搜档网
当前位置:搜档网 › 小数乘法器的低功耗设计与实现

小数乘法器的低功耗设计与实现

小数乘法器的低功耗设计与实现
小数乘法器的低功耗设计与实现

计算机组成原理阵列乘法器课程设计报告

. 课程设计

. 教学院计算机学院 课程名称计算机组成原理题目4位乘法整列设计专业计算机科学与技术班级2014级计本非师班姓名唐健峰 同组人员黄亚军 指导教师 2016 年10 月 5 日

1 课程设计概述 1.1 课设目的 计算机组成原理是计算机专业的核心专业基础课。课程设计属于设计型实验,不仅锻炼学生简单计算机系统的设计能力,而且通过进行设计及实现,进一步提高分析和解决问题的能力。 同时也巩固了我们对课本知识的掌握,加深了对知识的理解。在设计中我们发现问题,分析问题,到最终的解决问题。凝聚了我们对问题的思考,充分的锻炼了我们的动手能力、团队合作能力、分析解决问题的能力。 1.2 设计任务 设计一个4位的二进制乘法器: 输入信号:4位被乘数A(A1,A2,A3,A4), 4位乘数B(B1,B2,B3,B4), 输出信号:8位乘积q(q1,q2,q3,q4,q5,q6,q7,q8). 1.3 设计要求 根据理论课程所学的至少设计出简单计算机系统的总体方案,结合各单元实验积累和课堂上所学知识,选择适当芯片,设计简单的计算机系统。 (1)制定设计方案: 我们小组做的是4位阵列乘法器,4位阵列乘法器主要由求补器和阵列全加器组成。 (2)客观要求 要掌握电子逻辑学的基本内容能在设计时运用到本课程中,其次是要思维灵活遇到问题能找到合理的解决方案。小组成员要积极配合共同达到目的。

2 实验原理与环境 2.1 1.实验原理 计算机组成原理,数字逻辑,maxplus2是现场可编程门阵列,它是在PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。 用乘数的每一位去乘被乘数,然后将每一位权值直接去乘被乘数得到部分积,并按位列为一行每一行部分积末位与对应的乘数数位对齐,体现对应数位的权值,将各次部分积求和得到最终的对应数位的权值。 2.2 2.实验环境 2.2.1双击maxplu2II软件图标,启动软件 (1).新建工程,flie->new project ....,出现存储路径的选项框,指定项目保存路径并且为工程命名,第三行设置实体名,保持与工程名一致。点击OK

集成电路的功耗优化和低功耗设计技术

集成电路的功耗优化和低功耗设计技术 摘要:现阶段各行业的发展离不开对能源的消耗,随着目前节能技术要求的不 断提升,降低功耗成为行业发展的重要工作之一。本文围绕集成电路的功耗优化 以及低功耗设计技术展开分析,针对现阶段常见的低功耗设计方式以及技术进行 探究,为集成电路功耗优化提供理论指导。 关键词:集成电路;功耗优化;低功耗 目前现代节能技术要求不断提升,针对设备的功耗控制成为当前发展的主要问题之一。 针对数字系统的功耗而言,决定了系统的使用性能能否得到提升。一般情况下,数字电路设 计方面,功耗的降低一直都是优先考虑的问题,并且通过对整个结构进行分段处理,同时进 行优化,最后总结出较为科学的设计方案,采用多种方式降低功耗,能够很大程度上提升设 备的使用性能。下面围绕数字电路的功耗优化以及低功耗设计展开分析。 一、设计与优化技术 集成电路的功耗优化和低功耗设计是相对系统的内容,一定要在设计的每个环节当中使 用科学且合理的技术手段,权衡并且综合考虑多方面的设计策略,才能够有效降低功耗并且 确保集成电路系统性能。因为集成电路系统的规模相对较大且具有一定的特殊性,想要完全 依靠人工或者手动的方式来达到这些目的并不现实且缺少可行性,一定要开发与之对应的电 路综合技术。 1 工艺级功耗优化 将工艺级功耗应用到设计当中,通常情况下采取以下两种方式进行功耗的降低: 首先,根据比例调整技术。进行低功耗设计过程中,为了能够实现功耗的有效降低会利 用工艺技术进行改善。在设计过程中,使用较为先进的工艺技术,能够让设备的电压消耗有 效缩减。现阶段电子技术水平不断提升,系统的集成度也随之提高,目前采用的零件的规格 也逐渐缩小,零件的电容也实现了良好的控制,进而能够很大程度上降低功耗。借助比例技术,除了能够将可见晶体管的比例进行调整,而且也能够缩小互连线的比例[1]。目前在晶体 管的比例缩小方面,能够依靠缩小零件的部分重要参数,进而在保持性能不被影响的情况下,通过较小的沟道长度,确保其他的参数不受影响的栅压缩方式,进而将零件的体积进行缩减,同时也缩短了延长的用时,使功耗能够有效降低。针对互连线缩小的方式主要将互连线的整 个结构进行调整,工作人员在进行尺寸缩减的过程中,会面临多方面的难题,比如系统噪音 无法控制,或者降低了电路使用的可靠性等等。 其次,采用封装技术进行降低。采用封装技术,能够让芯片与外部环境进行有效的隔离,进而避免了外部环境给电气设备造成一定的破坏与影响,在封装阶段,芯片的功耗会受到较 大的影响,因此需要使用更加有效的封装手段,才能够提升芯片的散热性,进而有效降低功 耗[2]。在多芯片的情况下,因为芯片与其他芯片之间的接口位置会产生大量的功耗,因此针 对多芯片采取封装技术,首先降低I/0接口的所有功能,接着解决电路延迟的问题,才能够 实现对集成电路的优化。 2 电路功耗优化 一般情况下,对电路级的功耗会选择动态的逻辑设计。在集成电路当中,往往会包含多 种电路逻辑结构,比如动态、静态等等,逻辑结构从本质上而言具有一定的差异性,这种差 异性也使得逻辑结构有着不同作用的功能。动态逻辑结构有着较为典型的特性[3]。静态的逻 辑结构当中所有的输入都会对接单独的MOS,因此逻辑结构功耗更大,动态的逻辑结构当中 电路通常具备N、M两个沟道,动态电路会利用时钟信号采取有效的控制,进而能够实现预

低功耗的常系数乘法器的设计

一种低功耗的常系数乘法器的设计
李京 沈泊 专用集成电路与系统国家重点实验室(复旦大学) 摘要: 本文基于并行乘法器结构设计了一种新型的低功耗常系数乘法器。它采用了CSD (Canonical sign-digital)编码,Wallace Tree 乘法算法,结合采用了截断处理,变数校正的优 化技术,实现了一种适用于DCT/IDCT变换的常系数乘法器。该乘法器的输入字长为15bits (Q3格式) 输出字长为15bits Q3格式) 常系数字长为15bits Q14格式) 采用SMIC 0.18 um ( , ( 。 工艺进行综合,本设计的面积为13974 m2 ,并在100MHZ的时钟频率下功耗为0.69mw。通 过与其它算法实现的乘法器进行分析与比较, 说明了本设计在满足性能的同时, 实现了较小 的面积与较低的功耗。 关键词:低功耗 常系数乘法器 CSD编码 Wallace Tree 变数校正 DCT/IDCT变换
A Low Power Design of Constant Coefficient Multiplier
Li Jing Shen Bo State Key Laboratory of ASIC & System (Fudan University) Abstract: In this paper a low power constant coefficient multiplier using CSD (Canonical sign-digital) coding Wallace Tree addition algorithm is presented. To reduce the area and power consumption of the multiplier, truncation and variable correction are adopted. For quantitative analysis the performance, the multipliers are synthesized in SMIC 0.18 um Technology. The proposed design has a measured power dissipation of 0.69mw and area of 13974 m better than other constant coefficient multipliers. Keywords: Low Power, Constant Coefficient Multiplier, Canonical sign-digital, Wallace Tree, Variable Correction, DCT/IDCT
2
at 100 MHZ, which is
1
引言
常系数乘法器在很多实时信号处理场合有着 广 泛 的 应 用 , 例 如 在 DFT (Discrete Fourier Transforms), DCT (Discrete Cosine Transforms)等数 字信号处理电路中, 常系数乘法器是一个重要的功 能部件。 尽管速度是常系数乘法器一个主要的设计指 标, 但面积与功耗同样也是在设计中重要的考虑因
素。尤其是功耗,正日益成为高性能芯片的设计瓶 颈。因此,设计一个高速,低功耗,适合VLSI实 现的常系数乘法器具有重要意义。 现有的乘法器主要有两种结构,一种是以DA (Distributed Arithmetic)算法实现的乘法器,另一 种是以改进型BOOTH算法实现的乘法器。 以DA算法实现的乘法器将部分积预先存放在 ROM中,用ROM与累加器代替乘法器,从而降低 硬件的消耗。由于DA算法结构中数据的串行操作
1

四位原码乘法器

1.课程设计的内容和要求 内容:设计四位原码乘法器电路。 要求:1.有关资料,设计乘法器电路; 2.画出乘法器逻辑图; 3.在实验箱上完成乘法器电路的组装,调试,核对记录,测试有关数据, 通过老师当场验收; 4.完成课程设计报告。 1.课程设计原理 运用存储器的存储功能实现数字的存储。令电路的初始状态为000,000,000000。以二进制的形式输入数字,计算方式是以十进制数字乘法。输入的数字为三位数字,输出的是六位数字。先存储输入的乘数和乘积,然后再将乘积的导线端连到输出段,此时之前输入的乘积就可以在输出端显示。 此时序电路的真值表为:

1.课程设计思路 本次课程设计的题目为四位原码乘法器,利用真值表输入乘数时,需要存放数字,于是我查阅了一些资料,用存储器可以实现这一电路,所以本实验中用到的是INTEL 2114芯片。 具体实现过程如下图: a a b b F 32F 1 1.课程设计所需的器材 1.2114是一个容量为1K4位的静态RAM芯片,常用于寄存器。 其具体的引脚图为: 此芯片的电路图为: 2.数字电路实验箱 3.导线若干 1.课程设计实现 本次课程设计的题目是四位原码乘法器电路。 此部分只用到了2块INTEL2114芯片,具体连接如下: 1、先将这些芯片按在电路板上(注意不要插反,否者容易烧毁芯片)。 2、将两片芯片的A6和GND端,A7,A8,A9接地。 3、Vcc端接电压5V,cs接存储端,WE端接控制端。 4、两块芯片的A5,A4,A3组成一个乘数,A0,A1,A2组成另一个乘数。其中一块芯

片的I/O1,I/O2,I/O3,I/O4和另一块芯片的I/O1,I/O2组成要求的乘积。乘数与乘积的显示方式均为二进制,但是计算方法是以十进制数的乘法法则计算。 1.调试步骤及方法 在连接实验器件之前,要先检查如下实验器件: 1、检查芯片引脚是否有损坏。 2、检查电路板是否好用。 连接实验器件时要注意: 2严格按照电路图一步一步连接,以避免连接错误。 3导线要先连接电源测试是否导电。 连接好电路进行数据测试,输入001,010,000010,存储;001,101,000101,存储;001,111,000111,存储。将连在输入端的四个输出连接到输出端,并输入001,010,但是结果并不是000010,而是000100;再输入001,101,也没有得到000101的结果,而是000110的结果。检查线路,发现输出的线路错位,纠正后重新输入乘数,结果均得到计算结果。调试成功。 1.实验结果 连接好整个电路。A5A4A3和A2A1A0为输入端,即乘数,F5F4F3F2F1F0为输出端,即乘积。如下表: 8. 课程设计结果 输入000,000,000000,存储;

计算机组成原理_阵列乘法器设计

沈阳航空航天大学 课程设计报告 课程设计名称:计算机组成原理课程设计课程设计题目:阵列乘法器的设计与实现 院(系):计算机学院 专业:计算机科学与技术 班级: 学号: 姓名: 指导教师: 完成日期:2014年1月10日

沈阳航空航天大学课程设计报告 _______________________________________________________________________________ 目录 第1章总体设计方案 (1) 1.1设计原理 (1) 1.2设计思路 (2) 1.3设计环境 (3) 第2章详细设计方案 (3) 2.1总体方案的设计与实现 (4) 2.1.1总体方案的逻辑图 (4) 2.1.2器件的选择与引脚锁定 (4) 2.1.3编译、综合、适配 (5) 2.2功能模块的设计与实现 (5) 2.2.1一位全加器的设计与实现 (6) 2.2.2 4位输入端加法器的设计与实现 (7) 2.2.3 阵列乘法器的设计与实现 (10) 第3章硬件测试 (13) 3.1编程下载 (13) 3.2 硬件测试及结果分析 (13) 参考文献 (15) 附录(电路原理图) (16)

第1章总体设计方案 1.1 设计原理 阵列乘法器采用类似人工计算的方法进行乘法运算。人工计算方法是用乘数的每一位去乘被乘数,然后将每一位权值对应相加得出每一位的最终结果。如图1.1所示,用乘数的每一位直接去乘被乘数得到部分积并按位列为一行,每一行部分积末位与对应的乘数数位对齐,体现对应数位的权值。将各次部分积求和,即将各次部分积的对应数位求和即得到最终乘积的对应数位的权值。 为了进一步提高乘法的运算速度,可采用大规模的阵列乘法器来实现,阵列乘法器的乘数与被乘数都是二进制数。可以通过乘数从最后一位起一个一个和被乘数相与,自第二位起要依次向左移一位,形成一个阵列的形式。这就可将其看成一个全加的过程,将乘数某位与被乘数某位与完的结果加上乘数某位的下一位与被乘数某位的下一位与完的结果再加上前一列的进位进而得出每一位的结果,假设被乘数与乘数的位数均为4位二进制数,即m=n=4,A×B可用如下竖式算出,如图1.1所示。 X 4 X 3 X 2 X 1 =A × Y 4 Y 3 Y 2 Y 1 =B X 4Y 1 X 3 Y 1 X 2 Y 1 X 1 Y 1 X 4Y 2 X 3 Y 2 X 2 Y 2 X 1 Y 2 X 4Y 3 X 3 Y 3 X 2 Y 3 X 1 Y 3 (进位) X4Y4 X3Y4 X2Y4 X1Y4 Z 8 Z 7 Z 6 Z 5 Z 4 Z 3 Z 2 Z 1 图1.1 A×B计算竖式 X 4 ,X 3 ,X 2 ,X 1 ,Y 4 ,Y 3 ,Y 2 ,Y 1 为阵列乘法器的输入端,Z 1 -Z 8 为阵列乘法器 的输出端,该逻辑框图所要完成的功能是实现两个四位二进制既A(X)*B(Y)的 乘法运算,其计算结果为C(Z) (其中A(X)=X 4X 3 X 2 X 1 ,B(Y)=Y 4 Y 3 Y 2 Y 1 , C(Z)=Z 8Z 7 Z 6 Z 5 Z 4 Z 3 Z 2 Z 1 而且输入和输出结果均用二进制表示 )。阵列乘法器的总原 理如图1.2所示。

数字集成电路低功耗分析

数字集成电路低功耗分析 摘要: 电子产品功耗的大小不仅限制了便携设备电池使用时间,也在一定程度上影响着设备性能。研究如何降低功耗己经成为所有IC设计者必须考虑的重要问题,对功耗的优化也是目前每个IC设计企业的必要环节。本文主要对数字集成电路功耗的优化方法进行了分析,分别从工艺级、电路级、版图级、门级、寄存器级、算法级和系统级分析了低功耗的优化方法。 关键词:低功耗;集成电路;优化 引言: 随着移动设备快速大量的增加和芯片处理速度的提高,芯片的功耗己成为集成电路设计者必须考虑的重要问题,于此同时对芯片的整体性能评估己经由原来的面积和速度变成了面积、时序、可测性和功耗的综合考虑,而且功耗所占的比重越来越大。 低功耗技术的研究背景: 集成电路是一个二十世纪发展起来的高技术产业,也是二十一世纪世界进入信息化社会的前提和基础。在1958年德克萨斯仪器公司生产出第一块集成电路,集成电路产业就一直保持着快速的发展速度,处在数字化和信息化时代的今天,数字集成电路的应用和改进显得尤为重要,从电子管到晶体管再到中小规模集成电路和超大规模集成电路,到现在市场上主流的专用集成电路(ASIC),以及现处于快速发展的系统级芯片,数字集成电路始终朝着速度更快,集成度更高,

规模更大的方向不断发展。从目前状况来看,数字集成电路基本上仍然遵循摩尔定律来发展—集成度几乎每18个月增长一倍。但是随着芯片规模的不断扩大,功耗问题变得越来越突出,并且成为制约数字集成电路发展的重要因素。长期以来,面积最小化和处理的高速度是数字集成电路设计中最主要的问题。现在,因为新的IC技术工艺的使用和集成度越来越高,降低芯片功耗逐渐成为了非常重要的一个因素。在亚微米和深亚微米的技术中,由于能量消耗而产生的余热使电路中的某些功能受到了不同程度的影响。功耗的增加意味着电迁移率的增加。当芯片温度上达到一定的程度时,电路就无法正常工作,因此复杂系统的性能就会被严重的影响到,并且整个系统的可靠性将会降低,尤其对于要求具有长生命周期和高可靠性的电子产品来说,降低功耗是必然的选择。从产品市场需求来看,近年来依靠电池供电的数码产品的大量使用如便携电脑、移动通讯工具等,这些产品的功耗严重影响着用户的使用体验,为了使产品具有更长的使用时间,迫切需要降低产品功耗。目前,功耗的优化方法有很多种,也越来越具有针对性,但大体思路都是通过降低工作电压和工作频率、减少计算量等方法来实数字集成电路的功耗优化。数字集成电路低功耗优化的下一个研究方向是结合多个层次的功耗分析及优化方法。 数字集成电路低功耗优化方法: 低功耗设计技术大致可以分为两类:动态技术和静态技术。静态技术是指从系统构造、工作原理方面入手,降低系统功耗,如选用低功耗器件,采用异步电路体系设计等。而动态技术则是通过改变系统

数字集成电路物理设计阶段的低功耗技术

数字集成电路物理设计阶段的低功耗技术 张小花(200XXXXXXXX) 2011年六月 摘要:通过一个图像处理SoC的设计实例,着重讨论在物理设计阶段降低CMOS功耗的方法。该方法首先调整 PAD摆放位置、调整宏单元摆放位置、优化电源规划,得到一个低电压压降版图,间接降低CMOS功耗;接着,通过规划开关活动率文件与设置功耗优化指令,直接降低CMOS功耗。最终实验结果表明此方法使CMOS功耗降低了 10.92%。基于该设计流程的图像处理SoC已经通过ATE设备的测试,并且其功耗满足预期目标。 关键词: 集成电路; 物理设计; 电压降; 低功耗 Digital integrated circuit physical design phase of the low power technology luo jiang nan(2008102041) June, 2011 Abstract: through a image processing of SoC design examples, the paper discuss the physical design stage reduce power consumption method. CMOS This method firstly PAD put the position, adjusting adjustment macro unit put the position, optimizing power planning, get a low voltage pressure drop, reduce the power consumption of the CMOS indirect territory; Then, through the planning activities rate documents and set switch power optimization, reduce the power consumption of the CMOS setup instructions directly. Finally the experimental results show that the method that CMOS power consumption was reduced by 10.92%. Based on the design process of the image processing has been through the ATE the SoC test equipment, and its power consumption to meet expectations. Keywords: IC; physical design; voltage drop; low power consumption 1 引言 随着集成电路规模的扩大以及便携式和嵌入式应用需求的增长,低功耗数字集成电路设计技术日益受到重视,已成为集成电路设计的研究热点.通常低功耗设计技术包括三个方面:设计中的低功耗技术、封装的低功耗技术和运行管理的低功耗技术.其中设计中的低功耗技术包括前端设计阶段的 体系结构级低功耗技术、RTL级低功耗技术、门级低功耗技术和物理设计阶段的低功耗 技术.

四象限乘法器

四通道四象限模拟乘法器MLT04 四通道四象限模拟乘法器MLT04 1MLT04的结构功能和主要特点 在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频等调制与解调的过程均可视为两个信号相乘的过程,而集成模拟乘法器正是实现两个模拟量 电压或电流 相乘的电子器件。采用集成模拟乘法器实现上述功能比用分立器件要简单得多,而且性能优越,因此集成模拟乘法器在无线通信、广播电视等方面应用较为广泛。在目前的乘法器中,单通道器件(如MOTOROLA的MC1496)无法实现多通道的复杂运算;二象限器件(如ADI公司的AD539)又会使负信号的应用受到限制。而ADI公司的MLT04则是一款完全四通道四象限电压输出模拟乘法器,这种完全乘法器克服了以上器件的诸多不足之处,适用于电压控制放大器、可变滤波器、多通道功率计算以及低频解调器等电路。非常适合于产生复杂的要求高的波形,尤其适用于高精度CRT显示系统的几何修正。其内部结构及引脚排列如图1所示。 MLT04是由互补双极性工艺制作而成,它包含有四个高精度四象限乘法单元。温度漂移小于0.005%/℃。0.3μV/Hz的点噪声电压使低失真的Y通道只有0.02%的总谐波失真噪声,四个8MHz通道的总静止功耗也仅为150mW。MLT04的工作温度范围为-40℃~+85℃。 MLT04的其它主要特性如下: ●四个独立输入通道; ●四象限乘法信号; ●电压输入电压输出; ●乘法运算无需外部元件; ●电压输出:W=(X×Y)/2.5V,其中X或Y上的线性度误差仅为0.2%; ●具有优良的温度稳定性:0.005%; ●模拟输入范围为±2.5V,采用±5V电压供电; ●低功耗 一般为150mW。

乘法器课程设计

摘要:基于VHDL的数字系统设计具有设计技术齐全、方法灵活、支持广泛等优点,同时也是EDA技术的重要组成部分.文章用VHDL语言设计了左移法和进位节省法实现的两种组合乘法器,通过功能仿真,对两种乘法器的性能进行了比较,从而得知后者的传输延迟时间小,即速度较快.通过设计实例,介绍了利用VHDL语言进行数字系统设计的方法. 关键词:VHDL语言左移法进位节省法 Abstract:Digital system design based on VHDL has complete design techniques, methods, the advantages of flexible and wide support, at the same time also is the important component of the EDA technology. The article using VHDL language to design the left shift method and carry save method to realize the combination of two kinds of multiplier, through the function simulation, compares the performance of the two kinds of multiplier, which the latter's small transmission delay time, namely fast. Through the design example, introduced the method of using VHDL language to design digital system. Keywords:VHDL language ,left shift method ,carry save method

八位乘法器VHDL及功能模块说明

EDA课程设计报告 实验名称:八位乘法器

目录 一.引言 1.1 EDA技术的概念?? 1.2 EDA技术的特点?? 1.3 EDA设计流程?? 1.4 VHDL介绍?? 二.八位乘法器的设计要求与设计思路??2.1 设计目的?? 2.2 设计要求?? 三.八位乘法器的综合设计?? 3.1 八位乘法器功能?? 3.2 八位乘法器设计方案?? 3.3 八位乘法器实体设计?? 3.4 八位乘法器VHDL设计?? 3. 5八位乘法器仿真图形?? 心得体会?? 参考文献??

一、引言 1.1 EDA技术的概念 EDA是电子设计自动化(Electronic Design Automation)的缩写,在20世纪90年代初从计算机辅助设计(CAD)、计算机辅助制造(CAM)、计算机辅助测试(CAT)和计算机辅助工程(CAE)的概念发展而来的。EDA技术就是以计算机为工具,设计者在EDA软件平台上,用硬件描述语言HDL完成设计文件,然后由计算机自动地完成逻辑编译、化简、分割、综合、优化、布局、布线和仿真,直至对于特定目标芯片的适配编译、逻辑映射和编程下载等工作。 1.2 EDA技术的特点 利用EDA技术进行电子系统的设计,具有以下几个特点:①用软件的方式设计硬件;②用软件方式设计的系统到硬件系统的转换是由有关的开发软件自动完成的;③设计过程中可用有关软件进行各种仿真;④系统可现场编程,在线升级;⑤整个系统可集成在一个芯片上,体积小、功耗低、可靠性高。因此,EDA技术是现代电子设计的发展趋势。 1.3 EDA设计流程 典型的EDA设计流程如下: 1、文本/原理图编辑与修改。首先利用EDA工具的文本或图形编辑器将设计者的设计意图用文本或图形方式表达出来。 2、编译。完成设计描述后即可通过编译器进行排错编译,变成特定的文本格式,为下一步的综合做准备。 3、综合。将软件设计与硬件的可实现性挂钩,是将软件转化为硬件电路的关键步骤。 4、行为仿真和功能仿真。利用产生的网表文件进行功能仿真,以便了解设计描述与设计意图的一致性。 5、适配。利用FPGA/CPLD布局布线适配器将综合后的网表文件针对某一具体的目标器件进行逻辑映射操作,其中包括底层器件配臵、逻辑分割、逻辑优化、布局布线。适配报告指明了芯片内资源的分配与利用、引脚锁定、设计的布尔方程描述情况。

计算机组成原理阵列乘法器课程设计报告.

课程设计

教学院计算机学院 课程名称计算机组成原理题目4位乘法整列设计专业计算机科学与技术班级2014级计本非师班姓名唐健峰 同组人员黄亚军 指导教师 2016 年10 月 5 日

1 课程设计概述 1.1 课设目的 计算机组成原理是计算机专业的核心专业基础课。课程设计属于设计型实验,不仅锻炼学生简单计算机系统的设计能力,而且通过进行设计及实现,进一步提高分析和解决问题的能力。 同时也巩固了我们对课本知识的掌握,加深了对知识的理解。在设计中我们发现问题,分析问题,到最终的解决问题。凝聚了我们对问题的思考,充分的锻炼了我们的动手能力、团队合作能力、分析解决问题的能力。 1.2 设计任务 设计一个4位的二进制乘法器: 输入信号:4位被乘数A(A1,A2,A3,A4), 4位乘数B(B1,B2,B3,B4), 输出信号:8位乘积q(q1,q2,q3,q4,q5,q6,q7,q8). 1.3 设计要求 根据理论课程所学的至少设计出简单计算机系统的总体方案,结合各单元实验积累和课堂上所学知识,选择适当芯片,设计简单的计算机系统。 (1)制定设计方案: 我们小组做的是4位阵列乘法器,4位阵列乘法器主要由求补器和阵列全加器组成。 (2)客观要求 要掌握电子逻辑学的基本内容能在设计时运用到本课程中,其次是要思维灵活遇到问题能找到合理的解决方案。小组成员要积极配合共同达到目的。

2 实验原理与环境 2.1 1.实验原理 计算机组成原理,数字逻辑,maxplus2是现场可编程门阵列,它是在PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。 用乘数的每一位去乘被乘数,然后将每一位权值直接去乘被乘数得到部分积,并按位列为一行每一行部分积末位与对应的乘数数位对齐,体现对应数位的权值,将各次部分积求和得到最终的对应数位的权值。 2.2 2.实验环境 2.2.1双击maxplu2II软件图标,启动软件 (1).新建工程,flie->new project ....,出现存储路径的选项框,指定项目保存路径并且为工程命名,第三行设置实体名,保持与工程名一致。点击OK

集成电路低功耗设计方法研究【文献综述】

毕业设计文献综述 电子信息科学与技术 集成电路低功耗设计方法研究 摘要:随着IC制造工艺达到纳米级,功耗问题已经与面积、速度一样受到人们关注,并成为制约集成电路发展的关键因素之一。同时,由于电路特征尺寸的缩小,之前相比于电路动态功耗可以忽略的静态漏功耗正不断接近前者,给电路低功耗设计提出了新课题,即低漏功耗设计。本文将分析纳米工艺下芯片功耗的组成和对低漏功耗进行研究的重要性,然后介绍目前主要的低功耗设计方法。此外,由于ASIC技术是目前集成电路发展的趋势和技术主流,而标准单元是ASIC设计快速发展的重要支撑,本文在最后提出了标准单元包低漏功耗设计方法,结合电路级的功耗优化技术,从而拓宽ASIC功耗优化空间。 关键字:低功耗,标准单元,ASIC设计 前言: 自1958年德克萨斯仪器公司制造出第一块集成电路以来,集成电路产业一直以惊人的速度发展着,到目前为止,集成电路基本遵循着摩尔定律发展,即集成度几乎每18个月翻一番。 随着制造工艺的发展,IC设计已经进入了纳米级时代:目前国际上能够投入大规模量产的最先进工艺为40nm,国内的工艺水平正将进入65nm;2009年,Intel酷睿i系列创纪录采用了领先的32nm 工艺,并且下一代22nm工艺正在研发中。但伴随电路特征尺寸的减小,电路功耗数值正呈指数上升,集成电路的发展遭遇了功耗瓶颈。功耗问题已经同面积和速度一样受到人们重视,成为衡量IC设计成功与否的重要指标之一。若在设计时不考虑功耗而功利地追求集成度的提高,则可能会使电路某些部分因功耗过大引起温度过高而导致系统工作不稳定或失效。如Intel的1.5GHz Pentium Ⅳ处理器,拥有的晶体管数量高达4200万只,功率接近95瓦,整机生产商不得不为其配上了特大号风扇来维持其正常工作。功耗的增大不仅将导致器件的可靠性降低、芯片的稳定性下降,同时也给芯片的散热和封装带来问题。因此,功耗已经成为阻碍集成电路进一步发展的难题之一,低功耗设计也已成为集成电路的关键设计技术之一。 一、电路功耗的组成 CMOS电路中有两种主要的功耗来源,动态功耗和静态功耗。其中,动态功耗包括负载电容的充放电功耗(交流开关功耗)和短路电流引起的功耗;静态功耗主要是由漏电流引起的功耗,如图1所示。

模拟乘法器AD834的原理与应用

模拟乘法器AD834的原理与应用 1.AD834的主要特性 AD834是美国ADI公司推出的宽频带、四象限、高性能乘法器,其主要特性如下: ●带符号差分输入方式,输出按四象限乘法结果表示;输出端为集电极开路差分电流结构,可以保证宽频率响应特性;当两输入X=Y=±1V时,输出电流为±4mA; ●频率响应范围为DC~500MHz; ●乘方计算误差小于0.5%; ●工作稳定,受温度、电源电压波动的影响小; ●低失真,在输入为0dB时,失真小于0.05%; ●低功耗,在±5V供电条件下,功耗为280mW; ●对直通信号的衰减大于65dB; ●采用8脚DIP和SOIC封装形式。 2.AD834的工作原理 AD834的引脚排列如图1所示。它有三个差分信号端口:电压输入端口X=X1-X2和Y=Y1-Y2,电流输出端口W=W1-W2;W1、W2的静态电流均为8.5mA。在芯片内部,输入电压先转换为差分电流(V-I转换电阻约为280Ω),目的是降低噪声和漂移;然而,输入电压较低时将导致V-I转换线性度变差,为此芯片内含失真校正电路,以改善小信号V-I转换时的线性特性。电流放大器用于对乘法运算电路输出的电流进行放大,然后以差分电流形式输出。 AD834的传递函数为: W=4XY (X、Y的单位为伏特,W的单位为mA) 3.应用考虑 3.1 输入端连接

尽管AD834的输入电阻较高(20kΩ),但输入端仍有45μA的偏置电流。当输入采用单端方式时,假如信号源的内阻为50Ω,就会在输入端产生1.125mV的失调电压。为消除该失调电压,可在另一输入端到地之间接一个与信号源内阻等值的电阻,或加一个大小、极性可调的直流电压,以使差分输入端的静态电压相等;此外,在单端输入方式下,最好使用远离输出端的X2、Y1作为输入端,以减小输入直接耦合到输出的直通分量。 应当注意的是,当输入差分电压超过AD834的限幅电平(±1.3V)时,系统将会出现较大的失真。 3.2 输出端连接 采用差分输出,可有效地抑制输入直接耦合到输出的直通分量。差分输出端的耦合方式,可用RC耦合到下一级运算放大器,进而转换为单端输出,也可用初级带中心抽头的变压器将差分信号转换为单端输出。 3.3 电源的连接 AD834的电源电压允许范围为±4V~±9V,一般采用±5V。要求VW1和VW2的静态电压略高于引脚+VS上的电压,也就是+VS引脚上的电去耦电阻RS应大于W1和W2上的集电极负载电阻RW1、RW2。例如,RS为62Ω,RW1和RW2可选为49.9Ω,而+V=4.4V,VW1=VW2=4.6V,乘法器的满量程输出为±400mV。 引脚-VS到负电源之间应串接一个小电阻,以消除引脚电感以及去耦电容可能产生的寄生振荡;较大的电阻对抑制寄生振荡有利,但也会使VW1和VW2的静态工作电压降低;该电阻也可用高频电感来代替。 4.应用实例 AD834主要用于高频信号的运算与处理,如宽带调制、功率测量、真有效值测量、倍频等。在某航空通信设备扩频终端机(如图2所示)的研制中,笔者应用AD834设计了扩频信号调制器和扩频信号接收AGC电路。

44数字乘法器设计

4*4数字乘法器设计 1.设计任务 试设计一4位二进制乘法器。4位二进制乘法器的顶层符号图如图1所示。 END P A B 1 0 1 11 1 0 1×1 0 1 10 0 0 01 0 1 11 0 1 1 1 1011001 图1 4位乘法器顶层符号图 图2 4位乘法运算过程 输入信号:4位被乘数A (A 3 A 2 A 1 A 0),4位乘数B (B 3 B 2 B 1 B 0),启动信号START 。 输出信号:8位乘积P (P 7 P 6 P 5 P 4 P 3 P 2 P 1 P 0),结束信号END 。· 当发出一个高电平的START 信号以后,乘法器开始乘法运算,运算完成以后发出高电平的END 信号。 2.顶层原理图设计 从乘法器的顶层符号图可知,这是一个9输入9输出的逻辑电路。一种设计思想是把设计对象看作一个不可分割的整体,采用数字电路常规的设计方法进行设计,先列出真值表,然后写出逻辑表达式,最后画出逻辑图。这种设计方法有很多局限性,比如,当设计对象的输入变量非常多时,将不适合用真值表来描述,同时,电路功能任何一点微小的改变或改进,都必须重新开始设计。另一种设计思想是把待设计对象在逻辑上看成由许多子操作和子运算组成,在结构上看成有许多模块或功能块构成。这种设计思想在数字系统的设计中得到了广泛的应用。 对于4位乘法器而言,设A =1011,B =1101,则运算过程可由图2所示。从乘法运算过程可知,乘法运算可分解为移位和相加两种子运算,而且是多次相加运算,所以是一个累加的过程。实现这一累加过程的方法是,把每次相加的结果用部分积P 表示,若B 中某一位 B i =1,把部分积P 与A 相加后右移1位;若B 中某一位B i = 0,则部分积P 与0相加后右移1位(相当于只移位不累加)。通过4次累加和移位,最后得到的部分积P 就是A 与B 的乘积。 为了便于理解乘法器的算法,将乘法运算过程中部分积P 的变化情况用图3表示出来。存放部分积的是一个9位的寄存器,其最高位用于存放在做加法运算时的进位输出。先把寄存器内容清零,再经过4次的加法和移位操作就可得到积。注意,每次做加法运算时,被乘

数字集成电路低功耗物理实现技术与UPF

数字集成电路低功耗物理实现技术与UPF 孙轶群sun.yiqun@https://www.sodocs.net/doc/f018195012.html, 国民技术股份有限公司 Nationz Technologies Inc 摘要 本文从CMOS电路功耗原理入手,针对不同工艺尺寸下数字集成电路的低功耗物理实现方法进行描述,并着重描述了Synopsys UPF(Unified Power Format)对低功耗设计的描述方法。UPF是Synopsys公司提出的一种对芯片中电源域设计进行约束的文件格式。通过与UPF 格式匹配的Liberty文件,UPF约束文件可以被整套Galaxy物理实现平台的任何一个环节直接使用,并将设计者的电源设计约束传递给设计工具,由工具完成设计的实现工作,从而实现整套数字集成电路低功耗物理实现的流程。 1.0 概述 本文从数字集成电路低功耗设计原理下手,对设计中低功耗的实现技术进行描述,包括完成低功耗设计需要的库资料以及常用EDA工具对低功耗技术实现的方法。 2.0 CMOS电路的低功耗设计原理 CMOS电路功耗主要分3种,静态功耗主要与工艺以及电路结构相关,短路电流功耗主要与驱动电压、p-MOS和n-MOS同时打开时产生的最大电流、翻转频率以及上升、下降时间有关,开关电流功耗主要与负载电容、驱动电压、翻转频率有关。做低功耗设计,就必须从这些影响功耗的因素下手。 3.0 低功耗设计手段及Library需求 低功耗的设计手段较为复杂,但对于不同的设计,或者不同的工艺,实现的方法却各不相同。 3.1 0.18um及以上工艺 0.18um及以上工艺,在低功耗设计手段上较为有限,主要原因在于,静态功耗很小,基本不用关心。 动态功耗方面,主要的功耗来自于Switching Power,即与负载电容、电压以及工作中的信号翻转频率相关。 减小负载电容,就必须在设计上下功夫,减少电路规模。减少信号翻转频率,除了降低时钟频率外,只有在设计上考虑,能不翻转的信号就不翻转。至于电压,由于0.18um及以上工艺的阈值电压有一定的限制,因此,供电电压降低,势必影响工作频率。 一般说来,在0.18um工艺下设计电路,主要有以下几种对低功耗设计的考虑。 3.1.1 静态功耗可以忽略 根据现有项目经验可知,利用0.18um工艺Standard Cell设计出来的某芯片,数字逻辑加上Ram和Rom约40万门的电路,在完全静止的状态下,功耗约200uA左右(实测数据为400uA 左右,包括了50uA Flash,30uA的PHY,113uA的VR,其他模拟部分漏电不大,因此这里估算为200uA)。这样的功耗,我们是可以接受的。如果非要减少静态功耗,则可以参照90nm工艺的设计思路,专门设计高阈值电压的MOSFET,或者专门设计切断电源所需的元件,但由此带来设计的复杂性,对0.18um工艺的影响还是很大的。如果设计规模没有那么大,且可以满足应用,往往还是可以忽略这个结果的。 3.1.2 时钟门控减小不必要的动态功耗 在寄存器的电路设计中,时钟输入端都会有一个反向器负载,就算输入端不发生变化,时钟的变化也会造成该反向器的变化,由此产生动态功耗。因此在如果该寄存器输入在某种条件下等于输出(即输出保持)时,可以将时钟门控住,以减少无效的时钟翻转。 时钟门控的实现原理如下图所示:

常用低功耗设计

随着半导体工艺的飞速发展和芯片工作频率的提高,芯片的功耗迅速增加,而功耗增加又将导致芯片发热量的增大和可靠性的下降。因此,功耗已经成为深亚微米集成电路设计中的一个非常重要的考虑因素。为了使产品更具有竞争力,工业界对芯片设计的要求已从单纯的追求高性能、小面积,转换为对性能、面积、功耗的综合要求。微处理器作为数字系统的核心部件,其低功耗设计对降低整个系统的功耗具有非常重要的意义。 本文首先介绍了微处理器的功耗来源,重点介绍了常用的低功耗设计技术,并对今后低功耗微处理器设计的研究方向进行了展望。 1 微处理器的功耗来源 研究微处理器的低功耗设计技术,首先必须了解其功耗来源。高层次仿真得出的结论如图1所示。 从图1中可以看出,时钟单元(Clock)功耗最高,因为时钟单元有时钟发生器、时钟驱动、时钟树和钟控单元的时钟负载;数据通路(Datapath)是仅次于时钟单元的部分,其功耗主要来自运算单元、总线和寄存器堆。除了上述两部分,还有存储单元(Mem ory),控制部分和输入/输出 (Control,I/O)。存储单元的功耗与容量相关。 如图2所示,C MOS电路功耗主要由3部分组成:电路电容充放电引起的动态功耗,结反偏时漏电流引起的功耗和短路电流引起的功耗。其中,动态功耗是最主要的,占了总功耗的90%以上,表达式如下: 式中:f为时钟频率,C1为节点电容,α为节点的翻转概率,Vdd为工作电压。

2 常用的低功耗设计技术 低功耗设计足一个复杂的综合性课题。就流程而言,包括功耗建模、评估以及优化等;就设计抽象层次而言,包括自系统级至版图级的所有抽象层次。同时,功耗优化与系统速度和面积等指标的优化密切相关,需要折中考虑。下面讨论常用的低功耗设计技术。 2.1 动态电压调节 由式(1)可知,动态功耗与工作电压的平方成正比,功耗将随着工作电压的降低以二次方的速度降低,因此降低工作电压是降低功耗的有力措施。但是,仅仅降低工作电压会导致传播延迟加大,执行时间变长。然而,系统负载是随时间变化的,因此并不需要微处理器所有时刻都保持高性能。动态电压调节DVS (Dynarnic Voltage Scaling)技术降低功耗的主要思路是根据芯片工作状态改变功耗管理模式,从而在保证性能的基础上降低功耗。在不同模式下,工作电压可以进行调整。为了精确地控制DVS,需要采用电压调度模块来实时改变工作电压,电压调度模块通过分析当前和过去状态下系统工作情况的不同来预测电路的工作负荷。 2.2 门控时钟和可变频率时钟 如图1所示,在微处理器中,很大一部分功耗来自时钟。时钟是惟一在所有时间都充放电的信号,而且很多情况下引起不必要的门的翻转,因此降低时钟的开关活动性将对降低整个系统的功耗产牛很大的影响。门控时钟包括门控逻辑模块时钟和门控寄存器时钟。门控逻辑模块时钟对时钟网络进行划分,如果在当前的时钟周期内,系统没有用到某些逻辑模块,则暂时切断这些模块的时钟信号,从而明显地降低开关功耗。图3为采用“与”门实现的时钟控制电路。门控寄存器时钟的原理是当寄存器保持数据时,关闭寄存器时钟,以降低功耗。然而,门控时钟易引起毛刺,必须对信号的时序加以严格限制,并对其进行仔细的时序验证。 另一种常用的时钟技术就是可变频率时钟。根据系统性能要求,配置适当的时钟频率,避免不必要的功耗。门控时钟实际上是可变频率时钟的一种极限情况(即只有零和最高频率两种值),因此,可变频率时钟比门控时钟技术更加有效,但需要系统内嵌时钟产生模块PLL,增加了设计复杂度。去年Intel公司推出的采用先进动态功耗控制技术的Montecito处理器,就利用了变频时钟系统。该芯片内嵌一个高精度数字电流表,利用封装上的微小电压降计算总电流;通过内嵌的一个32位微处理器来调整主频,达到64级动态功耗调整的目的,大大降低了功耗。

相关主题