搜档网
当前位置:搜档网 › 圆周率的近似计算——蒲丰投针问题实验报告

圆周率的近似计算——蒲丰投针问题实验报告

圆周率的近似计算——蒲丰投针问题实验报告
圆周率的近似计算——蒲丰投针问题实验报告

数学实验报告

实验序号:2 日期:2015 年3月27日

关于圆周率的计算

关于圆周率的计算 祖冲之在数学方面的突出贡献是关于圆周率的计算,确定了相当精确的圆周率值。中国古代最初采用的圆周率是“周三径一”,也就是说,π=3。这个数值与当时文化发达的其他国家所用的圆周率相同。但这个数值非常粗疏,用它计算会造成很大的误差。随着生产和科学的发展,π=3 就越来越不能满足精确计算的要求。因此,中外数学家都开始探索圆周率的算法和推求比较精确的圆周率值。在中国,据公元一世纪初制造的新莽嘉量斛(亦称律嘉量斛,王莽铜斛,是一种圆柱形标准量器,现存)推算,它所取的圆周率是3.1547 。二世纪初,东汉天文学家张衡在《灵宪》中取用π=≈3.1466,又在球体积计算中取用π≈3.1622。三国时东吴天文学家王蕃在浑仪论说中取用π≈3.1556。以上这些圆周率近似值,比起古率“周三径一”,精确度有所提高,其中π= 10还是世界上最早的记录。但这些数值大多是经验结果,并没有可靠的理论依据。 在这方面最先取得突破性进展的是魏晋之际的数学家刘徽,他在《九章算术注》中创立了“割圆术”,为计算圆周率建立起相当严密的理论和完善的算法。他所得到的圆周率值π=3.14 与π==3.1416,都很精确,在当时世界上是很先进的,至今仍在经常使用。继刘徽之后,祖冲之则将圆周率推算到更加精确的程度。据《隋书·律历志》记载,祖冲之确定了π的不足近似值 3.1415926 和过剩近似值 3.1415927,π的真值在这两个近似值之间,即 3.1415926<π<3.1415927 精确到小数 7 位。这是当时世界上最先进的数学成果,直到约一千年后,才为 15 世纪中亚数学家阿尔·卡西(Al—? kash1)和16世纪法国数学家韦达(F.Vièta,1540—1603)所超过。 关于他得到这两个数值的方法,史无明载,一般认为是基于刘徽割圆术。通过现代计算验证,如果按照割圆术计算,要得到小数 7 位准确的圆周率值,必须求出圆内接正12288 边形的边长和 24576边形的面积,这样,就要对9位数进行上百次加减乘除和开方运算,还要选择适当的有效数字,保证准确的误差范围。对于用算筹计算的古代数学家来说,这绝不是一件轻而易举的事情,只有掌握纯熟的理论和技巧,并具备踏踏实实和一丝不苟的研究精神,才能取得这样的杰出成就。祖冲之的这项记录在中国也保持了一千多年。 中国古代数学家和天文学家还往往用分数表示常量的近似值。为此,祖冲之确定了π的两个分数形式的近似值:约率π=22/7≈3.14 ,密率π=355/113 ≈3.1415929。这两个数值都是π的渐近分数。刘宋天文学家何承天及古希腊阿基米德等都已用到过。密率355/113 是π的分母小于10000的最佳近似分数,则为祖冲之首创。关于密率355/113是如何得到的,今人有“调日法”术,连分数法,解同余式或不定方程,割圆术等种种推测,迄今尚无定论。在欧洲,π= 355/113 是16世纪由德国数学家奥托(V.Otto,1550(?)—1605)和荷兰工程师安托尼兹(A.Anthonisz,1527—1607)分别得到,后通称“安托尼兹率”,但这已是祖冲之以后一千多年的事情了。自从我国古代灿烂的科学文化逐渐得到世界公认以来,一些学者就建议把π= 355 称为“祖率”,以纪念祖冲之的杰出贡献。 关于球的体积公式及其证明: 祖冲之的另一项重要数学成就是关于球的体积公式及其证明。各种几何体的体积计算是古代几何学中的基本内容。《九章算术》商功章已经正确地解决了

圆周率的计算方法

圆周率的计算方法 古人计算圆周率,一般是用割圆法。即用圆的内接或外切正多边形来逼近圆的周长。Archimedes用正96边形得到圆周率小数点后3位的精度;刘徽用正3072边形得到5位精度;Ludolph Van Ceulen用正262边形得到了35位精度。这种基于几何的算法计算量大,速度慢,吃力不讨好。随着数学的发展,数学家们在进行数学研究时有意无意地发现了许多计算圆周率的公式。下面挑选一些经典的常用公式加以介绍。除了这些经典公式外,还有很多其他公式和由这些经典公式衍生出来的公式,就不一一列举了。 ?Machin公式 这个公式由英国天文学教授John Machin于1706年发现。他利用这个公式计算到了100位的圆周率。Machin公式每计算一项可以得到1.4位的十进制精度。因为它的计算过程中被乘数和被除数都不大于长整数,所以可以很容易地在计算机上编程实现。 Machin.c 源程序 还有很多类似于Machin公式的反正切公式。在所有这些公式中,Machin公式似乎是最快的了。虽然如此,如果要计算更多的位数,比如几千万位,Machin 公式就力不从心了。下面介绍的算法,在PC机上计算大约一天时间,就可以得到圆周率的过亿位的精度。这些算法用程序实现起来比较复杂。因为计算过程中涉及两个大数的乘除运算,要用FFT(Fast Fourier Transform)算法。FFT可以将两个大数的乘除运算时间由O(n2)缩短为O(nlog(n))。 关于FFT算法的具体实现和源程序,请参考Xavier Gourdon的主页 ?Ramanujan公式 1914年,印度数学家Srinivasa Ramanujan在他的论文里发表了一系列共14条圆周率的计算公式,这是其中之一。这个公式每计算一项可以得到8位的十进制精度。1985年Gosper用这个公式计算到了圆周率的17,500,000位。

常用数学公式

常用数学公式大全 1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数 2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数 3、速度×时间=路程路程÷速度=时间路程÷时间=速度 4、单价×数量=总价总价÷单价=数量总价÷数量=单价 5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率 6、加数+加数=和和-一个加数=另一个加数 7、被减数-减数=差被减数-差=减数差+减数=被减数 8、因数×因数=积积÷一个因数=另一个因数 9、被除数÷除数=商被除数÷商=除数商×除数=被除数 小学数学图形计算公式 1、正方形C周长S面积a边长周长=边长×4C=4a面积=边长×边长S=a×a 2、正方体V:体积a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a 3、长方形 C周长S面积a边长 周长=(长+宽)×2C=2(a+b) 面积=长×宽S=ab 4、长方体 V:体积s:面积a:长b:宽h:高 (1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh) (2)体积=长×宽×高V=abh 5三角形s面积a底h高 面积=底×高÷2s=ah÷2 三角形高=面积×2÷底 三角形底=面积×2÷高 6平行四边形 s面积a底h高 面积=底×高s=ah 7梯形 s面积a上底b下底h高 面积=(上底+下底)×高÷2s=(a+b)×h÷2 8圆形 S面积C周长∏d=直径r=半径 (1)周长=直径×∏=2×∏×半径C=∏d=2∏r (2)面积=半径×半径×∏ 9圆柱体 v:体积h:高s;底面积r:底面半径c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10圆锥体 v:体积h:高s;底面积r:底面半径 体积=底面积×高÷3 总数÷总份数=平均数

小学3-6年级科学实验报告单上下册汇总(苏教版).

苏教版三----六年级科学下册实验报告单汇总 苏教版小学科学三年级下册实验一览表 单元课题实验名称实验材料 实验 类型周次 第一单元 土壤与生命2了解土壤 用实验证明土壤里 含有空气 烧杯、玻璃棒、土壤、水 观察 1 用实验证明土壤里 含有腐殖质和水 酒精灯、三脚架、石棉网、蒸 发皿、玻璃片、烧杯、土壤 演示 1 3肥沃的土壤 做肥料袋袋子、土、水果皮、菜叶、水自制 2 模拟水土流失实验 喷壶、水、平盘、有植被土壤 和无植被土壤各一块 演示 2 第二单元 植物的一生1果实和种子 探究种子里面有什 么 用水泡过的蚕豆、放大镜、镊 子 分组 4 2根和茎探究茎的作用芹菜的茎、红墨水、烧瓶 观察 4 第三单元 固体和液体1认识固体 研究固体的共同性 质 桌、直尺、玻璃、红领巾等学 生自己身边的物品 观察 7 探究固体的混合前 后重量和体积的变 化情况 黄豆、米、面粉、天平、量筒 分组 7 2把固体放到 水里 探究固体的沉浮 蜡烛、小瓶盖、粉笔、布、水 槽、树叶、苹果、铁钉 分组 8 3认识液体 研究同体积液体的 重量 油、水、蜂蜜、量筒、天平 分组 9 4把液体倒进 水里 研究液体的沉浮油、水、蜂蜜、烧杯演示9 研究液体混合前后 重量和体积的变化 情况 酒精、水、天平、量筒(量杯) 演示 9 5使沉在水里 的物体浮起来 探究使物体上浮的 办法 水槽、盐、糖、味精、玻璃棒、 汤匙 分组 10 第四单元关心天气2气温有多高测量气温温度计分组12 3雨下得多大制作雨量筒大饮料瓶、剪刀、硬纸片制作13 4今天刮什么 风 制作风向标 硬纸板、大头针、泡沫板、小 珠子 制作15

小学科学三年级下册演示实验报告单 实验内容:观察研究土壤 年级:三年级下册第一单元 课题:2、了解土壤 实验器材:湿土块、含较多腐殖质的土壤、餐巾纸、烧杯、水、三角架、石棉网、酒精灯、蒸发皿 实验类型:学生操作实验和教师演示实验 实验步骤操作要点 1.分组研究土壤成分1、让学生用餐巾纸包住刚从花圃里挖出的土块(不要太干燥),然后用手使劲握一握,观察餐巾纸的变化。如果观察不到水迹,说颜色变黄了等等,可让学生观察餐巾纸的背面,一般会有明显的潮湿斑迹。 2、将刚才的土块放入水中,引导学生仔细观察土壤刚放进水里和过了一会儿的发现与变化。 3、用玻璃棒沿着同一方向进行搅拌,引导学生边搅拌边观察,停止搅拌,耐心观察3——5分钟。 4、学生分组实验,用文字或图示的方法记录实验现象。 5、交流实验现象。(搅拌之后,可能时间较短,难以进行沉淀,教师可以将自己事先做好的一杯拿出来提供给学生观察,让学生有个完整的认识。) 2. 演示研究土壤成分1、将石棉网放在三角架上,上面放上盛有土壤的蒸发皿(选用腐殖质较多的黑色土壤),下面用酒精灯点燃加热。 2、酒精灯使用:(1)使用前,酒精不超过瓶体的2/3。(2)打开灯帽,点燃火柴由下往右上方在灯芯上划过,使灯芯点燃。(3)用外焰加热。(4)熄灭酒精灯时,不要吹灭,用灯帽盖上灯芯,使火焰熄灭,如果是玻璃灯帽,还需提起灯帽再轻轻放下,以免会被吸紧。 3、持续加热一段时间,让学生观察变化,等到有白烟冒出后,可以请学生代表上来闻一闻,闻的时候提醒学生不能直接去闻,应该用手扇一些白烟到旁边闻。 4、交流实验现象。

三年级科学下册实验报告单

实验一、温度和温度计 活动1:感受1号杯和2号杯里水的冷热 1号杯水() 2号杯水() 活动2:观察温度计 .观察常用液体温度计的主 要构造。 你观察温度计上有摄氏度 (℃)的标记吗? 你观察温度计上每一小格表 示多少? 最高()最低() 你观察温度计的最高温度和 最低温度是多少? 实验现象温度计里面的液柱热了就会上升,冷了就会下降。 活动3:下面的温度你会读和写吗? 28摄氏度写作: 20摄氏度写作: 零下5摄氏度写作: -21℃读作: 31℃读作: 实验要求:用温度计测量水的温度。 实验用品:400ml烧杯一个一支温度计适量冷水和一暖壶热水吸水纸废物瓶。 步骤操作要求评分标准满分得分1 清点仪器用品按材料清单清点材料用品是否齐全(5分)。 5

2 观察温度计的 零刻线、分度值 和量程。 A、观察温度计的零刻线。(10分) B、观察温度计的分度值和量程 。(10分) 20 3 用手感知水温。将手指伸入烧杯中(冷水)或将手放在烧杯 外壁(热水),手的感觉 (10分),估测水的温度(10分)。 20 4 将温度计测量 水的温度。 A、手拿温度计上端,将其竖直放入水中。(10 分) B、温度计的玻璃泡要完全浸没在水中,玻璃 泡不要碰烧杯的侧壁和底部。(10分) C、等示数稳定时再读数。读数时,要让玻璃 泡继续停留在水中。(10分) D、视线要和温度计的示数保持相平。连续三 次测水的温度分别为、、 ,平均水温为。(15分) 45 5 整理仪器,擦拭 桌面。 A、将温度计擦干放回原处。(5分) B、擦拭桌面。(5分) 10 实验三、水结冰了 一、实验名称:水结冰了 二、实验目的:观察水在不同温度下温度计的读数 三、实验步骤: 1、在试管里加入一半的纯净水,用温度计测量并记录试管里水的温度 2、拿一只保温杯(或在普通塑料杯外包裹一块干毛巾)在杯内装满碎冰, 把试管插入碎冰中,用温度计观测试管里水温的变化 3、在碎冰里加入较多的食盐,保持几分钟持续观测试管里的水温 4、观测试管里的水开始结冰时的温度 四、实验器材:试管、保温杯、温度计、碎冰块、食盐、纯净水。 水结冰了的实验记录表

圆周率计算表(π取3.14)

3.14× 1=3.14 3.14× 2=6.28 3.14 × 3=9.42 3.14 × 4=12.56 3.14×5=15.7 3.14×6=18.84 3.14×7=21.98 3.14×8=25.12 3.14×9=28.26 3.14×10=31.4 3.14×11=3 4.54 3.14×12=37.68 3.14×13=40.82 3.14×14=43.96 3.14×15=47.1 3.14×16=50.24 3.14×17=53.38 3.14×18=56.52 3.14×19=59.66 3.14×20=62.8 3.14×21=6 5.94 3.14×22=69.08 3.14×23=72.22 3.14×24=75.36 3.14×25=78.5 3.14×26=81.64 3.14×27=8 4.78 3.14×28=87.92 3.14×29=91.06 3.14×30=9 4.2 3.14×31=97.34 3.14×32=100.48 3.14×33=103.62 3.14×34=106.76 3.14×35=109.9 3.14×36=113.04 3.14×37=116.18 3.14×38=119.32 3.14×39=122.46 3.14×40=125.6 3.14×41=128.74 3.14×42=131.88 3.14×43=135.02 3.14×44=138.16 3.14×45=141.3 3.14×46=14 4.44 3.14×47=147.58 3.14×48=150.72 3.14×49=153.86 3.14×50=157 3.14×51=160.14 3.14×52=163.28 3.14×53=166.42 3.14×54=169.56 3.14×55=172.7 3.14×56=175.84 3.14×57=178.98 3.14×58=182.12 3.14×59=185.26 3.14×60=188.4 3.14×61=191.54 3.14×62=19 4.68 3.14×63=197.82 3.14×64=200.96 3.14×65=20 4.1 3.14×66=207.24 3.14×67=210.38 3.14×68=213.52 3.14×69=216.66 3.14×70=219.8 3.14×71=222.94 3.14×72=226.08 3.14×73=229.22 3.14×74=232.36 3.14×75=235.5 3.14×76=238.64 3.14×77=241.78 3.14×78=24 4.92 3.14×79=248.06 3.14×80=251.2 3.14×81=25 4.34 3.14×82=257.48 3.14×83=260.62 3.14×84=263.76 3.14×85=266.9 3.14×86=270.04 3.14×87=273.18 3.14×88=276.32 3.14×89=279.46 3.14×90=282.6 3.14×91=285.74 3.14×92=288.88 3.14×93=292.02 3.14×94=295.16 3.14×95=298.3 3.14×96=301.44 3.14×97=30 4.58 3.14×98=307.72 3.14×99=310.86 3.14×100=314

三年级下册科学实验报告单

河北版三年级下册科学实验报告单 实验操作要求及评分标准 1. 清点器材(15分) (1)有清点实验器材的动作。(5分)(2)能准确说出器材名称。(10分) 2. 进行实验(50分) (1)正确使用仪器,合乎规范,注意安全。(10分) (2)按正确的实验步骤,通过观察、实验、制作等活动,进行操作。(30分)(3)实验过程中,集中精力,仔细观察,及时做好记录。(10分) 3. 填写实验报告(20分) (1)简要写出实验步骤。(10分) (2)记录实验现象,得出实验结论。(10分) 4. 整理仪器、收拾桌面(15分)(1)仪器归位、摆放整齐。(10分)(2)桌面整洁。(5分) (一)实验名称: 观察物体发生时的现象 实验器材:鼓和鼓槌、绿豆、钢锯条。实验步骤: 1.把绿豆放在鼓皮上,用鼓槌敲击鼓,观察绿豆。 2.把锯条放在课桌上,一半落空,一只手按住桌上一端,另一只手拨动锯条。 实验现象:1. 绿豆跳动 2. 锯条颤抖 实验结论:物体发声时振动。 (二)实验名称: 水能传声

实验器材:水槽、砂纸。 实验步骤: 1. 水槽中加满水。 2. 一个同学在水中磨砂纸,另一个同学将耳朵贴在水槽边听。 实验现象:听到了磨砂纸声音。实验结论:水能传声音。 (三)实验名称: 光的传播实验实验目的: 研究光是怎样传播的。 实验器材:手电筒一个、完全相同的中间带孔的硬纸片三张、纸屏一个。 实验步骤: 1. 将三张中间带孔的硬纸片、纸屏排在一条直线上(孔在一条直线上),用手电筒从一端向纸屏上照射,观察现象。 2. 将中间的硬纸片错开,用手电筒从一端向纸屏上照射,观察现象。实验现象:孔在一条直线上时,观察到纸屏上有光;将中间的硬纸片错开,孔不在一条直线上时,观察到纸屏上没有光。 实验结论:光是沿直线传播的。 (四)实验名称:光的反射实验 实验目的:光是否可以被反射。 实验器材:手电筒一个、中间带缝的硬纸片1张、平面镜一个、纸和尺子。 实验步骤:将中间带缝的硬纸片、平面镜放在纸上,排在一条直线上,用手电筒从硬纸片缝隙一端向平面镜上照射,改变平面镜摆放的角度观察现象,画出光的传播路线。

十秒速记圆周率小数点后30位

十秒速记圆周率小数点后30位 商店要死要活就要遛 3.1415926 我傻我吧就去救 5358979 傻儿傻爸死脑儿 3238462 老师算算不傻啊 6433832 吃酒! 79 关于圆周率的计算历史 圆周率(π)是一个常数(约等于3.1415926),是代表圆周长和直径的比值。它是一个无理数,即是一个无限不循环小数。 中国古算书《周髀算经》(约公元前2世纪)中有“径一而周三”的记载,也认为圆周率是常数。 第一个用科学方法寻求圆周率数值的人是阿基米德,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,得到(3+(10/71))<π<(3+(1/7)),开创了圆周率计算的几何方法(亦称古典方法,或阿基米德方法),得出精确到小数点后两位的π值。 中国数学家刘徽在注释《九章算术》(263年)时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术。他用割圆术一直算到圆内接正192边形,得出π≈根号10(约为3.14)。 南北朝时代著名数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7。他的辉煌成就比欧洲至少早了1000年。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲不知道是祖冲之先知道密率的,将密率错误的称之为安托尼斯率。 阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。 德国数学家柯伦于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。

圆周率的计算历程及意义

圆周率π的计算历程及意义 李毫伟 数学科学学院数学与应用数学学号:080412047 指导老师:王众杰 摘要: 圆周率π这个数,从有文字记载的历史开始,就引起了人们的兴趣.作为一个非常重要的常数,圆周率π最早是出于解决有关圆的计算问题.仅凭这一点,求出它的尽量准确的近似值,就是一个极其迫切的问题了.几千年来作为数学家们的奋斗目标,古今中外的数学家为此献出了自己的智慧和劳动.回顾历史,人类对π的认识过程,反映了数学和计算技术发展情形的一个侧面.π的研究在一定程度上反映这个地区或时代的数学水平. 关键词: 圆周率; 几何法; 分析法; 程序 1、实验时期 通过实验对π值进行估算,这是计算π的第一个阶段.这种对π值的估算基本上都是以观察或实验为根据,是基于对一个圆的周长和直径的实际测量而得出来 π=这个数据,最早见于有文字记载的基督教《圣经》的.在古代,实际上长期使用3 中的章节,其上取圆周率π为3.这一段描述的事大约发生在公元前950年前后.其他如巴比伦、印度、中国等也长期使用3这个粗略而简单实用的数值.在我国刘徽之前“圆径一而周三”曾广泛流传.我国第一部《周髀算经》中,就记载有“圆周三径一”这一结论.在我国,木工师傅有两句从古流传下来的口诀:叫做:“周三径一,方五斜七,”意思是说,直径为1的圆,周长大约是3,边长为5的正方形,对角线之长约为7,这正反应了人们早期对π和2这两个无理数的粗略估计.东汉时期,官方还明文规定圆周率取3为计算圆的面积的标准,后人称之为古率. 早期的人们还使用了其它的粗糙方法.如古埃及、古希腊人曾用谷粒摆在圆形上,以数粒数与方形对比的方法取得数值.或用匀重木板锯成圆形和方形以秤量对比取值……由此,得到圆周率π的稍好些的值.如古埃及人应用了约四千年的()≈2984 3.1605.在印度,公元前六世纪,曾取π≈10≈3.162.在我国东、西汉之

蒲丰氏投针问题的模拟过程

蒲丰氏投针问题的模拟过程,随机数发生器也是自编的,以供大家参考和提出建议。谢谢。(seed1和seed2最好选择3和5,为了使投针次数达到1000000,CVF进行如下设置Project->settings->link-> output,将stack allocations reserve:设为1000000000) program getpi implicit none real,parameter::a=5,L=4,pi=3.14159 integer::n1,i,counter=0 real,allocatable::R1(:),R2(:) real::theta,x,pi1 write(*,*) 'input the size of the array:' read(*,*) n1 allocate(R1(n1)) allocate(R2(n1)) call random(n1,R1,R2) do i=1,n1 x=a*(2*R1(i)-1) theta=pi*R2(i) if(abs(x)

蒲丰投针问题

蒲丰投针问题 1.蒲丰简介 蒲丰有的时候翻译成布丰,是18世纪法国著名 的博物学家。他喜欢研究数学和生物学。主要的贡献 有:(1)翻译了牛顿的《流数法》,流数法按现在的 说法就叫微积分。(2)写了一本巨著,这部巨著的名 字叫《自然史》,因为他特别喜欢研究生物。这个自 然史一共有44卷,其中他生前写了36卷,后来他学 生又完成了。这本书对后来的世界有很大的影响,尤 其影响到一个人叫达尔文,所以蒲丰这个人其实是很 厉害的。 2.蒲丰投针 1777年,在蒲丰晚年的时候,他有一次举行了一 个家庭宴会。邀请了一大堆他的朋友来帮他做实验。 做什么实验呢,就“投针”。那朋友来了之后发现,就 是桌子上有很多根间距相等的平行线。然后蒲丰就说 了,给你们同样大的针,你把这些针随机扔到这个桌子上。然后宾客就随便扔吗,有可能这样,有可能 这样……,随便扔是吧,这都有可能,什么情况都 有可能。有的针就没有跟平行线相交,比如这个, 这个,这个,就没有相交,也有相交的,比如这个, 这个,这个,这是相交的,对吧,然后他就数,他 说这个针一共投了多少个呢?一共投了n =2212个。 其中与这个平行线相交的针有多少 个,数了一下有m =704个。然后他说, 我现在可以计算圆周率了,别人都不 信,他说你看我圆周率怎么算,我只 要把这两个数相除就行了。我用n 除 以m ,这个数除完了大概是3.142,这个就是圆周率了。别人说好神奇,这怎么回事儿,蒲丰说我给你解释解释这个原理是什么?其实这个原理并不复杂,我们来看一下它的原理是什么。 3. 蒲丰投针原理 (1)首先,它这个平行线是严格平行的,那平行线之间的距离是固定的,是a 。然后我随意地把一根针投上去,也许相交,也许不相交,这不一定。比如说这个针投上去了,投上去了之后,针的总长是b ,针有一个中点叫M ,对吧,这个M 到它比较近的平行线之间的距离我们设为x ,大家注意,这个是针的中点到比较近的平行线的距离是x ,所以我们应该知道x 的范围。x 的最小值就是这个终点正好落在平行线上,那最小值是0,对吧。最大值就 是针的中点正好在两条平行线中间,那最大值是a 2 ,不会再大了。因为我这个x 的定义是针的终点到比较近的平行线的距离,对吧!所以x ∈[0,a 2 ]。 (2)其次就是我想知道这个针与这个平行线的夹角是多少?令夹角为α,α的范围是什么呢,如果你完全跟这个平行线平行的话,那么这个夹角是00,对吧。如果你往上竖过来,

蒲丰投针实验模拟

概率论与数理统计实验 蒲丰投针与蒙特卡罗法 班级应数12级01班 学号2012444086 姓名张旭东

蒲丰投针与蒙特卡罗法 张旭东2012444086 (重庆科技学院数学与应用数学,重庆沙坪坝) 【摘要】通过设计一个投针实验使这个事件的概率和未知量π有关,然后通过重复实验,以频率估计概率,即可求得未知参数π的近似解。这种方法称为随机模拟法,也称为蒙特卡罗法。一般来说,实验次数越多所得的近似值就越接近真值。可以利用MATLAB来大量重复地模拟所设计的随机实验。 【关键词】随机模拟;投针实验;重复实验

1 引言 蒲丰投针问题是由法国科学家蒲丰(Buffon)在1777年提出的,它是概率中非常有代表性的问题,它是第一个用几何形式表达概率问题的例子,其结论具有很强的理论与实际意义。蒲丰针问题的解决不仅较典型的反应了集合概率的特征及处理方法,而且还可以由此领略到从“概率土壤”上开出的一朵瑰丽的鲜花——蒙特卡洛(Monte-Carlo)方法。 蒙特卡罗(Monte Carlo)方法,也称计算机模拟方法,是一种基于“随机数”的计算方法,大数定律为近年来发展迅速的随机计算机和随机模拟方法提供了理论基础。 MATLAB是一个适合多学科,具有多种工作平台的功能强大的大型软件。MATLAB已经成为线性代数、自动控制理论、数理统计、数字信号处理、时间序列分析、动态系统仿真等高级课程的进本教学工具,Matlab随机数发生器的种类丰富且用法简便。 本文介绍了利用随机模拟方法和大数定律的相关理论解决蒲丰投针问题计算π的近似值。

2 有关数学实验的有关基础 定理(贝努力大数定律) 设n μ是n 重贝努力实验中事件A 出现的次数,P 是事件A 每次实验中出现的概率,即P(A)=p,则对任意的 ε>0,有 3 实验 蒲丰投针问题 在平面上画有等距离的一些平行线,平行线间的距离为a(a>0),向平面上随机投一长为l(l

圆周率200位记忆口诀

圆周率的来源和2000位 “圆周率”即圆的周长与其直径之间的比率。关于它的计算问题,历 来是中外数学家极感兴趣、孜孜以求的问题。德国的一位数学家曾经说过:“历史上一个国家所算得的圆周率的准确程度,可以作为衡量这个国家当时数学发展的一个标志。”我国古代在圆周率的计算方面长期领先于世界水平,这应当归功于魏晋时期数学家刘徽所创立的新方法一一“割圆术”。 所谓“割圆术”,是用圆内接正多边形的周长去无限逼近圆周并以此求取圆周率的方法。这个方法,是刘徽在批判总结了数学史上各种旧的计算方法之后,经过深思熟虑才创造出来的一种崭新的方法。 中国古代从先秦时期开始,一直是取“周三径一”(即)的数值来进行有关圆的计算。但用这个数值进行计算的结果,往往误差很大。正如刘徽所说,用“周三径一”计算出来的圆周长,实际上不是圆的周长而是圆内接正六边形的周长,其数值要比实际的圆周长小得多。东汉的张衡不满足于这个结果,他从研究圆与它的外切正方形的关系着手得到圆周率。这个数值比“周三径一”要好些,但刘徽认为其计算出来的圆周长必然要大于实际的圆周长,也不精确。刘徽以极限思想为指导,提出用“割圆术”来求圆周率,既大胆创新,又严密论证, 从而为圆周率的计算指出了一条科学的道路。 在刘徽看来,既然用“周三径一”计算出来的圆周长实际上是圆内接正六边形的周长,与圆周长相差很多;那么我们可以在圆内接正六边形把圆周等分为六条弧的基础上,再继续等分,把每段弧再分割为二,

做出一个圆内接正十二边形,这个正十二边形的周长不就要比正六边形的周长更接近圆周了吗?如果把圆周再继续分割,做成一个圆内接正二十四边形,那么这个正二十四边形的周长必然又比正十二边形的周长更接近圆周。这就表明,越是把圆周分割得细,误差就越少,其内接正多边形的周长就越是接近圆周。如此不断地分割下去,一直到圆周无法再分割为止,也就是到了圆内接正多边形的边数无限多的时候,它的周长就与圆周“合体”而完全一致了。 按照这样的思路,刘徽把圆内接正多边形的面积一直算到了正3072 边形,并由此而求得了圆周率为3.14和3.1416这两个近似数值。这个结果是当时世界上圆周率计算的最精确的数据。刘徽对自己创造的这个“割圆术”新方法非常自信,把它推广到有关圆形计算的各个方面,从而使汉代以来的数学发展大大向前推进了一步。 以后到了南北朝时期,祖冲之在刘徽的这一基础上继续努力,终于求得了圆周率:精确到了小数点以后的第七位。在西方,这个成绩是由法国数学家韦达于1593年取得的,比祖冲之要晚了一千一百多年。祖冲之还求得了圆周率的两个分数值,一个是“约率”22/7 ,另一个 是“密率” 355/113 ,其中355/113 这个值,在西方是由德国的奥托和荷兰的安东尼兹在16世纪末才得到的,都比祖冲之晚了一千一一百年。刘徽所创立的“割圆术”新方法对中国古代数学发展的重大贡献,历史是永远不会忘记的。 答应了大宝,教她点东西,才知道自己才疏学浅,不知道教她什么。偶尔看到巧计圆周率,就截图下来和她一起背,呵呵还真的有效,花三

三下科学实验报告单

三下科学实验报告单 1.植物新生命的 课题实验名称观察植物的种子 开始 实验班级三年级实验类别B实验组数10(教师准备)猫给小猫哺乳的图片、鸡妈妈带小鸡吃食的图片、向日实验葵小苗的图片、各种植物的种子(向日葵、花生、四季豆、南瓜、小准备麦、玉米、绿豆等)、白纸、放大镜。 (学生准备)各种植物的种子、白纸、放大镜。 规范操作要点 用感官和放大镜观察种子的外部形态特征;根据植物生长的已有知识,预测植物种子的内部结构。 外部:形状、大小、颜色 备 注植物的种子 内部:胚根、胚芽 实验报告单 2.种植我们的 课题实验名称种植我们的植物 植物 实验班级三年级实验类别B实验组数10(教师准备)小铲、花盆、泥土、凤仙花种子、透明塑料杯、吸 实验 准备水纸等。 要点 规 范 操 作 学习掌握播种技能;在教师的指导下,设计适宜的实验,观察种子的萌发过程;根据研究植物生长变化的需要,确定观察、记录的内 容和方法;根据对种子萌发状况的预测,确定本阶段观察的重点。 备 注 记住播种方法:选种、放土、下种、浇水。

科学实验报告单 课题 3.我们先看到了 根实验名称 植物根的作用 实验班级三年级实验类别B实验组数10(教师准备)前一周种植在玻璃杯里的四季豆,试管、水、食用油、实验 一颗有根有叶的小植物。准备 规范操作要点 参看P8页书上的内容,教师边讲边操作。①选择一棵带根的植 物装入有水的试管中。②将植物的根浸泡在试管里的水中。③在水面上滴一些植物油,试管口塞一些棉花,使试管中的水不会被蒸发到空气中去,并在水面处做好标记。④观察试管中的水量有什么变化。 固定植物 备 注植物根的作用 吸收水分 实验报告单 4.种子变成了 叶为植物提供“食物” 课题实验名称 幼苗 实验班级三年级实验类别B实验组数10(教师准备)刚出土的凤仙花照片、植物叶水平分布和垂直分布的照实验 准备 片、植物光合作用示意图(多媒体课件)、植物光合作用的相关资料。 (学生准备)生长四周的凤仙花、记录单。 要点 规 范 操 作 组织学生交流种子发育成幼苗后植物的生长变化,观察凤仙花幼苗的 特征,研究植物叶的作用。 植物的光合作用不仅为植物制造养料,还为我们人类和动物制造养料和氧气。 备 注阳光 二氧化碳+水——→氧气+养料

蒲丰投针问题

蒙特卡罗方法概述 § 8.2 引例:蒲丰投针问题 在用传统方法难以解决的问题中,有很大一部分可以用概率模型进行描述.由于这类模型含有不确定的随机因素,分析起来通常比确定性的模型困难.有的模型难以作定量分析,得不到解析的结果,或者是虽有解析结果,但计算代价太大以至不能使用.在这种情况下,可以考虑采用Monte Carlo 方法。下面通过例子简单介绍Monte Carlo 方法的基本思想. Monte Carlo 方法是计算机模拟的基础,它的名字来源于世界著名的赌城——摩纳哥的蒙特卡洛,其历史起源于1777年法国科学家蒲丰提出的一种计算圆周π的方法——随机投针法,即著名的蒲丰投针问题。这一方法的步骤是: 1) 1) 取一张白纸,在上面画上许多条间距为d 的平行线,见图8.1(1) 2) 2) 取一根长度为)(d l l <的针,随机地向画有平行直线的纸上掷n 次,观察针与直线相交的次数,记为 m 3)计算针与直线相交的概率. 由分析知针与平行线相交的充要条件是 ?sin 21≤ x 其中 π?≤≤≤≤0,2 0d x 建立直角坐标系),(x ?,上述条件在坐标系下将是曲线所围成的曲边梯形区域,见图 8.l (2). 由几何概率知 (*)22 sin 210d l d d G g p ππ??π===?的面积的面积 4)经统计实验估计出概率,n m P ≈由(*)式即?2=?=ππd l n m Monte Carlo 方法的基本思想是首先建立一个概率模型,使所求问题的解正好是该模型的参数或其他有关的特征量.然后通过模拟一统计试验,即多次随机抽样试验(确定m 和n ),统计出某事件发生的百分比.只要试验次数很大,该百分比便近似于事件发生的概率.这实际上就是概率的统计定义.利用建立的概率模型,求出要估计的参数.蒙特卡洛方法属于试验数学的一个分支. ************************************************************************* 提示:设x 是一个随机变量,它服从区间[0,d/2]是的均匀分布,同理,?是一个随机变量,它服从区间],0[π上的均匀分布。按照某种抽样法,产生随机变量的可能取值,例如

三年级科学实验报告单

大中小学三年级科学上册分组实验报告单实验内容:鹦鹉站立制作实验 年级:三年级上册第一单元 课题:1、做一名小科学家 实验器材:彩色卡纸一张、剪刀、回形针 实验结论:回形针分别别在鹦鹉的脚的两侧,可以使鹦鹉平稳站立在手指上。 1 大中小学三年级科学上册分组实验报告单实验内容:蜗牛观察实验

年级:三年级上册第二单元 课题:1、校园里的小动物 实验器材:蜗牛一只、大号餐盘、菜叶、肉片、苹果皮、鸡蛋、面包、醋、啤酒、玻璃片 实验结论:上述食物,蜗牛只吃菜叶,如用书上几种材料,蜗牛除了菜叶还喜欢黄瓜。遇到醋或者酒之类刺激物体,蜗牛会立刻缩回到壳里。 2 大中小学三年级科学上册分组实验报告单实验内容:水的毛细现象 年级:三年级上册第三单元 课题:2、神奇的水 实验器材:不同颜色的水、纸巾;粉笔、纱布、塑料片、玻璃片(2块,在其中一块玻璃片上绕上几圈透明胶);两支粗细不一样的玻璃管;

3

小,水爬升得越高。 4 大中小学三年级科学上册分组实验报告单实验内容:观察水 年级:三年级上册第三单元 课题:2、神奇的水 实验器材:滴管、一元硬币、烧杯、回形针每组一盒;戳好洞的可乐瓶一只、水盆一个;大小烧杯各一只、橡皮泥一块、50克砝码一只、细线一根。 实验类型:水的表面张力为学生操作实验,会喷射的水和会托举的水为教师演示

5

间拉着的力,以承受一点的重量。 6 会喷射的水:瓶子上方小孔的水喷射的距离近,下方小孔的水喷射的距离远,因为孔越高,受到水的压力越低,所以射不远;孔位置越低,水的压力也越大,所以射得最远。 会托举的水:开始小烧杯浮在大烧杯里,放入砝码后仍会浮在水中,但位置下降了,大烧杯里水位上升了。放得砝码越重,水位越高,小烧杯沉得越低,直至沉

圆周率计算公式

12π=3.14 22π=12.56 32π=28.26 42π=50.24 52π=78.5 62π=113.04 72π=153.86 82π=200.96 92π=254.34 102π=314 112π=379.94 122π=452.16 132π=530.66 142π=615.44 152π=706.5 162π=803.84 172π=907.46 182π=1017.36 192π=1133.54 202π=1256 212π=1384.74 222π=1519.76 232π=1661.06 242π=1808.64 252π=1962.5 262π=2122.64 272π=2289.06 282π=2416.76 292π=2640.74 302π=2826 312π=3017.54 322π=3215.36 332π=3419.46 342π=3629.84 352π=3846.5 362π=4069.44 372π=4298.66 382π=4534.16 392π=4775.94 402π=5024 412π=5278.34 422π=5538.96

432π=5805.86 442π=6079.04 452π=6358.5 462π=6644.24 472π=6936.26 482π=7234.56 492π=7593.14 502π=7850 512π=8167.14 522π=8490.56 532π=8820.26 542π=9456.24 552π=9498.5 562π=9847.04 572π=10201.86 582π=10562.96 592π=10930.34 602π=11304 612π=11683.94 622π=12070.16 632π=12462.66 642π=12861.44 652π=13266.5 662π=13677.84 672π=14095.46 682π=14519.36 692π=14949.54 702π=15386 712π=15828.74 722π=16277.76 732π=16733.06 742π=17194.64 752π=17662.5 762π=18136.64 772π=18617.06 782π=19103.76 792π=19596.74 802π=200.96 812π=20601.54 822π=21113.36 832π=21631.46 842π=22155.84 852π=22686.5 862π=23223.44

三年级科学下册实验报告单完整版

三年级科学下册实验报 告单 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

实验一、温度和温度计 28摄氏度写作: 20摄氏度写作: 零下5摄氏度写作: -21℃读作: 31℃读作: 实验要求:用温度计测量水的温度。

一、实验名称:水结冰了 二、实验目的:观察水在不同温度下温度计的读数 三、实验步骤: 1、在试管里加入一半的纯净水,用温度计测量并记录试管里水的温度 2、拿一只保温杯(或在普通塑料杯外包裹一块干毛巾)在杯内装满碎冰, 把试管插入碎冰中,用温度计观测试管里水温的变化 3、在碎冰里加入较多的食盐,保持几分钟持续观测试管里的水温 4、观测试管里的水开始结冰时的温度 四、实验器材:试管、保温杯、温度计、碎冰块、食盐、纯净水。 结论: 1、水在低温环境中,温度会不断下降,当温度下降到0℃时开始结冰,由液态变为固态。 2、结冰后温度会继续下降,一直降到与环境的温度相同为止。 3、水在结冰的过程中要向周围放出热量。

实验四、冰融化了 一、实验目的:观察冰融化过程中温度的变化 二、实验步骤: 1、从冰箱中取出一些冰块,把冰块放入烧杯内,用温度计测量并录 录冰块的温度 2、让冰块自行融化,在冰块融化过程中,按均匀的时间间隔测量温 度 3、当冰块完全融化成水时,记录温度计的读数 三、实验器材:烧杯一只、温度计、记录表、可封口的小塑料袋一 只、 冰块若干 2、温度会不断上升,当上升到0℃时,冰块开始融化,在融化过程中一直保持0℃。 3、冰块完全融化成水后,温度继续上升,一直到室温。 4、冰块融化的过程中需要吸收热量。 实验五、磁铁有磁性 (一)实验名称:磁铁有磁性 二、实验步骤: 1.用实验方法研究磁铁能吸引什么,不能吸引什么。 2、在磁铁和铁制物品之间先放上纸、布、塑料片、木头片等看看磁铁能不 能被吸引 3.用磁铁识别哪些硬币是铁材料制作的。 三记录 实验要求:若物体能被磁铁吸引,请在能被磁铁吸引项中打“√”,不能被吸引的打“×”。

相关主题