搜档网
当前位置:搜档网 › 有关建立STAAD模型的一些观点探讨

有关建立STAAD模型的一些观点探讨

有关建立STAAD模型的一些观点探讨
有关建立STAAD模型的一些观点探讨

有关建立STAAD模型的一些观点探讨

在进行结构设计时,首先需不计及局部而掌握结构总体的响应。这意味着此时的研究对象已不是实际的结构,而是已将结构特性简化了的“模型”。该模型必须是可以根据其响应去推得实际结构响应的模型,否则便无意义。因此如何对结构模型化就成了结构设计的一个要点。建模的策略和手段是直接又建模的目的决定的。为了进行设计而进行的建模活动是有其特殊性的,需要设计者处处考虑成本和效率,在方便和精度上取得一个折中。下面我们就如何使用STAAD建模做一讨论。

1. 用于静力分析的模型。

1)平面模型还是空间模型?这是设计者遇到的第一个问题。忽视特定的条件和目的,不加分析的将所有的模型都建成空间形式,并

且认为只有这样才能体现空间作用,这是很多设计者趋势。实际

上很多时候空间模型并不见得先进。因为所谓的空间作用与模型

荷载的加载方式有关,形式上是空间结构的模型不一定能体现空

间作用。以最常见的厂房骨架为例,当仅少数框架承受荷载时(如

吊车荷载)才考虑骨架的空间作用,而对风荷载、恒载,或温度

作用等作用于所有框架上的荷载,一般均不考虑空间作用。很显

然,图示的厂房虽然作成了空间结构,但相比平面模型计算出来

的力和变形的差别都不会太大。从这里也可以理解为什么手算的

计算简图中多取为平面的简图。.

2)杆元还是板壳单元。和大多数设计者的想法相反,很多时候,杆元相对板壳单元对设计者更加有用,更出乎意料的一点是板壳单

元不一定更精确。这里引用一下WILSON教授的观点

“Most structural engineers have the impression that two- and three-dimensional finite elements are very sophisticated and accurate compared to the one-dimensional frame element. After more than forty years of research in the development of practical structural analysis programs, it is my opinion that the non-prismatic frame element, used in an arbitrary location in three dimensional space, is definitely the most complex and useful element compared to all other types of finite elements. ”。我们在STAAD中建模时

可以吸取上述思想,用杆元作出一些非常规的似乎只能用板壳或

实体单元才能完成的模型。一个典型的例子是仅仅只使用杆元和

STAAD的主从节点构造出任意的格构式组合断面。根据经典的

弹性理论,杆件弯曲时其横截面上各点的变形满足所谓平截面假

定;另一方面,当杆件绕杆轴扭转时,横截面上各点满足所谓刚

周边假定,即虽然横截面上各点有翘曲变形,但其水平投影形状

仍然保持不变。使用STAAD的主从节点的RIGID从属关系可以

同时表达这两种情况,强制组合截面的柱肢和缀条的变形满足这

两个条件,使其象一根杆件那样共同工作,使用这种方法设计者

可以根据自己的需要灵活的定义出任意的组合断面。这样的建模

方式对设计者有什么意义呢?首先杆元的模型相对板壳单元的大

为简化;其次杆系作成的模型更方便直接使用相关规范进行构件

验算,例如缀条组合柱设计者可以直接对柱肢和缀条进行规范检

验,现行的GB50017要求按缀条的实际内力对其进行验算。再

者设计者面对的是自己熟悉的杆件内力拉、压、弯、剪、扭,比

起面对应力来要直观得多,更容易作出工程判断。如下是一个用

STAAD作出的组和柱例子:

3)计算的平方定律。很多时候设计者面对复杂系统时都会凭经验或者本能构造出其简化的分析模型,或者将一个大的系统分解为一

些线性相关的规模小一些的系统。按照系统论的观点,除非能够

采用某些简化手段,否则计算量将以问题规模增长量的平方倍数

增长,这就是计算的平方定律。我们可以改造为建模的平方定律:设计者建模耗费的精力和时间同模型规模的平方成正比。一个明

显的例子:很少有设计者试图在厂房骨架的模型中添加檩条、墙

梁、隅撑等,除了这些构件不在同一功能层次上会造成逻辑上的

混乱外,模型的规模带来的计算量的猛增也是一个关键。从这一

角度出发,在通常的框架模型中,两端铰接的次梁如果只传递竖

向荷载的话,将其和主框架建在同一模型中是很不明智的。

4)从整体到局部来把握模型。这是林同言教授推荐的结构设计思路,该方法能最大的发挥结构工程师的创造性。他在《结构概念

和体系》中说:“一个设计方案的总体构思应当对细部设计提出

要求,而不是相反。因此,构件是最基本的,但是整体空间形式

和分体系相互关系的终合概念化,才能决定怎样设计和什么时候

去处理构件设计问题。”从整体出发考虑问题的思路能权衡利弊,发现一些隐蔽的矛盾。在建模时只见树木,不见森林往往会带来

问题。例如下图所示的桁架天桥的STAAD模型,从整体上考虑

它是一箱型断面的简支梁,设计者通常的想法是将两侧腹杆与弦

杆的连接定义为铰接,但这样带来的一个问题是在侧向荷载作用

下结构接近于一机构,变形很大。如果设计者能从整体出发考虑

问题,就能敏感的意识到箱型断面需靠杆件的刚结来防止截面畸

变,就能在建模时将该处的构造做为一重点考虑。另一方面,为

了能正确的考虑下弦所在平面的的刚度,通常的做法是用SHELL

单元模拟现浇的混凝土板。但是在这个特殊的模型中会产生另外

一种偏差,即在竖向荷载的作用下本应由下弦承担的轴力相当一

部分转移给了板,因为弹性板具有相当的面内刚度。一个直接的

后果就是下弦杆的轴力偏小很多。如果不把混凝土板模拟出来的

话侧向刚度似乎又不对,陷入矛盾中。有经验的工程使用的一种

方法是使用交叉只拉撑来模拟板的面内刚度,板的荷载直接导入

到梁上。因为SHELL单元还不能模拟混凝土的材料非线性,也

许以后会出现能考虑的分析手段。

5)杆件连接与边界条件的选取应合乎实际情况。一般来说,设计者都知道应按实际条件来简化结构的约束条件,但一碰到具体的问题就往往重视不够。例如一个经常出现的隐蔽错误是简支桁架的一端没有定义滑动支座,导致下弦杆内力变号。如下图所示的两个桁架模型,在不同的支座条件下(一个两端都铰支,一个一端为滑动支座)的内力的差异非常大。凭常识都能意识到两端都铰支实际很难出现,及有可能是错的。另外,对桁架、塔架、网架这类体系,杆件的刚结与否对结构的内力和变形影响很小,很多时候设计者大可不必去定义约束释放或者指定桁架构件。如果需要定义时,因注意杆端的约束释放与桁架构件的指定不能使结构

变成可变体系。

6) 异型构件的建模的特殊方式。对于工业厂房中常用的特殊实腹式

焊接柱以及锅炉行业中常用的特殊组合箱形截面,可以使用

STAAD 的用户自定义截面来模拟。例如可以用WIDE FLANGE

来模拟双槽钢或双工字钢等类H 断面,用TUBE 来模拟双槽钢

或双工字钢组合而成的类箱型断面。例如如果用户需要设计箱型

柱,可按TUB 截面尺寸输入箱型断面的高与宽,但是把AX ,IX ,

IY ,IZ 改成实际的箱型断面的数据。如下图所示。用户可将常用

组合截面做成外部库在需要是随时引用。

2. 用于动力分析的模型。为了考察地震时结构物的响应,可进一步简化使

用杆状结构上附加质点的的模型。此时,实际结构与模型之间存在的对应关系有:质量、周期、阻尼以及承载力。所谓模型并非仅以简化为目的,而应具有可根据模型来推测实物性质的明确目标并且容易进行分析。质量的模拟是关键。在STAAD中结构的质量以节点荷载或构件荷载的形式来表达,现在的版本也支持将楼面荷载自动转化为质量。

1)多高层建筑建模。在多高层建筑中,正确的模拟楼面的刚度和质量是很重要的。直接使用板壳单元来模拟楼面会造成模型过于庞

大。为有效的减少质量自由度,提高求解的效率,可以使用

STAAD的主从节点的ZX从属来模拟平面内无限刚的楼面。此时

楼面的质量集中在主节点上,可以定义楼面平动质量和转动惯

量。如下图是一个使用该方式建模的一个例子:

2)特殊的工业构筑物。对于一些特殊的承载大型设备的工业结构,当设备的质量与刚度远大于结构本身时,如何合理的模拟出设备

的力学行为对结构计算的结果有决定性的影响。一个思路是使用

主从节点的RIGID从属关系模拟出刚体设备,刚体的平动质量和

绕三个轴的转动惯量可定义到主节点上,主节点的位置即为刚体

的质心。使用这种方式能较好的模拟石化中的大型设备或锅炉行

业中的悬吊式锅炉等。

3. 建立结构的几何模型的一些基本操作途径。掌握了建模的策略,实际使

用时用户还需了解一些建模的手段。这部分属于操作的内容,故不做详细的介绍了。

1)使用STAAD本身的栅格系统,利用结构本身的对称性尽量多使用编辑命令如复制、阵列、镜像等建模。一个模型是被编辑出来

的,而不是被一笔一笔硬画出来的。这是一种简单又实用的方法,

能适用于绝大多数的结构模型,并且能最大限度的避免几何建模

错误。

2)可以直接从STAAD中导入其它程序生成的DXF文件。

3)使用结构向导利用模板直接生成模型。用户可在某中程度上将自己常用的模型定义为模板,进行参数话建模。如下图示:

4)利用第三方程序例如EXCEL生成节点和构件关联数据,然后可以直接读入该数据生成模型。该方法特别适合建立曲线型模型。

5)利用STAAD的柱面坐标系统或逆柱面坐标系统直接编辑输入文件生成模型。只要用户能生成符合STAAD输入格式要求的文本

文件,都可以直接建立模型。

4. 检查模型错误的基本思路。用户只有能够迅速的检查错误并且修改时,

才算真正的掌握了STAAD的使用。

1)避免几何模型错误。所谓几何建模错误是指模型中有重复构件、节点或搭接构件或多重结构等。用户应首先保证不出现此类问

题。当使用第三方软件产生DXF文件导入到STAAD中生成模型

时,应特别注意检查此类问题。几何建模错误往往会导致不可预

料的结果且非常隐蔽,故设计者应随时警惕。

2)使用测试荷载工况。如果设计者着手一个几何上非常复杂的模型时,可以在建模的任意阶段建立一简单的荷载工况,通过运行一

次分析来测试结构的性能例如是否稳定以及是否漏定义某些关

键的量。一般来说,越是在早期阶段越容易修改,同时也越容易

发现问题。如果一个设计者花了一个星期的时间构造了一个构件

数上千工况上百的模型,但是最后发现分析不能成功进行。对一

些初级用户来说找错的过程是一个梦魇,能在一开始避免是上上

策。

3)模型最小化查错方法。检查电脑硬件的故障的一个实用方法叫做

最小系统法,即用最基本的设备点亮系统然后在此基础上判断外

设是否有故障。针对任何复杂系统的故障检查都可以使用该思

路,检查STAAD的模型错误也不例外。这样的操作通常需要通

过STAAD的命令编辑器编辑其输入文件。STAAD的特点就是有

一个完全定义模型的纯文本文件(后缀名为STD)。设计者可将

该文件中所有“多余”的命令都改成注释,只保留最基本的例如

截面、支座、荷载等进行分析。如果分析能够进行,说明错误出

在被注释的命令中。这时用户可以一部分一部分的加上相应的命

令并执行分析来测试问题的位置所在。找到出现问题的语句位置

后,修改就很容易了。

4)总是利用力学概念与常识来进行校核。复杂的模型总是很难一帆风顺的建模成功的,中间总是会出现这样那样的问题。在实际的

设计过程中,因为条件的不断变化,设计者也需要随时对模型进

行不断的调整,要基于变化建模。在计算软件几乎包办一切的今

天,设计者最重要的任务就是对结果进行独立校核。ZMKIN教

授的观点:“Professional structural engineers must emphasize

principles, fundamentals, modeling techniques for hand solutions,

how to recognize errors in computation, alternative ways of creating

solutions to structural engineering problems, validating computer

produced results, respect and fear of computers, skepticism of

computer produced results, respect for experience in engineering

practice ”

使用STAAD(包括其它设计软件)建模解决工程问题的重点应该是考虑问题的思路和方法,而不是命令和菜单操作的细节,命令一直在变,不变的是方法。如果说这种学习有捷径的话,这就是捷径了。

参考文献:

林同炎《结构概念和体系》

Edward L . Wilson 《Three-Dimensional Static And Dynamic Analysis

of Structures》

Leroy Z .Emkin 《Misuse of computers by structural engineers – a

clear and present danger》

赵熙元《建筑钢结构设计手册》

Gerald M .Weinberg 《系统化思维导论》

和泉正哲《建筑结构力学》

2005-12-06

回归模型分析

新疆财经大学 实验报告 课程名称:统计学 实验项目名称:回归模型分析 姓名: lili 学号: 20000000 班级:工商2011-2班 指导教师: 2014 年5 月

新疆财经大学实验报告

附:实验数据。

1、作散点图,加趋势线, 2、建立回归模型(用公式编辑器写),对模型进行统计检验。解释模型意义SUMMARY OUTPUT 回归统计 Multiple R 0.974111881 R Square 0.948893956 Adjusted R Square 0.947131679 标准误差527.4648386 观测值31 方差分析 df SS MS F Significance F 回归分析 1 149806425.5 149806426 538.4476 2.82E-20 残差29 8068355.522 278219.156 总计30 157874781.1 Coefficients 标准误差t Stat P-value Lower 95% Upper 95% Intercept 121.5246471 365.0193913 0.33292655 0.741585 -625.024 X Variable 1 1.270433698 0.054749518 23.2044728 2.82E-20 1.158458

RESIDUAL OUTPUT 观测值预测 Y 残差标准残差 1 14252.56 -369.959 -0.71338 2 10116.66 196.2382 0.378401 3 7032.43 206.6701 0.398516 4 6607.597 412.4032 0.795225 5 7006.005 6.895144 0.013296 6 7843.094 -602.494 -1.16177 7 7098.874 -93.6736 -0.18063 8 6493.004 185.8963 0.358458 9 14147.49 720.0062 1.388367 10 8644.356 618.1438 1.191949 11 12461.12 717.8799 1.384267 12 6555.382 244.618 0.47169 13 9467.216 532.2839 1.026388 14 6365.198 536.2019 1.033943 15 7832.295 567.6051 1.094497 16 6399.5 526.5002 1.015235 17 7697.502 -375.502 -0.72407 18 7871.17 -171.17 -0.33006 19 12363.8 16.59511 0.032 20 7443.669 341.3307 0.658178 21 7111.959 147.341 0.284113 22 9164.599 -1070.9 -2.06498 23 7490.04 -448.14 -0.86414 24 6408.901 160.099 0.308714 25 7774.109 -130.509 -0.25166 26 10342.54 -1577.04 -3.04097 27 7362.997 -462.997 -0.89278 28 6852.282 -195.082 -0.37617 29 6982.121 -236.821 -0.45665 30 6893.317 -362.817 -0.69961 31 7260.6 -39.5998 -0.07636 y=β0+β1x y=121.225+1.27X 3、求相关系数与方向说明数意 根据以上的结果,0《r≤1,这表明x与y之间正线性相关,因为r=0.9741可视为高度相关;

有关建立STAAD模型的一些观点探讨

有关建立STAAD模型的一些观点探讨 在进行结构设计时,首先需不计及局部而掌握结构总体的响应。这意味着此时的研究对象已不是实际的结构,而是已将结构特性简化了的“模型”。该模型必须是可以根据其响应去推得实际结构响应的模型,否则便无意义。因此如何对结构模型化就成了结构设计的一个要点。建模的策略和手段是直接又建模的目的决定的。为了进行设计而进行的建模活动是有其特殊性的,需要设计者处处考虑成本和效率,在方便和精度上取得一个折中。下面我们就如何使用STAAD建模做一讨论。 1. 用于静力分析的模型。 1)平面模型还是空间模型?这是设计者遇到的第一个问题。忽视特定的条件和目的,不加分析的将所有的模型都建成空间形式,并 且认为只有这样才能体现空间作用,这是很多设计者趋势。实际 上很多时候空间模型并不见得先进。因为所谓的空间作用与模型 荷载的加载方式有关,形式上是空间结构的模型不一定能体现空 间作用。以最常见的厂房骨架为例,当仅少数框架承受荷载时(如 吊车荷载)才考虑骨架的空间作用,而对风荷载、恒载,或温度 作用等作用于所有框架上的荷载,一般均不考虑空间作用。很显 然,图示的厂房虽然作成了空间结构,但相比平面模型计算出来 的力和变形的差别都不会太大。从这里也可以理解为什么手算的 计算简图中多取为平面的简图。.

2)杆元还是板壳单元。和大多数设计者的想法相反,很多时候,杆元相对板壳单元对设计者更加有用,更出乎意料的一点是板壳单 元不一定更精确。这里引用一下WILSON教授的观点 “Most structural engineers have the impression that two- and three-dimensional finite elements are very sophisticated and accurate compared to the one-dimensional frame element. After more than forty years of research in the development of practical structural analysis programs, it is my opinion that the non-prismatic frame element, used in an arbitrary location in three dimensional space, is definitely the most complex and useful element compared to all other types of finite elements. ”。我们在STAAD中建模时 可以吸取上述思想,用杆元作出一些非常规的似乎只能用板壳或 实体单元才能完成的模型。一个典型的例子是仅仅只使用杆元和 STAAD的主从节点构造出任意的格构式组合断面。根据经典的 弹性理论,杆件弯曲时其横截面上各点的变形满足所谓平截面假 定;另一方面,当杆件绕杆轴扭转时,横截面上各点满足所谓刚 周边假定,即虽然横截面上各点有翘曲变形,但其水平投影形状 仍然保持不变。使用STAAD的主从节点的RIGID从属关系可以

数学建模——回归分析

回归分析——20121060025 吕佳琪 企业编号生产性固定资产价值(万元)工业总产值(万元) 1318524 29101019 3200638 4409815 5415913 6502928 7314605 812101516 910221219 1012251624 合计65259801 (2)建立直线回归方程; (3)计算估价标准误差; (4)估计生产性固定资产(自变量)为1100万元时总产值(因变量)的可能值。解: (1)画出散点图,观察二变量的相关方向 x=[318 910 200 409 415 502 314 1210 1022 1225]; y=[524 1019 638 815 913 928 605 1516 1219 1624]; plot(x,y,'or') xlabel('生产性固定资产价值(万元)') ylabel('工业总产值(万元)') 由图形可得,二变量的相关方向应为直线 (2)

x=[318 910 200 409 415 502 314 1210 1022 1225]; y=[524 1019 638 815 913 928 605 1516 1219 1624]; X = [ones(size(x))', x']; [b,bint,r,rint,stats] = regress(y',X,0、05); b,bint,stats b = 395、5670 0、8958 bint = 210、4845 580、6495 0、6500 1、1417 stats = 1、0e+004 * 0、0001 0、0071 0、0000 1、6035 上述相关系数r为1,显著性水平为0 Y=395、5670+0、8958*x (3) 计算方法:W=((Y1-y1)^2+……+(Y10-y10)^2)^(1/2)/10 利用SPSS进行回归分析:

回归模型结果分析

回归模型结果分析 为了提高回归模型的准确性,上文中我们分别按月份、颜色比、退偏振比三种情况进行回归建模,从以上的分析结果看来,按月份划分建立的回归模型反演效果较好。为了更好地对不同情况下得到的回归模型及反演结果进行对比,我们把相同情况下得到的所有反演结果表示在一张图上,并与相应的太阳光度计观测值进行对比分析。 (a)

(b) (c)

图4.1 图4.1中(a)、(b)、(c)三幅图为分别按月份、颜色比和退偏振比建立回归模型后得出的所有颗粒物体积浓度的反演结果与相应太阳光度计观测值的对比分析图。图(a)数据的样本容量为250,图(b)和图(c)的样本容量为150,虽然图(a)样本容量多,但是与图(b)和图(c)相比,图(a)中数据更为集中,大部分数据的反演结果与太阳光度计观测值接近,出现误差的数据少且误差小,图(c)的反演结果略优于图(b),总体来说按月份建立的颗粒物体积浓度的回归模型最准确,而按颜色比建立的回归模型准确性较差。 (a)

(b) (c)图4.2

图4.2中(a)、(b)、(c)三幅图为分别按月份、颜色比和退偏振比建立回归模型后得出的所有有效粒子半径的反演结果与相应太阳光度计观测值的对比分析图。图(a)样本容量较多且数据比较集中,但有一部分数据反演结果明显偏小,严重影响了回归模型的准确性,图(b)数据较离散,部分数据误差大,线性相关系数较小,图(c)个别数据误差大,虽然数据集中程度没有图(a)好。但是数据横纵坐标的差异比其他两幅图小。在确定最优样本容量时,我们发现随着样本容量的增加,线性相关系数减小,所以在无法统一样本容量且线性相关系数差异不大的情况下无法确定在哪种情况下建立的回归模型最准确。所以在建立有效粒子半径的回归模型时,我们可以按月份建立回归模型,也可以按退偏振比建立回归模型。

多元线性回归模型的案例分析

1. 表1列出了某地区家庭人均鸡肉年消费量Y 与家庭月平均收入X ,鸡肉价格P 1,猪肉价格P 2与牛肉价格P 3的相关数据。 年份 Y/千 克 X/ 元 P 1/(元/千克) P 2/(元/千克) P 3/(元/千克) 年份 Y/千克 X/元 P 1/(元/ 千克) P 2/(元/ 千克) P 3/(元/千克) 1980 2.78 397 4.22 5.07 7.83 1992 4.18 911 3.97 7.91 11.40 1981 2.99 413 3.81 5.20 7.92 1993 4.04 931 5.21 9.54 12.41 1982 2.98 439 4.03 5.40 7.92 1994 4.07 1021 4.89 9.42 12.76 1983 3.08 459 3.95 5.53 7.92 1995 4.01 1165 5.83 12.35 14.29 1984 3.12 492 3.73 5.47 7.74 1996 4.27 1349 5.79 12.99 14.36 1985 3.33 528 3.81 6.37 8.02 1997 4.41 1449 5.67 11.76 13.92 1986 3.56 560 3.93 6.98 8.04 1998 4.67 1575 6.37 13.09 16.55 1987 3.64 624 3.78 6.59 8.39 1999 5.06 1759 6.16 12.98 20.33 1988 3.67 666 3.84 6.45 8.55 2000 5.01 1994 5.89 12.80 21.96 1989 3.84 717 4.01 7.00 9.37 2001 5.17 2258 6.64 14.10 22.16 1990 4.04 768 3.86 7.32 10.61 2002 5.29 2478 7.04 16.82 23.26 1991 4.03 843 3.98 6.78 10.48 (1) 求出该地区关于家庭鸡肉消费需求的如下模型: 01213243ln ln ln ln ln Y X P P P u βββββ=+++++ (2) 请分析,鸡肉的家庭消费需求是否受猪肉及牛肉价格的影响。 先做回归分析,过程如下: 输出结果如下:

产品分析方案设计

产品分析方案设计 产品分析方案应该样设计不同的项目有不同的设计各位我们看看下面的企业机械产品方案设计 根据目前国内外设计学者进行机械产品方案设计所用方法的主要特征将方案的现代设计方法概括为下述四大类型 一、系统化设计方法 系统化设计方法的主要特点是:将设计看成由若干个设计要素组成的一个系统每个设计要素具有独立性各个要素间存在着有机的联系并具有层次性所有的设计要素结合后即可实现设计系统所需完成的任务系统化设计思想于70年代由德国学者Pahl和Beitz教授提出他们以系统理论为基础制订了设计的一般模式倡导设计工作应具备条理性德国工程师协会在这一设计思想的基础上制订出标准 VDI2221“技术系统和产品的开发设计方法由于每个设计者研究问题的角度以及考虑问题的侧重点不同进行方案设计时采用的具体研究方法亦存在差异下面介绍一些具有代表性的系统化设计方法 1.设计元素法用五个设计元素(功能、效应、效应载体、形状元素和表面参数)描述“产品解”认为一个产品的五个设计元素值确定之后产品的所有特征和特征值即已确定我国亦有设计学者采用了类似方法描述产品的原理解 2.图形建模法研制的“设计分析和引导系统”KALEIT用层次清楚的图形描述出产品的功能结构及其相关的抽象信息实现了系统结构、功能关系的图形化建模以及功能层之间的联接将设计划分成辅助

方法和信息交换两个方面利用Nijssen信息分析方法可以采用图形符号、具有内容丰富的语义模型结构、可以描述集成条件、可以划分约束类型、可以实现关系间的任意结合等特点将设计方法解与信息技术进行集成实现了设计过程中不同抽象层间信息关系的图形化建模 3.“构思”―“设计”法将产品的方案设计分成“构思”和“设计”两个阶段“构思”阶段的任务是寻求、选择和组合满足设计任务要求的原理解“设计”阶段的工作则是具体实现构思阶段的原理解将方案的“构思”具体描述为:根据合适的功能结构寻求满足设计任务要求的原理解即功能结构中的分功能由“结构元素”实现并将“结构元素”间的物理联接定义为“功能载体”“功能载体”和“结构元素”间的相互作用又形成了功能示意图(机械运动简图)方案的“设计”是根据功能示意图先定性地描述所有的“功能载体”和“结构元素”再定量地描述所有“结构元素”和联接件(“功能载体”)的形状及位置得到结构示意图RoperH.利用图论理论借助于由他定义的“总设计单元(GE)”、“结构元素(KE)”、“功能结构元素(FKE)”、“联接结构元素(VKE)”、“结构零件(KT)”、“结构元素零件(KET)”等概念以及描述结构元素尺寸、位置和传动参数间相互关系的若干种简图把设计专家凭直觉设计的方法做了形式化的描述形成了有效地应用现有知识的方法并将其应用于“构思”和“设计”阶段 4.矩阵设计法在方案设计过程中采用“要求―功能”逻辑树(“与或”树)描述要求、功能之间的相互关系得到满足要求的功能设计解集形成不同的设计方案再根据“要求―功能”逻辑树建立“要求―功

STAAD chinese manual for website-940307简易中文手册

STAAD/Pro 软件功能及理论解说

1.1STAAD/Pro的结构型式 STAAD/Pro(简称STAAD)能够分析及设计含有杆件、板/壳及实体元素的结构体。STAAD可分析的结构型式有四种: SPACE是三维的构架结构,载重可以放在任一平面上,这是最普遍使用的型式,如大楼或厂房等。 PLANE是二维型式的结构,限制在世界坐标的X-Y平面,载重放在同一平面上。 TRUSS是指结构杆件都是TRUSS杆件,它只能承受轴向力而不能承受力矩。 FLOOR是指没有水平力矩的(X , Z)二维或三维【FX,FZ & MY是限制在任何节点上】结构,建筑物的地板是FLOOR最典型的例子。不受水平力 的柱(column)也是FLOOR的一种,假如柱受水平力则属于SPACE的 型式。 正确地设定结构种类可减少所需的方程式数目以达快速经济的目的。各类型结构的自由度定义如下图1.1所示。 图1.1 1.2 结构几何与坐标系统 一个结构是由一些组件如梁(beams)柱(columns)板(slabs)和平板(plates)等组成,在STAAD中构架元素(frame elements)和板面元素(plate elements)是用于建立结构模型的。一般来讲,建立模型结构几何有两个步骤: A、定义与描述接点(joints)或节点(nodes) B、将接点连接以形成杆件(members)或元素(elements)。 一般来讲MEMBER(杆件)这个词用来指构架的元素,ELEMENT(元素)用来指平面或曲面元素,MEMBER INCIDENCE指令用来定义杆件,而ELEMENTS

STAAD用两种坐标系统来定义结构几何和载重方式。(GLOBAL)世界坐标系统是用来表现整体几何与结构的载重方式。LOCAL局部坐标系统是用来帮助与每一个杆件或元素有所关联,且用在MEMBER END FORCE定义输出结果和局部载重方式。 世界坐标系统 以下坐标系统可以用来标明结构几何: A、直角坐标系统:此坐标系统X,Y,Z轴成直角相交,并遵循右手定律。这种坐标系统可用来定义接点位置及作用力方向。图1.2中位置自由度以u1,u2,u3而旋转自由度以u4,u5及u6表示。 图1.2 B、圆柱坐标系统:此坐标系统中以R(半径)及?(转角)取代直角坐标的X,Y平面,Z轴与直角坐标相同,而方向则以右手定律决定。见图1.3。

数学建模之回归分析法

什么是回归分析 回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。 回归分析之一多元线性回归模型案例解析 多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为: 毫无疑问,多元线性回归方程应该为: 上图中的x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示: 那么,多元线性回归方程矩阵形式为: 其中:代表随机误差,其中随机误差分为:可解释的误差和不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样) 1:服成正太分布,即指:随机误差必须是服成正太分别的随机变量。 2:无偏性假设,即指:期望值为0 3:同共方差性假设,即指,所有的随机误差变量方差都相等 4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。

今天跟大家一起讨论一下,SPSS---多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。数据如下图所示:(数据可以先用excel建立再通过spss打开) 点击“分析”——回归——线性——进入如下图所示的界面:

回归分析方法

第八章 回归分析方法 当人们对研究对象的内在特性和各因素间的关系有比较充分的认识时,一般用机理分析方法建立数学模型。如果由于客观事物内部规律的复杂性及人们认识程度的限制,无法分析实际对象内在的因果关系,建立合乎机理规律的数学模型,那么通常的办法是搜集大量数据,基于对数据的统计分析去建立模型。本章讨论其中用途非常广泛的一类模型——统计回归模型。回归模型常用来解决预测、控制、生产工艺优化等问题。 变量之间的关系可以分为两类:一类叫确定性关系,也叫函数关系,其特征是:一个变量随着其它变量的确定而确定。另一类关系叫相关关系,变量之间的关系很难用一种精确的方法表示出来。例如,通常人的年龄越大血压越高,但人的年龄和血压之间没有确定的数量关系,人的年龄和血压之间的关系就是相关关系。回归分析就是处理变量之间的相关关系的一种数学方法。其解决问题的大致方法、步骤如下: (1)收集一组包含因变量和自变量的数据; (2)选定因变量和自变量之间的模型,即一个数学式子,利用数据按照最小二乘准则计算模型中的系数; (3)利用统计分析方法对不同的模型进行比较,找出与数据拟合得最好的模型; (4)判断得到的模型是否适合于这组数据; (5)利用模型对因变量作出预测或解释。 应用统计分析特别是多元统计分析方法一般都要处理大量数据,工作量非常大,所以在计算机普及以前,这些方法大都是停留在理论研究上。运用一般计算语言编程也要占用大量时间,而对于经济管理及社会学等对高级编程语言了解不深的人来说要应用这些统计方法更是不可能。MATLAB 等软件的开发和普及大大减少了对计算机编程的要求,使数据分析方法的广泛应用成为可能。MATLAB 统计工具箱几乎包括了数理统计方面主要的概念、理论、方法和算法。运用MATLAB 统计工具箱,我们可以十分方便地在计算机上进行计算,从而进一步加深理解,同时,其强大的图形功能使得概念、过程和结果可以直观地展现在我们面前。本章内容通常先介绍有关回归分析的数学原理,主要说明建模过程中要做的工作及理由,如模型的假设检验、参数估计等,为了把主要精力集中在应用上,我们略去详细而繁杂的理论。在此基础上再介绍在建模过程中如何有效地使用MATLAB 软件。没有学过这部分数学知识的读者可以不深究其数学原理,只要知道回归分析的目的,按照相应方法通过软件显示的图形或计算所得结果表示什么意思,那么,仍然可以学到用回归模型解决实际问题的基本方法。包括:一元线性回归、多元线性回归、非线性回归、逐步回归等方法以及如何利用MATLAB 软件建立初步的数学模型,如何透过输出结果对模型进行分析和改进,回归模型的应用等。 8.1 一元线性回归分析 回归模型可分为线性回归模型和非线性回归模型。非线性回归模型是回归函数关于未知参数具有非线性结构的回归模型。某些非线性回归模型可以化为线性回归模型处理;如果知道函数形式只是要确定其中的参数则是拟合问题,可以使用MATLAB 软件的curvefit 命令或nlinfit 命令拟合得到参数的估计并进行统计分析。本节主要考察线性回归模型。 8.1.1 一元线性回归模型的建立及其MATLAB 实现 其中01ββ,是待定系数,对于不同的,x y 是相互独立的随机变量。 假设对于x 的n 个值i x ,得到 y 的n 个相应的值i y ,确定01ββ,的方法是根据最小二乘准则,要使 取最小值。利用极值必要条件令 01 0,0Q Q ββ??==??,求01ββ,的估计值01??ββ,,从而得到回归直线01 ??y x ββ=+。只不过这个过程可以由软件通过直线拟合完成,而无须进行繁杂的运算。

回归分析在数学建模中的应用

摘要 回归分析和方差分析是探究和处理相关关系的两个重要的分支,其中回归分析方法是预测方面最常用的数学方法,它是利用统计数据来确定变量之间的关系,并且依据这种关系来预测未来的发展趋势。本文主要介绍了一元线性回归分析方法和多元线性回归分析方法的一般思想方法和一般步骤,并且用它们来研究和分析我们在生活中常遇到的一些难以用函数形式确定的变量之间的关系。在解决的过程中,建立回归方程,再通过该回归方程进行预测。 关键词:多元线性回归分析;参数估计;F检验

回归分析在数学建模中的应用 Abstract Regression analysis and analysis of variance is the inquiry and processing of the correlation between two important branches, wherein the regression analysis method is the most commonly used mathematical prediction method, it is the use of statistical data to determine the relationship between the variables, and based on this relationship predict future trends. introduces a linear regression analysis and multiple linear regression analysis method general way of thinking and the general steps, and use them to research and analysis that we encounter in our life, are difficult to determine as a function relationship between the variables in the solving process, the regression equation is established by the regression equation to predict. Keywords:Multiple linear regression analysis; parameter estimation;inspection II

简述回归分析的概念与特点

简述回归分析的概念与特点 回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。 方差齐性 线性关系 效应累加 变量无测量误差 变量服从多元正态分布 观察独立 模型完整(没有包含不该进入的变量、也没有漏掉应该进入的变量) 误差项独立且服从(0,1)正态分布。 现实数据常常不能完全符合上述假定。因此,统计学家研究出许多的回归模型来解决线性回归模型假定过程的约束。 研究一个或多个随机变量Y1 ,Y2 ,…,Yi与另一些变量X1、X2,…,Xk之间的关系的统计方法。又称多重回归分析。通常称Y1,Y2,…,Yi为因变量,X1、X2,…,Xk为自变量。回归分析是一类数学模型,特别当因变量和自变量为线性关系时,它是一种特殊的线性模型。最简单的情形是一个自变量和一个因变量,且它们大体上有线性关系,这叫一元线性回归,即模型为Y=a+bX+ε,这里X是自变量,Y是因变量,ε是随机误差,通常假定随机误差的均值为0,方差为σ^2(σ^2大于0)σ2与X的值无关。若进一步假定随机误差遵从正态分布,就叫做正态线性模型。一般的情形,差有k个自变量和一个因变量,因变量的值可以分解为两部分:一部分是由自变量的影响,即表示为自变量的函数,其中函数形式已知,但含一些未知参数;另一部分是由于其他未被考虑的因素和随机性的影响,即随机误差。当函数形式为未知参数的线性函数时,称线性回归分析模型;当函数形式为未知参数的非线性函数时,称为非线性回归分析模型。当自变量的个数大于1时称为多元回归,当因变量个数大于1时称为多重回归。 回归分析的主要内容为:①从一组数据出发确定某些变量之间的定量关系式,即建立数学模型并估计其中的未知参数。估计参数的常用方法是最小二乘法。②对这些关系式的可信程度进行检验。③在许多自变量共同影响着一个因变量的关系中,判断哪个(或哪些)自变量的影响是显著的,哪些自变量的影响是不显著的,将影响显著的自变量选入模型中,而剔除影响不显著的变量,通常用逐步回归、向前回归和向后回归等方法。④利用所求的关系式对某一生产过程进行预测或控制。回归分析的应用是非常广泛的,统计软件包使各种回归方法计算十分方便。

STAAD入门

STAAD/CHINA基础入门 STAAD/CHINA结构类型 STAAD有四种结构类型供使用者选择: ·空间(Space) ·平面(Plane) ·平板(Floor) ·桁架(Truss) 空间(SPACE)结构,即结构可以是三维的,荷载可作用在任一平面内的三维结构模型。STAAD的整体坐标系如图所示。STAAD中其他部分的坐标(荷载方向,构件局部坐标等)都是以这个整体坐标为参考坐标的。 CAD的使用者会发现它的坐标系与AutoCAD中的坐标系统不同,在STAAD.pro 中,Y轴是竖直方向,XZ构成平面。因为STAAD可以直接读入AutoCAD图形作为结构模型,所以STAAD为AutoCAD的使用者提供了一个“设置Z轴为竖直轴(set Z up)”的命令,但这会使其他一些操作不能执行,生成风荷载就是一例。为了适应AutoCAD的工作要求,STAAD可以转动自己的坐标轴,但在STAAD环境下还是默认的坐标系统使用起来比较方便。 平面(PLANE)结构,所有的单元都作用在整体坐标系X-Y平面内,且荷载也作用在这个平面内。你也许会想为什么有了空间结构还要有平面结构,这是因为平面结构可以确保结构在静力平衡状态下不会产生平面外变形。当然你可以在空间结构体系下建立平面结构,但为了保证不产生平面外变形,需要加设平面外支撑。 楼板(FLOOR)结构跟平面结构类似,只不过结构单元作用在X-Z平面,也可以在Y方向有变形。其实平面结构和平板结构都可以用空间结构代替,只是以前的计算机功能远不如现在的强大,计算速度也比较慢,选用简单的结构比较适合,另外之所以还保留这两个结构形式是考虑到老用户的习惯。 桁架(TRUSS)结构,桁架构件只有轴向刚度,不能承受剪力和弯矩。如果结构全部由桁架构件组成,可以选用桁架结构形式,但只有一部分是桁架构件时,就要选空间结构形式,并对桁架构件进行定义。 STAAD结构单元 STAAD提供了四种单元类型: ·梁单元(Beams) ·板单元(Plate) ·块体(Solid) ·面单元(Surface) 梁是线性构件,构件(member)与梁(beam)的概念可以交换使用。梁可以承受轴向荷载,即柱。 板是一个有限单元,通常用于板/壳结构的建模。STAAD的板单元可以是三角形(三节点)或四边形(四节点)。若一个四边形单元的4个节点不在同一平

数学建模-回归分析-多元回归分析

1、 多元线性回归在回归分析中,如果有两个或两个以上的自变量,就称为 多元回归。事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。 在实际经济问题中,一个变量往往受到多个变量的影响。例如,家庭消费支出,除了受家庭可支配收入的影响外,还受诸如家庭所有的财富、物价水平、金融机构存款利息等多种因素的影响,表现在线性回归模型中的解释变量有多个。这样的模型被称为多元线性回归模型。(multivariable linear regression model ) 多元线性回归模型的一般形式为: 其中k 为解释变量的数目,j β (j=1,2,…,k)称为回归系数(regression coefficient)。上式也被称为总体回归函数的随机表达式。它的非随机表达式为: j β也被称为偏回归系数(partial regression coefficient)。 2、 多元线性回归计算模型 多元性回归模型的参数估计,同一元线性回归方程一样,也是在要求误差平方和(Σe)为最小的前提下,用最小二乘法或最大似然估计法求解参数。 设( 11 x , 12 x ,…, 1p x , 1 y ),…,( 1 n x , 2 n x ,…, np x , n y )是一个样本, 用最大似然估计法估计参数: 达 到最小。

把(4)式化简可得: 引入矩阵: 方程组(5)可以化简得: 可得最大似然估计值:

3、Matlab 多元线性回归的实现 多元线性回归在Matlab 中主要实现方法如下: (1)b=regress(Y, X ) 确定回归系数的点估计值 其中 (2)[b,bint,r,rint,stats]=regress(Y,X,alpha)求回归系数的点估计和区间估计、并检 验回归模型 ①bint 表示回归系数的区间估计. ②r 表示残差 ③rint 表示置信区间 ④stats 表示用于检验回归模型的统计量,有三个数值:相关系数r2、F 值、与F 对应的 概率p 说明:相关系数r2越接近1,说明回归方程越显著;F>F1-alpha(p,n-p-1) 时拒绝H0,F 越大,说明回归方程越显著;与F 对应的概率p<α 时拒绝H0,回归模型成立。 ⑤alpha 表示显著性水平(缺省时为0.05) (3)rcoplot(r,rint) 画出残差及其置信区间

计量经济学Eviews简单线性回归模型的建立与分析应用实验报告

实验一:简单线性回归模型的建立与分析应用 【实验目的】 1、熟悉计量经济学软件包EViews的界面和基本操作; 2、掌握计量经济学分析实际经济问题的具体步骤; 3、掌握简单线性回归模型的参数估计、统计检验、预测的基本操作方法; 4、理解简单线性回归模型中参数估计值的经济意义。 【实验类型】综合型 【实验软硬件要求】计量经济学软件包EViews、微型计算机 【实验内容】 为研究深圳市地方预算内财政收入(Y)与地区生产总值(X)的关系,建立简单线性回归模型,现根据深圳市统计局网站的相关信息,得到统计数据如下表: 请按照下列步骤完成实验一,每个步骤要写出操作过程: (1)打开EViews,新建适当的工作文件夹; 打开Eviews后,依次点击File-New-Workfile,新建一个时间序列数据(Dated-regular frequencied)类型的文件,频率选择年度(Annual),键入起止日期1990-2008(如图一),点击ok,新建工作文件夹完成(如图二)

(图一) (图二) (2)在工作文件夹中新建变量X和Y,并输入数据; 依次点击Objects-New Object,对象类型选择序列(Series),并输入序列名Y(如图三),点击OK,重复以上操作,新建系列对象X。新建系列对象完成后如(图四) 按住ctrl并同时选定X和Y,用鼠标右击选择open—as group,点击Edit +/-开始编辑,输入数据,数据输入完毕再点击Edit+/-一次。数据输入后如(图五)。

(图三) (图四)

(图五) (3)生成X和Y的自然对数序列,保存在工作文件夹中,命名为lnX和lnY; 依次点击Objects-Generate Sereies,出现Generate Series by Equation 窗口,在Enter equation窗口中输入公式:lnY=log(Y)点击ok,重复以上操作,输入:lnX=log(X) 创建序列lnX。(如图六) (图六) (4)求X和Y的描述统计量的值,写出操作过程并画出相应表格; 依次点击Quick-Group Statistics—Descriptive Statistics-Common sample,打开Series List窗口,输入x y,点击ok,输出结果(如图七)

Tekla与Staad.pro协同设计解决方案

1.安装Tekla软件. 2.安装软件. 3.Tekla与Staad软件接口信息(支持版本) HD TEKLA 1 Linking Tekla Structures with Analysis & Design software Latest information on the status of our links with different Analysis & Design vendors are presented in the docurrient1Status_A&D.pdf'. For a general description an how Tekla Structures can be used and integrated with A&D systems, please down load the document N How to use Tekla Structures for Analysis & Design" SDVdm? versions 2005, 2006, 2007 Tekla Structures integrates with the standalone STAAD.Pro. 1Read the instructions on "Using Tekla Structures and Standalone STAAD.Pro" 2Run Tekla Structures ~ STAAD.Pro link installation (77 Mb) 接口程序年编写的接口程序,官方免费提供),机器中已经安装的tekla和 staad软件建立接口. 4.Tekla中建立物理模型和分析模型及荷载组. 5?将分析模型导入>据规范利用tekla中已经存在的基本荷载工况做荷载组合-> 力学分析-> 优化截面. 6?将中的优化截面和杆件内力信息导入Tekla中。完成设计工作。

回归模型的残差分析

回归模型的残差分析 山东 胡大波 判断回归模型的拟合效果是回归分析的重要内容,在回归分析中,通常用残差分析来判断回归模型的拟合效果。下面具体分析残差分析的途径及具体例子。 一、 残差分析的两种方法 1、差分析的基本方法是由回归方程作出残差图,通过观测残差图,以分析和发现观测数据中可能出现的错误以及所选用的回归模型是否恰当;在残差图中,残差点比较均匀地落在水平区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,说明模型的拟合精度越高,回归方程的预报精度越高。 2、可以进一步通过相关指数∑∑==--- =n i i n i i i y y y y R 1 2 1 2 ^ 2 )()(1来衡量回归模型的拟合效果,一般 规律是2 R 越大,残差平方和就越小,从而回归模型的拟合效果越好。 二、 典例分析: 例1、某运动员训练次数与运动成绩之间的数据关系如下: 试预测该运动员训练47次以及55次的成绩。 解答:(1)作出该运动员训练次数x 与成绩y 之间的散点图,如图1所示,由散点图可 知,它们之间具有线性相关关系。 (2)列表计算: 由上表可求得875.40,25.39==y x , 126568 1 2 =∑=i i x ,137318 1 2=∑=i i y ,

131808 1 =∑=i i i y x ,所以∑∑==---= 8 1 2 8 1 )() )((i i i i i x x y y x x β.0415.188 1 2 28 1≈--= ∑∑==i i i i i x x y x y x 00302.0-≈-=x y βα,所以回归直线方程为.00302.00415.1^ -=x y (3)计算相关系数 将上述数据代入∑∑∑===---= 8 1 8 1 2 22 2 8 1 ) 8)(8(8i i i i i i i y y x x y x y x r 得992704.0=r ,查表可知 707.005.0=r ,而05.0r r >,故y 与x 之间存在显着的相关关系。 (4)残差分析: 作残差图如图2,由图可知,残差点比较均匀地分布在水平带状区域中,说明选用的模型比较合适。 计算残差的方差得884113.02 =σ ,说明预报的精度较高。 (5)计算相关指数2 R 计算相关指数2 R =0.9855.说明该运动员的成绩的差异有98.55%是由训练次数引起的。 (6)做出预报 由上述分析可知,我们可用回归方程 .00302.00415.1^ -=x y 作为该运动员成绩的预报值。 将x =47和x =55分别代入该方程可得y =49和y =57, 故预测运动员训练47次和55次的成绩分别为49和57. 点评:一般地,建立回归模型的基本步骤为: (1)确定研究对象,明确哪个变量是解释变量,哪个变量是预报变量; (2)画出确定好的解释变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系等); (3)由经验确定回归方程的类型(如我们观察到数据呈线性关系,则选用线性回归方程y =bx +a ); (4)按一定规则估计回归方程中的参数(如最小二乘法); (5)得出结果后分析残差图是否有异常(个别数据对应残差过大,或残差呈现不随机的规律性等等),若存在异常,则检查数据是否有误,或模型是否合适等。 例2、某城区为研究城镇居民月家庭人均生活费支出和月人均收入的相关关系,随机抽取

STAAD的稳定设计

STAAD在钢结构稳定设计中的应用 李晓峰孙立夫林润松 (BENTLEY软件(北京)有限公司) 稳定问题在钢结构设计中居于中心地位。本文试图结合 STAAD对三个常规钢结构的稳定问题进行讨论,整理出来 进行稳定计算的大致思路和注意事项。这里的模型仅仅是为 了演示的方便为任意创建的“玩具”模型,希望读者不要被 误导。本文重点讨论了所谓考虑初始缺陷的二阶弹性分析在 STAAD中的应用。相对于一阶分析的计算长度法,二阶分 析现在似乎比较流行,而传统的计算长度系数法遭到很多的 诟病。作者认为,计算长度系数法,和其他很多近似算法一 样,因为其结果的近似遭到的指责是不公平的——使用者应 该明确该方法的计算假定,适用范围以及结果的近似程度, 并对结果负责。对真正的结构工程师,使用近似算法仍然可 以设计出具有足够安全储备的合理结构,而对所谓的更精确 的二阶分析的盲目滥用,却大大增加了结构失效的风险。 现在大多数国家的钢结构设计标准都推荐进行二阶分析以 考虑所谓的P-?效应和P-δ效应。我们先明确结构P-?效应 和P-δ效应究竟是什么?考虑如下的一个有侧移简单刚架 (图1,文献1): 图1 有侧移刚架的P-?效应 上图为一简单刚架成受线载时的弯矩图。左边的弯矩对应为 一阶分析的结果,右边的对应为二阶分析的结果(未考虑任 何缺陷)。可以看出,在右边柱的二阶分析的结果多出来了 弯矩,该弯矩是由柱的轴力(所谓的P)乘以框架的侧移(所 谓的?)产生的,所以称之为P-?效应。 类似的,考虑如下的无侧移框架(图2,文献1) : 图2 无侧移框架的P-δ效应 在图2的两个无侧移框架的模型中,左边为一阶分析的结 果,右边为二阶分析的结果。相对前面的有侧移框架,本例 中两个柱子之间的弯矩差别很微小(柱端弯矩由388kN.m 增加到393kN.m,且弯矩图的形状由直线变为具有微小曲率 的曲线)。柱弯矩的增大部分主要是由柱本身的局部侧移δ 产生的,因为框架几乎不产生任何水平位移?,所以称为 P-δ效应。 由这个小例子,文献1归纳并指出了二阶分析和一阶分析的 一些基本的区别: a)二阶效应不仅仅影响弯矩,还会影响整个的剪力与轴 力; b)二阶效应中的内力分布形态完全不同于一阶分析,并不 是一阶分析结果的简单放大。 c)在实际的结构中,总是同时存在有P-?效应和P-δ效 应,只不过其影响的程度和结构的具体形式有关。一般 来说,在抗侧刚度大的结构中,是局部的P-δ效应占 主导;在抗侧刚度小的结构中,是整体P-?效应占主导。 d)因为前述原因,通常的荷载线性组合不适用于二阶分 析。因此必须在每个组合好的工况进行二阶分析。 在实际的结构中,通常P-?效应是针对结构的整体而言,是 一个宏观的概念;而P-δ效应是针对具体的单个构件而言, 是相对微观的概念。对FEA软件而言,两者都可通过在分 析中考虑附加的所谓的几何刚度(geometric stiffness)反应 出来(考虑P-?效应的方法很多,包括很多迭代法等等,但 考虑几何刚度的方法是这些方法中最有效率的方法之一)。 在STAAD中,用户如果选择执行所谓的PDELTA分析时, 可以让程序考虑几何刚度,分析命令的关键词为PDELTA KG ANALYSIS ,KG关键词指示程序考虑几何刚度。可 同时考虑杆件和板壳的几何刚度,这可应用在对二维板壳模 型的分析中。 结构不可避免的会存在各种几何和物理的缺陷,而这些缺陷 会直接影响结构的稳定承载力,因此用于工程设计的分析必 须能反映缺陷的影响。使用二阶弹性分析计算稳定时,最重 要的一步是对结构的缺陷的估计和模拟,这往往也是最困难

相关主题