搜档网
当前位置:搜档网 › 习题反常积分的收敛判别法知识分享

习题反常积分的收敛判别法知识分享

习题反常积分的收敛判别法知识分享
习题反常积分的收敛判别法知识分享

习题反常积分的收敛判别法

习 题 8.2 反常积分的收敛判别法 ⒈ ⑴ 证明比较判别法(定理8.2.2); ⑵ 举例说明,当比较判别法的极限形式中l =0或+∞时,?∞ +a dx x )(?和 ? ∞ +a dx x f )(的敛散性可以产生各种不同的的情况. 解 (1)定理8.2.2(比较判别法) 设在[,)a +∞上恒有)()(0x K x f ?≤≤,其中K 是正常数.则 当?∞ +a dx x )(?收敛时? ∞+a dx x f )(也收敛; 当? ∞ +a dx x f )(发散时?∞ +a dx x )(?也发散. 证 当?∞ +a dx x )(?收敛时,应用反常积分的Cauchy 收敛原理, 0>?ε ,a A ≥?0,0,A A A ≥'?:K dx x A A ε ?< ?' )(. 于是 ≤ ?' A A dx x f )(ε??ε,a A ≥?0,0,A A A ≥'?: εK dx x f A A ≥?' )(. 于是 ≥?'A A dx x )(?0)(1 ε≥?' A A dx x f K , 所以?∞ +a dx x )(?也发散. (2)设在[,)a +∞上有0)(,0)(≥≥x x f ?,且0) ()(lim =+∞→x x f x ?.则当?∞ +a dx x f )(发散 时,?∞ +a dx x )(?也发散;但当?∞ +a dx x f )(收敛时,?∞ +a dx x )(?可能收敛,也可能发散. 例如21)(x x f = ,)20(1 )(<<=p x x p ?,则0)()(lim =+∞→x x f x ?.显然有

广义积分的收敛性

§2 广义积分的收敛性 主要知识点:广义积分及其敛散性概念; 非负函数广义积分收敛性的比较判别法、柯西判别法; 一般函数广义积分收敛性的Abel 、Dilichlet 判别法; 广义积分与级数的关系。 1、 讨论积分1 121 (1)[ln(1)]x e dx x α β +∞ --+? 的敛散性。 解:211 ,x x x α β →+∞时 “分子”“分母” 。 2、 证明积分 420 1sin dx x x +∞ +? 收敛 。 1 0,02k k k k k k k k k I v v v πδπδπδ δδ+-- '↓=+ +≤= ≤∑∑? ?解:取则,其中 , 11 (1)(1)421 11()sin k k k k k k k k k k v k πδπδπδ πδ πδ+++-+-++ + '=≤ +?? 。4 3 1 ,k k v k δ=∑取则收敛; 114 433 () 0,k k k k M M v v k k πδδ+--'' ≤≤≤∑又可见 也收敛。 3、 证明积分 1 2 2 3 (1)(sin ) dx x x +∞ +? 收敛 。 解:注意到(1)2 2 3 3 (sin ) [sin()] ,n n n x x n I u π π π+=-==∑ ∑?故 ,由于 2 222 3 2 1 0,1sin n n u dx u n x π π≤≤ +∑?故 收敛。 4、 讨论积分 10 sin 1cos x dx k x π αα -+?的敛散性 。 解:⑴ -1< k <1时f(x)只可能以0,π为瑕点,且当x →∞时分别与1111 , ()x x α α π---同阶,故 当0α>时积分收敛。 ⑵ k = ±1时,f(x)的可能瑕点仍是0,π 。1 120 1 I I I π = +=+?? k = 1时,将cos x 在点π处展成Taylor 公式,可知1cos x +与2 ()x π-同阶。于是1I 仅当0α>时 收敛,2I 仅当0α<时收敛,从而原积分不收敛。 k = -1 时,将cos x 在点0处展成Taylor 公式,可知1-cos x 与2 x 同阶。于是1I 仅当0α<时 收敛,2I 仅当0α>时收敛,故原积分不收敛。

习题反常积分的收敛判别法

页脚内容278 习 题 8.2 反常积分的收敛判别法 ⒈ ⑴ 证明比较判别法(定理8.2.2); ⑵ 举例说明,当比较判别法的极限形式中l =0或+∞时,?∞+a dx x )(?和?∞+a dx x f )(的敛散性可以产生各种不同的的情况. 解 (1)定理8.2.2(比较判别法) 设在[,)a +∞上恒有)()(0x K x f ?≤≤,其中K 是正常数.则 当?∞+a dx x )(?收敛时?∞+a dx x f )(也收敛; 当?∞ +a dx x f )(发散时?∞ +a dx x )(?也发散. 证 当?∞ +a dx x )(?收敛时,应用反常积分的Cauchy 收敛原理, 0>?ε ,a A ≥?0,0,A A A ≥'?:K dx x A A ε?< ?')(. 于是 ≤ ?'A A dx x f )(ε??ε,a A ≥?0,0,A A A ≥'?: εK dx x f A A ≥?' )(. 于是

页脚内容279 ≥?'A A dx x )(?0)(1ε≥?'A A dx x f K , 所以?∞+a dx x )(?也发散. (2)设在[,)a +∞上有0)(,0)(≥≥x x f ?,且0)()(lim =+∞→x x f x ?.则当?∞+a dx x f )(发散时,?∞+a dx x )(?也发散;但当?∞+a dx x f )(收敛时,?∞+a dx x )(?可能收敛,也可能发散. 例如21)(x x f =,)20(1)(<<=p x x p ?,则0)()(lim =+∞→x x f x ?.显然有 ?∞+1)(dx x f 收敛,而对于?∞+1)(dx x ?,则当21<

=p x x p ?,则+∞=+∞→)()(lim x x f x ?.显然有 ?∞+1)(dx x f 发散,而对于?∞+1)(dx x ?,则当12 1≤

p 时收敛. ⒉ 证明Cauchy 判别法及其极限形式(定理8.2.3). 证 定理8.2.3(Cauchy 判别法) 设在[,)a +∞?+∞(,)0上恒有f x ()≥0,K 是正常数. ⑴ 若f x K x p ()≤,且p >1,则?∞+a dx x f )(收敛;

函数项级数一致收敛的判定开题报告

一、本课题研究现状及可行性分析 目前通用的数学分析教材(如华东师范大学,复旦大学,吉林大学,北京师范大学等)其介绍的主要内容如下:M 判别法,狄利克雷判别法,阿贝尔判别法,柯西收敛准则等,用来判别一些级数的一致收敛性问题,其他一些数学方面的工作者对某些特殊级数的收敛性进行了讨论。当前对级数的收敛性的讨论研究已经到达比较高级阶段,分枝也比较细,发展也相对较完善。但在许多实际解题过程中,往往不是特定的级数,用特殊的方法不能解决。故需对特殊级数情况要总结和发展。 函数项级数的一致收敛性的判定是数学分析中的一个重要知识点,函数项级数既可以被看作是对数项级数的推广,同时数项级数也可以看作是函数项级数的一个特例。它们在研究内容上有许多相似之处,如研究其收敛性及和等问题,并且它们很多问题都是借助数列和函数极限来解决,同时它们敛散性的判别方法也具有相似之处,如Cauchy 判别法,阿贝尔判别法,狄利克雷判别法等。教材中给出了对于()n u x 一致收敛性的判别法,如Cauchy 判别法,阿贝尔判别法,狄利克雷判别法等,但在具体进行一致收敛的判别时,往往会有一定的困难,这就需要我们有效地运用函数项级数一致收敛的判别法。而此课题除了叙述以上判别法外,还对这些判别方法进行了一些推广,从而进一步丰富了判别函数项级数一致收敛的方法。 二、本课题研究的关键问题及解决问题的思路 关键问题:对函数项级数一致收敛性判别法总结和推广。 基本思路:首先从定义出发,让读者了解函数项级数及一致收敛的定义,对函数项级数一致收敛有一个大致的认识,并对其进行一定的说明,且将收敛与一致收敛做一个比较,使读者对其有一个更深刻的认识。随后给出一些常见的一致收敛的判别法,并附上例题加以说明。当熟悉了一般的判别法后,我将其加以推广,得到一些特殊的判别法,如比式判别法,根式判别法,对数判别法等。

反常积分的收敛判别法

反常积分的收敛判别法 阿文 摘 要:掌握不同类型函数反常积分收敛性的多种判别方法,对于需要计算出其收敛值的,也可以方便的计算出其收敛的数值. 关键词:Cauchy 判别法; Abel 判别法; Dirichlet 判别法 引 言 一般情况下,只需确定一个反常积分函数的收敛性,而不一定需要求出其具体的收敛数值.因此,掌握不同类型函数的反常积分收敛判别法是极其必要的. 一 非负函数反常积分的收敛判别法 1.比较判别法 设在),[+∞a 上恒有)()(0x K x f ?≤≤,其中K 是正常数,则 (1) 当? +∞a dx x )(?收敛时?+∞a dx x f )(也收敛; (2) 当?+∞a dx x f )(发散时?+∞a dx x )(?也发散. 2.Cauchy 判别法 设在),[+∞a ),0(+∞?上恒有0)(≥x f ,K 是正常数, (1)若p x K x f ≤)(,且p>1,则dx x f a ?+∞)(收敛; (2)若p x x f K ≥)(,且p 1≤,则?+∞a dx x f )(发散. 二 一般函数反常积分的收敛判别法 1.Abel 判别法 dx x f a ? +∞)(收敛,)(x g 在),[+∞a 单调有界,则dx x g x f a )()(?+∞收敛;

2.Dirichlet 判别法 F(A)=dx x f A a ?)(在[),+∞a 上有界,)(x g 在[),+∞a 上单调且+∞→x lim 0)(=x g ,则dx x g x f a )()(?+∞ 收敛. 三 无界函数反常积分的收敛判别法 1.Cauchy 判别法 设在[),b a 上恒有0)(≥x f ,当x 属于b 的某个领域),[0b b η-时,存在正常数K ,使得 (1) ,) ()(p x b K x f -≤且p<1,则?b a dx x f )(收敛; (2) ,)()(p x b K x f -≥且p 1≥则?b a dx x f )(发散. 2.Abel 判别法 ?b a dx x f )(收敛,)(x g 在),[ b a 上单调有界,则?b a dx x g x f )()(收敛. 3.Dirichlet 判别法 ? -=ηηb a dx x f F )()(在],0(a b -上有界,)(x g 在),[b a 上单调且0)(lim =-→x g b x , 则?b a dx x g x f )()(收敛. 总 结 函数的类型不同,其相应的反常积分收敛判别法也就不同. 熟练掌握多种判别法可以对不同类型函数的敛散性做出正确的估计及计算.一般的,同一类函数也可用不同的方法来计算,既省时间,正确度又高. 参考文献 [1]陈纪修,於崇华,金路.数学分析(第二版)[M],北京:高等教育出版社,2004.6.

无穷积分的性质与收敛判别法

§2 无穷积分的性质与收敛判别法 教学目的与要求: 掌握条件收敛与绝对收敛的概念,收敛的无穷积分具有的四个性质;掌握收敛的Cauchy 准则、比较判别法及其三个推论、阿贝耳判别法、狄利克雷判别法等。 教学重点,难点: 无穷积分的收敛性比较判别法、柯西判别法、狄利克雷判别法等。 教学内容: 本节介绍了无穷积分的三个性质和四种判别收敛的方法 一 无穷积分的性质 由定义知道,无穷积分 ()dx x f a ? +∞ 收敛与否,取决于函数F (u )=()dx x f u a ?在u →+∞时是否存在 极限。因此由函数极限的柯西准则导出无穷积分收敛的柯西准则。 定理11.1 无穷积分()dx x f a ? +∞ 收敛的充要条件是:任给ε>0,存在G ≥a ,只要u 1、u 2>G ,便 有 ()()()2 1 2 1 u u u a a u f x dx f x dx f x dx ε-= ?≥a ,只要u 1、u 2>G ,便有 ()()()221 1 21|()()|.u u u u a a f x dx f x dx f x dx F u F u ε=-=-

含参量反常积分一致收敛的判别法

题目含参量反常积分一致收敛的判别法学生姓名 学号 系别数学系 年级2010级 专业数学与应用数学 指导教师 职称 完成日期

摘要 含参变量的反常积分是研究和表达函数的的有力工具。要更好的研究含参量反常积分所表达的函数,关键问题在于判断他的一致收敛性。本文通过研究判断含参量反常积分一致收敛的判别法,以帮助研究含参量反常积分所表达的函数。关键词:含参量反常积分;一致收敛;判别法

Abstract Improper integral with variable is the study and expression tool function. To better function of parameter improper integral expression of the key problem lies in the judgment, the uniform convergence of his. Through the study of judging function discriminant method of parameter improper integral converges uniformly to help the study of parameter improper integral expression. Key words: Improper integral with variable;uniform convergence; discriminant analysis

目录 1引言 (1) 2基本概念 (1) 2.1含参量反常积分 (1) 2.2含参量反常积分一致收敛 (2) 3含参量反常积分一致收敛的判别方法 (2) 3.1定义法 (2) 3.2柯西准则法 (3) 3.3变上限积分的有界性法 (3) 3.4确界法 (4) 3.5微分法 (5) 3.6级数判别法 (6) 3.7维尔斯特拉斯判别法(简称M判别法) (6) 3.8狄里克莱判别法 (8) 3.9阿贝尔判别法 (8) 4结束语 (1) 参考文献 (10) 致谢 (11)

积分敛散性的判断

目录 摘要 (2) 引言 (3) 1无穷积分 (5) 1.1无穷积分的概念 (5) 1.2无穷积分敛散性的柯西准则 (5) 1.3无穷积分敛散性的比较判别法 (6) 1.4无穷积分的敛散性的狄利克雷与阿贝尔判别法 (7) 2瑕积分 (8) 2.1瑕积分的定义 (9) 2.2瑕积分的敛散性的比较判别法.................................................................... (10) 2.3.瑕积分敛散性的柯西判别法 (10) 2.4无穷积分的敛散性的狄利克雷与阿贝尔判别法.................... .. (12) 3瑕积分与无穷积分之间的关系............................................................ (13) 总结.................................................................................................... .. (13) 参考文献.............................................................................................. .. (14)

判断反常积分敛散性的方法 谢鹏数学与计算机科学学院 摘要:反常积分的收敛性是数学分析中的难点之一,本文介绍了反常积分敛散性的定义和一些重要的反常积分收敛和发散的例子,以及绝对收敛和条件收敛的概念等,让读者能够用反常积分的柯西收敛原理、非负函数反常积分的比较判别法、柯西判别法,以及一般函数反常积分的狄利克雷、阿贝尔判别法判别法判别基本的反常积分敛散性,以便更好的掌握反常积分收敛先判断的方法. 关键词:无穷积分;瑕积分;敛散性;判别方法 On Convergence of The Method of Judging Abnormal Integral Name of student, School: XiePeng,School of Mathematics & Computer Science

广义积分的收敛判别法知识分享

广义积分的收敛判别 法

第二节 广义积分的收敛判别法 上一节我们讨论了广义积分的计算, 在实际应用中,我们将发现大量的积分是不能直接计算的,有的积分虽然可以直接计算,但因为过程太复杂,也不为计算工作者采用,对这类问题计算工作者常采用数值计算方法或Monte-Carlo 方法求其近似值. 对广义积分而言,求其近似值有一个先决条件 — 积分收敛,否则其结果毫无意义。 因此,判断一个广义积分收敛与发散是非常重要的. 定理9.1(Cauchy 收敛原理)f (x )在[a , +∞ )上的广义积分 ?+∞ a dx x f )(收敛的充分必要条件是:0>?ε, 存在A>0, 使得b , b '>A 时,恒有 ε?ε , 0>?δ, 只要0<δηη<

收敛而非绝对收敛,则称?+∞ a dx x f )(条件收敛,也称f (x )在[a ,+)∞上 条件可积. 由于a A A ≥?/,,均有 |)(|/ ?A A dx x f ≤ ?/ |)(|A A dx x f 因此,由Cauchy 收敛原理,我们得到下列定理. 定理9.3如果广义积分?+∞a dx x f )(绝对收敛,则广义积分?+∞ a dx x f )(必收敛. 它的逆命题不一定成立,后面我们将会看到这样的例子。 对其它形式的广义积分,类似地有绝对收敛及条件收敛的定义及性质. 下面我们先介绍当被积函数非负时,广义积分收敛的一些判别法. 比较判别法: 定理9.4(无限区间上的广义积分)设在[a ,+∞)上恒有 ),()(0x k x f ?≤≤(k 为正常数) 则当?+∞ a dx x )(?收敛时, ?+∞ a dx x f )(也收敛; 当? +∞a dx x f )(发散时, ?+∞ a dx x )(?也发散. 证明:由Cauchy 收敛原理马上得结论成立. 对瑕积分有类似的结论判别法 定理9.5 设f (x ), g (x ) 均为[a ,b )上的非负函数,b 为两个函数的奇点,如存在一个正常数k, 使 ∈?≤≤x x kg x f ),()(0[a , b ), 则

习题8.2反常积分的收敛判别法

习 题 8.2 反常积分的收敛判别法 ⒈ ⑴ 证明比较判别法(定理8.2.2); ⑵ 举例说明,当比较判别法的极限形式中l =0或+∞时,?∞ +a dx x )(?和 ? ∞ +a dx x f )(的敛散性可以产生各种不同的的情况。 解 (1)定理8.2.2(比较判别法) 设在[,)a +∞上恒有)()(0x K x f ?≤≤,其中K 是正常数。则 当?∞ +a dx x )(?收敛时? ∞+a dx x f )(也收敛; 当? ∞ +a dx x f )(发散时?∞ +a dx x )(?也发散。 证 当?∞ +a dx x )(?收敛时,应用反常积分的Cauchy 收敛原理, 0>?ε ,a A ≥?0,0,A A A ≥'?:K dx x A A ε ?< ?' )(。 于是 ≤ ?' A A dx x f )(ε??ε,a A ≥?0,0,A A A ≥'?: εK dx x f A A ≥?' )(。 于是 ≥?'A A dx x )(?0)(1 ε≥?' A A dx x f K , 所以?∞ +a dx x )(?也发散。 (2)设在[,)a +∞上有0)(,0)(≥≥x x f ?,且0) ()(lim =+∞→x x f x ?。则当?∞ +a dx x f )(发 散时,?∞ +a dx x )(?也发散;但当?∞ +a dx x f )(收敛时,?∞ +a dx x )(?可能收敛,也可能发散。 例如21)(x x f = ,)20(1 )(<<=p x x p ?,则0)()(lim =+∞→x x f x ?。显然有 ?∞ +1 )(dx x f 收敛,而对于?∞ +1)(dx x ?,则当21<

函数项级数一致收敛性的判别法

函数项级数一致收敛性的判别法 摘 要 函数项级数是数学分析中的重点和难点,因此讨论和分析它的性质和判别方法显得尤为重要,本文给出了函数项级数的定义以及函数项级数一致收敛性的判别定理,并用之来解决函数项级数一致收敛性的一些问题比较容易. 关键词 函数项级数;一致收敛性;判别法. 中图分类号 O173.1 Function Seies Convergence Criterion Abstrac t :Function is a mathematical analysis of series of focus and difficult, so the discussion and analysis of its nature and it is particularly important to identify methods.In this paper, the definition of Function series and uniform convergence of Function series of discriminant theorem,and used to solve the series of uniform convergence of Function of some of the problems is easier. Key words :Function series; Uniform convergence of; Discriminance 1 引言及预备知识 如果函数项级数具有一致收敛性,函数项级数的和函数或余和易于求得,判别它的一致收敛性可应用一致收敛定义,如果很难求得它的和函数或余和,就根据函数自身的结构,找到判别一致收敛性的判别法. 定义1.1[1] 设()12(),,u x u x …()n u x ,…是一列定义在D 上的函数,把这些函数的各项用加号连接起来的表达式 ()()12u x u x ++…+()n u x +…或()1n n u x ∞ =∑, (1) 称为函数项级数.a D ?∈ 函数级数在a 对应一个数值级数 1 ()U n a ∞ =∑ =12()()u a u a ++...+()n u a +. (2) 它的敛散性可用数值级数敛散性的判别法判别,若级数(2)收敛,则称a 是函数级数(1)的收敛点;若级数(2)发散,则称a 是函数级数(1)的发散点. 定义 1.2[1] 函数项级数(1)的收敛点的集合,称为函数项级数(1)的收敛域,若收敛域是一个区间,则称此区间是函数项级数的收敛区间. 定义 1.3[1] 设数集E 为函数项级数()1 n n u x ∞ =∑的收敛域,则对每个x E ∈记S(x)= ()1 n n u x ∞=∑称S(x)为函数项级数()1 n n u x ∞ =∑的和函数.

反常积分的敛散性判定方法

内蒙古财经大学本科学年论文反常积分敛散性的判定方法 作者陈志强 学院统计与数学学院专业数学与应用数学年级2012 级 学号122094102 指导教师魏运 导师职称教授 最终成绩75 分

目录 摘要??????????????????.. ?? . ?. ?????..1 关键词??????????????????.. ?? . ?. ????..1 引言 ----------------------------------------------------------------------------------------2 一、预备知识?????????? .. ?? . ?. ????? . 2 1.无穷限反常积分??????????..??.?.?????..2 2.瑕积分????????..??.?.????3 3.反常积分的性质???????? .. ?? . ?. ????3 二、反常积分的收敛判别法????????????.. ?? . ?. 4 1 无穷积分的收敛判别????????.. ?? . ? . ?????4 (1). 定义判别法 (2). 比较判别法 (3).柯西判别法??????? .. ?? . ?. ?????..?? 4??????? .. ?? . ?. ?????..?? 4??????? .. ?? . ?. ?????..?? 5 (4)阿贝尔判别法 . ???????..??.?.?????.6 (5).狄利克雷判别法???????..??.?.?????7 2 瑕积分的收敛判别???????..??.?.?????. .?8 (1). 定义判别法???????..??.?.?????..??8 (2). 定理判别法???????????..??.?.?????.9. (3). 比较判别法?????????????.. ?? . ?. ????9 (4).柯西判别法???????????..??.?.?????9 (5).阿贝尔判别法???????????..??.?.???.10 (6).狄利克雷判别法????????..??.?.?????10.

无穷积分的敛散判别法

无穷积分的敛散判别法 摘 要:本文主要介绍了无穷积分的几种敛散判别方法,并对这些方法作一些规律性的分析,总结. 关键词:无穷积分;收敛;柯西准则;发散 The convergence and divergence method of infinite integral Abstract :this article mainly introduces several kinds of infinite integral convergence and divergence discrimination method ,and the method for some regularity analysis ,summary. Key Words :Infinite integral; Convergence ;Cauchy criterion;Divergence 前言 我们知道当讨论定积分时要考虑两个条件:一是积分区间时必须是有限闭区间;二是 被积函数必须是有界函数.但实际应用中会遇到积分的上限或下限趋于无穷大的情况,这时虽然可以用牛顿-莱布尼茨公式再求极限来解决,但是,如果被积函数的原函数不是初等函数,那么,就不能用上面的方法来解决问题了.这时,这个问题就变成积分上限函数当上限趋于无穷大时的极限是否存在的问题.这即是所谓的反常积分的敛散性问题.这里我们给出几种判断无穷积分敛散的方法. 1 无穷积分的定义 定义:设函数f 定义在无穷积分区间[,)a +∞上,且在任何有限区间[,]a u 上可积.如果存在极限 l i m ()u u a f x d x J →∞=? 则称此极限J 为函数f 在[,)a +∞上的无穷限反常积分(简称无穷积分),记作 ()a f x dx J +∞ =? 并称()a f x dx +∞? 收敛.如果极限不存在,为方便起见,亦称()a f x dx +∞? 发散. 类似地,可定义f 在(,]b -∞上的无穷积分: ()()lim b u b u f x dx f x dx →∞-∞=?? 对于在(,)-∞+∞上的无穷积分,他用前面两种无穷积分来定义: ()()()b a f x dx f x dx f x dx +∞ +∞ -∞-∞ =+??? , 其中a 为任一实数,当且仅当右边两个无穷积分都收敛时它才是收敛的.

函数项级数一致收敛的几个判别法及其应用

函数项级数一致收敛性判别法及其应用 栾娈 20111101894 数学科学学院 数学与应用数学11级汉班 指导老师:吴嘎日迪 摘要:本文证明了常用的函数项级数一致收敛性的判别法,并通过例题给出了它的应用.另外,仿照极限的夹逼原理,得到函数项级数一致收敛的夹逼判别法. 关键词:一致收敛,函数项级数,和函数 1.函数列与一致收敛性 (1)函数项级数一致收敛性的定义:设有函数列{S n (x )}(或函数项级数∑∞ =1 )(n n x u 的 部分和序列)。若对任给的0>ε,存在只依赖于ε的正整数N (ε),使n > N (ε)时,不等式 ε<-)()(x S x S n 对X 上一切x 都成立,则称{S n (x )}(∑∞ =1 )(n n x u )在X 上一致收敛于S (x ). 一致收敛的定义还可以用下面的方式来表达: 设 =-S S n X x ∈s u p )()(x S x S n -, 如果 0lim =-∞ →S S n n 就称S n (x )在X 上一致收敛于S(x ). 例1 讨论 = +=X x n nx x S n 在2 2 1)([0,1]的一致收敛性 由于S (x )=0, 故 2 11)(m a x 1 = ?? ? ??==-≤≤n S x S S S n n x o n , 不收敛于零,故在[0,1]上非一致收敛 (2)函数项级数一致收敛的几何意义:函数列{f n }一致收敛于的f 几何意义:对任 给的正数ε ,存 N ,对一切序号大于N 的曲线y=f n (x )都落在以曲 线y= f (x )+ε与y=f (x )-ε为上,下边界的带形区域内. 2.函数列一致收敛的判别准则(充要条件)

含参量反常积分一致收敛性的判别法资料

含参量反常积分一致收敛的判别法 王 明 星 (德州学院数学科学学院,山东德州 253023) 摘 要: 含参量反常积分是研究和表达函数特别是非初等函数的有力工具.本文通过对含参量反常积分一致收敛性的分析和研究,总结出了判别含参量反常积分一致收敛的几种简单而有效的方法和定理(柯西准则,M 判别法,确界法,狄利克雷判别法等),从而方便了含参量反常积分一致收敛性的学习和掌握. 关键词: 含参量反常积分; 一致收敛; 判别法 含参量反常积分包括含参量无穷限反常积分和含参量无界函数反常积分,两种反常积分一致收敛性的判别法是相似的,所以我们下面仅仅讨论含参量无穷限反常积分一致收敛性的判别法. 1 含参量无穷限反常积分一致收敛的概念 1.1 含参量无穷限反常积分 设函数(,)f x y 定义在无界区域(){},,R x y a x b c y =|≤≤≤<+∞上,若对每一个固定的[],x a b ∈,反常积分 (,)c f x y dy +∞ ? 都收敛,则它的值是x 在[],a b 上取值的函数,当记这个函数为()I x 时,则有 ()(,)c I x f x y dy +∞=?,[],x a b ∈ 称(,)c f x y dy +∞? 为定义在[],a b 上的含参量无穷限反常积分. 1.2 含参量无穷限反常积分收敛 若含参量无穷限反常积分(,)c f x y dy +∞? 与函数()I x 对每一个固定的 [],x a b ∈,任给的正数ε,总存在某一实数N c >,使得M N >时,都有 (,)()M c f x y dy I x ε-

广义积分的收敛判别法-广义积分收敛判别法

第二节 广义积分的收敛判别法 上一节我们讨论了广义积分的计算, 在实际应用中,我们将发现大量的积分是不能直接计算的,有的积分虽然可以直接计算,但因为过程太复杂,也不为计算工作者采用,对这类问题计算工作者常采用数值计算方法或Monte-Carlo 方法求其近似值. 对广义积分而言,求其近似值有一个先决条件 — 积分收敛,否则其结果毫无意义。 因此,判断一个广义积分收敛与发散是非常重要的. 定理9.1(Cauchy 收敛原理)f (x )在[a , +∞ )上的广义积分? +∞a dx x f )(收敛的充分必要条件是:0>?ε, 存在A>0, 使得b , b '>A 时,恒有 ε?ε , 0>?δ, 只要0<δηη<

收敛而非绝对收敛,则称?+∞ a dx x f )(条件收敛,也称f (x )在[a ,+)∞上 条件可积. 由于a A A ≥?/,,均有 |)(|/ ?A A dx x f ≤ ?/ |)(|A A dx x f 因此,由Cauchy 收敛原理,我们得到下列定理. 定理9.3如果广义积分?+∞a dx x f )(绝对收敛, 则广义积分?+∞ a dx x f )(必收敛. 它的逆命题不一定成立,后面我们将会看到这样的例子。 对其它形式的广义积分,类似地有绝对收敛及条件收敛的定义及性质. 下面我们先介绍当被积函数非负时,广义积分收敛的一些判别法. 比较判别法: 定理9.4(无限区间上的广义积分)设在[a ,+∞)上恒有 ),()(0x k x f ?≤≤(k 为正常数) 则当?+∞ a dx x )(?收敛时, ?+∞ a dx x f )(也收敛; 当? +∞ a dx x f )(发散时, ?+∞ a dx x )(?也发散. 证明:由Cauchy 收敛原理马上得结论成立. 对瑕积分有类似的结论判别法 定理9.5 设f (x ), g (x ) 均为[a ,b )上的非负函数,b 为两个函数的奇点,如存在一个正常数k, 使 ∈?≤≤x x kg x f ),()(0[a , b ), 则

反常积分

第十一章反常积分 教学要点: 反常积分收敛和发散的概念及敛散性判别法。 教学内容: §1 反常积分的概念(4学时) 反常积分的引入,两类反常积分的定义反常积分的计算。 §2 无穷积分的性质与收敛判别(4学时) 无穷积分的性质,非负函数反常积分的比较判别法,Cauchy判别法,反常积分的Dirichlet判别法与Abel判别法。 §3 瑕积分的性质与收敛判别 瑕积分的性质,绝对收敛,条件收敛,比较法则。 教学要求: 掌握反常积分敛散性的定义,奇点,掌握一些重要的反常积分收敛和发散的例子,理解并掌握绝对收敛和条件收敛的概念,并能用反常积分的Cauchy收敛原理、非负函数反常积分的比较判别法、Cauchy判别法,以及一般函数反常积分的Abel、Dirichlet判别法判别基本的反常积分。 1.反常积分的收敛性及其收敛性的判别法是本章的重点. 2.两类反常积分的性质及其收敛性判别法有很多相似之处,应引导学生加以类比。 §1 反常积分概念 教学目标:掌握反常积分的定义与计算方法. 教学内容:无穷积分;瑕积分. 教学建议:

讲清反常积分是变限积分的极限. 教学过程: 一、 问题的提出 1、为什么要推广Riemann 积分 定积分()b a f x dx ?有两个明显的缺陷:其一,积分区间[a,b]必须是有限区间; 其二,若[,]f R a b ∈,则0M ?>,使得对于任意的[,]x a b ∈,|()|f x M ≤(即有界是可积的必要条件)。这两个缺陷限制了定积分的应用,因为在许多实际问题和理论问题中涉及到积分区间是无穷区间或被积函数出现无界的情形。 例1(第二宇宙速度问题)、在地球表面初值发射火箭,要是 火箭克服地球引力,无限远离地球,问初速度至少多大? 解: 设地球半径为 ,火箭质量为 ,地面重力加速度为,有万有引 力定理,在距地心处火箭受到的引理为 于是火箭上升到距地心处需要做到功为 当 时,其极限就是火箭无限远离地球需要作的功 在由能量守恒定律,可求得处速度至少应使 例2、 从盛满水开始打开小孔,问需多长时间才能把桶里水全部放完? 解: 由物理学知识知道,(在不计摩擦情况下),桶里水位高度为 时,水从小孔里流出的速度为

无穷积分敛散性判别法

无穷积分敛散性的判别法 郑汉彬 摘 要:无穷积分的基本问题就是敛散性的判别问题,是求解无穷积分近似值的—个先决条件。由于判别方法比较多,学生不易掌握,从而是数学分析的一个难点,也一直是一个重要的研究课题。本文就一些常见和不常见的判定方法做一个归纳,这样将有助于我们灵活地运用各种判别法判定无穷积分的敛散性。 关键词:无穷积分;瑕积分;收敛性;判别法 无穷积分的基本问题就是敛散性的判别问题,是求解无穷积分近似值的一个先决条件。由于判断方法比较多,不易掌握,从而是数学分析和高等数学的一个难点。最原始的判别方法是对积分区间无穷型的反常积分先将积分限视为有限的积分区间,按常义积分处理,待积分求出原函数后再考查其极限是否存在,再用极限去判定原积分是否收敛。 本文以文献中相关定理为基础,并对相关的文献资料中给出的无穷积分敛散性判定方法的相关理论进行总结及一定的改进和补充,使之能够更广泛地应用于无穷积分敛散性判定中,对比了各种类型的无穷积分敛散性判定方法的应用以及在应用过程中应注意的一些巧妙方法,不仅使这些原本复杂的问题简单化,而且可避免出现错误。 1 无穷积分的敛散性 定义1 设函数)(x f 在 ),[+∞a 上有定义,且对)(,x f a b >?在上],[b a 可积,当 ()lim b a b f x dx J →+∞=? 存在,称此极限J 为函数)(x f 在区间),[+∞a 上的无穷限反常积分(简称无穷积分),记为 ()a J f x dx +∞ =? 这时称积分 ? +∞ a dx x f )(是收敛的.如果上述极限不存在,为方便起见,并称无穷积分? +∞a dx x f )(发散. 2 无穷积分敛散性的判别法 如何判断一个无穷积分的敛散性,这是无穷积分理论的重要内容之一。对此,我们首先建立一个收敛准则,然后再介绍几种常有的敛散性判别法。 柯西收敛准则 因为无穷积分 ? +∞ a dx x f )(的收敛问题即是极限? +∞→A a A dx x f )(lim 的存在问题,所以由极限的柯西收敛

(整理)9广义积分习题课

第九章广义积分习题课 一、主要容 1、基本概念 无穷限广义积分和无界函数广义积分敛散性的定义、绝对收敛、条件收敛。 2、敛散性判别法 Cauchy收敛准则、比较判别法、Cauchy判别法、Abel判别法、Dirichlet 判别法。 3、广义积分的计算 4、广义积分与数项级数的关系 5、广义积分敛散性的判别原则和程序 包括定义在的广义积分的各种判别法都有特定的作用对象和原则,定义既是定性的――用于判断简单的具体广义积分的敛散性,也是定量的――用于计算广义积分,其它判别法都是定性的,只能用于判断敛散性,Cauchy判别法可以用于抽象、半抽象及简单的具体广义积分的敛散性,比较判别法和Cauchy 判别法用于不变号函数的具体广义积分和抽象广义积分判别法,Abel判别法和Dirichlet判别法处理的广义积分结构更复杂、更一般。 对具体广义积分敛散性判别的程序: 1、比较法。 2、Cauchy法。

3、Abel 判别法和Dirichlet 判别法。 4、临界情况的定义法。 5、发散性判别的Cauchy 收敛准则。 注、对一个具体的广义积分敛散性的判别,比较法和Cauchy 法所起作用基本相同。 注、在判断广义积分敛散性时要求: 1、根据具体题型结构,分析特点,灵活选择方法。 2、处理问题的主要思想:简化矛盾,集中统一,重点处理。 3、重点要掌握的技巧:阶的分析方法。 二、典型例子 下述一系列例子,都是要求讨论其敛散性。注意判别法使用的顺序。 例1 判断广义积分?+∞ +=0q p x x dx I 的敛散性。 分析 从结构看,主要是分析分母中两个因子的作用。 解、记?+=1 01q p x x dx I ,?+∞+=12q p x x dx I 对1I ,先讨论简单情形。 q p =时,1

p 时,由于

相关主题