搜档网
当前位置:搜档网 › 反常积分

反常积分

反常积分
反常积分

第十一章反常积分

教学要点:

反常积分收敛和发散的概念及敛散性判别法。

教学内容:

§1 反常积分的概念(4学时)

反常积分的引入,两类反常积分的定义反常积分的计算。

§2 无穷积分的性质与收敛判别(4学时)

无穷积分的性质,非负函数反常积分的比较判别法,Cauchy判别法,反常积分的Dirichlet判别法与Abel判别法。

§3 瑕积分的性质与收敛判别

瑕积分的性质,绝对收敛,条件收敛,比较法则。

教学要求:

掌握反常积分敛散性的定义,奇点,掌握一些重要的反常积分收敛和发散的例子,理解并掌握绝对收敛和条件收敛的概念,并能用反常积分的Cauchy收敛原理、非负函数反常积分的比较判别法、Cauchy判别法,以及一般函数反常积分的Abel、Dirichlet判别法判别基本的反常积分。

1.反常积分的收敛性及其收敛性的判别法是本章的重点.

2.两类反常积分的性质及其收敛性判别法有很多相似之处,应引导学生加以类比。

§1 反常积分概念

教学目标:掌握反常积分的定义与计算方法.

教学内容:无穷积分;瑕积分.

教学建议:

讲清反常积分是变限积分的极限. 教学过程: 一、 问题的提出

1、为什么要推广Riemann 积分

定积分()b

a f x dx ?有两个明显的缺陷:其一,积分区间[a,b]必须是有限区间;

其二,若[,]f R a b ∈,则0M ?>,使得对于任意的[,]x a b ∈,|()|f x M ≤(即有界是可积的必要条件)。这两个缺陷限制了定积分的应用,因为在许多实际问题和理论问题中涉及到积分区间是无穷区间或被积函数出现无界的情形。

例1(第二宇宙速度问题)、在地球表面初值发射火箭,要是 火箭克服地球引力,无限远离地球,问初速度至少多大?

解: 设地球半径为

,火箭质量为

,地面重力加速度为,有万有引

力定理,在距地心处火箭受到的引理为

于是火箭上升到距地心处需要做到功为

时,其极限就是火箭无限远离地球需要作的功

在由能量守恒定律,可求得处速度至少应使

例2、 从盛满水开始打开小孔,问需多长时间才能把桶里水全部放完?

解: 由物理学知识知道,(在不计摩擦情况下),桶里水位高度为

时,水从小孔里流出的速度为

设在很短一段时间内,桶里水面降低的高度为,则有下面关系:

由此得

所以流完一桶水所需的时间应为

但是,被积函数在上是无界函数,,所一我们取

相对于以前学习的定积分(正常积分),我们把这里的积分叫做反常积分。

2、怎么推广

通过极限工具,把常规积分向两个方向推广:1、无穷区间;2、无界函数。这两种情形可统一在下面的定义中。

二、反常积分的定义

1、无穷限反常积分的定

,.

无穷限反常积分几何意义

例1、⑴讨论积分, , 的敛散性 .

⑵计算积分.

例 2 、讨论以下积分的敛散性 :

⑴; ⑵.

例3、讨论积分的敛散性 .

2、瑕积分的定义:以点为瑕点给出定义. 然后就点为瑕点、点

为瑕点以及有多个瑕点的情况给出说明.

例4、判断积分的敛散性 .

例5、讨论瑕积分的敛散性 , 并讨论积分的敛散性 .

瑕积分与无穷积分的关系: 设函数连续 , 为瑕点. 有

, 把瑕积分化成了无穷积分;

设, 有,把无穷积分化成了瑕积分

作业: P-269: 1,2.

§2 无穷积分的性质与收敛判别

教学目标:掌握无穷积分的性质与收敛判别准则.

教学内容:无穷积分的收敛;条件收敛;绝对收敛;比较判别法;柯西判别法;狄利克雷判别法;阿贝尔判别法.

(1) 基本要求:掌握无穷积分的定义,会用柯西判别法判别无穷积分的敛散性.

(2) 较高要求:掌握狄利克雷判别法和阿贝尔判别法. 教学建议:

(1) 本节的重点是掌握判别无穷积分收敛的方法,要求学生主要学会用柯西判别法判别无穷积分的敛散性.

(2) 本节的难点是用狄利克雷判别法或阿贝尔判别法判别无穷积分的敛散性,对较好学生布置这方面的习题.

(3)举例说明:当?∞

a

dx x f |)(|收敛时,不一定有lim ()0x f x →+∞

=,由此使学生

对柯西准则有进一步的理解. 教学过程:

一、无穷积分的性质:

⑴ 在区间

上可积 , — Const , 则函数

在区

上可积 ,

.

在区间

上可积 ,

在区间

上可积 , 且.

⑶无穷积分收敛的Cauchy准则: ( 翻译)

定理积分收敛

.

⑷绝对收敛与条件收敛: 定义概念.

绝对收敛收敛, ( 证 ) 但反之不确. 绝对型积分与非绝对型积分。

二、无穷积分收敛判别法

非负函数无穷积分判敛法: 对非负函数,有↗. 非负函数无穷积分敛散性记法.

⑴比较判敛法: 设在区间上函数和非负且

,又对任何>, 和在区间上可积 . 则

< , < ;, . ( 证 )

例1、判断积分的敛散

性.

比较原则的极限形式 : 设在区间上函数

,. 则

ⅰ> < < , 与共敛

散 :

ⅱ> , < 时, < ;

ⅲ> , 时,

. ( 证 )

⑵Cauchy判敛法: ( 以为比较对象, 即取.以下> 0 )

对任何>, , 且, < ;

且, .

Cauchy判敛法的极限形式 : 设是在任何有限区间上可积的正值函数.

且. 则

ⅰ> < ;

ⅱ>

. ( 证 )

例2、讨论以下无穷积分的敛散性 :

ⅰ> ⅱ> [1]P 324 E6

⑶其他判敛法:

Abel判敛法: 若在区间上可积 , 单调有界 , 则积分

收敛.

Dirichlet判敛法: 设在区间上有界,在

上单调,且当时,. 则积分收敛.

例3、讨论无穷积分与的敛散

性. [1]P325 E7

例4、证明下列无穷积分收敛 , 且为条件收敛 :

, ,

.

[1]P326 E8

例5、 ( 乘积不可积的例 ) 设, . 由例6的结果,

积分收敛 . 但积分却发散.( 参阅例6 )

作业: P275:1,2,3,4,5.

§3 瑕积分的性质与收敛判别

教学目标:掌握瑕积分的性质与收敛判别准则.

教学内容:瑕积分的收敛;条件收敛;绝对收敛;比较判别法;柯西判别法;狄利克雷判别法;阿贝尔判别法.

(1) 基本要求:掌握无穷积分与瑕积分的定义,会用柯西判别法判别瑕积分的敛散性.

(2) 较高要求:掌握狄利克雷判别法和阿贝尔判别法.

教学建议:

(1) 本节的重点是掌握判别瑕积分收敛的方法,要求学生主要学会用柯西判别法判别瑕积分的敛散性.

(2) 本节的难点是用狄利克雷判别法或阿贝尔判别法判别瑕积分的敛散性,对较好学生布置这方面的习题.

教学过程:

一、瑕积分与无穷积分的比较

瑕积分与无穷积分有平行的理论和结果 .

例1、证明瑕积分当时收敛.

证:, 该积分当时收敛.

二、瑕积分判敛法

定理( 比较原则 ) [1]P329 Th10-23.

推论1 ( Cauchy判别法 ) [1]P329 推论1.

推论2 ( Cauchy判别法的极限形式 ) [1]P330 推论2.

例2、判别下列瑕积分的敛散性 :

⑴( 注意被积函数非

正 ). ⑵. [1]P330 E12

例3、讨论非正常积分的敛散性.

三、C—R积分与R积分的差异

1. R, 在上; 但在区间

上可积 ,

在区间上有界 . 例如函数

2. R,||R,但反之不确. R积分是绝对型积分.

||在区间上可积 , 在区间上可积 , 但反之不确. C—R积分是非绝对型积分.

3. ,R, R;

但和在区间上可积 , 在区间

上可积. 可见, 在区

间上可积 , 在区间上可积.

作业: P279:1,2,3,4.

重积分的计算方法

重积分的计算方法 重积分包括二重积分和三重积分,它是定积分的推广;被积函数由一元函数f(x)推广为二元函数f(x,y),三元函数(fx,y,z);积分围由数轴上的区域推广为平面域(二重积分)和空间域(三重积分)。我个人在学习与复习多重积分这一块时,感到多重积分的计算比较繁琐,而在日常生活中多重积分有着很多的应用。通过在图书馆查阅资料、以及老师的指点,重积分的计算方法还是有规律可循的。为了更好的应用重积分,本人结合前人的经验,在这里介绍几种常用的重积分计算方法,以及一些小技巧。着重介绍累次积分的计算与变量代换。 一.二重积分的计算 1.常用方法 (1)化累次积分计算法 对于常用方法我们先看两个例子

对于重积分的计算主要采用累次积分法,即把一个二重积分表达为一个二次积分,通过两次定积分的计算求得二重积分值,分析上面的例子累次积分法其主要步骤如下: 第一步:画出积分区域D的草图; 第二步:按区域D和被积函数的情况选择适当的积分次序,并确定积分的上、下限; 第三步:计算累次积分。 需要强调一点的是,累次积分要选择适当的积分次序。积分次序的不同将影响计算的繁简,有些题这两种次序的难易程度可以相差很大,甚至对一种次序可以“积出来”,而对另一种次序却“积不出来”。所以,适当选择积分次序是个很重要的工作。 选择积分次序的原则是:尽可能将区域少分块,以简化计算过程;第一次积分的上、下限表达式要简单,并且容易根据第一次积分的结果作第二次积分。 (2)变量替换法 着重看下面的例子:

在计算定积分时,求积的困难在于被积函数的原函数不易求得。从而适当地在计算重积分时,求积的困难来自两个方面,除了被积函数的原因以外还在而且,有时候其积分区域往往成为困难的主要方面。 利用换元法的好处是可以把被积函数的形状进行转化,以便于用基本求积公式。 于积分区域的多样性。为此,针对不同的区域要讨论重积分的各种不同算法。 (3)极坐标变换公式(主要是∫∫f(x,y)dxdy=∫∫f(pcosθ,psinθ)pdpdθ)

《数学分析》第十一章反常积分复习自测题[1]

《数学分析》第十一章 反常积分复习自测题 [1] -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第十一章 反常积分复习自测题 一、体会各类反常积分(无穷积分、瑕积分和混合反常积分)的特点,能准确地判定所给反常积分的类型;熟习并熟练掌握各类反常积分收敛和发散的含义,并用各类反常积分收敛和发散的含义解决下面的问题: 1、正确地判断下列反常积分的敛散性: (1)1d p a x x +∞?(0a >);(2)01d a p x x ?(0a >);(3)01 d p x x +∞?(0a >)。 2、正确地判断下列反常积分的敛散性: (1)1d (ln )p a x x x +∞? (1a >);(2)11 d (ln )a p x x x ?(1a >);(3)1 1 d (ln ) p x x x +∞? 。 3、探索下列反常积分的敛散性,若收敛,并求其值: (1) 2 1d 1x x +∞+? ;(2)2 1 d 1x x +∞-∞+?;(3)10x ?;(4)11 x -? 。 4、用定义据理说明下面的关系:(反常积分的牛顿—莱布尼茨公式、分部积分法、换元法、奇偶函数的积分特征) (1)若函数()f x 在[,)a +∞上连续,()F x 为()f x 在[,)a +∞上的原函数,记 ()lim ()x F f x →+∞ +∞=, 则无穷积分()d a f x x +∞? 收敛?()lim ()x F f x →+∞ +∞=存在,且 ()d () a f x x F x a +∞+∞=? 。 (2)若函数()f x 在(,)-∞+∞上连续,()F x 为()f x 在(,)-∞+∞上的原函数,记 ()lim ()x F f x →+∞ +∞=,()lim ()x F f x →-∞ -∞=, 则无穷积分()d f x x +∞-∞ ? 收敛?()lim ()x F f x →+∞ +∞=和()lim ()x F f x →-∞ -∞=都存在,且 ()d () a f x x F x a +∞+∞=? 。 (3)若函数()f x 和()g x 都在[,)a +∞上连续可微,且lim ()()x f x g x →+∞ 存在,则无穷积 分()()d a f x g x x +∞'? 收敛?()()d a f x g x x +∞'? 收敛,且

习题反常积分的收敛判别法

习 题 8.2 反常积分的收敛判别法 ⒈ ⑴ 证明比较判别法(定理8.2.2); ⑵ 举例说明,当比较判别法的极限形式中l =0或+∞时,?∞ +a dx x )(?和 ? ∞ +a dx x f )(的敛散性可以产生各种不同的的情况. 解 (1)定理8.2.2(比较判别法) 设在[,)a +∞上恒有)()(0x K x f ?≤≤,其中K 是正常数.则 当?∞ +a dx x )(?收敛时? ∞+a dx x f )(也收敛; 当? ∞ +a dx x f )(发散时?∞ +a dx x )(?也发散. 证 当?∞ +a dx x )(?收敛时,应用反常积分的Cauchy 收敛原理, 0>?ε ,a A ≥?0,0,A A A ≥'?:K dx x A A ε ?< ?' )(. 于是 ≤ ?' A A dx x f )(ε??ε,a A ≥?0,0,A A A ≥'?: εK dx x f A A ≥?' )(. 于是 ≥?'A A dx x )(?0)(1 ε≥?' A A dx x f K , 所以?∞ +a dx x )(?也发散. (2)设在[,)a +∞上有0)(,0)(≥≥x x f ?,且0) ()(lim =+∞→x x f x ?.则当?∞ +a dx x f )(发散 时,?∞ +a dx x )(?也发散;但当?∞ +a dx x f )(收敛时,?∞ +a dx x )(?可能收敛,也可能发散. 例如21)(x x f = ,)20(1 )(<<=p x x p ?,则0)()(lim =+∞→x x f x ?.显然有

第十章 重积分练习题(答案)

1.填空: (1)设D 是由x 轴,y 轴及直线1=+y x 所围成的三角形闭区域,则比较二重积分的值的大小,有2()D x y d σ+??≥3 ()D x y d σ+??. (2)设??++=D d y x I σ)94(22,其中(){} 4,22≤+=y x y x D ,则估计二重积分的值,有 36π≤≤I 100π. (3)交换积分次序:=??-2210),(y y dx y x f dy ????-+222021 010),(),(x x dy y x f dx dy y x f dx . (4)设D 是由直线y x 2=及抛物线2y x =所围成的闭区域,化二重积分σd y x f D ),(??为两个不同次序的二次积分是????x x y y dy y x f dx dx y x f dy 24022 0),(),(2,. (5)在极坐标系中,面积元素为d d ρρθ。 2.选择: (1)设平面区域(){}(){} 0,0,1,,1,22122≥≥≤+=≤+=y x y x y x D y x y x D ,则下列等式一定成立的是( C ). (A)????=1),(4),(D D dxdy y x f dxdy y x f . (B)????=1 4D D xydxdy xydxdy . (C)14D D =. (D)????=1 4D D xdxdy xdxdy . (2)设平面区域(){}(){}a y x a x y x D a y x a x a y x D ≤≤≤≤=≤≤≤≤-=,0,,,,1,则=+??D dxdy y x xy )sin cos (( A ). (A)??1sin cos 2 D ydxdy x . (B)??12D xydxdy . (C)??+1 )sin cos (4D dxdy y x xy . (D)0. (3)设?? ????+=+=+=σσσd y x I d y x I d y x I D 2223222221)cos(,)cos(cos ,,其中 (){} 1,22≤+=y x y x D ,则( A ). (A)123I I I >>. (B)321I I I >>.

§_5_定积分习题与答案

第五章 定积分 (A) 1.利用定积分定义计算由抛物线12 +=x y ,两直线)(,a b b x a x >==及横轴所 围成的图形的面积。 2.利用定积分的几何意义,证明下列等式: ? =1 12)1xdx 4 1) 21 2π = -? dx x ?- =π π0sin ) 3xdx ?? - =2 2 20 cos 2cos )4π ππ xdx xdx 3.估计下列各积分的值 ? 33 1arctan ) 1xdx x dx e x x ?-0 2 2)2 4.根据定积分的性质比较下列各对积分值的大小 ?2 1 ln )1xdx 与dx x ?2 1 2)(ln dx e x ?10)2与?+1 )1(dx x 5.计算下列各导数

dt t dx d x ?+20 2 1)1 ?+32 41)2x x t dt dx d ?x x dt t dx d cos sin 2)cos()3π 6.计算下列极限 x dt t x x ?→0 20 cos lim )1 x dt t x x cos 1)sin 1ln(lim )20 -+?→ 2 2 20 )1(lim )3x x t x xe dt e t ? +→ 7.当x 为何值时,函数? -=x t dt te x I 0 2 )(有极值? 8.计算下列各积分 dx x x )1 ()12 1 42? + dx x x )1()294+?

? --212 12) 1()3x dx ? +a x a dx 30 2 2) 4 ?---+2 11)5e x dx ?π20sin )6dx x dx x x ? -π 3sin sin )7 ? 2 )()8dx x f ,其中??? ??+=22 11)(x x x f 1 1>≤x x 9.设k ,l 为正整数,且l k ≠,试证下列各题: ?- =π π 0cos )1kxdx πππ =?-kxdx 2cos )2 ?- =?π π 0sin cos )3lxdx kx ?-=π π 0sin sin )4lxdx kx

第十一章 反常积分

第十一章反常积分 教学要点 反常积分收敛和发散的概念及敛散性判别法。 教学时数 8学时 教学内容 §1 反常积分的概念(4学时) 反常积分的引入,两类反常积分的定义反常积分的计算。 §2 无穷积分的性质与收敛判别(4学时) 无穷积分的性质,非负函数反常积分的比较判别法,Cauchy判别法,反常积分的Dirichlet判别法 与Abel判别法。 §3 瑕积分的性质与收敛判别 瑕积分的性质,绝对收敛,条件收敛,比较法则。 考核要求 掌握反常积分敛散性的定义,奇点,掌握一些重要的反常积分收敛和发散的例子,理解并掌握绝对收敛 和条件收敛的概念,并能用反常积分的Cauchy收敛原理、非负函数反常积分的比较判别法、Cauchy判别 法,以及一般函数反常积分的Abel、Dirichlet判别法判别基本的反常积分。 §1 反常积分概念 一问题的提出

例1(第二宇宙速度问题)在地球表面初值发射火箭,要是火箭克服地球引力,无限远离地球,问初速度至少多大? 解设地球半径为,火箭质量为 地面重力加速度为,有万有引力定理,在距地心处火箭受到的引理为 于是火箭上升到距地心处需要做到功为 当时,其极限就是火箭无限远离地球需要作的功 在由能量守恒定律,可求得处速度至少应使 例2 从盛满水开始打开小孔,问需多长时间才能把桶里水全部放完?

解由物理学知识知道,(在不计摩擦情况下),桶里水位高度为时,水从小孔里流出的速度为 设在很短一段时间内,桶里水面降低的高度为,则有下面关系: 由此得 所以流完一桶水所需的时间应为 但是,被积函数在上是无界函数,,所一我们取 相对于以前学习的定积分(正常积分),我们把这里的积分叫做反常积分。 二反常积分的定义 1无穷限反常积分的定义, .

习题册重积分答案

第十章 总积分习题解答 第12次课 二重积分的概念及性质 1、 略 2、根据这三点可知区域: 2 120ln()10[ln()]ln() x y x y x y x y ≤+≤?<+

第13次课 二重积分的计算法 1、 (1)根据积分区域: 11,11x y -≤≤-≤≤ 1 1 22221 1 8 ()()3 D x y d dy x y dy σ--+=+=???? 或者:根据对称性质: 2222882()233D D D y d x y d x d σσσ==+==?????? (2)根据积分区域: 0000 cos()(sin 2sin )11(cos 2cos 2cos cos ) 22() 232 x xdx x y dy x x x dx x x xdx x x xdx π π π π π π π π ππ+=-=---+=-+=? ???? (3)根据积分区域 3 2 22 2 22 0235222 22 2 00 2(4)311264 (4)(4)(4)335 15 D xy d xdx y dy x x dy x d x x σ==-=- --=--= ??? ?? (4)根据对称性: 1:0,0,1D x y x y ≥≥+≤ 1 110 1 12200()4()4()14 4((1)(1))2(1)23 y D D x y dxdy x y dxdy dy x y dx y y y dy y dy -+=+=+=-+-=-= ?????? ?? P45

第十一章反常积分习题课教学总结

第十一章 反常积分习题课 一 概念叙述 1.叙述()dx x f a ? +∞ 收敛的定义. 答: ()dx x f a ? +∞ 收敛? ()()lim +∞ →+∞=? ? u a a u f x dx f x dx 存在. ?()lim 0+∞ →+∞=?u u f x dx . ?()()0,0,,εε+∞ ?>?>?>-?>?>?>当δ<<+a u a , 有()()ε-,存在0M >,只要12,u u M >, 便有 ()()()2 1 2 1 u u u a a u f x dx f x dx f x dx ε-= ,存在0δ>,只 要()12,,u u a a ∈+δ,总有 ()()()2 1 2 1 b b u u u u f x dx f x dx f x dx -=<ε??? . 二 疑难问题 1.试问 ? +∞ a dx x f )(收敛与0)(lim =+∞ →x f x 有无联系? 答:首先,0)(lim =+∞ →x f x 肯定不是 ? +∞ a dx x f )(收敛的充分条件,例如01 lim =+∞→x x ,但 ? +∞ 11 dx x 发散.那么0)(lim =+∞→x f x 是否是?+∞a dx x f )(收敛的必要条件呢?也不是!例如 ? +∞ 1 2 sin dx x ,?+∞ 1 2 cos dx x ,? +∞ 1 4sin dx x x 都收敛,因为前两个无穷积分经换元2t x =得

重积分_期末复习题_高等数学下册_(上海电机学院)

第九章 重积分 一、选择题 1.I=222222(),:1x y z dv x y z Ω ++Ω++=???球面部, 则I= [ C ] A. ???Ω Ω=dv 的体积 B.???1 42020sin dr r d d θ?θππ C. ???104 020sin dr r d d ??θππ D. ???104 020sin dr r d d θ?θππ 2. Ω是x=0, y=0, z=0, x+2y+z=1所围闭区域, 则???Ω =xdxdydz [ B ] A. ???---y x x dz x dy dx 210 21010 B. ???---y x x dz x dy dx 210 21010 C. ???-1 021021 0dz x dx dy y D. ???---y x y dz x dx dy 210 21010 3. 设区域D 由直线,y x y x ==-和1x =所围闭区域,1D 是D 位于第一象限的部分,则[B ] (A )()()1 cos d d 2d d D D xy x xy x y xy x y +=???? (B )()()()1 cos d d 2cos d d D D xy x xy x y x xy x y +=???? (C )()()1 cos d d 2(cos())d d D D xy x xy x y xy x xy x y +=+???? (D )()()cos d d 0D xy x xy x y +=?? 4. Ω:12 22≤++z y x , 则??? Ω =++++++dxdydz z y x z y x z 1 )1ln(2 2 2 222 [ C ] A. 1 B. π C. 0 D. 3 4π 5.222{(,),0}D x y x y a y =+≤≥,其中0a >,则D xy d σ=?? D A.2 20 sin cos a d r dr π θθθ?? B. 30 sin cos a d r dr π θθθ? ?

华中师范数学分析第十一章反常积分复习自测题2

第十一章 反常积分复习自测题 一、体会各类反常积分(无穷积分、瑕积分和混合反常积分)的特点,能准确地判定所给反常积分的类型;熟习并熟练掌握各类反常积分收敛和发散的含义,并用各类反常积分收敛和发散的含义解决下面的问题: 1、正确地判断下列反常积分的敛散性: (1) 1 d p a x x +∞? (0a >);(2)01d a p x x ?(0a >);(3)01d p x x +∞?(0a >)。 2、正确地判断下列反常积分的敛散性: (1) 1d (ln )p a x x x +∞? (1a >);(2)11d (ln )a p x x x ?(1a >);(3)11 d (ln )p x x x +∞?。 3、探索下列反常积分的敛散性,若收敛,并求其值: (1) 2 1d 1x x +∞+? ;(2)21d 1x x +∞-∞+?;(3)10 x ?; (4)11 x -?。 4、用定义据理说明下面的关系:(反常积分的牛顿—莱布尼茨公式、分部积分法、换元法、奇偶 函数的积分特征) (1)若函数()f x 在[,)a +∞上连续,()F x 为()f x 在[,)a +∞上的原函数,记 ()lim ()x F f x →+∞ +∞=, 则无穷积分 ()d a f x x +∞? 收敛?()lim ()x F f x →+∞ +∞=存在,且 ∞ +∞-+∞ ∞ -=? )()(x F dx x f 。 (2)若函数()f x 在(,)-∞+∞上连续,()F x 为()f x 在(,)-∞+∞上的原函数,记 ()lim ()x F f x →+∞ +∞=,()lim ()x F f x →-∞ -∞=, 则无穷积分 ()d f x x +∞-∞ ? 收敛?()lim ()x F f x →+∞ +∞=和()lim ()x F f x →-∞ -∞=都存在,且 ()d ()a f x x F x a +∞+∞=? 。 (3)若函数()f x 和()g x 都在[,)a +∞上连续可微,且lim ()()x f x g x →+∞ 存在,则无穷积分 ()()d a f x g x x +∞'? 收敛?()()d a f x g x x +∞'? 收敛,且 () ()()d ()()()()d a a f x g x x f x g x f x g x x a +∞+∞+∞ ''=-? ?, 其中()()lim ()()x f g f x g x →+∞ +∞+∞=。

(完整版)重积分习题及答案

第九章 重积分 (A) 1.填空题 (1) 设()y x y x P 2,=,()23,y x y x Q =,定义于:D 10<

数学分析(华东师大)第十一章反常积分

数学分析(华东师大)第十一章反常积分

r mg R ∫ ∫ 第 十 一 章 反 常 积 分 §1 反常积分概念 一 问题提出 在讨论定积分时有两个最基本的限 制 : 积分 区间 的有穷 性和 被积函 数的 有 界性 .但 在 很多实 际 问题中往 往 需 要突 破这 些限制 , 例 1 ( 第二宇宙速度问题 ) 在地球表面垂直发射火箭 ( 图 11 - 1 ) , 要使火 箭克服地球引力无限远离地球 , 试问初速度 v 0 至少要多大 ? 设地球半径为 R, 火箭质量为 m, 地面上的重力加速度为 g .按万有引力定律 , 在距地心 x( ≥ R ) 处火箭所受的引力为 mg R 2 F = . x 2 于是火箭从地面上升到距离地心为 r ( > R) 处需作的功为 2 ∫ d x = mg R 2 1 - 1 . R x 2 R r 当 r → + ∞ 时 , 其 极限 mg R 就是 火箭 无限 远 离地 球 需作 的 功 .我们很自然地会把这极限写作上限为 + ∞的“ 积分”: 图 11 - 1 + ∞ mg R 2 d x = lim r mgR 2 R x 2 r → + ∞ R d x = mg R . x 2 最后 , 由机械能守恒定律可求得初速度 v 0 至少应使 1 2 2 mv 0 = m g R . 用 g = 9 .81 ( m 6s /2 ) , R = 6 .371× 106 ( m ) 代入 , 便得 v 0 = 2 g R ≈ 11 .2( k m 6s /) . 例 2 圆 柱形桶 的内壁高 为 h , 内半 径为 R , 桶底有 一半径为 r 的小孔 ( 图 11 - 2) .试问从盛满水开始打开小孔直至流完桶中的水 , 共需多少时间 ?

重积分习题参考答案Word版

重积分习题参考答案 习题11-1 1.(,)D Q x y d μσ=??. 3.(1)0; (2)0; (3)124I =I 4.(1)12I ≥I ; (2) 12I ≤I ; (3)12I ≥I ; (4) 12I ≤I . 5.(1)02≤I ≤; (2)20π≤I ≤; (3)28≤I ≤; (4)36100ππ≤I ≤. 习题11-2(A) 1.(1)4 0(,)x dx f x y dy ??或240 4 (,)y y dy f x y dx ??; (2)122 2012 2 (,)(,)x x x x dx f x y dy dx f x y dy +????或2 122 012 2 (,)(,)y y y y dy f x y dx dy f x y dx +????; (3)1 01(,)x dx f x y dy -?或1 1(,)y dy f x y dx -?; (4)2 2 4 (,)x x f x y dy -?或240 2 (,)(,)dy f x y dx dy f x y dx +??. 2.(1)4 02 (,)x dx f x y dy ??; (2) 10 1(,)y dy f x y dx ?? ; (3)1 102(,)y dy f x y dx -??; (4) 1 (,)y e e dy f x y dx ? ?. 3.(1) 203; (2)32π-; (3)655; (4)64 15; (5)1e e -- 4.(1)92; (2)21122e e -+. 5.335 . 6.(1)20(cos ,sin )b a d f r r rdr πθθθ??; (2)2cos 20 2(cos ,sin )d f r r rdr π θ πθθθ- -??; (3)1 (cos sin )20 (cos ,sin )d f r r rdr π θθθθθ-+??;

第11章反常积分答案

第十一章 反常积分 一、单选题(每题2分) 1、广义积分 dx x x ? ∞ +-1 2 1 1=( ) A 、0 B 、2π C 、4π D 、发散 2、广义积分 dx x x ? ∞+-+2 2 21 =( ) A 、4ln B 、0 C 、4ln 31 D 、发散 3、广义积分?+-2 02 34x x dx =( ) A 、3ln 1- B 、32ln 21 C 、3ln D 、发散 4、下列广义积分收敛的是( ) A 、 ? ∞ +e dx x x ln B 、?∞+e x x dx ln C 、 ?∞ +e x x dx 2 )(ln D 、?∞+e x x dx 21)(ln 5、下列广义积分发散的是( ) A 、 ?∞ -0 dx e x B 、 ? π 2cos x dx C 、?-20 2x dx D 、?∞+-0dx e x 6、下列积分中( )是收敛的 A 、?∞ +∞-xdx sin B 、?-2 22sin π πx dx C 、?∞+0dx e x D 、 ?-101x dx 7、下列广义积分发散的是( ) A 、?-1 1sin x dx B 、?--1121x dx C 、?∞+-02 dx xe x D 、?∞+22)(ln x x dx 8、?=-1 01 2 1dx e x x ( ) A 、e 1 B 、11-e C 、e 1 - D 、∞

9、已知 2sin 0 π =? ∞ +dx x x ,则=?∞+dx x x x 0cos sin ( ) A 、0 B 、4π C 、 2π D 、π 10、广义积分=+?∞ +∞-dx x 2 11 ( ) A 、0 B 、2π C 、2π - D 、π 11、下列积分中绝对收敛的是( ) A 、 dx x x ? ∞ +1 2sin B 、dx x x ?∞+1sin C 、dx x ?∞+12sin D 、dx x x ?∞+14sin 12、已知广义积分 dx x ?∞+∞ -sin ,则下列答案中正确的是( ) A 、因为()x f 在()+∞∞-,上是奇函数,所以0sin =?∞ +∞-dx x B 、 dx x ? ∞+∞-sin = () ()()[]0 cos cos cos =∞--∞+-=∞ -∞+-x C 、dx x ?∞+∞-sin =()0 cos cos lim sin lim =+-=? -+∞ →+∞ →b b xdx b b b b D 、 dx x ?∞+∞ -sin 发散 13、设广义积分 dx e kb ?∞ +-0 收敛,则k ( ) A 、0≥ B 、0> C 、0< D 、0= 答案:BCDCB DAABD ADB 二、判断题(每题2分) 1、当10<<λ时,无穷积分 dx x x ? ∞ +1 cos λ条件收敛; ( ) 2、当10<<λ时,无穷积分 dx x x ? ∞ +1 sin λ绝对收敛; ( )

二重积分习题答案

二重积分习题答案 This model paper was revised by the Standardization Office on December 10, 2020

第八章二重积分习题答 案 练习题 1.设D :0y ≤,0x a ≤≤,由二重积分的几何意义 计算d D x y 解:d D x y =200 d π θ?? =222 01()2r d a r π θ=--?? 2. 设二重积分的积分区域为2214x y ≤+≤,则2dxdy =?? 解:2dxdy =??22 1 26d rdr π θπ=? ? 练习题 1.2d D x σ??其中D 是两个圆,y x 122=+与,y x 422=+围成的环型区域. 解:2d D x σ??=22 222301 001515 cos [cos2]84 d r dr d d πππθθθθθπ= +=???? 2计算二重积分σd y x D )3 41(-- ??,其中D 是由直线2,,2=-=x x ;1,1=-=y y 围成的矩形。 解:σd y x D )341(--??= 221211212(1)[(1)]4346x y x y dx dy y dx ------=--??? =222(1)84 x dx --=?

3. 应用二重积分,求在xy 平面上由曲线224x x y x y -==与所围成的区域D 的面积. 解: 2 2 2 42 20 2320(42) 28(2)|33 x x x D A dxdy dx dy x x x x -===-=- =????? 4. 求旋转抛物面224z x y =--与xy 平面所围成的立体体积 解: 22 222 2 (4)(4)48D V x y d d r rdr d ππ σθθπ=--=-==????? 习 题 八 一.判断题 1.d D σ??等于平面区域D 的面积.(√) 2.二重积分 100f(x,y)d y dy x ??交换积分次序后为1 1 f(x,y)d x dx x ? ? (×) 二.填空题 1.二重积分的积分区域为2214x y ≤+≤,则4dxdy = ?? 12π12π. 2.二重积分d d D xy x y ??的值为 1 12 ,其中2:0D y x ≤≤,01x ≤≤. 112 3.二重积分10 (,)y dy f x y dx ??交换积分次序后为 11 (,)x dx f x y dy ?? . 11 (,)x dx f x y dy ?? 4.设区域D 为1x ≤,1y ≤,则??(sin x x -)d d x y = 0.0 5.交换积分次序

重积分及其计算和多重积分

三重积分和多重积分方法 在第三节中我们讨论了二重积分,本节将之推广到一般的n 维空间中去. 类似于第三节,我们先定义一个R 3中集合的可求体积性. 同样可以给出一列类似的结论. 读者自己推广. 这里将不再赘述. 一、 引例 设一个物体在空间R 3中占领了一个有界可求体积的区域V ,它的点密度为()z y x f ,,,现在要求这个物体的质量.假设密度函数是有界的连续函数,可以将区域V 分割为若干个可求体积的小区域n V V V ,...,,21,其体积分别是n V V V ???,...,,21,直径分别是n d d d ,...,,21,即},||sup{|i i V Q W W Q d ∈=, (i =1,2,…,n ), |WQ|表示W, Q 两点的距离.设 },...,,max{21n d d d =λ,则当λ很小时,()z y x f ,,在i V 上的变化也很小.可以用这个小 区域上的任意一点()i i i z y x ,,的密度()i i i z y x f ,,来近似整个小区域上的密度,这样我们可以求得这个小的立体的质量近似为()i i i i V z y x f ?,,,所有这样的小的立体的质量之和即为这个物体的质量的一个近似值.即 ()i i i i n i V z y x f M ?≈∑=,,1 . 当0→λ时,这个和式的极限存在,就是物体的质量.即 ()i i i i n i V z y x f M ?=∑=→,,lim 1 λ. 从上面的讨论可以看出,整个求质量的过程和求曲顶柱体的体积是类似的,都是先分割,再求和,最后取极限.所以我们也可以得到下面一类积分. 二、 三重积分的定义 设()z y x f ,,是空间3 R 中的一个有界可求体积的闭区域V 上的有界函数,将V 任意分割 为若干个可求体积的小闭区域n V V V ,...,,21,这个分割也称为V 的分划,记为P : n V V V ,...,,21. Φ=?o o j i V V (空, j i ≠), 其体积分别是n V V V ???,...,,21,直径分别是n d d d ,...,,21.设 },...,,max{21n d d d =λ,或记为||P ||. 在每个小区域中任意取一点()i i i i V z y x ∈,,,作和 ()i i i i n i V z y x f ?∑=,,1 (称为Riemann 和),若当0→λ时,这个和式的极限存在,则称其极

数学分析(华东师大)第十一章反常积分

m g R 第 十 一 章 反 常 积 分 §1 反常积分概念 一 问题提出 在讨论定积分时有两个最基本的限 制 : 积分 区间 的有穷 性和 被积函 数的 有 界性 .但在很多实际问题中往往需要突 破这 些限制 , 考虑无 穷区 间上的“ 积分”, 或是无界函数的“积分”, 这便是本章的主题 . 例 1 ( 第二宇宙速度问题 ) 在地球表面垂直发射火箭 ( 图 11 - 1 ) , 要使火 箭克服地球引力无限远离地球 , 试问初速度 v 0 至少要多大 ? 设地球半径为 R, 火箭质量为 m, 地面上的重力加速度为 g .按万有引力定律 , 在距地心 x( ≥ R) 处火箭所受的引力为 mg R 2 F = . x 2 于是火箭从地面上升到距离地心为 r ( > R) 处需作的功为 2 ∫ d x = mg R 2 1 - 1 . R x 2 R r 当 r → + ∞ 时 , 其 极限 mg R 就是 火箭 无限 远 离地 球 需作 的 功 .我们很自然地会把这极限写作上限为 + ∞的“ 积分”: 图 11 - 1 + ∞ mg R 2 d x = lim r mgR 2 R x 2 r → + ∞ R d x = mg R . x 2 最后 , 由机械能守恒定律可求得初速度 v 0 至少应使 1 2 2 mv 0 = mg R . 用 g = 9 .81 ( m 6s /2 ) , R = 6 .371× 106 ( m ) 代入 , 便得 v 0 = 2 g R ≈ 11 .2( k m 6s /) . 例 2 圆 柱形桶 的内壁高 为 h , 内半 径为 R , 桶底有 一半径为 r 的小孔 ( 图

第5章换元法与分部积分法,反常积分习题集及答案

第五章 习题二 换元法与分部积分法,反常积分 一.选择题 1.设2]2,0[)(C x f ∈,0)0(=f ,4)2(=f ,2)2(='f ,则=''?dx x f x )2(1 0( A ) (A)0; (B)1; (C)2; (D)4. 2.设)(x f 连续,则 =+?b a dy y x f dx d )(( B ) (A)?+'b a dy y x f )(;(B))()(a x f b x f +-+;(C))(a x f +;(D))(b x f +. 3.下列反常积分中收敛的是( D ) (A)dx x ?∞ +1 1; (B)dx x ? 1 031 ; (C)dx x ?101; (D)dx x ?∞+121. 4.下列反常积分中收敛的是( C ) (A)?∞ +e dx x x ln ; (B)?∞+e dx x x ln 1 ; (C)?∞+e dx x x 2) (ln 1; (D)?∞+e dx x x 2 1)(ln 1 . 5.对于反常积分?∞ +1 ln x x dx p ,下列结论正确的是( D ) (A)当1>p 时收敛; (B)p 取任意实数都收敛; (C)当1

归纳二重积分的计算方法

归纳二重积分的计算方法 摘 要 :本文总结出了求二重积分的几种方法,比如用定义、公式、定理、性质求极限. 关键词 :函数极限;计算方法;洛必达法则; 四则运算 前言 二重积分的概念和计算是多元函数微积分学的重要部分,在几何\物理\力学等方面有着重要的应用.重积分是由一元函数积分推广而来的,但与一元函数相比,计算重积分的难度除了与被积函数有关外,还与积分区域的特点有关,计算重积分的主要思想方法是化重积分为累次积分.求二重积分的方法很多且非常灵活,本文归纳了二重积分计算的一些常见方法和技巧. 1. 预备知识 1.1二重积分的定义]1[ 设(),f x y 是定义在可求面积的有界区域D 上的函数. J 是一个确定的数,若对任给的正数 ε ,总存在某个正数δ,使对于D 的任意分割T ,当它的细度T δ<时,属于T 的所有积分和 都有 ()1 ,n i i i i f J ξησ ε=?-<∑, 则称(),f x y 在D 上可积,数J 称为函数(),f x y 在D 上的二重积分,记作 (),D J f x y d σ=??, 其中(),f x y 称为二重积分的被积函数, ,x y 称为积分变量, D 称为积分区域. 1.2二重积分的若干性质 1.21若(),f x y 在区域D 上可积, k 为常数,则(),kf x y 在D 上也可积,且 (),D kf x y d σ??(),D k f x y d σ=??.

1.22 若(),f x y ,(),g x y 在D 上都可积,则()(),,f x y g x y ±在D 上也可积,且 ()()[,,]D f x y g x y d σ±??()(),,D D f x y d g x y d σσ=±????. 1.23 若(),f x y 在1D 和2D 上都可积,且1D 与2D 无公共内点,则(),f x y 在12D D 上也可积,且 ()12 ,D D f x y d σ?? ()()1 2 ,,D D f x y d f x y d σσ=±???? 1.3在矩形区域上二重积分的计算定理 设(),f x y 在矩形区域D [][],,a b c d =?上可积,且对每个[],x a b ∈,积分(),d c f x y dy ?存 在,则累次积分(),b d a c dx f x y dy ??也存在,且 (),D f x y d σ?? (),b d a c dx f x y dy =??. 同理若对每个[],y c d ∈,积分(),b a f x y dx ?存在,在上述条件上可得 (),D f x y d σ?? (),d b c a dy f x y dx =?? 2.求的二重积分的几类理论依据 二重积分类似定积分,可看成一个函数在有界区域内的积分,它计算的主要思路是把重积分化为我们学过的累次积分的计算,在这思想下如何化为更容易求的累次积分成为问题关键,下文介绍了把区域化为简单的X -型\Y -型区域及把复杂的函数通过变量变换化为简单函数的几种计算技巧,另外还列举几类特殊二重积分的简单求法. 2.1在直角坐标系下,对一般区域二重积分的计算 X -型区域: ()()(){}12 ,,D x y y x y y x a x b =≤≤≤≤ Y -型区域: ()()(){}1 2 ,,D x y x y x x y c y d = ≤≤≤≤ 定理:若(),f x y 在X -区域D 上连续,其中()1y x ,()2y x 在[],a b 上连续,则 (),D f x y d σ??()()() 21,b y x a y x dx f x y dy =?? 即二重积分可化为先对y ,后对x 的累次积分. 同理在上述条件下,若区域为Y -型,有

相关主题