搜档网
当前位置:搜档网 › 金属酞菁的合成与表征

金属酞菁的合成与表征

金属酞菁的合成与表征
金属酞菁的合成与表征

金属酞菁的合成与表征

一、摘要:本实验以邻苯二甲酸酐、无水氯化钴、尿素为原料、以钼酸铵为催化剂,采用金属模板法合成酞菁钴,用稀酸稀碱提纯产物,通过紫外可见光谱等方法进行表征。

关键词:金属酞菁模板法紫外光谱

二、引言

酞菁类化合物是四氮大环配种类,具有高度共轭π体系。他离子形成金属酞菁配合物,其分如图。这类配合物具有半导体、化学反应活性、荧光、光记忆等酞菁是近年来广泛研究的经典金配合物中的一类,其基本结构和卟啉相似,具有良好的热稳定性,体的重要能与金属子结构式光电导、光特性。金属属类大环天然金属因此金属酞菁在光电转换、催化活性小分子、信息存储、生物模拟及工业染料等方面有重要的应用。

金属酞菁的分子结构

一般有以下两种方法:(1) 通过金属模版反应来合成,即通过简单配体单元与中心金属离子的配位作用,然后再结合成金属大环配合物,金属离子起模版作用;(2)与配合物的经典合成方法相似,即先采用有机合成的方法制的并分离

出自由的有机大配体,然后再与金属离子配位,合成得到金属大环配合物。其中,模版反应是主要的合成方法。其反应途径如下:其中金属酞菁配合物的合成主要有以下几种途径;①中心金属的置换:②以邻苯二甲腈为原料:③以邻苯二甲酸酐、尿素为原料:④以2—氰基苯甲酸胺为原料。

本实验采用以邻苯二甲酸酐、尿素、无水氯化钴为原料,以钼酸铵为催化剂,采用模版法合成金属菁钴。用浓硫酸再沉淀法提纯产物,纯产物通过紫外—可见分光光谱进行表征。

三、实验部分

1.仪器与试剂

1)仪器

台秤研钵三颈瓶(250ml)空气冷凝管圆底烧瓶铁架台玻璃棒

可控温电热套电炉抽滤装置温度计烧杯量筒真空干燥箱

2)试剂

邻苯二甲酸酐尿素钼酸铵无水CoCl2 煤油无水乙醇丙酮 2%盐酸

浓硫酸蒸馏水

实验步骤

1)制备

称取邻苯二甲酸酐5.0g,尿素9.0g和钼酸铵0.4g与研钵中研细后加入0.8g 无水氯化钴,混匀后马上移入250ml三颈瓶中,加入70ml煤油,加热(180℃)回流2h左右,在溶液由蓝色变为紫红色后停止加热,冷却至70℃左右,加入

10~15ml无水乙醇稀释后趁热抽滤。

2)提纯

将滤饼加入2%盐酸煮沸后趁热抽滤,再将滤饼加入去离子水煮沸后抽滤,滤饼再加入碱液煮沸抽滤,重复上述步骤2~3次,直至滤液基本无色且pH呈中性。

3)表征

将产品放在表面皿上在80℃放入真空干燥箱中干燥8h,干燥好后称重,计算产率,之后取少量样品溶于二甲基亚砜中配成1.0×10-6mol/L左右的溶液,测定紫外可见光谱,寻找金属酞菁的特征吸收峰位置。

四、结果与讨论

1)原料:邻苯二甲酸5.0g,尿素9.0g,钼酸铵0.4g,无水氯化钴0.8g 产品:酞菁钴1.5322g

产率:43.52%

2)现象分析

A. 在回流过程中空气冷凝管和三颈瓶的上部出现了白色的结晶,但是溶液却一直沸腾,触摸三颈瓶上部发现温度很低。白色结晶应该为尿素晶体,溶液沸腾但是三颈瓶上部还是出现结晶主要原因是加热温度不够高,蒸汽量少,没有进入空气冷凝管前一部蒸汽就因为和三颈瓶壁接触冷凝出现尿素晶体。

B. 前两次抽滤过程中发现滤液颜色较深,在用70%工业乙醇作为洗涤剂抽滤后再用酸、碱、去离子水抽滤后滤液接近无色,达到要求。滤液为黄色的原因主要是因为回流时用的溶剂为煤油,煤油不溶于酸碱还有水,但溶于乙醇,用乙醇洗涤后可以去除煤油。

C. 产品烘干后发现有大部分人的产品为紫红色,有的只有少量的蓝色晶体,原因可能是有很多人没有用乙醇洗脱煤油。

3)附图

200300400500600700800

24

钛菁合金紫外吸收

吸收强度A 波长/nm

图中有两个特征峰,分别为326nm 和655nm 处,其中655nm 波长吸收峰和资料中所给的范围700~800nm 有一定的出入,这是因为Q 带容易受中心离子和酞菁环的变化如取代、加氢等,还有溶剂的影响。另外,图中的吸收峰强度不是很显著,原因是溶液中溶解的酞菁钴浓度偏高,致使透过光的强度显著减小。

050010001500200025003000350040004500

25

30

35

40

45

50

55

60

65

70

钛菁合金红外谱图

波长/nm

金属酞菁是以自由酞菁作为配体的金属配合物,在配位前后自由酞菁红外光谱发生变化,一方面N-H 红外吸收带消失,同时出现新的N-M 红外振动光谱,另一方面由于对称性由原来的D 2h 提高为D 4h ,使得原来非红外活性变为红外活

性,从而产生新的吸收峰。金属酞菁特征吸收带主要分布在4个区域: ①在3030cm -1 处的一组峰是芳环上的C-H,芳环上C-H 的强度一般较脂肪族的C-H 为弱,但谱带较尖锐。

②在1580cm -1和1600cm -1都各有一吸收峰,这是由芳香环上C=C 以及C=N 的伸缩振动引起的。十六氢酞菁虽无芳香环,但其C=C 和酞菁的内环共轭,使得C=C 伸缩振动也在1600cm -1 左右。因为C=C 键和C=N 键互相共轭,而且两键的频率非常接近,因而难以区分上述两个吸收峰哪个属于C=C ,哪个属于C=N 伸缩振动。

③在低频区可看到在与金属酞菁相应的位置上,自由酞菁的谱图上是两个对应的谱带,而且相比之下金属酞菁谱带更偏于较高频率,不同中心金属使金属

酞菁吸收峰向高频发生移动的程度也不同。

④在远红外区, 骨架振动吸收带主要出现在150~200cm-1区间,对于Fe、Co、Ni 和Cu 金属酞菁,这组谱带为金属-配体-配体振动,自由酞菁不出现该谱带。金属酞菁中的金属-配体-配体的振动频率按下列顺序向高频方向发生移动:Zn>Pd>Pt>Cu>Fe>Co>Ni。

⑤酞菁类化合物的提纯比较困难。经提纯后反应产物中仍会有部分的杂质,包括原料以及其他一些高分子聚合物。因此,在其红外谱图中仍有许多难以分析清楚的吸收峰。

五、思考题

1.在合成产物过程中应注意那些问题?

答:①应注意在加入无水氯化钴后应该迅速的混匀并加入三颈瓶中,马上加入煤油,防止吸收空气中的水分,三颈瓶应该提前干燥好。②回流一定要等到溶液由蓝色变为紫红色后再停止。③在抽滤时应等到溶液冷却到合适的温度后抽滤,防止滤纸破裂。④重复抽滤一定要等到滤液颜色接近无色时再停止,否则杂质太多,影响后面的表征。

2.在用乙醇和丙酮处理粗产品时主要能除去那些杂质?产品的提纯中你认为是否有更优的方法?

答:用乙醇和丙酮主要是出去粗产品中的煤油。因为丙酮有毒,但是煤油即可以溶于乙醇和丙酮,所以更好的方法就是只用乙醇处理,可以达到同样的效果又避免的对人的危害。

3.如何处理实验过程中产生的废液?不经处理的废液直接倒入水槽后将会造成那些危害?

答:实验过程中产生的废液应该按废液的性质分类倒入废液缸中回收利用或者进行无害处理。不经处理的废液如果直接倒入水槽,由于含有酸碱,会腐蚀下水管路系统,还含有煤油成分,在下水道聚集积累有火灾隐患,还有重金属离子会污染土壤和地下水,总之会对环境和安全造成很大威胁。

4.从酞菁钴的红外和紫外可见光谱可以得出那些信息?酞菁钴的热稳定性如何?它在受热时是否发生晶型转变?

答:从酞菁钴的紫外可见光谱可以得出的结论有B带一般受影响较小,但是Q带容易受中心离子和酞菁环的变化如取代、加氢等,还有溶剂的影响。金属酞菁的热稳定性良好,一般都在几百摄氏度以上。有一部分金属酞菁会在受热时发生晶型转变,比较容易发生晶型转变的有锌酞菁、铜酞菁、自由酞菁等。

六、注意事项

1.无水氯化钴易吸水,所以混匀后要迅速移入三颈烧瓶

2.粗产品制备加热器件应控制升温速率,避免尿素或领苯二甲酸酐过热而升华。

3.在粗产品纯化的过程中应注意操作,避免浓硫酸溅出。

七、参考文献

[1]董稼的,廖天录,吕麟华金属酞菁钴配合物的合成及光谱表征研究商品与质量·科学理论2011;

[2]朱建国,朱晓红,焦锐,王英金属酞菁钴的合成及其表征西南民族大学学报(自然科学版)2006,32(2);

[3]白青龙,张春花,程传辉,夏道成,范昭奇,杜国同α(β)-四-苯氧基金属酞菁的合成、表征和光谱性质化工新型材料2010,38(4)。

金属酞菁

金属酞菁 金属酞菁配合物是一类独特的二维p-π共轭大环体系物质,具有很好的热稳定性和化学稳定性。过去几十年的研究表明:酞菁由于其比较特殊的结构特点,显示出良好的二阶和三阶非线性光学性质[3,4],以酞菁为母体的非线性光学材料的开发和应用范围越来越广泛。目前,酞菁环内已经和70 多种金属或非金属结合而得到不同中心原子的酞菁配合物[5],而且,在酞菁的苯环上也能方便地引入多种取代基,从而通过对内部中心原子和外围取代基的化学修饰,可以得到不同光学性能的新材料。 紫外-可见光谱由于金属酞菁配合物在多种有机溶剂中的溶解性很差,研究选择浓硫酸来溶解它们。通过表3 可以知道,所有合成的金属酞菁配合物300~900 nm 的紫外-可见区内都有两个较强的吸收溶剂不仅会影响酞菁的π-π* 跃迁能级,还会影响到金属离子内层电子的跃迁能级。溶剂不仅会影响酞菁的π-π* 跃迁能级,还会影响到金属离子内层电子的跃迁能级。研究表明:过渡金属离子影响酞菁的π-共轭时涉及一些电荷转移机理。其中包括金属离子-配体(d-π) 电荷转移机理、配体-金属离子(π-d)电荷转移机理和金属-金属(d-d)电荷转移机理。这些电荷转移机理将在HOMO-LUMO 之间产生新的能级差,从而改变酞菁的光电性能[15,16]。铁,钴,镍,铜作为过渡金属元素,也存在上述电荷转移机理,由于本研究用溶液法测量,所以可以不考虑d-d 电荷转移机理。但是随着原子序数的增加,金属离子的d 电子也相应增加。在电荷转移过程中,原子序数大的金属离子与酞菁环之间的d-π电子共轭水平也要比原子序数低的金属离子的共轭水平高一些。所以随着金属的原子序数的增加,酞菁环的紫外吸收也会发生红移。金属离子与酞菁环平面的扭曲程度、即非共面程度越高,越有利于酞菁环上电子云的流动,从而更容易使电子发生跃迁。 d 轨道的电子与酞菁环上的大π共轭电子之间的再共轭。所以随着原子序数的增加,过渡金属离子的d 电子也会增加,从而加强了整个金属酞菁体系的电子共轭程度、提高了其非d 轨道的电子与酞菁环上的大π共轭电子之间的再共轭。所以随着原子序数的增加,过渡金属离子的d 电子也会增加,从而加强了整个金属酞菁体系的电子共轭程度、提高了其非线性光学系数。而主族元素铝为中心的酞菁配合物的非线性光学系数的大小则处于这四个过渡金属为中心的酞菁配合物的中间,即大于酞菁亚铁(II)和酞菁钴(II)的三阶非线性系数而小于酞菁镍(II)和酞菁铜(II) 的系数。这是因为分子构型呈金字塔锥型的酞菁铝的酞菁环平面受Al3+离子的影响发生扭曲、非共面程度比较高,这种构型有利于酞菁环上电子云的流动,所以酞菁铝同过渡金属铁、钴等d 电子较少的金属离子为中心的金属酞菁配合物相比时,扭曲的平面对三阶非线性光学性能的促进作用大于 d 电子与酞菁环共轭造成的对非线性光学系数的提高效果;当与d 电子数目较多的镍、铜为中心离子的金属酞菁配合物比较时,扭曲平面的作用就小于再共轭的效果。

金属酞菁的合成及表征

金属酞菁的合成及表征 摘要:本实验是以苯酐-尿素法合成酞菁钴,以邻苯二甲酸酐、无水CoCl2、尿素为原料,以(NH4)2MoO4为催化剂,采用金属模版法合成酞菁钴,用浓硫酸再沉淀法提纯产物,纯产物通过红外光谱、紫外可见光谱进行表征。 关键词:苯酐-尿素;酞菁钴;合成;光谱测定 1 引言 酞菁类化合物是四氮大环配体的重要种类,酞菁是一个大环化合物,环内有一个空穴,可以容纳铁、钴、铜等金属元素,并结合生成金属配合物。金属原子取代了位于该平面分子中心的两个氢原子。由于与金属元素生成配位化合物,所以在金属酞菁分子中只有16个π电子,又由于分子的共轭作用,与金属原子相连的共价键和配位键在本质上是等同的。故酞菁类化合物具有高度共轭π体系。它能与金属离子形成金属酞菁配合物,其分子结构式如图。这类配合物具有半导体、光电导、光化学反应活性、荧光、光记忆等特性。金属酞菁是近年来广泛研究的经典金属类大环配合物中的一类,其基本结构和天然金属卟啉相似,具有良好的热稳定性,因此金属酞菁在光电转换、催化活性小分子、信息存储、生物模拟及工业染料等方面有重要的应用。金属酞菁的合成方法主要是模版法,即通过简单配体单元与中心金属离子的配位作用,然后再结合成金属大环配合物,金属离子起模版作用。 金属酞菁的分子结构

合成反应途径如下(以邻苯二甲酸酐为原料): 2 实验内容与步骤 2.1仪器与试剂 仪器:台秤、研钵、三颈瓶(250ml)、空气冷凝管、圆底烧瓶(100mL)、铁架台、玻璃棒、抽滤瓶、布氏漏斗、可控温电热套(250mL)、电炉、温度计、抽滤瓶 DZF-III型真空干燥箱 SHZ-III型循环水真空泵、紫外─可见分光光度计 试剂:邻苯二甲酸酐、尿素、钼酸铵、无水CoCl 煤油、无水乙醇、2%盐 2、 酸、氢氧化钠溶液、蒸馏水 2.2 酞菁钴粗产品的制备 称取邻苯二甲酸酐3.69g,尿素5.95g和钼酸铵0.25g于研钵中研细后加入0.85g无水氯化钴,混匀后马上移入250ml三颈瓶中,加入60ml煤油,加热(200℃)回流2h左右,在溶液由蓝色变为紫红色后停止加热,冷却至70℃左右,加入10到15ml无水乙醇稀释后趁热抽滤。并用乙醇洗涤2次,丙酮洗涤1次,得粗产品。 2.3 粗产品提纯 将滤饼加入2%盐酸加热煮沸后趁热抽滤,再将滤饼加入去离子水,煮沸后趁热抽滤,滤饼再加入适量氢氧化钠碱液煮沸抽滤,重复上述步骤2次,直至滤液接近无色。 将产品放在表面皿上在70℃真空干燥8h。 2.4 样品的表征与分析 干燥好后取少量样品溶于二甲基亚砜中,做紫外可见光谱分析。 3 结果和讨论 3.1 数据处理

【文献综述】四氨基铁酞菁的合成与表征

文献综述 高分子材料与工程 四氨基铁酞菁的合成与表征 1.引言 酞菁(Pc)类化合物的独特的物化性质,从1907年酞菁被发现至今越来越受到世界科技界的关注。作为一种高级功能材料,其在高科技领域中的应用与日俱增。广泛用于高效催化、生物模拟、超导材料、非线性材料、信息储存、智能识别等尖端技术中。然而,酞菁的难溶、难提纯和特殊构型分子的难合成,在一定程度上限制了其应用。 酞菁化合物是一类化学稳定性很高的化合物,其具有良好的耐晒、耐热、耐碱、耐酸性及色泽鲜明等性能。但由无取代基的酞菁类化合物存在溶解性能差缺点,在一定程度上影响了它们的应用性能,因此人们在研究一种可以应用无取代基酞菁类化合物的同时,也在努力寻找溶解性好而又能兼具无取代基酞菁化合物优点的新型酞菁类化合物。 在早期的研究中,酞菁和金属酞菁主要是被用作颜料和染料,这主要是酞菁化合物是一类化学稳定性很高的化合物,其具有良好的耐晒、耐热、耐碱、耐酸性及色泽鲜明等性能,制成的颜料和染料(蓝色、绿色)不仅色光十分鲜艳,着色力很高,而且十分稳定且无毒,。但由无取代基的酞菁类化合物存在溶解性能差缺点,在一定程度上影响了它们的应用性能,因此人们在研究一种可以应用无取代基酞菁类化合物的同时,也在努力寻找溶解性好而又能兼具无取代基酞菁化合物优点的新型酞菁类化合物。为此,酞菁颜料、染料被广泛的应用于印刷油墨、涂料、塑料、橡胶、皮革、纺织品及食品中。 2.酞菁的合成工艺及提纯 无取代酞菁及其配合物由于二电子之间的作用力很强,分子之间容易发生强烈的聚集作用,因此,在一般的溶剂中难以溶解,如难溶于水,在大多数有机溶剂中的溶解度也很小。这就限制了对它的研究和应用。为了提高其溶解性能,人们开发出各种方法,将多种多样的取代基团引入酞菁分子中。人们发现,四取代的金属酞菁配合物的溶解性比相应对称性的八取代的金属酞菁溶解性更好;a位取代基比p位的有更大的

对苯二酚的合成方法研究

【摘要】本文主要介绍了利用一种用1,4-二甲氧基苯作为反应的起始原料,用氢气作为还原剂,在金属钯复合催化剂的作用下反应直接生成产物对苯二酚。此工艺简单方便易行,副产物少,反应条件相对比较温和。本文对反应的催化剂的种类进行了帅选并且对催化剂的用量、反应温度、反应压力和反应时间进行了优化,最终优化的结果可以使得对苯二酚的产率达到90%。 【关键词】 1,4-二甲氧基苯对苯二酚氢气 对苯二酚是一个重要的有机化工原料,用途非常广泛。酚主要用于制取黑白显影剂、蒽醌染料和偶氮染料、合成气脱硫工艺的催化剂、橡胶和塑料的防老剂单体阻聚剂、食品及涂料清漆、橡胶和汽油的稳定剂和抗氧化剂、石油抗凝剂、洗涤剂的缓蚀剂、稳定剂和抗氧剂等,还用于化妆品的染发剂。 目前世界上生产对苯二酚的方法主要分为以下四种(1)苯胺氧化法;(2)对二异丙苯氧化法;(3)苯酚丙酮法;(4)苯酚羟基化法。 路线1:苯胺氧化法。 目前我国大部分生产厂家仍沿用苯胺氧化法,这是对苯二酚最早的生产方法,至今已有70多年的历史。该法反应过程为:在硫酸中(将138g的1,4-二甲氧基苯和5%不同的催化剂加入烧瓶中,往体系中加入氢气,在压力10mpa和120℃的温度下反应,取样分析对苯二酚的产率。结果如表3所示。 从上表可以看出一共四种催化剂,pd/sio2-al2o3和pd/al2o3的催化效果基本上没有什么差别,分别为81%和80%,但是在产率上都低于催化剂pd/caco3和pd/deloxan apii。pd/caco3 和pd/deloxan apii的催化效果都非常好。下面对催化剂的用量进行了一些实验,结果如表4所示。 从实验结果看出,随着催化剂用量的增加,产率得到了提高,但当用量达到5%的时候,再增加用量,产率基本上没有变化,使用6%pd/caco3为催化剂的产品最终产率为96%,使用6%pd/deloxan apii为催化剂的最终产率为93%。 2.4 反应时间对反应的影响 将138g的1,4-二甲氧基苯和5% pd/caco3催化剂加入烧瓶中,往体系中加入氢气,在压力10mpa和120℃的温度下反应,取样分析对苯二酚的产率,研究反应时间对产率的影响。结果如表5所示。 从上表可以看出反应时间在2小时以下,随着时间的推移对苯二酚的产率渐渐的提高,当反应时间大于2小时的时候,对苯二酚的产率基本没有什么变化,所以反应时间规定在2小时。 3 结语 本文比较了不同种类的催化剂对此反应的影响,确定以pd/caco3或pd/deloxan apii 为反应的催化剂,并且经过对pd/caco3和pd/deloxan apii的用量进行对比实验,确定pd/caco3 和pd/deloxan apii的用量比为5%,并对温度、压力和反应时间进行了对比。最终确定最佳工艺条件为:1. pd/caco3的用量比为5%;2.反应的温度为120℃;3.反应的压力为10mpa;4.反应的时间2小时。

金属酞菁

实验六金属酞菁配合物的合成及光谱性质研究 一实验目的 (1)通过合成酞菁金属配合物,掌握这类大环配合物的一般合成方法,了解金属模板反应在无机合成中应用。 (2)进一步熟练掌握配合物合成中的常规操作方法和技能。 二实验原理 金属酞菁的合成 自由酞菁(H2Pc)的分子结构见图1(a)。它是四氮大环配体的重要种类,具有高度共轭π体系。它能与金属离子形成金属酞菁配合物(MPc),其分子结构式如图1(b)。这类配合物具有半导体、光电导、光化学反应活性、荧光、光存储等特性。金属酞菁是近年来广泛研究的经典金属大环配合物中的一类,其基本结构和天然金属卟啉相似,且具有良好的热稳定性和化学稳定性,因此金属酞菁在光电转换、催化活化小分子、信息储存、气敏传感器、生物模拟及工业染料等方面有重要的应用。 N N H N N N H N N N N N N N N N N N M M = Cu,Co,Ni,Zn,Pb,Pd a b 图1 酞菁配合物的结构示意图 金属酞菁的合成一般有以下两种方法:①通过金属模板反应来合成,即通过简单配体单元与中心金属离子的配位作用,然后再结合形成金属大环配合物。这里的金属离子起着一种模板作用;②与配合物的经典合成方法相似,即先采用有机合成的方法制得并分离出自由的有机大环配体,然后再与金属离子配位,合成得到金属大环配合物。其中模板反应是主要的合成方法。金属酞菁配合物的合成的方法主要有以下几种途径(以2价金属M为例)。

(1) 中心金属的置换 MX + LiPc MPc + 2LiX (2) 以邻苯二甲腈为原料 MX n +CN CN 4 MPc ℃300溶 剂 (3) 以邻苯二甲酸酐、尿素为原料Δ MX n +Co Co 4 MPc ℃ 300O + CO(NH 2)2 200 ~424 (4) 以2-氰基苯甲酸胺为原料 M + CN CONH 2 4 MPc + H 2O ℃250Δ 本实验按反应(2)制备金属酞菁,原料为金属盐、邻苯二甲腈,催化剂为1,8-二氮杂双环[5,4,0]十一-7-烯(DBU)。利用溶液法进行制备。 酞菁大环中的空穴可容纳铁、铜、铝、镍、钴等许多金属元素而形成金属酞菁配合物,在周期表中从IA 到VB 的元素都可与酞菁生成金属酞菁配合物,至今已知有70多种金属元素可以与萘酞菁形成配合物。萘酞菁周边共有24个氢原子,可被多种原子和基团取代,形成具有特定功能的酞菁衍生物。 对于半径较小的二价离子的金属萘酞菁和无金属萘酞菁为平面大环结构,分子对称性为D 4h (H 2Pc 为D 2h )。而对于半径较大的二价金属离子,由于酞菁环中心空间的限制,金属将位于酞菁环平面之上,则形成非平面四角锥金属酞菁配合物, 如Pb(Ⅱ)Pc [20]。对于三价或三价以上的中心金属(铝、钒、硅、锗等)可通过轴向配位形成六配位的四角双锥和五配位的四方锥酞菁配合物(图2)。 N N N N M N N N N M N N N N M L L L a b c 图2 不同配位的萘酞菁配合物的几何图示 a. 四配位平面正方形结构 b.五配位四方锥结构 c.六配位四角双锥结构 金属酞菁配合物的热稳定性与金属离子的电荷及半径比有关。由电荷半径比较大的金属

酞菁的制备和纯化

钼酸铵 4邻苯二甲酸酐+4尿素+M2+MPc+H2O+CO 2 2.1.2 金属酞菁的制备和纯化 金属酞菁(MPc)按如下模板反应制备:(M=Mn,Cu,Ni,Co) () 对于不同的中心离子M2+,具体制备方法也不同。 (1)酞菁锰(MnPc)的制备和纯化 苯酐5.92g 尿素9.01g 锰1.69g 钼酸铵2.47*10-3 g 加入量:苯酐5.92 (0.04 mol),尿素9.01(0.15mol),钼酸铵2.47*10-3(2*10-6mol),锰1.69(0.01mol)。 一定量的苯酐和尿素置于250ml三颈烧瓶中,加入千分之二的钼酸铵作催化剂,再加入150ml二甲苯作溶剂。加热至120℃使固体完全溶解,趁热加入硫酸锰。升温至140℃下回流,20min后溶液变混浊,升温至150℃回流1h,溶液变清,底部有浅黄色沉淀。倒出二甲苯,160o C下恒温3h蒸出溶剂。粗产品用6M HCl 浸泡12h,在烧杯中静置后,倒掉上层清液体,反复用蒸馏水洗涤,静置,直至倒出液体为无色且中性。再用丙酮浸泡,静置,洗至倒出的上层清液为无色。再用1mol/L的NaOH溶液浸泡(时间?),静置,倒掉上层清夜,再用蒸馏水洗至倒出液为无色且为中性。在100℃下干燥12h,即得MnPc。 (2)酞菁铜(CuPc)的制备和纯化 在250ml三颈烧瓶中将苯酐、尿素和氯化铜按4:4:1的摩尔比混合,再加入千分之二的钼酸铵作催化剂,加入150ml二甲苯作溶剂。加热,在160℃下回流,20min后溶液变混浊,在此温度下继续回流0.5h,溶液变清,并呈浅蓝色,烧瓶底部有蓝色沉淀。在200℃下继续回流4h,蒸出溶剂。粗产品置于6N HCl 中,浸泡12h,过滤,用蒸馏水将蓝色沉淀洗至滤出液为无色,再用丙酮洗至滤出液为无色。在120℃下干燥12h,即得CuPc。 (3)酞菁镍(NiPc)的制备和纯化 苯酐、尿素和硫酸镍配料的摩尔比为4:4:1,先将苯酐、尿素置于250ml

酞菁铜有机半导体调研报告

实习(调研)报告 一、课题的来源及意义 1907 年Braun和Tchemiac两人在一次实验中偶然得到了一种蓝色物质,当时他们两人正在研究邻氰基苯甲酰胺的化学性质,当他们将这种无色的物质加热后得到了微量的蓝色物质,这就是现在被人们称为酞菁的化合物。1923 年Diesbach等人发现可以用邻二苄溴与氰化亚铜反应制得邻二苄腈,于是他们想用邻二溴苯与氯化亚铜反应来制备邻苯二腈。可实验结果出乎他们的意料,他们并未得到所期望的邻苯二腈,而是得到一种深蓝色的物质,并且产率达到 23%。这种蓝色物质就是现在被称为酞菁铜的化合物。至此,酞菁和金属酞菁化合物被发现。 二、国内外发展状况及酞菁类物质性质 1929年,在英国的ICI公司的资助下,伦敦大学的Linstead教授和他的合作者开始进行这类新物质的结构测定工作。1933 年他们用综合分析法测定了该类化合物的结构后,便用phthalocyanine一词来描述这类新化合物。1935 年Linstead教授和他的合作者采用 500℃以上的高温和低气压,用CO2作载气制得了酞菁化合物的单晶,Robertson教授用X射线衍射分析法对酞菁及金属酞菁化合物的单晶进行结构分析,至此,酞菁自正式被发现到首个单晶生成共经历了12 年。根据他的报道,酞菁及金属酞菁分子组成的晶体属单斜晶系,空间群为 P2/a。每个晶胞中有两个分子,每个分子都呈现出高度平面的结构。所得分子结构的结果与Linstead教授的结果完全一致,从而酞菁的化学结构得到了进一步的证实。酞菁分子的这种结构使得它具有非常稳定的特性,耐酸、耐碱、耐水浸、耐热、耐光以及耐各种有机溶剂。一般酞菁化合物的热分解温度在 500℃以上,在有机溶剂中的溶解度极小,并且几乎不溶于水。相对而言,铜酞菁在冷的浓硫酸中较稳定,它可以溶解在其中,并且当硫酸浓度降低时又可从中析出来。铜酞菁的这种特性常常被用来提高它的纯度。由于上述代表性的工作,酞菁及金属酞菁化合物的化学结构才为世人所知,从此,酞菁及金属酞菁化合物的研究及应用也进入了一个崭新的阶段。 酞菁铜(CuPc)最早由瑞士化学家Diesbach等[1]制得,其优越的耐光耐辐射、光/暗电导比、热稳定和化学稳定等特性,预期在太阳能电池、电致发光器件、光记录存储、化工染料、静电复印感光鼓、气敏传感器件等方面有广泛的应用潜力。近年来,基于酞菁环面的共轭π-π*电子跃迁而产生的可见光及近红外区域的强

【开题报告】水溶性铁酞菁的合成

开题报告 应用化学 水溶性铁酞菁的合成 一、选题的背景和意义 酞菁是由英国的A.Braun和T.C.Tcherniac在1907年研究邻苯二甲酰亚胺和邻氰基苯甲酰胺的性质时,偶然发现的。1927年,德国弗来堡大学的H.de Diesbach和E.von der Weid试图通过邻二溴苯和氰化亚铜反应制备邻苯二腈,但是他们却意外得到了第一个酞菁金属配合物——酞菁铜。1928年苏格兰的Scottish Dyes Co.Ltd.染料工厂在玻璃为内衬的铁制反应器中由邻苯二甲酸酐和氨制备邻苯二甲酰亚胺时,发现了以杂质形式出现在反应体系中的蓝色铁酞菁。 在早期的研究中,酞著和金属酞著主要是被用作颜料和染料,这主要是因为酞著(特别是铜酞著)制成的颜料和染料(蓝色、绿色)不仅色光十分鲜艳,着色力很高,而且十分稳定和无毒,是任何其它己知化合物不能比拟的。为此,酞著颜料(染料)被广泛的应用于印刷油墨、涂料、塑料、橡胶、皮革、纺织品及食品中。近年来,随着纺织品等工业对染料新品种的需求趋向于饱和,染料工业的发展也日益成熟,因此在传统染料等方面的研究也趋向于缓慢,然而在许多特殊的领域,尤其是一些高科技领域,对于所谓的功能性染料的需求一直在增加。 酞菁化合物作为一种优良的功能性染料,具有良好的化学性质、催化活性、热稳定性和光稳定性。酞菁类化合物独特的物理化学性质使它们在催化化学、光化学、电化学、非线性光学、晶体化学、超导物理学、信息材料学和医学等学科的前沿领域有着广泛的应用。 二、研究目标与主要内容(含论文提纲) 目前,对金属酞菁配合物的合成方法研究比较多,通常有两种途径合成:一种是以邻苯二氰和相应的金属盐为起始物的邻苯二氰法;另一种是以苯酐、尿素和金属盐为起始物,在钼酸铵催化下完成的苯酐/ 尿素法。工业上制备酞菁铁主要是用苯酐法,苯酐法又分为固相法和液相法两种。较液相法生产条件苛刻且存在有机溶剂污染和回收问题,固相法原料价廉易得,工艺简单,也是实验室制备酞菁铁经常采用的方法。

平面双核酞菁化合物的发展及应用前景

第33卷第3期东北师大学报自然科学版Vol133No13 2001年9月JOURNAL OF NORTHEAST NORMAL UN IV ERSIT Y September2001 [文章编号]100021832(2001)0320064209 平面双核酞菁化合物的发展及应用前景 石 鑫,郭 卓,王春雷,罗 艳,杜锡光,赵宝中,陈 彬 (东北师范大学化学学院,吉林长春130024) [摘 要] 主要阐述了平面共享一个苯环的双核酞菁的合成、性质及应用.简单 介绍了双核酞菁的发展和两种基本合成方法,并详细介绍了该类化合物的催化、氧化还原、荧光、LB膜、液晶性质,同时对其应用前景进行了展望. [关键词] 双核酞菁;合成;性质;应用 [中图分类号] O62514 [文献标识码] A 0 引言 从1907年Brown和Tcherniae意外地制备出第一个酞菁化合物至今已有近100年,在此期间,人们不断地合成出各种各样的酞菁化合物,成功地在酞菁母体中嵌入70余种元素作为中心原子,形成了数千种酞菁化合物.这些化合物价廉易得,热稳定性和化学稳定性良好,被广泛地应用于各种工业领域.20世纪80年代以来,为了获得性质更为独特的酞菁化合物,在逆向合成思想指导下,人们开始试图将两个酞菁单体以不同的方式连接起来,从而构成了一类新的酞菁化合物(bisphthalocyanine),统称为双核酞菁,其中以平面共享一个苯环的双核酞菁性质最为独特,这主要是由扩大的π共扼体系造成的.这类双核酞菁化合物由于在某些性质上比单核酞菁化合物更好,所以近年来它一直受到人们的广泛关注. 1 双核酞菁的主要类型 图1a为以一个氧原子[1]或二原子、四原子[2]、五原子[3~5]烷氧桥共价键联系和以硅氧桥[6]共价键联系以及以芳环[7]联系的双核酞菁化合物;图1b为两个酞菁单体以氮原子与金属配位形成的三明治型双核酞菁化合物[8~10]. [收稿日期] 2001204216 [基金项目] 国家教育部资助项目1 [作者简介] 石鑫(1975-),女,硕士研究生;联系人:陈彬(1963-),男,博士,教授,主要从事分子反应动力学研究1

四氨基锌酞菁的固相合成【开题报告】

毕业论文开题报告 高分子材料与工程 四氨基锌酞菁的固相合成 一、选题的背景和意义 酞菁类化合物是具有四氮杂四苯并卟啉结构的化合物。自1907年最初发现以来,其发展相当迅速, 在短短几十年时间里已有5000多种酞菁类化合物问世,用途也由最初的有机颜料和染料扩展到其他许多重要领域。酞菁颜料以其优良的耐热、耐晒、耐酸碱性能及鲜艳的蓝绿色泽在工业上广泛用于汽车、服装、食品、印刷、橡胶、纺织、皮革等的着色工艺;尤其80年代以来,酞菁类化合物在光电复印等现代高技术领域得到新的应用,掀起了酞菁类化合物的研究热潮。 近些年来,随着纺织等行业对染料新品种的需求趋于饱和、染料工业的发展日益趋于成熟,对应于传统行业的染料品种的开发缓慢。功能材料的研究拓展了研究范围。酞菁化合物以其独特的物理性质、化学特性最早受到研究者的关注。目前酞菁已涉及太阳能电池、电子照相、光盘存储和非线性光学等领域的研究,同时,一些金属酞菁化合物由于具有较强的光催化、光敏化和荧光特性,在新型功能材料中起着举足轻重的地位。 影响金属酞菁合成产率的因素有反应温度、反应物的比例、催化剂和反应时间等,本论文主要采用固相法,根据不同反应物的比例和温度来研究合成四氨基锌酞菁的最佳条件。本实验主要研究:在不同的实验条件下,先合成硝基为取代基的四硝基锌酞菁,再将硝基还原为氨基为取代基的四氨基锌酞菁,通过比较实验数据,(产率、红外和紫外光谱测定,),研究金属酞菁的结构,并测定其各种物理化学性能,并进一步探索出最优条件。合成的四氨基锌酞菁与四硝基锌酞菁相比,具有更加优良的物理化学性能,对扩大酞菁化合物在各领域中的应用有非常重要的意义。 二、研究目标与主要内容(含论文提纲) 在相同的实验条件下,通过多组对比实验,用固相法探索出合成硝基为取代基的四硝基锌酞菁的最优条件,然后,研究出将硝基取代基还原为氨基为取代基的四氨基锌酞菁所需的最佳反应条件。最后,在最佳条件下合成产物,并对每步生成的物质进行红外光谱和紫外光谱检测,确定其成分。

比拉斯汀的合成工艺研究

比拉斯汀的合成工艺研究 发表时间:2017-10-30T17:35:09.573Z 来源:《医药前沿》2017年10月第29期作者:徐连德1 徐琪琪2 徐英明2 [导读] 比拉斯汀(Bilastine),中文化学名为2-[4-(2-(4-(1-(2-乙氧基乙基)苯并咪唑-2-基)哌啶-1-基)乙基)苯基]-2-甲基丙酸。(1沂水县第一中学山东临沂 276405) (2山东罗欣药业集团股份有限公司山东临沂 276017) 【摘要】α,α-二甲基-4-(2-溴乙酰基)苯乙酸甲酯[2]经过还原反应制得α,α-二甲基-4-(2-溴乙基)苯乙酸甲酯[3],3与1-(2-乙氧基-乙基)-2-哌啶-4-基-1H-苯并咪唑[4]发生烷基化反应,再经水解得到比拉斯汀[1],总收率约76%。 【关键词】比拉斯汀;组胺H1受体拮抗剂;合成 【中图分类号】R976 【文献标识码】A 【文章编号】2095-1752(2017)29-0353-01 比拉斯汀(Bilastine),中文化学名为2-[4-(2-(4-(1-(2-乙氧基乙基)苯并咪唑-2-基)哌啶-1-基)乙基)苯基]-2-甲基丙酸,是西班牙FAES制药公司开发的第2代组胺H1受体拮抗剂,2012年欧盟批准其用于治疗变应性鼻炎及慢性特发性荨麻疹[1]。本品安全性良好,无常用抗组胺药物存在的镇静作用及心脏毒性,口服给药吸收迅速,具有良好的耐受性、安全性和较高的生物利用度[2]。 已有文献报道了1的合成路线[3-5]。本文选择以下路线α,α-二甲基-4-(2-溴乙酰基)苯乙酸甲酯[2]经过还原反应制得α,α-二甲基-4-(2-溴乙基)苯乙酸甲酯[3],3与1-(2-乙氧基-乙基)-2-哌啶-4-基-1H-苯并咪唑[4]发生烷基化反应,再经水解得到比拉斯汀[1],并进行了工艺优化。 文献[5]报道了由2制备3的过程,用三乙基硅烷-三氟乙酸进行还原,反应时间长达72h,收率91%。本研究通过调整三乙基硅烷-三氟乙酸的用量,控制回流反应温度,缩短了反应时间,收率90%。文献[5]由3制备1的过程中,3依次与2-(4-哌啶基)-1H-苯并咪唑和2-氯乙基乙醚发生亲核取代反应后,水解得比拉斯汀,反应步骤长,且操作繁琐,且3在与2-(4-哌啶基)-1H-苯并咪唑发生亲核取代反应时,咪唑环上的氮-氢不可避免的会与哌啶基上的氮-氢进行竞争,生成副产物,影响收率和纯度。本研究在文献基础上进行了改进,将3直接与4进行烷基化反应,再进行水解,一锅法制备1,方法工艺简单,操作简便,收率及产品纯度均有较大幅度提高,总收率为76%,适合工业化生产。 图1 1的合成路线 Fig.1 Synthetic Route of 1 1.实验部分 1.1 α,α-二甲基-4-(2-溴乙基)苯乙酸甲酯[3]的制备 冰浴冷却下分别向反应瓶内加入20mL二氯甲烷、α,α-二甲基-4-(2-溴乙酰基)苯乙酸甲酯(30.0g,100.7mmol,采用文献方法[5]制得,纯度99.1%)、三氟乙酸(36mL,484.6mmol)、三乙基硅烷(18mL,112.7mmol)。冰浴下搅拌30min后,升温至60℃回流反应20h。反应结束,滴加饱和碳酸溶液(约150ml),加入乙酸乙酯(100ml*2)萃取,有机相浓缩干燥,得无色油状物(25.7g,90%)(文献:91%[5])。ESI-MS,m/z(%):307[M+Na]+,283[M-H]+。元素分析:C13H17BrO2,实测值(计算值)%:C54.96(55.00);H6.02(6.04);Br28.11(28.14);O11.27(11.27)。 1.2 比拉斯汀[1]的合成 在反应瓶中加入3(99.36g,0.35mol)和4(82.01g,0.3mol,购自:江苏弘和药物研发有限公司,纯度98%),搅拌下加入10ml聚乙二醇-400和45ml水,在冰水浴的冷却下慢慢加入混合碱(0.25molNaOH+0.1molNa2CO3),于40℃下快速搅拌3.5小时后放置,使反应液冷却至室温,加入3N丁二酸溶液2.1L,加热回流24小时,用10%氢氧化钠水溶液调至pH=7,用乙醚(450ml*2)萃取,旋出溶剂,得到固体1(116.83g,84%),mp291~293℃(文献:295-296[5])。纯度为99.8% [HPLC归一化法:同文献[5]。ESI-MS,m/z(%):487[M+Na]+,463[M-H]+。元素分析:C28H37N3O3,实测值(计算值)%:C72.50(72.54);H8.01(8.04);N9.07(9.06); O10.38(10.35)。 【参考文献】 [1] Corc6stegui R,Labeaga L,Inneririty A,et a1.Preclinical pharmacology of bilastine,a new selective histamine Hl receptor antagonist:receptor selectivity and in vitro anti-histaminic activity[J].Drugs R D,2005,6(6):371-384. [2] Carter NJ.Bilastine:in allergic rhinitis and urticaria [J].Drugs,2012,72(9):1257-1269. [3] Lee CH,Khoo JH,Kwon KC,eta1.Process for preparation of 2-methyl-2-phenylpropionic acid derivatives and novel intermediate compounds:WO,2009102155[P].2009-02-12. [4]王蕾,李科,王倩,等.2-(4-卤乙基)苯基-2-甲基丙酸酯的制备方法及合成比拉斯汀的方法:中国,102675101[P].2012-09-19. [5]孔昊,耿海明,梅玉丹,等.比拉斯汀的合成[J].中国医药工业杂志,2015,46(7):677-679.

铜酞菁的生产工艺设计

一目标化合物的概述 1. 产品名称、化学结构及理化性质 铜酞菁的分子式为C32H16CuN8,相对分子质量为574。铜酞菁的热稳定性 分解温度高达400℃[3],其化学结构: 铜酞菁又名粗酞菁蓝,是生产酞菁蓝B、酞菁蓝BGs、酞菁绿、直接耐晒翠蓝等多种颜料、染料产品的基本原料,是重要的有机颜料中间体.酞菁蓝具有鲜艳的蓝色,高度的着色力和优良的牢度,耐光、耐热、耐酸碱、耐有机溶剂等稳定性极好的特点,广泛用于涂料、油墨、油漆、橡胶、塑料等方面,此外,在半导体、原子能、激光等工业中也有特殊的用途[1]。 二、目标化合物已有合成线路简介 目前生产铜酞菁的方法主要有三种:邻苯二腈法[6]和苯酐尿素法.前者是用邻苯二腈和铜盐,在触媒作用与饱和氨气的环境中加热得到;后者是以苯酐、尿素、氯化亚铜、钼酸铵等为原料加热制得,苯酐尿素法又有固相法[1]和液相法[7、9].液相法是将原料溶解在三氯化苯等有机溶剂中进行反应;固相法是将原料加热至140℃熔化后再装入金属盘内在240~260℃下反应4-5h制得。 现在在原有的方法上通过改进有几个不同的方法。料浆法即采用加入少量溶剂和固体垫底物生产铜酞菁的生产工艺,结合了固相法和溶剂法的优点[6]。溶剂油法是以溶剂油和煤油代替溶剂法中三氯苯[8]。其中,溶剂油无毒、无异味,化学性质稳定,其最大的优点就是对大气、地表不会造成污染,极微量的残留物质中不存在致癌物质,而且资源丰富,成本低;因此溶剂油完全可以代替现在生产所用的三氯苯或硝基苯,它是一种物美价廉的好溶剂。干法合成铜酞菁工艺是继烘焙法、固相法、溶剂法之后的又一合成铜酞菁的新型生产方法[17]。通过选用快速紊流混合及素流反应等专用设备和装置,提高传热传质效率,增加反应质点接触和碰撞机率,达到提高反应效率和铜酞菁合成品纯度之效果。 一.邻苯二腈法 铜酞菁的制备:称量计算量的邻苯二腈、氢氧化铜和酞菁在一定量的乙二醇中混和,先在100。C反应2 h,然后在160℃反应5 h。得到的固体产物与溶剂分离后,再在稀盐酸中于90℃处理l h,过滤,水洗涤后干燥得铜酞菁。

酯的合成方法研究

酯的合成方法研究 刘 聪 东北大学理学院高分子化学与物理 羧酸酯是一类重要的化工原料 ,它的用途相当广泛 ,可用作香料、溶剂、增塑剂及有机合成的中间体;同时在涂料、医药等工业中也具有重要的使用价值[1]。作为液晶化合物最基本和最重要的中心桥键之一,酯基的合成具有十分重要的意义。在过去很长一段时间里,酯的合成主要是采用一些经典的方法,如酸催化、酰氯法、酯交化法等;随着对各种新的催化剂和有机反应机理的研究,出现了一些新颖的合成方法,如Mitsunobu 反应、Steglich 酯化法、CAN 催化法、Me 3SiCl 催化法、DBU 催化法等等[2]。对这些新的合成方法进行研究,有助于在实验室推广采用更简单、更有效、更温和的方法合成羧酸酯,并进一步实用于工业化生产。 一、经典酯化反应 1、酯化反应机理: 羧酸与醇在催化剂作用下生成酯。例如: CH 3COOH + HOC 2H 5 CH 3COOC 2H 5 + H 2O H 酯化反应是可逆反应。为了提高酯的产率,可采取使一种原料过量(应从易得、 价廉、易回收等方面考虑),或反应过程中除去一种产物(如水或酯)。工业上生产乙酸乙酯采用乙酸过量,不断蒸出生成的乙酸乙酯和水的恒沸混合物(水6.1%,乙酸乙酯93.9%,恒沸点70.4℃),使平衡右移。同时不断加入乙酸和乙醇,实现连续化生产[3]。 羧酸的酯化反应随着羧酸和醇的结构以及反应条件的不同,可以按照不同的机理进行。酯化时,羧酸和醇之间脱水可以有两种不同的方式: R C O O H HO R' R C OH H O O R' R ,R ’分别是烷基。(Ⅰ)是由羧酸中的羟基和醇中的氢结合成水分子,剩余部分结合成酯。由于羧酸分子去掉羟基后剩余的是酰基,故方式(Ⅰ)称为酰氧键断裂。(Ⅱ)是由羧酸中的氢和醇中的羟基结合成水,剩余部分结合成酯。由于醇 (Ⅰ) (Ⅱ)

纤维素共价固定功能化酞菁【任务+翻译+开题+综述+正文】

一、题目
任务书 纤维素共价固定功能化酞菁
二、主要内容和基本要求(指明本课题要解决的主要问题和大体上可从哪几
个方面去研究和论述该主要问题的具体要求)
主要目标和任务:金属酞菁衍生物由于其特殊的结构而具有优良的催化氧化性 能,广泛运用于各行各业。本实验首先合成酞菁化合物,再制备纤维素薄膜,然后 采用直接将金属酞菁衍生物负载到纤维素上的方法,制备得到一种金属酞菁负载纤 维催化剂。本文采用微波消解-火焰原子吸收光谱法测定酞菁衍生物中的金属元素的 含量,从而根据金属元素的含量换算出金属酞菁在纤维素纤维上的负载量。
主要内容包括: (1)合成外环有氨基官能团的金属酞菁化合物 (2)以乙酸纤维素原料制备薄膜,通过水解得到纤维素薄膜,并对其进行氧化 处理使其表面形成功能化基团。 (3)通过共价键的方式将酞菁固定于纤维素纤维表面,制备得到一种负载型的 催化剂。 (4)考察各反应条件对负载量的影响。

三、起止日期及进度安排
起止日期: 2010 年 11 月 8 日 至 2011 年 4 月 18 日
进度安排: 序号
时间
1 2010.11.08 至 2010.11.18
2 2010.11.21 至 2010.12.23
3 2011.12.26 至 2011.01.10
4 2011.01.10 至 2011.01.24
5 2011.02.19 至 2011.03.10
6 2011.03.15 至 2011.3.31
7 2011.04.15 至 2011.04.18
内容 文献的查阅与实验方案制定 完成开题报告、英文翻译和文献综述
合成四氨基金属酞菁 完成纤维素薄膜的制备与固定 完成反应温度和时间对固定量的影响 根据实验结果,完成论文初稿 修改毕业论文,最终完稿
四、推荐参考文献(理工科专业应在 5 篇以上,文科类专业应在 8 篇以上,其中外文文
献至少 2 篇。) 3. 沈永佳,酞菁的合成及应用[M],北京:化学工业出版社,2000,2 第一版. 4. 姚玉元,陈文兴,吕素芳.催化纤维的制备及催化性能[J] .纺织学报,2007,28(4):5-7 5. 陈文兴,陈世良,吕慎水,等.负载型酞菁催化剂的制备及其光催化氧化苯酚[J].中国科学, 2007,50(3):379-384. 6. 殷焕顺.易溶性金属酞菁衍生物的合成及其性质研究:学位论文.湖南:湘潭大学,2004 [5] B. Kippelen, S. Yoo, J. A. Haddock, B. Domercq, S. Barlow,B. A. Minch, W. Xia, S. R. Marder and N. R. Armstrong,in Organic Photovoltaics: Mechanisms, Materials, and Devices,ed. S. sariciftic and S. Sun, CRC Press, Boca Raton, FL,2005. [6]F. Armand, H. Perez, S. Fouriaux, O. Araspin, J.-P. pradeau,C. G. Claessens, E. M. Maya, P. Va′quez and T. Torres, synth.Met., 1999, 102, 1476; Z. Wang, A.-M. Nygrd, M. J. Cook andD. A. Russell, Langmuir, 2004, 20, 5850.

甲酰化酞菁铜的制备及应用研究 文献综述

甲酰化酞菁铜的制备及应用研究+文献 综述 摘要:本研究是为企业现有产品酞菁铜(A)及偶氮化合物N-苯基-2-羟基-4-对甲酰基苯偶氮基萘甲酰胺(B)开发应用的研究项目。A和B分别是企业生产的两种商业化产品,A是蓝色颜料,B是大红色颜料,他们不仅耐有机溶剂、耐酸碱、耐化学腐蚀等性能优异,而且耐光、耐候、耐温性也很好,已广泛被涂料、塑料、油墨等行业采用;吲哚碳菁具有摩尔消光系数大、荧光性能好、对光和热稳定性高等特点,将取代吲哚引入A和B的分子结构中,可以得到有应用前景的新型颜料。以A为原料经过维尔斯迈尔反应,制备甲酰化酞菁铜(C);以2,3,3-三甲基取代吲哚啉为原料,与碘乙烷成盐,得到吲哚啉盐(D),再将D分别与B 和C进行缩合反应得到1-乙基-3,3-二甲基-2-(β-N-苯基-2-羟基-4-对偶氮基萘甲酰胺苯乙烯基)-3H-吲哚碘化物(E)和1-乙基-3,3-二甲基-2-(β-酞菁铜乙烯基)-3H-吲哚碘化物(F)。重点

考察了化合物C的制备及B、C与活泼亚甲基化合物吲哚啉D作用的可行性。实验结果表明:通过维尔斯迈尔反应实现了酞菁的甲酰得到了化合物C,通过芳醛和活泼亚甲基化合物缩合反应得到了化合物E,化合物F的制备在现有条件下难以实现。6689 关键词:酞菁铜;取代酞菁;维尔斯迈尔反应;偶氮颜料;吲哚啉 The preparation and application of substituted Phthalocyanine Abstract: This study is for the company’s existing copper phthalocyanine (A) and n-hydroxy-methyl phenyl azo naphthalene-carboxamide (B) development of applied research projects. A and B are produced by two commercial products, A is a blue pigment,B is a red pigment.They are not only organic solvent resistance, acid and alkali, excellent corrosion resistance and light resistance, weather resistance, temperature resistance is also

文献综述-负载型酞菁用于染料废水处理

毕业论文文献综述 高分子材料与工程 负载型酞菁用于染料废水处理 1.引言 染料废水是指生产生活中用苯、甲苯及萘等为原料经硝化、碘化生产中间体,然后再进行重氮化、偶合及硫化反应制造染料、颜料生产过程中排出的废水。由于生产的染料、颜料及其中间体种类复杂繁多,废水的性质各有不同。主要包括:预处理阶段排放的退浆、煮炼、漂白、丝光废水;染色阶段排放的染色废水;印花阶段排放的印花废水和皂洗废水;整理阶段排放的整理废水。 2.染料废水的特点 染料企业生产的产品各种各样,除了织造方法不同外纤维成分也发生了较大变化,特别是近年来化学纤维的快速发展,各类天然纤维与化学纤维混纺产品不断增加,即使同一企业其产品成分变化也比较大,因而其生产过程中排放的废水水质也经常处于变化之中。一般来说,天然纤维产品染料过程中排放的废水水质可生物降解性较好,天然纤维与化学纤维混纺产品排放的废水水质可生物降解性稍差,而纯化学纤维产品排放的废水水质可生物降解性则最差。主要是生产加工过程中使用的浆料和染料不同以及对纤维的不同前处理工艺导致。总而言之,染料废水具有色度大、有机物含量高,水质变化大,pH值变化大,水温水量变化大等特点。 3.染料废水的危害 染料废水排入天然水体后,废水的水温就会升高,通常为30~40℃,有时可达50℃以上,且水中大量有机物会迅速消耗水体中的溶解氧,使河流因缺氧产生厌氧型分解,释放出的硫化氢又进一步消耗水体中的溶解氧,使水体中溶解氧大幅度下降。废水中总磷、总氮含量增高,排放后使水体富营养化。漂白废水中的游离氯可能破坏或降低河流的自净能力。重金属一般会形成污泥,危害水中动植物的生长。染色废水使河水变色,严重破坏水体的生态链,同时也大大降低了水体的经济价值。在染料生产过程中,每生产1吨染料,要随废水损失2%的产品。而在印染过程中损失量更大,为所用染料的只有10%左右。染料废水中含有的苯环基、偶氮基等基团的染料很容易导致人体得患膀胱癌。废水中残存的染料组分,即使浓度很低,排入水体亦会造成水体透光率的降低,而最终将导致水体生态系统的破坏。全世界每年以废物形式排入环境的染料约6万吨,特别是含有机染料污水具有水量大、分布面广、水质变化大、有机毒物含量高、成分复杂以及难降解等特点,对水生生态系统及其边界环境产生了巨大的冲击。如果染料废水不经过处理,任意排放,废水直接流入河流

相关主题