x +y 的最小值时,应看积xy 是否为定值. (3)等号成立的条件是否满足. 思考:利用基本不等式求最值时应注意哪几个条件?若求和(积)的最值时,一般要确定哪个量为定值? [提示] 三个条件是:一正,二定,三相等.求和的最小值,要确定积为定值;求积的最大值,要确定和为定值. [基础自测] 1.思考辨析 (1)对任意a ,b ∈R ,a 2+b 2≥2ab ,a +b ≥2ab 均成立.( ) (2)对任意的a ,b ∈R ,若a 与b 的和为定值,则ab 有最大值.( ) (3)若xy =4,则x +y 的最小值为4.( ) (4)函数f (x )=x 2 +2 x 2+1 的最小值为22-1.( ) [答案] (1)× (2)√ (3)× (4)√ 2.设x ,y 满足x +y =40,且x ,y 都是正数,则xy 的最大值为________. 400 [因为x ,y 都是正数, 且x +y =40,所以xy ≤? ???? x +y 22 =400,当且仅当x =y =20时取等号.] 3.把总长为16 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________ m 2. 16 [设一边长为x m ,则另一边长可表示为(8-x )m ,则面积S =x (8-x )≤? ???? x +8-x 22 =16,当且仅当x =4时取等号,故当矩形的长与宽相等,都为4 m 时面积取到最大值16 m 2.]

(word完整版)高中数学基本不等式及其应用教案

基本不等式及其应用教案 教学目的 (1)使学生掌握基本不等式a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)和a3+b3+c3≥3abc(a、b、c∈R+,当且仅当a=b=c时取“=”号)及其推论,并能应用它们证明一些不等式. (2)通过对定理及其推论的证明与应用,培养学生运用综合法进行推理的能力. 教学过程 一、引入新课 师:上节课我们学过证明不等式的哪一种方法?它的理论依据是什么? 生:求差比较法,即 师:由于不等式复杂多样,仅有比较法是不够的.我们还需要学习一些有关不等式的定理及证明不等式的方法. 如果a、b∈R,那么(a-b)2属于什么数集?为什么? 生:当a≠b时,(a-b)2>0,当a=b时,(a-b)2=0,所以(a-b)2≥0.即(a-b)2∈ R+∪{0}. 师:下面我们根据(a-b)2∈R+∪{0}这一性质,来推导一些重要的不等式,同时学习一些证明不等式的方法. 二、推导公式

1.奠基 师:如果a、b∈R,那么有 (a-b)2≥0. ① 把①左边展开,得 a2-2ab+b2≥0, ∴a2+b2≥2ab. ② ②式表明两个实数的平方和不小于它们的积的2倍.这就是课本中介绍的定理1,它是一个很重要的绝对不等式,对任何两实数a、b都成立.由于取“=”号这种特殊情况,在以后有广泛的应用,因此通常要指出“=”号成立的充要条件.②式中取等号的充要条件是什么呢? 师:充要条件通常用“当且仅当”来表达.“当”表示条件是充分的,“仅当”表示条件是必要的.所以②式可表述为:如果a、b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=”号). 以公式①为基础,运用不等式的性质推导公式②,这种由已知推出未知(或要求证的不等式)的证明方法通常叫做综合法.以公式②为基础,用综合法可以推出更多的不等式.现在让我们共同来探索. 2.探索 师:公式②反映了两个实数平方和的性质,下面我们研究两个以上的实数的平方和,探索可能得到的结果.先考查三个实数.设a、b、c∈R,依次对其中的两个运用公式②,有 a2+b2≥2ab; b2+c2≥2bc;

基本不等式教案第一课时

第 周第 课时 授课时间:20 年 月 日(星期 ) 课题: §3.4 2 a b + 第1课时 授课类型:新授课 【学习目标】 1.知识与技能:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等; 2.过程与方法:通过实例探究抽象基本不等式; 3.情态与价值:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣 【能力培养】 培养学生严谨、规范的学习能力,辩证地分析问题的能力,学以致用的能力,分析问题、解决问题的能力。 【教学重点】 2 a b +≤的证明过程; 【教学难点】 2 a b +≤等号成立条件 【板书设计】

【教学过程】 1.课题导入 2 a b +≤的几何背景: 如图是在北京召开的第24界国际数学家大会的会标,会标是根据 中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风 车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不 等关系吗? 教师引导学生从面积的关系去找相等关系或不等关 系。 2.讲授新课 1.问题探究——探究图形中的不等关系。 将图中的“风车”抽象成如图,在正方形ABCD 中右个全等的直角三角形。设直角三角 形的两条直角边长为a,b 。这样,4个直角三角形的面积的和是2ab ,正方形的面积为22a b +。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥。 当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=。 2.总结结论:一般的,如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a 结论的得出尽量发挥学生自主能动性,让学生总结,教师适时点拨引导。 3.思考证明:你能给出它的证明吗? 证明:因为 2 22)(2b a ab b a -=-+ 当22,()0,,()0,a b a b a b a b ≠->=-=时当时 所以,0)(2≥-b a ,即.2)(22ab b a ≥+

高中数学必修五《基本不等式》优秀教学设计

课题:基本不等式 一、教材分析: 本节课选自《普通高中课程标准实验教科书·数学5·必修》(人教A版)中第三章第四节。本节课主要研究基本不等式的几何背景、代数证明和实际生活中的应用。 基本不等式在现实生活中运用比较广泛。本节课通过从生活与几何背景中得到基本不等式、证明不等式与回归生活解决实际问题的思路,体现新课标“数学有用”的理念。同时,运用基本不等式求最值也是数列研究的基本问题。通过对本节的研究,培养学生数形结合的思想方法。 二、学情分析: 在本节课之前学生已经学习了不等关系与不等式和一元二次不等式及其解法,对不等关系的一般性质和不等式的求解证明有了一定的理解,为基本不等式的学习提供了基础。 授课班级为高一(1)班,我班学生整体基础知识一般、部分学生思维较活跃,能够较好的掌握教材上的内容,但处理、分析问题的能力还有待提高。 三、设计思想: 本课为新授课,积极践行新课程“数学有用”理念,倡导积极主动、勇于探索的学习精神和合作探究式的学习方式;注重提高数学思维能力,在教与学的和谐统一中体现数学思想和文化价值;注重信息技术与数学课程的整合。

四、教学目标: 1、知识与技能: (1) 师生共同探究基本不等式; (2) 了解基本不等式的代数、几何背景及基本不等式的证明; (3) 会简单运用基本不等式。 2、过程与方法: 通过基本不等式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力;遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出基本不等式,培养学生数形结合的思维能力。 3、情感、态度与价值观: (1)培养学生举一反三的逻辑推理能力,并通过不等式的几何解释,丰富学生数形结合的想象力; (2) 通过具体的现实问题提出、分析与解决,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感,体验在学习中获得成功的快乐。 五、教学重点: (1)用数形结合的思想理解并探索基本不等式的证明; (2)运用基本不等式解决实际问题。 教学难点:基本不等式的运用。 重、难点解决的方法策略: 本课在设计上采用了由特殊到一般、从具体图形到抽象代数的教

必修5教案3.1不等关系和不等式

3.1不等关系和不等式 (一)教学目标 1.知识与技能:使学生感受到在现实世界和日常生活中存在着大量的不等关系,在学生了解了一些不等式(组)产生的实际背景的前提下,学习不等式的有关内容。 2.过程与方法:以问题方式代替例题,学习如何利用不等式研究及表示不等式,利用不等式的有关基本性质研究不等关系; 3.情态与价值:通过学生在学习过程中的感受、体验、认识状况及理解程度,注重问题情境、实际背景的的设置,通过学生对问题的探究思考,广泛参与,改变学生学习方式,提高学习质量。 (二)教学重、难点 重点:用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题,理解不等式(组)对于刻画不等关系的意义和价值。 难点:用不等式(组)正确表示出不等关系。 (三)教学设想 [创设问题情境] 问题1:设点A 与平面α的距离为d ,B 为平面α上的任意一点,则d ≤AB 。 问题2:某种杂志原以每本2.5元的价格销售,可以售出8万本。根据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本。若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元? 分析:若杂志的定价为x 元,则销售的总收入为 2.580.20.1x x -? ?-? ??? 万元。那么不等关系“销售的总收入不低于20万元”可以表示为不等式 2.580.20.1x x -? ?-? ?? ?≥20 问题3:某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 两种,按照生产的要求,600mm 钢管的数量不能超过500mm 钢管的3倍。怎样写出满足上述所有不等关系的不等式呢? 分析:假设截得500mm 的钢管x 根,截得600mm 的钢管y 根.. 根据题意,应有如下的不等关系: (1)解得两种钢管的总长度不能超过4000mm ; (2)截得600mm 钢管的数量不能超过500mm 钢管数量的3倍; (3)解得两钟钢管的数量都不能为负。 由以上不等关系,可得不等式组: 5006004000300 x y x y x y +≤??≥??≥??≥? [练习]:第82页,第1、2题。 [知识拓展] 设问:等式性质中:等式两边加(减)同一个数(或式子),结果仍相等。不等式是否

基本不等式完整版(非常全面)教案资料

基本不等式完整版(非 常全面)

基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若*,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则2 2?? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x +≥ (当且仅当1x =时取 “=”) (2)若0x <,则1 2x x +≤- (当且仅当1x =-时 取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当 b a =时 取“=”) (4)若R b a ∈,,则2 )2(2 22b a b a ab +≤ +≤ (5)若*,R b a ∈,则2 2111 22b a b a ab b a + ≤+≤≤+ (1)若,,,a b c d R ∈,则 22222()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 22222221231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有 22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥ b a 112+ 2、已知c b a ,,为两两不相等的实数,求证: ca bc ab c b a ++>++222 3、已知1a b c ++=,求证:2221 3 a b c ++≥ 4、已知,,a b c R +∈,且1a b c ++=,求证: abc c b a 8)1)(1)(1(≥--- 5、

高中数学《基本不等式》公开课优秀教学设计

《§3.4.1基本不等式》的教学设计 教材:人教版高中数学必修5第三章 一、教学内容解析 本节选自人教版必修五的第三章第四节的第一课时,它是在学生学习完“不等式的性质”、“一元二次不等式及其解法”及“二元一次不等式(组)与简单的线性规划问题”的基础上对不等式的进一步研究。在探究基本不等式内涵和证明的过程中,能够培养学生观察问题、分析问题和解决问题的能力;培养学生形成数形结合的思想意识;在应用的过程中,通过对条件的转换和变式,有助于培养学生形成类比归纳的思想和习惯,进而形成严谨的思维方式。 二、教学目标设置 1.通过探究“数学家大会的会标”及感受会标的变形,引导学生从几何图形中获得两个基本不等式,了解基本不等式的几何背景培养学生观察问题、分析问题和解决问题的能力;培养学生形成数形结合的思想意识; 2.进一步让学生探究不等式的代数证明,加深对基本不等式的理解和认识,提高学生逻辑推理的能力和严谨的思维方式。 3.通过例题让学生学会用基本不等式求最大值和最小值。 三、学生学情分析 对于高一的学生,不等式并不陌生,前面学习了不等式及不等式的性质,能够进行简单的数与式的比较,本节所学内容就用到了不等式的性质,所以学生可以在巩固不等式性质的前提下学习基本不等式,接受上是容易的,争取让学生真正意义上理解基本不等式。 四、教学策略分析 在教学过程中学生往往会直接应用不等式而忽略成立的条件,因此本节课的重点内容是对基本不等式的理解和运用。在运用过程中生成的规律,在学生做题时能灵活运用是难点,因此理解基本不等式和灵活应用基本不等式十本节课难点 五、教学过程: (一)情景引入 下图是2002年在北京召开的第24届国际数学家大会会议现场。

基本不等式的应用教学设计说明

教学设计与反思 课题:3.4.3 基本不等式 2b a a b + ≤的应用(二) 科目:数学教学对象:高二(290)学生课时:1课时提供者:和安单位:安一中 一、教学容分析 本节课的研究是起到了对学生以前所学知识与方法的复习、应用,进而构建他们更完善的知识网络.数学建模能力的培养与锻炼是数学教学的一项长期而艰苦的任务,这一点,在本节课是真正得到了体现和落实. 根据本节课的教学容,应用观察、阅读、归纳、逻辑分析、思考、合作交流、探究,对基本不等式展开实际应用,进行启发、探究式教学并使用投影仪辅助. 二、教学目标 (一)知识目标:构建基本不等式解决函数的值域、最值问题; (二)能力目标:让学生探究用基本不等式解决实际问题 (三)情感、态度和价值观目标: 通过具体问题的解决,让学生去感受、体验现实世界和日常生活中存在着大量的不等量关系并需要从理性的角度去思考,鼓励学生用数学观点进行类比、归纳、抽象,使学生感受数学、走进数学、培养学生严谨的数学学习习惯和良好的思维习惯; 三、学习者特征分析 在本节课的教学过程中,仍应强调不等式的现实背景和实际应

1.采用探究法,按照观察、阅读、归纳、思考、交流、逻辑分析、抽象应用的方法进行启发式教学; 2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用; 3.设计较典型的具有挑战性的问题,激发学生去积极思考,从而培养他们的数学学习兴趣. 教学重点:1.构建基本不等式解决函数的值域、最值问题. 2.让学生探究用基本不等式解决实际问题; 教学难点:1.让学生探究用基本不等式解决实际问题; 2.基本不等式应用时等号成立条件的考查;

基本不等式公开课教案

基本不等式 2 a b + 授课人:祁玉瑞授课类型:新授课 一、知识与技能: 使学生了解基本不等式的代数、几何背景,学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;学会应用基本不等式解决简单的数学问题。 过程与方法: 通过探索基本不等式的过程,让学生体会研究数学问题的基本思想方法,学会学习,学会探究。 情感态度与价值观: 在探索过程中,鼓励学生大胆尝试,大胆猜想,并能对猜想进行证明,增强学生的信心,获得探索问题的成功情感体验。逐步养成学生严谨的科学态度及良好的思维习惯。同时通过本节内容的学习,让学生体会数学来源于生活,提高学习数学的兴趣。 二、重点及难点 重点:应用数形结合的思想理解不等式,2a b +≤ 的证明过程。 难点:2a b +≤ 等号成立条件。 三、教学过程

1.课题导入 2a b ab +≤的几何背景: 如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不等关系吗? 教师引导学生从面积的关系去找相等关系或不等关系。 2.讲授新课 1.探究图形中的不等关系 将图中的“风车”抽象成如图,在正方形ABCD 中右个全等的直角三角形。设直角三角 形的两条直角边长为a,b 那么正方形的边长为22a b +。这样,4个直角三角形的面积的和 是2ab ,正方形的面积为22a b +。由于4个直角三角形的面积小于正方形的面积,我们就 得到了一个不等式:222a b ab +≥。 当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=。 2.得到结论:一般的,如果 ) ""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a 3.思考证明:你能给出它的证明吗? 证明:因为222)(2b a ab b a -=-+

相关主题