搜档网
当前位置:搜档网 › 低功耗的常系数乘法器的设计

低功耗的常系数乘法器的设计

低功耗的常系数乘法器的设计
低功耗的常系数乘法器的设计

一种低功耗的常系数乘法器的设计
李京 沈泊 专用集成电路与系统国家重点实验室(复旦大学) 摘要: 本文基于并行乘法器结构设计了一种新型的低功耗常系数乘法器。它采用了CSD (Canonical sign-digital)编码,Wallace Tree 乘法算法,结合采用了截断处理,变数校正的优 化技术,实现了一种适用于DCT/IDCT变换的常系数乘法器。该乘法器的输入字长为15bits (Q3格式) 输出字长为15bits Q3格式) 常系数字长为15bits Q14格式) 采用SMIC 0.18 um ( , ( 。 工艺进行综合,本设计的面积为13974 m2 ,并在100MHZ的时钟频率下功耗为0.69mw。通 过与其它算法实现的乘法器进行分析与比较, 说明了本设计在满足性能的同时, 实现了较小 的面积与较低的功耗。 关键词:低功耗 常系数乘法器 CSD编码 Wallace Tree 变数校正 DCT/IDCT变换
A Low Power Design of Constant Coefficient Multiplier
Li Jing Shen Bo State Key Laboratory of ASIC & System (Fudan University) Abstract: In this paper a low power constant coefficient multiplier using CSD (Canonical sign-digital) coding Wallace Tree addition algorithm is presented. To reduce the area and power consumption of the multiplier, truncation and variable correction are adopted. For quantitative analysis the performance, the multipliers are synthesized in SMIC 0.18 um Technology. The proposed design has a measured power dissipation of 0.69mw and area of 13974 m better than other constant coefficient multipliers. Keywords: Low Power, Constant Coefficient Multiplier, Canonical sign-digital, Wallace Tree, Variable Correction, DCT/IDCT
2
at 100 MHZ, which is
1
引言
常系数乘法器在很多实时信号处理场合有着 广 泛 的 应 用 , 例 如 在 DFT (Discrete Fourier Transforms), DCT (Discrete Cosine Transforms)等数 字信号处理电路中, 常系数乘法器是一个重要的功 能部件。 尽管速度是常系数乘法器一个主要的设计指 标, 但面积与功耗同样也是在设计中重要的考虑因
素。尤其是功耗,正日益成为高性能芯片的设计瓶 颈。因此,设计一个高速,低功耗,适合VLSI实 现的常系数乘法器具有重要意义。 现有的乘法器主要有两种结构,一种是以DA (Distributed Arithmetic)算法实现的乘法器,另一 种是以改进型BOOTH算法实现的乘法器。 以DA算法实现的乘法器将部分积预先存放在 ROM中,用ROM与累加器代替乘法器,从而降低 硬件的消耗。由于DA算法结构中数据的串行操作
1

导致运算效率的降低, 因此它需要相对较高的工作 频率来完成乘法运算,这就导致以DA算法实现的 乘法器功耗相对较高。 改进型BOOTH算法通过减少部分积的数量来 优化乘法操作,但是由于在改进型BOOTH算法中 乘数与被乘数都不是常数, 因此其面积与功耗均较 大。 本文基于并行乘法器结构设计了一种新型的 低功耗常系数乘法器。它采用了CSD (Canonical sign-digital)编码,Wallace Tree 乘法算法,结合采 用了截断处理,变数校正的优化技术,实现了一种 适用于DCT/IDCT变换的常系数乘法器。 本文的内容安排如下: 在第二节将讨论常系数 乘法器原理以及实现算法;第三节将研究适用于 DCT/IDCT变换的常系数乘法器设计;最后,通过 与其它算法实现的乘法器进行分析与比较, 说明了 这种新型常系数乘法器的优点。
半加器 全加器
和数 进位
图 1 全精度 CSD Wallace Tree 常系数乘法器 在许多应用中,包括在DCT/IDCT变换当中为 了避免字长过长导致不必要的硬件开销, 需要进行 园整与截断操作, 即将部分积中的一部分最低有效 字符列截断。 进行截断处理有助于减少乘法器的面 积,降低功耗以及减少延迟时间。
2
常系数乘法器原理及实现算法
在常系数乘法器的设计当中有一个操作数是 固定的, 因此可以通过对该操作数的优化来减少部 分积的数量从而减少硬件的消耗。 CSD编码是一种 三元数值编码系统,即将符号数用 (-1,0,1) 来表示。 对于任一具有最少-1和1比特位数的二进 制数CSD编码表示具有其唯一形式。因此,CSD编 码能有效的在乘法运算中减少部分积的乘积项, 从 而减少所用加法器与减法器的数量。
二进制补码表 示
011111011000101
非零位个 数
CSD编码表示
非零位 个数
图 2 截断处理 CSD Wallace Tree 常系数乘法器 由于在进行数据截断处理的同时必然会带来 截断误差, 因此必须通过校正处理来补偿这些截断 误差。 现有的校正处理主要有两种方法, 一种是常数 校正,第二种是变数校正。 常数校正在计算时假设部分积中逻辑“1”的 个数与“0”的个数相等。常数校正的补偿向量是 一个常数与乘法器的输入无关。它的计算公式是:
9
100000-10-1000101
5
表1 二进制补码数转换至CSD编码表示 一种快速的二进制补码数的与CSD编码转换算 法在参考文献[5]中有详细的介绍: 通过CSD编码使 得任意二进制数没有相邻的非零位, 减少了非零位 的个数,从而减少了硬件的开销。 Wallace Tree 乘法器是一种并行乘法器,它将 乘法运算中属于进位的相关部分先独立出来运算, 最后再将进位标志一次全部传送到最后一级作加 法运算。从而加快了运算的速度。
round (2 n+k Etotal ) C= 2 n+ k
其中
1 nk 1 Etotal = ∑((q +1) 22n+q (2n1 (1 2k ))) 4 q=0
2

其中k为截断的最低有效字符列的列数。 常数校正的主要缺点有两个。首先,常数校正 只是保证了截断误差小于平均误差, 补偿的精度不 够高。其次,当有一个乘法器的输入为零时,乘法 器的输出不为零而是常数C。 如图3所示,变数校正将第n+k-1列的部分积作 为补偿向量与第n+k-2列部分积相加。从而补偿了 截断n-k-1列(从第2n-2列到第n+k列)部分积所引 起的截断误差。
xk yn 1
xn 1 yk 1 xk 1 yn 1
N1N1 2 (2i +1)πu (2j +1)πv X(u,v) = C(u)C(v)∑∑x(i, j)×cos cos N 2N 2N j=0 i=0
---DCT
x(i, j) =
2 N1 N1 (2i +1)πu (2j +1)πv ∑∑C(i)C( j)X(u,v)×cos 2N cos 2N N j=0 i=0
1 / 2 C ( n) = 1 n=0 n = 1,2,..., N 1
---IDCT
其中:
1
1
xk 2 y n 1
x0 yn 1 x1 yn 1
x0 yn 2 x1 yn 2
xk 1 yn 2 xk yn 2 xn 2 yk 1 xn 1 yk 1
xn 1 yk 1
x0 y1 x1 y1
2D DCT/IDCT 是一种可分离的变换,它们可 以采用行列分解的方式表示为两个一维的DCT、 IDCT的矩阵形式。
xn 2 y1 xn1 y1
x0 y0 x1 y0
+
xn 2 y0 xn1 y0
sn 2
cn 2
Z = CXC T Y = CX T , Z = CY T
sn + k 3
cn + k 3
---DCT ---IDCT
s0
c0
s1 c1 p1
sn 1
cn 1
sn
cn
sn + k 2
cn + k 2
X = C T ZC Y = C T Z T , X = C T Y T
p1 p0
pn 2
pn 1
pn
图3 变数校正乘法矩阵 为了比较常数校正与变数校正的校正结果。 以 输入16位x16位,输出18位的截断处理乘法为例, 根据常数校正补偿向量的计算公式, 补偿向量的值 为5。表2为比较结果。 平均误差 常数校正 变数校正 1.64 0.26 最大误差 5 2.21 标准差 1.46 0.57
上式中输入与输出序列字长为15bits(Q3格 式) 。余弦系数字长为15bits(Q14格式) 。余弦系数 的二进制补码表示及其对应的CSD编码表示的对 应关系见表3所示。
n 二进制补码表示 非零位 个数 1 2 3 4 5 011111011000101 011101100100001 011010100110111 010110101000001 010001110001110 001100001111110 000110001111100 9 7 9 6 7 8 7 100000-10-1000101 1000-10-100100001 10-101010100-100-1 10-10-10101000001 0100100-100100-10 010-1000100000-10 0010-10010000-100 CSD编码表示 非零位 个数 5 5 7 6 5 4 4
表2 常数校正与变数校正的比较 变数校正与常数校正相比具有精度高, 且当有 一个输入为零时,输出也为零的优点,因此在本设 计中采用了变数校正进行向量补偿。
6 7
表3 cos(nπ / 16) 的CSD编码表示 图4为输入变量与常系数 cos(3π / 16) 实现相乘 运算的过程。
3
DCT/IDCT变换的常系数乘法器设计
设 x(i, j ) 为原始图像的输入序列, X (u , v) 为
经过DCT变化的输出序列。 DCT/IDCT可以用以 2D 下的迭代过程完成,详细介绍请参考文献[8]。
3

-s -s s s s -s s
-s -s s s s -s s
-s -s s s s -s
-s -s s s s
-s -s s s s
-s -s s s s
-s -s s s
-s -s s s
-s -s s
-s -s s
-s -s
-s -s
-s
-s
-s
-s -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1
0 1
-s -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 9 7 5 8 6 4 7 5 3 6 4 2 0 1 Simplifying 5 3 1 4 2 0 3 1 2 0 1 0
13 12 11 10 9 7 8 6
13 12 11 10 9 8
SMIC 0.18 um 工艺进行逻辑综合。结果显示,该 常系数乘法器的硬件延迟时间为2.42ns,面积为 13974
13 12 11 10
-s -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 9 8 7 6 5 4 3 2 1 0
13 12 11 10
m 2 , 在 100MHZ 的 时 钟 频 率 下 功 耗 为
0.69mw。
-s s -s 13 -s s s s 13 s 13 s 13 12 -s -13 -12 -s -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 9 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 7 5 8 6 4 7 5 3 6 4 2 0 5 3 1 4 2 0 3 1 2 0 1 0 -0 0 -0 0 12 -13 -12 -11 12 11 12 11 10 11 10 -s -11 -10 9 -10 -9 10 11 10 9 8 9 7 8 6
-s -8 -7 -8 -7 -6 8 7 6 -s 5 -s 4
DA乘法器
改进BOOTH 算法乘法器
本设计
-5 -4 -3 3 -s 2 -s 1 -s
-2 -1 0 -0
最高速度ns
半加器
2.40 16730 1.13
2.86 22549 1.59
2.42 13974 0.69
全加器 和数 进位
面积 m
2
功耗mw @100MHZ
表4 实验结果与性能比较 通过与其它算法实现的乘法器相比较可以看 出,该常系数乘法器满足DCT/IDCT变换用的性能 要求, 并实现占用了较少的硬件资源以及具有较低 的功耗。
图4 输入变量与常系数 cos(3π / 16) 乘法实现过程 限于篇幅, 文中只给出了其中的一个乘法器的 设计,其它不同系数对应乘法器的设计相似。
输入向量
5 结论
在数字信号处理电路中, 常系数乘法器是一个 重要的功能部件。本设计通过采用了CSD编码, Wallace Tree 算法,来减少部分积的数量,提高部 分积相加的速度, 有效的减少了乘法器硬件实现所 用资源和路径延时。采用了截断处理,变数校正的 优化技术有效优化了乘法器的面积功耗与延迟时 间,并减少了截断误差。因此该常系数乘法器设计 适合应用在需要高速乘法运算的数字信号处理电 路中,并可作为IP模块用于DCT/IDCT变换处理器 的设计中。
超前进位加法器
参考文献:
1. M.J.Schulte and E.E.Swartzlander, Jr., “Truncated
图5 DCT/IDCT变换用常系数乘法器结构图
Multiplication with Correction Constant,” in VLSI Signal Processing VI, pp. 388–396, IEEE Press, (Eindhoven, Netherlands), October 1993.
4
实验结果与讨论
2. E.J.King and E.E.Swartzlander, Jr., “Data-Dependent
采用Verilog 硬件描述语言实现了对上节所设 计的DCT/IDCT变换的常系数乘法器实现了行为描 述。在Modelsim 5.5环境下进行功能仿真,并采用
Truncation Scheme for Parallel Multipliers,” in Proceedings of the 31st Asilomar Conference on Signals, Systems, and Computers, 2, pp. 1178–1182, (Pacific
4

Grove, CA), November 1997.
3. E.G.Walters III , “Design Tradeos Using Truncated
Multipliers in FIR Filter Implementations,” Master’s thesis, Lehigh University, May 2002.
4. A.V.Oppenheim and R.W.Schafer, “Discrete-Time
Signal Processing,” Prentice Hall, Upper Saddle River, NJ, 2nd ed., 1999.
5. K.Hwang, “ Computer Arithmetic – Principle,
Architecture , and Design,” John Wiley & Songs, 1979
6. Cheng-Yu Pai; Al-Khalili, A.J,Lynch, W.E.;
“Low-power constant-coefficient multiplier generator”, ASIC/SOC Conference, 2001. Proceedings. 14th Annual IEEE International, pp. 185 – 189, Sept. 2001.
7. August, N.J.; Dong Sam Ha, “Low power design of
DCT and IDCT for low bit rate video codecs”, Multimedia, IEEE Transactions on, Volume: 6, Issue: 3, pp. 414 – 422, June 2004.
8. A Madisetti, A.; Willson, A.N., Jr.; “100 MHz 2-D
8×8 DCT/IDCT processor for HDTV applications”, Circuits and Systems for Video Technology, IEEE Transactions on, Volume: 5 ,Issue: 2 , pp. 158 – 165, April 1995.
5

低功耗的常系数乘法器的设计

一种低功耗的常系数乘法器的设计
李京 沈泊 专用集成电路与系统国家重点实验室(复旦大学) 摘要: 本文基于并行乘法器结构设计了一种新型的低功耗常系数乘法器。它采用了CSD (Canonical sign-digital)编码,Wallace Tree 乘法算法,结合采用了截断处理,变数校正的优 化技术,实现了一种适用于DCT/IDCT变换的常系数乘法器。该乘法器的输入字长为15bits (Q3格式) 输出字长为15bits Q3格式) 常系数字长为15bits Q14格式) 采用SMIC 0.18 um ( , ( 。 工艺进行综合,本设计的面积为13974 m2 ,并在100MHZ的时钟频率下功耗为0.69mw。通 过与其它算法实现的乘法器进行分析与比较, 说明了本设计在满足性能的同时, 实现了较小 的面积与较低的功耗。 关键词:低功耗 常系数乘法器 CSD编码 Wallace Tree 变数校正 DCT/IDCT变换
A Low Power Design of Constant Coefficient Multiplier
Li Jing Shen Bo State Key Laboratory of ASIC & System (Fudan University) Abstract: In this paper a low power constant coefficient multiplier using CSD (Canonical sign-digital) coding Wallace Tree addition algorithm is presented. To reduce the area and power consumption of the multiplier, truncation and variable correction are adopted. For quantitative analysis the performance, the multipliers are synthesized in SMIC 0.18 um Technology. The proposed design has a measured power dissipation of 0.69mw and area of 13974 m better than other constant coefficient multipliers. Keywords: Low Power, Constant Coefficient Multiplier, Canonical sign-digital, Wallace Tree, Variable Correction, DCT/IDCT
2
at 100 MHZ, which is
1
引言
常系数乘法器在很多实时信号处理场合有着 广 泛 的 应 用 , 例 如 在 DFT (Discrete Fourier Transforms), DCT (Discrete Cosine Transforms)等数 字信号处理电路中, 常系数乘法器是一个重要的功 能部件。 尽管速度是常系数乘法器一个主要的设计指 标, 但面积与功耗同样也是在设计中重要的考虑因
素。尤其是功耗,正日益成为高性能芯片的设计瓶 颈。因此,设计一个高速,低功耗,适合VLSI实 现的常系数乘法器具有重要意义。 现有的乘法器主要有两种结构,一种是以DA (Distributed Arithmetic)算法实现的乘法器,另一 种是以改进型BOOTH算法实现的乘法器。 以DA算法实现的乘法器将部分积预先存放在 ROM中,用ROM与累加器代替乘法器,从而降低 硬件的消耗。由于DA算法结构中数据的串行操作
1

数字温度计课程设计报告

课程设计报告书 课程名称:电工电子课程设计 题目:数字温度计 学院:信息工程学院 系:电气工程及其自动化 专业班级:电力系统及其自动化113 学号:6100311096 学生姓名:李超红 起讫日期:6月19日——7月2日 指导教师:郑朝丹职称:讲师 学院审核(签名): 审核日期:

内容摘要: 目前,单片机已经在测控领域中获得了广泛的应用,它除了可以测量电信以外,还可以用于温度、湿度等非电信号的测量,能独立工作的单片机温度检测、温度控制系统已经广泛应用很多领域。 单片机是一种特殊的计算机,它是在一块半导体的芯片上集成了CPU,存储器,RAM,ROM,及输入与输出接口电路,这种芯片称为:单片机。由于单片机的集成度高,功能强,通用性好,特别是它具有体积小,重量轻,能耗低,价格便宜,可靠性高,抗干扰能力强和使用方便的优点,使它迅速的得到了推广应用,目前已成为测量控制系统中的优选机种和新电子产品中的关键部件。单片机已不仅仅局限于小系统的概念,现已广泛应用于家用电器,机电产品,办公自动化用品,机器人,儿童玩具,航天器等领域。 本次课程设计,就是用单片机实现温度控制,传统的温度检测大多以热敏电阻为温度传感器,但热敏电阻的可靠性差,测量温度准确率低,而且必须经过专门的接口电路转换成数字信号才能由单片机进行处理。本次采用DS18B20数字温度传感器来实现基于51单片机的数字温度计的设计。 本文介绍了一个基于STC89C52单片机和数字温度传感器DS18B20的测温 系统,并用LED数码管显示温度值,易于读数。系统电路简单、操作简便,能 任意设定报警温度并可查询最近的10个温度值,系统具有可靠性高、成本低、功耗小等优点。 关键词:单片机数字温度传感器数字温度计

电子技术基础数字温度计课程设计要点

课程设计(论文) 题目名称数字温度计 课程名称电子技术课程设计 学生姓名屈鹏 学号1141201112 系、专业电气工程系电气工程及其自动化 指导教师李海娜 2013年12月17日

邵阳学院课程设计(论文)任务书 年级专业11级电气工程及其自动化学生姓名屈鹏学号1141201112 题目名称数字温度计设计设计时间2013.12.9—2013.12.20 课程名称电子技术课程设计课程编号121202306 设计地点电工电子实验室408、409 一、课程设计(论文)目的 电子技术课程设计是电气工程及自动化专业的一个重要的实践性教学环节,是对已学模拟电子技术、数字电子技术知识的综合性训练,这种训练是通过学生独立进行某一课题的设计、安装和调试来完成,着重培养学生工程实践的动手能力、创新能力和进行综合设计的能力,并要求能设计出完整的电路或产品,从而为以后从事电子电路设计、研制电子产品奠定坚实的基础。 二、已知技术参数和条件 用中小规模集成芯片设计并制作一数字式温度计,具体要求如下: 1、温度范围0-100度。 2、测量精度0.2度。 3、三位LED数码管显示温度。 三、任务和要求 1.按学校规定的格式编写设计论文。 2.论文主要内容有:①课题名称。②设计任务和要求。③方案选择与论证。④方案的原理框图,系统电路图,以及运行说明;单元电路设计与计算说明;元器件选择和电路参数计算的说明等。 ⑤必须用proteus或其它仿真软件对设计电路仿真调试。对调试中出现的问题进行分析,并说明解决的措施;测试、记录、整理与结果分析。⑥收获体会、存在问题和进一步的改进意见等。 注:1.此表由指导教师填写,经系、教研室审批,指导教师、学生签字后生效; 2.此表1式3份,学生、指导教师、教研室各1份。

数字集成电路物理设计阶段的低功耗技术

数字集成电路物理设计阶段的低功耗技术 张小花(200XXXXXXXX) 2011年六月 摘要:通过一个图像处理SoC的设计实例,着重讨论在物理设计阶段降低CMOS功耗的方法。该方法首先调整 PAD摆放位置、调整宏单元摆放位置、优化电源规划,得到一个低电压压降版图,间接降低CMOS功耗;接着,通过规划开关活动率文件与设置功耗优化指令,直接降低CMOS功耗。最终实验结果表明此方法使CMOS功耗降低了 10.92%。基于该设计流程的图像处理SoC已经通过ATE设备的测试,并且其功耗满足预期目标。 关键词: 集成电路; 物理设计; 电压降; 低功耗 Digital integrated circuit physical design phase of the low power technology luo jiang nan(2008102041) June, 2011 Abstract: through a image processing of SoC design examples, the paper discuss the physical design stage reduce power consumption method. CMOS This method firstly PAD put the position, adjusting adjustment macro unit put the position, optimizing power planning, get a low voltage pressure drop, reduce the power consumption of the CMOS indirect territory; Then, through the planning activities rate documents and set switch power optimization, reduce the power consumption of the CMOS setup instructions directly. Finally the experimental results show that the method that CMOS power consumption was reduced by 10.92%. Based on the design process of the image processing has been through the ATE the SoC test equipment, and its power consumption to meet expectations. Keywords: IC; physical design; voltage drop; low power consumption 1 引言 随着集成电路规模的扩大以及便携式和嵌入式应用需求的增长,低功耗数字集成电路设计技术日益受到重视,已成为集成电路设计的研究热点.通常低功耗设计技术包括三个方面:设计中的低功耗技术、封装的低功耗技术和运行管理的低功耗技术.其中设计中的低功耗技术包括前端设计阶段的 体系结构级低功耗技术、RTL级低功耗技术、门级低功耗技术和物理设计阶段的低功耗 技术.

四象限乘法器

四通道四象限模拟乘法器MLT04 四通道四象限模拟乘法器MLT04 1MLT04的结构功能和主要特点 在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频等调制与解调的过程均可视为两个信号相乘的过程,而集成模拟乘法器正是实现两个模拟量 电压或电流 相乘的电子器件。采用集成模拟乘法器实现上述功能比用分立器件要简单得多,而且性能优越,因此集成模拟乘法器在无线通信、广播电视等方面应用较为广泛。在目前的乘法器中,单通道器件(如MOTOROLA的MC1496)无法实现多通道的复杂运算;二象限器件(如ADI公司的AD539)又会使负信号的应用受到限制。而ADI公司的MLT04则是一款完全四通道四象限电压输出模拟乘法器,这种完全乘法器克服了以上器件的诸多不足之处,适用于电压控制放大器、可变滤波器、多通道功率计算以及低频解调器等电路。非常适合于产生复杂的要求高的波形,尤其适用于高精度CRT显示系统的几何修正。其内部结构及引脚排列如图1所示。 MLT04是由互补双极性工艺制作而成,它包含有四个高精度四象限乘法单元。温度漂移小于0.005%/℃。0.3μV/Hz的点噪声电压使低失真的Y通道只有0.02%的总谐波失真噪声,四个8MHz通道的总静止功耗也仅为150mW。MLT04的工作温度范围为-40℃~+85℃。 MLT04的其它主要特性如下: ●四个独立输入通道; ●四象限乘法信号; ●电压输入电压输出; ●乘法运算无需外部元件; ●电压输出:W=(X×Y)/2.5V,其中X或Y上的线性度误差仅为0.2%; ●具有优良的温度稳定性:0.005%; ●模拟输入范围为±2.5V,采用±5V电压供电; ●低功耗 一般为150mW。

ARM低功耗设计_全面OK

嵌入式系统中的低功耗设计 2008-12-31 18:19:55 作者:电子之都来源:电子之都浏览次数:59 网友评论 0 条 经过近几年的快速发展,嵌入式系统(Embedded system)已经成为电子信息产业中最具增长力的一个分支。随着手机、PDA、GPS、机顶盒等新兴产品的大量应用,嵌入式系统的市场正在以每年30%的速度递增(IDC预测),嵌入式系统的设计也成为软硬件工程师越来越关心的话题。 在嵌入式系统的设计中,低功耗设计(Low-Power Design)是许多设计人员必须面对的问题,其原因在于嵌入式系统被广泛应用于便携式和移动性较强的产品中去,而这些产品不是一直都有充足的电源供应,往往是靠电池来供电,所以设计人员从每一个细节来考虑降低功率消耗,从而尽可能地延长电池使用时间。事实上,从全局来考虑低功耗设计已经成为了一个越来越迫切的问题。 那么,我们应该从哪些方面来考虑低功耗设计呢?笔者认为应从以下几方面综合考虑: 1.处理器的选择 2.接口驱动电路设计 3.动态电源管理 4.电源供给电路的选择 下面我们分别进行讨论: 一、处理器的选择 我们对一个嵌入式系统的选型往往是从其CPU和操作系统(OS)开始的,一旦这两者选定,整个大的系统框架便选定了。我们在选择一个CPU的时候,一般更注意其性能的优劣(比如时钟频率等)及所提供的接口和功能的多少,往往忽视其功耗特性。但是因为CPU 是嵌入式系统功率消耗的主要来源---对于手持设备来讲,它几乎占据了除显示屏以外的整

个系统功耗的一半以上(视系统具体情况而定),所以选择合适的CPU对于最后的系统功耗大小有举足轻重的影响。 一般的情况下,我们是在CPU的性能(Performance)和功耗(Power Consumption)方面进行比较和选择。通常可以采用每执行1M次指令所消耗的能量来进行衡量,即Watt/M IPS。但是,这仅仅是一个参考指标,实际上各个CPU的体系结构相差很大,衡量性能的方式也不尽相同,所以,我们还应该进一步分析一些细节。 我们把CPU的功率消耗分为两大部分:内核消耗功率PCORE和外部接口控制器消耗功率PI/O,总的功率等于两者之和,即P=PCORE+PI/O。对于PCORE,关键在于其供电电压和时钟频率的高低;对于PI/O来讲,除了留意各个专门I/O控制器的功耗外,还必须关注地址和数据总线宽度。下面对两者分别进行讨论: 1、CPU供电电压和时钟频率 我们知道,在数字集成电路设计中,CMOS电路的静态功耗很低,与其动态功耗相比基本可以忽略不计,故暂不考虑。其动态功耗计算公式为: Pd=CTV2f 式中,Pd---CMOS芯片的动态功耗 CT----CMOS芯片的负载电容 V----CMOS芯片的工作电压 f-----CMOS芯片的工作频率 由上式可知,CMOS电路中的功率消耗是与电路的开关频率呈线性关系,与供电电压呈二次平方关系。对于一颗CPU来讲,Vcore电压越高,时钟频率越快,则功率消耗越大。所以,在能够满足功能正常的前提下,尽可能选择低电压工作的CPU能够在总体功耗方面得到

简易数字温度计设计汇总

课程设计任务书 2015—2016学年第二学期 专业:学号姓名: 课程设计名称:电子技术课程设计 设计题目:简易数字温度计的设计 完成期限:自2016 年6月13 日至2016 年 6 月26 日共 2 周 一、设计依据 本课题要求利用电子技术相关知识设计出一个能够实现±0.1℃精度的数字温度计。电路由温度采集电路、数字频率计电路和LED显示电路构成。通过本课题练习,学生的综合知识应用能力、设计能力将有较大提高,对今后从事电子产品的研制、生产、经营维修等打下基础。 二、主要内容及要求 主要内容: 1、给出详细的总体设计方案; 2、完成各部分具体功能电路设计,主要包括基于热敏电阻的温度信号采集电路、555振荡电路、频率计电路、LED显示电路设计; 3、给出正确的电路图,仿真、调试验证各部分设计的正确性; 4、整理设计成果,完成课程设计说明书的撰写。 要求所设计数字温度计的输出温度的范围-20~+45℃、误差范围±0.1℃,具体温度显示采用数码管实现。 三、途径和方法 利用模拟电子技术和数字电子技术的相关知识设计一个数控温度计,可以先查阅相关资料(网上查找或参考相关书籍手册),明确课题的方向和目的,然后学习完成课题所需的理论知识,了解温度信号采集电路、555振荡电路、频率计电路、LED显示电路设计的工作原理;在理解的基础上确定设计电路方案,完成电路设计,画出原理图及PCB印制版图,通过仿真分析验证设计的正确性,最后提交课程设计说明书一份。 四、时间安排

课题讲解:2小时 阅读资料:10小时 撰写设计说明书:12小时 修订设计说明书:6小时 五、主要参考资料 [1]孙丽霞.数字电子技术[M].北京:高等教育出版社,2006:174-196. [2]杨素行.模拟电子技术基础简明教程[M].北京:高等教育出版社,2007:40-92. [3]高吉祥.全国大学生电子设计竞赛培训系列教程-基本技能训练与单元电路设计[M].北京:电子工业出版社,2007:24-57. [4]黄智伟.全国大学生电子设计竞赛训练教程[M].北京:电子工业出版社, 2005.1:43-66. [5]彭介华.电子技术课程设计指导[M] .北京:高等教育出版社,2002.12:37-228. [6]陈永甫.新编555集成电路应用800例[M].北京:电子工业出版,2000:80-130. [7]萧宝瑾. protel 99 SE操作指导与电路设计实例(第一版)[M]. 太原:太原理工大学,2004:198-230. [8]张义申,陆坤. 电子设计技术[M]. 西安:电子科技大学出版,1996:48-62. 指导教师(签字):教研室主任(签字): 批准日期:年月日

数字温度计设计报告

文理学院 单片机课程综合设计 设计题目:数字温度计 学号: 3 姓名:洋 班级: 2013级电气S2班提交日期: 2016.01.14 电子电气工程学院

目录 一.引言 二. 设计务任和要求 三. 系统总体方案及硬件设计 四. 系统软件算法分析 五. 电路仿真 六. 电路板制作过程 七. 电路调试过程 八. 总结与体会 九. 参考文献 十. 源程序

一引言 随着电子技术的不断发展,我们能应用到的电子产品也越来越多。而生活中我们用的很多电子产品都越来越轻巧,价格也越来越便宜.利用电子芯片实现的东西也越来越来越多,比如数字温度计。当然,非电子产品的常用温度计也很便宜。此次课设论文所介绍的是自己动手制作的一个高精度数字温度计。本次课设不但丰富了课余生活,还从实践中学到并了很多新知识,并从中巩固了以前的知识。 用Protel 99软件来设计制作电路板——PCB(Printed circuit Bound)。在PCB上,布置一系列的芯片、电阻、电容等元件,通过PCB上的导线相连,构成电路,一起实现一定的功能。电路通过连接器或者插槽进行输入/输出,有时还有显示部分(如发光二极管LED、.数码显示器等)。可以说,PCB是一块连接板,它的主要目的是为元件提供连接,为整个电路提供输入输出端口和显示,电气连接通性是PCB最重要的特性之一。PCB在各种电子设备中有如下功能:(1)提供集成电路等各种电子元件固定、装配的机械支撑。(2)实现集成电路等各种电子元件之间的布线和电气连接或电绝缘,提供所要的电气特性。(3)为电动装配提供阻焊徒刑,为元器件插装、检查、维修提供识别符和图形。 做本课题的所用到的知识是我们学过的模拟电子电路以及数字逻辑电路等,当然还用到了刚刚学过不久的单片机知识。本次课设是把理论和实践结合起来,这不但可以锻炼自己的动手能力,而且还可以加深对数字逻辑电路和模拟电子电路的学习和理解。同时也激起了我学好单片机的斗志。为了全面清晰的表达,本论文用图文并茂的方式,尽可能详细的地介绍此次设计的全过程。 二设计务任和要求 2.1、基本围-20℃——100℃ 2.2、精度误差小于0.5℃ 2.3、LED 数码直读显示 2.4、可以任意设定温度的上下限报警功能 三系统总体方案及硬件设计 3.1数字温度计设计方案论证 3.1.1方案一 由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D 转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D 转换电路,其中还涉及到电阻与温度的对应值的计算,感温电路比较麻烦。而且在对采集的信号进行放大时容易受温度的影响从而出现较大的偏差。 3.1.2 方案二

集成电路的功耗优化和低功耗设计技术

集成电路的功耗优化和低功耗设计技术 摘要:现阶段各行业的发展离不开对能源的消耗,随着目前节能技术要求的不 断提升,降低功耗成为行业发展的重要工作之一。本文围绕集成电路的功耗优化 以及低功耗设计技术展开分析,针对现阶段常见的低功耗设计方式以及技术进行 探究,为集成电路功耗优化提供理论指导。 关键词:集成电路;功耗优化;低功耗 目前现代节能技术要求不断提升,针对设备的功耗控制成为当前发展的主要问题之一。 针对数字系统的功耗而言,决定了系统的使用性能能否得到提升。一般情况下,数字电路设 计方面,功耗的降低一直都是优先考虑的问题,并且通过对整个结构进行分段处理,同时进 行优化,最后总结出较为科学的设计方案,采用多种方式降低功耗,能够很大程度上提升设 备的使用性能。下面围绕数字电路的功耗优化以及低功耗设计展开分析。 一、设计与优化技术 集成电路的功耗优化和低功耗设计是相对系统的内容,一定要在设计的每个环节当中使 用科学且合理的技术手段,权衡并且综合考虑多方面的设计策略,才能够有效降低功耗并且 确保集成电路系统性能。因为集成电路系统的规模相对较大且具有一定的特殊性,想要完全 依靠人工或者手动的方式来达到这些目的并不现实且缺少可行性,一定要开发与之对应的电 路综合技术。 1 工艺级功耗优化 将工艺级功耗应用到设计当中,通常情况下采取以下两种方式进行功耗的降低: 首先,根据比例调整技术。进行低功耗设计过程中,为了能够实现功耗的有效降低会利 用工艺技术进行改善。在设计过程中,使用较为先进的工艺技术,能够让设备的电压消耗有 效缩减。现阶段电子技术水平不断提升,系统的集成度也随之提高,目前采用的零件的规格 也逐渐缩小,零件的电容也实现了良好的控制,进而能够很大程度上降低功耗。借助比例技术,除了能够将可见晶体管的比例进行调整,而且也能够缩小互连线的比例[1]。目前在晶体 管的比例缩小方面,能够依靠缩小零件的部分重要参数,进而在保持性能不被影响的情况下,通过较小的沟道长度,确保其他的参数不受影响的栅压缩方式,进而将零件的体积进行缩减,同时也缩短了延长的用时,使功耗能够有效降低。针对互连线缩小的方式主要将互连线的整 个结构进行调整,工作人员在进行尺寸缩减的过程中,会面临多方面的难题,比如系统噪音 无法控制,或者降低了电路使用的可靠性等等。 其次,采用封装技术进行降低。采用封装技术,能够让芯片与外部环境进行有效的隔离,进而避免了外部环境给电气设备造成一定的破坏与影响,在封装阶段,芯片的功耗会受到较 大的影响,因此需要使用更加有效的封装手段,才能够提升芯片的散热性,进而有效降低功 耗[2]。在多芯片的情况下,因为芯片与其他芯片之间的接口位置会产生大量的功耗,因此针 对多芯片采取封装技术,首先降低I/0接口的所有功能,接着解决电路延迟的问题,才能够 实现对集成电路的优化。 2 电路功耗优化 一般情况下,对电路级的功耗会选择动态的逻辑设计。在集成电路当中,往往会包含多 种电路逻辑结构,比如动态、静态等等,逻辑结构从本质上而言具有一定的差异性,这种差 异性也使得逻辑结构有着不同作用的功能。动态逻辑结构有着较为典型的特性[3]。静态的逻 辑结构当中所有的输入都会对接单独的MOS,因此逻辑结构功耗更大,动态的逻辑结构当中 电路通常具备N、M两个沟道,动态电路会利用时钟信号采取有效的控制,进而能够实现预

常用低功耗设计

随着半导体工艺的飞速发展和芯片工作频率的提高,芯片的功耗迅速增加,而功耗增加又将导致芯片发热量的增大和可靠性的下降。因此,功耗已经成为深亚微米集成电路设计中的一个非常重要的考虑因素。为了使产品更具有竞争力,工业界对芯片设计的要求已从单纯的追求高性能、小面积,转换为对性能、面积、功耗的综合要求。微处理器作为数字系统的核心部件,其低功耗设计对降低整个系统的功耗具有非常重要的意义。 本文首先介绍了微处理器的功耗来源,重点介绍了常用的低功耗设计技术,并对今后低功耗微处理器设计的研究方向进行了展望。 1 微处理器的功耗来源 研究微处理器的低功耗设计技术,首先必须了解其功耗来源。高层次仿真得出的结论如图1所示。 从图1中可以看出,时钟单元(Clock)功耗最高,因为时钟单元有时钟发生器、时钟驱动、时钟树和钟控单元的时钟负载;数据通路(Datapath)是仅次于时钟单元的部分,其功耗主要来自运算单元、总线和寄存器堆。除了上述两部分,还有存储单元(Mem ory),控制部分和输入/输出 (Control,I/O)。存储单元的功耗与容量相关。 如图2所示,C MOS电路功耗主要由3部分组成:电路电容充放电引起的动态功耗,结反偏时漏电流引起的功耗和短路电流引起的功耗。其中,动态功耗是最主要的,占了总功耗的90%以上,表达式如下: 式中:f为时钟频率,C1为节点电容,α为节点的翻转概率,Vdd为工作电压。

2 常用的低功耗设计技术 低功耗设计足一个复杂的综合性课题。就流程而言,包括功耗建模、评估以及优化等;就设计抽象层次而言,包括自系统级至版图级的所有抽象层次。同时,功耗优化与系统速度和面积等指标的优化密切相关,需要折中考虑。下面讨论常用的低功耗设计技术。 2.1 动态电压调节 由式(1)可知,动态功耗与工作电压的平方成正比,功耗将随着工作电压的降低以二次方的速度降低,因此降低工作电压是降低功耗的有力措施。但是,仅仅降低工作电压会导致传播延迟加大,执行时间变长。然而,系统负载是随时间变化的,因此并不需要微处理器所有时刻都保持高性能。动态电压调节DVS (Dynarnic Voltage Scaling)技术降低功耗的主要思路是根据芯片工作状态改变功耗管理模式,从而在保证性能的基础上降低功耗。在不同模式下,工作电压可以进行调整。为了精确地控制DVS,需要采用电压调度模块来实时改变工作电压,电压调度模块通过分析当前和过去状态下系统工作情况的不同来预测电路的工作负荷。 2.2 门控时钟和可变频率时钟 如图1所示,在微处理器中,很大一部分功耗来自时钟。时钟是惟一在所有时间都充放电的信号,而且很多情况下引起不必要的门的翻转,因此降低时钟的开关活动性将对降低整个系统的功耗产牛很大的影响。门控时钟包括门控逻辑模块时钟和门控寄存器时钟。门控逻辑模块时钟对时钟网络进行划分,如果在当前的时钟周期内,系统没有用到某些逻辑模块,则暂时切断这些模块的时钟信号,从而明显地降低开关功耗。图3为采用“与”门实现的时钟控制电路。门控寄存器时钟的原理是当寄存器保持数据时,关闭寄存器时钟,以降低功耗。然而,门控时钟易引起毛刺,必须对信号的时序加以严格限制,并对其进行仔细的时序验证。 另一种常用的时钟技术就是可变频率时钟。根据系统性能要求,配置适当的时钟频率,避免不必要的功耗。门控时钟实际上是可变频率时钟的一种极限情况(即只有零和最高频率两种值),因此,可变频率时钟比门控时钟技术更加有效,但需要系统内嵌时钟产生模块PLL,增加了设计复杂度。去年Intel公司推出的采用先进动态功耗控制技术的Montecito处理器,就利用了变频时钟系统。该芯片内嵌一个高精度数字电流表,利用封装上的微小电压降计算总电流;通过内嵌的一个32位微处理器来调整主频,达到64级动态功耗调整的目的,大大降低了功耗。

如何进行低功耗设计

如何进行低功耗设计 现在电子产品,特别是最近两年很火爆的穿戴产品,智能手表等都是锂电池供电,如果采用同样容量大小的锂电池进行测试不难发现电子产品低功耗做的好的,工作时间越长。因此,低功耗设计排在电子产品设计的重要地位。 最近做穿戴产品设计,面临的第一个问题就是低功耗设计。经过这两天的认真分析总结,将低功耗设计的方法总结,以飨网友。 首先,要明白一点就是功耗分为工作时功耗和待机时功耗,工作时功耗分为全部功能开启的功耗和部分功能开启的功耗。这在很大程度上影响着产品的功耗设计。 对于一个电子产品,总功耗为该产品正常工作时的电压与电流的乘积,这就是低功耗设计的需要注意事项之一。 为了降低产品的功耗,在电子产品开发时尽量采用低电压低功耗的产品。比如一个产品,曾经用5v单片机正常工作,后来又了3.3v的单片机或者工作电压更低的,那么就是在第一层次中进行了低功耗设计,这也就是我们常说的研发前期低功耗器件选择。这一般需要有广阔的芯片涉猎范围或者与供应商有良好的沟通。 其次是模块工作的选择控制,一般选择具有休眠功能的芯片。比如在设计一个系统中,如果某些外部模块在工作中是不经常使用的,我们可以使其进入休眠模式或者在硬件电路设计中采用数字开关来控制器工作与否,当需要使用模块时将其唤醒,这样我们可以在整个系统进入低功耗模式时,关闭一些不必要的器件,以起到省电的作用,延长了待机时间。一般常用方法:①具有休眠模式的功能芯片②MOS管做电子开关③具有使能端的LDO芯片。 再次,选择具有省电模式的主控芯片。现在的主控芯片一般都具有省电模式,通过以往的经验可以知道,当主控芯片在省电模式条件下,其工作电流往往是正常工作电流的几分之一,这样可以大大增强消费类产品电池的使用时间。同时,现在一些控制芯片具有双时钟的模式,通过软件的配置使芯片在不同的使用场合使用不同的外部始终从而降低其功耗。这与始终分频器具有异曲同工之妙,不同之处想必就是BOM的价格问题。现在火爆的APPLE WATCH 就是低功耗的一个例子:全功能运行3-4小时,持续运行18小时。 主控芯片或者相关模块唤醒的方式选择。通常进过以上的步骤设计好了硬件结构,在系统需要省电,在什么时候进入省电模式,这一般在软件设计中实现,但是最主要还是需要根据产品的功能特性来决定了。当系统进入了省电模式,而系统的唤醒也需要控制。一般系统的唤醒分为自动唤醒和外部唤醒。 A、自动唤醒是使用芯片内部的定时器来计时睡眠时间,当睡眠时间达到预定时间时,自动进行唤醒。这与我们使用的看门狗或者中断有比较相近之处,不同就是其工作与否的时序。 B、外部唤醒就是芯片一直处于一种休眠状态,当有一个外部事件(主要是通过接口)来对芯片进行一个触发,则芯片会唤醒,在事件处理之后消除该触发事件而在此进入休眠状态。因此,根据系统的特性,就需要进行软件设计时,来决定如何使用睡眠及唤醒,以降低系统的功耗。 最后说说功耗的测试,功耗测试分为模块功耗和整机功耗,模块功耗需要测试休眠时功耗和工作时功耗。整机功耗分为最大负荷工作时功耗和基本功能时功耗和休眠时功耗。在前期的测试中我用直接用UI来进行测量,关于如何进行高精度低功耗产品的测量,在下篇中进一步说明。

简易数字温度计设计

简易数字温度计设计 Prepared on 22 November 2020

课程设计任务书 2015—2016学年第二学期 专业:学号姓名: 课程设计名称:电子技术课程设计 设计题目:简易数字温度计的设计 完成期限:自2016年6月13日至2016年6月26日共2周 一、设计依据 本课题要求利用电子技术相关知识设计出一个能够实现±℃精度的数字温度计。电路由温度采集电路、数字频率计电路和LED显示电路构成。通过本课题练习,学生的综合知识应用能力、设计能力将有较大提高,对今后从事电子产品的研制、生产、经营维修等打下基础。 二、主要内容及要求 主要内容: 1、给出详细的总体设计方案; 2、完成各部分具体功能电路设计,主要包括基于热敏电阻的温度信号采集电路、555振荡电路、频率计电路、LED显示电路设计; 3、给出正确的电路图,仿真、调试验证各部分设计的正确性; 4、整理设计成果,完成课程设计说明书的撰写。 要求所设计数字温度计的输出温度的范围-20~+45℃、误差范围±℃,具体温度显示采用数码管实现。 三、途径和方法

利用模拟电子技术和数字电子技术的相关知识设计一个数控温度计,可以先查阅相关资料(网上查找或参考相关书籍手册),明确课题的方向和目的,然后学习完成课题所需的理论知识,了解温度信号采集电路、555振荡电路、频率计电路、LED显示电路设计的工作原理;在理解的基础上确定设计电路方案,完成电路设计,画出原理图及PCB印制版图,通过仿真分析验证设计的正确性,最后提交课程设计说明书一份。 四、时间安排 课题讲解:2小时 阅读资料:10小时 撰写设计说明书:12小时 修订设计说明书:6小时 五、主要参考资料 [1]孙丽霞.数字电子技术[M].北京:高等教育出版社,2006:174-196. [2]杨素行.模拟电子技术基础简明教程[M].北京:高等教育出版社,2007:40-92. [3]高吉祥.全国大学生电子设计竞赛培训系列教程-基本技能训练与单元电路设计[M].北京:电子工业出版社,2007:24-57. [4]黄智伟.全国大学生电子设计竞赛训练教程[M].北京:电子工业出版社,:43-66. [5]彭介华.电子技术课程设计指导[M].北京:高等教育出版社,:37-228. [6]陈永甫.新编555集成电路应用800例[M].北京:电子工业出版,2000:80-130. [7]萧宝瑾.protel99SE操作指导与电路设计实例(第一版)[M].太原:太原理工大学,2004:198-230. [8]张义申,陆坤.电子设计技术[M].西安:电子科技大学出版,1996:48-62.

数字温度计设计总结报告

数字温度计(A2题)设计与总结报告专科组:春梁福鑫钟才莉 摘要:随着时代的进步和发展,单片机技术已经普及到我们生活,工作,科研等各个领域,已经成为一种比较成熟的技术, 本设计在参阅了大量前人设计的数字温度计的基础上,利用单片机技术结合DS18B20温度传感器和DS1302时钟芯片构建了一个数字温度计。本温度计属于多功能温度计,当测量温度超过设定的温度上、下限,启动蜂鸣器和指示灯报警,可以显示当前测量日期、时间、温度,可调整显示日期、时间和星期。 关键词:单片机;数字控制;数字温度计;DS18B20;DS1302;报警 前言 本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,该设计控制器使用单片机AT89S52,测温传感器使用DS18B20,以及使用时钟芯片DS1302测实时时钟,用一块低功耗的RT1602C液晶显示器以串口传送数据,实现温度和时间显示,能准确达到以上要求。 本设计主要分为两部分:硬件电路及软件程序。而硬件电路又大体可分为单片机小系统电路、测温电路、实时时钟电路、声光报警电路、语音报读电路、LED显示电路及电源电路,各部分电路的设计及原理将会在硬件电路设计部分详细介绍;程序的设计使用C语言编程,利用Keil 软件对其编译和仿真,详细的设计算法将会在程序设计部分详细介绍。 一、方案论证比较与选择 方案一: 由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦,制作成本高。 方案二: 方案二原理框架图 此设计方案是由数字式温度传感器、单稳态定时电路、计数电路、译码与LED数码管显示电路等组成的。但其测温围较小,电路设计也比较繁琐。 方案三: 进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,因此我们改用一种智能传感器DS18B20作为检测元件,测温围-55℃~+125℃,分辨率最大可达0.0625℃。此传感器,可以直接读取被测温度值,而且采用3线制与单片机相连,减少了外部硬件电路,具有低成本和易使用的特点。 从以上三种方案,很容易看出,采用方案三,电路比较简单,软件设计也比较简单,故采用了方案三。 二、系统框图 温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S52,温度传感器采用DS18B20,

模拟乘法器AD834的原理与应用

模拟乘法器AD834的原理与应用 1.AD834的主要特性 AD834是美国ADI公司推出的宽频带、四象限、高性能乘法器,其主要特性如下: ●带符号差分输入方式,输出按四象限乘法结果表示;输出端为集电极开路差分电流结构,可以保证宽频率响应特性;当两输入X=Y=±1V时,输出电流为±4mA; ●频率响应范围为DC~500MHz; ●乘方计算误差小于0.5%; ●工作稳定,受温度、电源电压波动的影响小; ●低失真,在输入为0dB时,失真小于0.05%; ●低功耗,在±5V供电条件下,功耗为280mW; ●对直通信号的衰减大于65dB; ●采用8脚DIP和SOIC封装形式。 2.AD834的工作原理 AD834的引脚排列如图1所示。它有三个差分信号端口:电压输入端口X=X1-X2和Y=Y1-Y2,电流输出端口W=W1-W2;W1、W2的静态电流均为8.5mA。在芯片内部,输入电压先转换为差分电流(V-I转换电阻约为280Ω),目的是降低噪声和漂移;然而,输入电压较低时将导致V-I转换线性度变差,为此芯片内含失真校正电路,以改善小信号V-I转换时的线性特性。电流放大器用于对乘法运算电路输出的电流进行放大,然后以差分电流形式输出。 AD834的传递函数为: W=4XY (X、Y的单位为伏特,W的单位为mA) 3.应用考虑 3.1 输入端连接

尽管AD834的输入电阻较高(20kΩ),但输入端仍有45μA的偏置电流。当输入采用单端方式时,假如信号源的内阻为50Ω,就会在输入端产生1.125mV的失调电压。为消除该失调电压,可在另一输入端到地之间接一个与信号源内阻等值的电阻,或加一个大小、极性可调的直流电压,以使差分输入端的静态电压相等;此外,在单端输入方式下,最好使用远离输出端的X2、Y1作为输入端,以减小输入直接耦合到输出的直通分量。 应当注意的是,当输入差分电压超过AD834的限幅电平(±1.3V)时,系统将会出现较大的失真。 3.2 输出端连接 采用差分输出,可有效地抑制输入直接耦合到输出的直通分量。差分输出端的耦合方式,可用RC耦合到下一级运算放大器,进而转换为单端输出,也可用初级带中心抽头的变压器将差分信号转换为单端输出。 3.3 电源的连接 AD834的电源电压允许范围为±4V~±9V,一般采用±5V。要求VW1和VW2的静态电压略高于引脚+VS上的电压,也就是+VS引脚上的电去耦电阻RS应大于W1和W2上的集电极负载电阻RW1、RW2。例如,RS为62Ω,RW1和RW2可选为49.9Ω,而+V=4.4V,VW1=VW2=4.6V,乘法器的满量程输出为±400mV。 引脚-VS到负电源之间应串接一个小电阻,以消除引脚电感以及去耦电容可能产生的寄生振荡;较大的电阻对抑制寄生振荡有利,但也会使VW1和VW2的静态工作电压降低;该电阻也可用高频电感来代替。 4.应用实例 AD834主要用于高频信号的运算与处理,如宽带调制、功率测量、真有效值测量、倍频等。在某航空通信设备扩频终端机(如图2所示)的研制中,笔者应用AD834设计了扩频信号调制器和扩频信号接收AGC电路。

ASIC低功耗设计

三、低功耗技术 1. 功耗分析 (1)由于电容的充放电引起的动态功耗 V DD C l i VDD v out 图(20)充放电转换图 如图(20)所示:PMOS 管向电容L C 充电时,电容的电压从0上升到DD V ,而这些能量来 自于电源。一部分能量消耗在PMOS 管上,而剩余的则保存在电容里。从高电压向低转换的过程中,电容放电,电容中储存的能量消耗在NMOS 管上。 我们来推导一下:考虑从低电压转换到高电压的情况,NMOS 和PMOS 不同时导通。在转换过程中电源提供的能量为C E ,而是转换后储存在电容里的能量。 ???====∞∞VDD DD L out DD L out L DD VDD VDD V C dv V C dt dt dv C V dt t i E 0 002)( ???====∞∞VDD DD L out out L out out L out VDD C V C dv v C dt v dt dv C dt v t i E 02002 )( 这两个等式说明电源提供的能量只有一半储存在电容里。另一半被PMOS 管消耗掉了。 为了计算总体能量消耗,我们不得不考虑器件的翻转。如果门每秒钟翻转10?→? f 次,那么 102 ?→?=f V C P DD L dyn 10?→?f 表示能量消耗的翻转频率。 随着数字电路集成度的提高,能量问题将成为人们关注的焦点。从以上分析看出,dyn P 跟电源电压的平方成正比,因此降低供电电压对降低功耗有非常显著的意义。 但是,降低供电电压对电路性能有一定的影响,这时我们可以考虑减小有效电容和减少翻转率。电容主要是由于晶体管的门和扩散电容引起的,因此降低由于电容的充放电引起的动态功耗方法之一是将晶体管设计得尽可能小,这种方法同样对提高电路的性能有很大的帮助。

基于IEEE1801(UPF)标准的低功耗设计实现流程

https://www.sodocs.net/doc/0c3302147.html,/inform ation/snug/2009/low-power-impleme ntation-flow-based-ieee1801-upf 基于IEEE1801(UPF)标准的低功耗设计实现流程 Low-power Implementation Flow Based IEEE1801 (UPF) 郭军, 廖水清, 张剑景 华为通信技术有限公司 jguo@https://www.sodocs.net/doc/0c3302147.html, liaoshuiqing@https://www.sodocs.net/doc/0c3302147.html, zhangjianjing@https://www.sodocs.net/doc/0c3302147.html, Abstract Power consumption is becoming an increasingly important aspect of ASIC design. There are several different approaches that can be used to reduce power. However, it is important to use these low-power technology more effectively in IC design implementation and verification flow. In our latest low-power chip, we completed full implementation and verification flow from RTL to GDSII successfully and effectively by adopting IEEE1801 Unified Power Format (UPF). This paper will focus on UPF application in design implementation with Synopsys low power solution. It will highlight that how to describe our low-power intent using UPF and how to complete the design flow. This paper first illustrates current low-power methodology and UPF?s concept. Then, it discussed UPF application in detail. Finally, it gives our conclusion. Key words: IEEE1801, UPF, Low-Power, Shut-Down, Power Gating, Isolation, IC-Compiler 摘要

相关主题