搜档网
当前位置:搜档网 › 不等关系与不等式及一元二次不等式的解法

不等关系与不等式及一元二次不等式的解法

 不等关系与不等式及一元二次不等式的解法
 不等关系与不等式及一元二次不等式的解法

单元检测 不等关系与不等式及一元二次不等式的解法

一、选择题

1.设m ,n ∈R ,给出下列结论:

①m

m <1.

其中正确的结论有( )

A .①④

B .②④

C .②③

D .③④ 2.不等式-3<4x -4x 2≤0的解集是( ) A.?

??

?

??x ??-12

??

?

??x ??-12

D.???

???x ?

?x ≤-12或x ≥32 3.若M =x 2+y 2+1,N =2(x +y -1),则M 与N 的大小关系为( ) A .M >N B .M

4.若集合A ={x |ax 2-ax +1<0}=?,则实数a 的值的集合是( ) A .{a |0

},N =???y ???

??

y =4x

2,x ∈M ,则M ∩N =( ) A.????0,12 B.???

?1

2,1 C .(0,1) D .(1,2) 6.一元二次不等式ax 2+bx +1>0的解集为?

??

x ?

??

??-1<x <13,则ab 的值为( ) A .-6 B .6 C .-5 D .5

7.若a >b >0,c <d <0,则一定有( ) A.a c >b d B.a c <b d C.a d >b c D.a d <b c

8.若函数f (x )=(a 2+4a -5)x 2-4(a -1)x +3的图象恒在x 轴上方,则a 的取值范围是( )

A .1≤a ≤19

B .1<a <19

C .1≤a <19

D .1<a ≤19

9.若关于x 的不等式x 2+ax -2>0在区间[1,5]上有解,则实数a 的取值范围为( )

A.????-235,+∞

B.????-235,1 C .(1,+∞) D.????-∞,-235 10.对任意实数x ,不等式2x +2x 2+x +1>k 恒成立,则k 的取值范围为( )

A .[0,+∞)

B .(2,+∞)

C.?

???-∞,-2

3 D .(2,+∞)∪?

???-∞,-2

3 11.实数α,β是方程x 2-2mx +m +6=0的两根,则(α-1)2+(β-1)2的最小值为( )

A .8

B .14

C .-14

D .-254

12.在R 上定义运算?:x ?y =x (1-y ).若不等式(x -a )?(x +a )<1对任意实数x 成立,则( )

A .-1<a <1

B .0<a <2

C .-12<a <32

D .-32<a <1

2

二、填空题

13.已知x =1是不等式k 2x 2-6kx +8≥0的解,则k 的取值范围是________. 14.若a ,b 为正实数,则1a +1b 与1

a +

b 的大小关系是________.

15.若1<α<3,-4<β<2,则1

2α-β的取值范围是________.

16.下列语句中正确的是________. ①若a >b ,则a lg 12>b lg 1

2

②若a >b >0,c >d >0,则a 2-d >b 2-c ; ③若a >b ,且a ,b ∈R ,则????13a

<????

13b

; ④若α∈????-π,2π

3,则1-sin α>0. 二、解答题

17.已知函数f (x )=???x 2-1,x ≥1

2

或x ≤-2,

3+2x -x 2

,-2<x <1

2,

试求不等式f (x )≥0的解集.

18.(1)求函数f (x )=log 2(-x 2+2x +3)的定义域;

(2)若不等式x 2-2x +k 2-1≥0对一切实数x 恒成立,求实数k 的取值范围.

19.m 为何值时,方程mx 2-(2m +1)x +m =0满足下列条件: (1)没有实数解; (2)有实数解;

(3)有两个不相等的实数解.

20.如图,有一长AM =30 m ,宽AN =20 m 的矩形地块,业主计划将其中的矩形ABCD 建为仓库,要求顶点C 在地块的对角线MN 上,B ,D 分别在边AM ,AN 上,其他地方建停车场和路,设AB =x m.

(1)求矩形ABCD 的面积S 关于x 的函数解析式;

(2)若要求仓库占地面积不小于144 m 2,则AB 的长度应在什么范围?

21.设a >0,b >0,求证????a 2b 1

2+???

?b 2a 1

2≥a 1

2+b 1

2

.

22.(本小题满分12分)解关于x 的不等式ax 2-(2a +1)x +2≤0,a ∈R .

参考答案与解析

1.【解析】选B.若m -n >0?(-m )2>(-n )2,即m 2>n 2,故①不正确; 若ma 20, 所以m

若m

n na ,故③不正确; 若m n m ,即n

m

<1,故④正确.

2. 【解析】选A.不等式可化为????

?4x (x -1)≥04x 2-4x -3<0???

???x ≤0或x ≥1,

-12

2

?-12

.

3.【解析】选A.因为M -N =x 2+y 2+1-2x -2y +2=(x -1)2+(y -1)2+1>0,所以M >N . 4.【解析】选D.若a =0时符合题意.当a >0时,相应二次方程中的Δ=a 2-4a ≤0,得{a |0

5.【解析】选B.因为M ={x |x >x 2

}={x |0<x <1},N =???y ?????y =4x

2,x ∈M =???y ???

??

12<y <2},所以M ∩N =????

12,1,故选B.

6.【解析】选B.由已知得ax 2+bx +1=0的两个根为-1,1

3

所以?

??-1+13=-b a ,-1×13=1a

解得?????a =-3b =-2,

所以ab =6.

7.【解析】选D.因为c <d <0,所以1d <1c <0,即-1d >-1

c >0,与a >b >0对应相乘得,

-a d >-b c >0,所以a d <b

c

. 8.【解析】选C.函数图象恒在x 轴上方,即不等式(a 2+4a -5)x 2-4(a -1)x +3>0对一切x ∈R 恒成立.

①当a 2+4a -5=0,即a =-5或a =1时,

由a =-5,不等式化为24x +3>0,不满足题意;由a =1,不等式化为3>0,满足题意.

②当a 2+4a -5≠0时,由题意可得

?

????a 2+4a -5>0,16(a -1)2-12(a 2

+4a -5)<0, 解得1<a <19.

综合①②,a 的取值范围是1≤a <19.故选C.

9.【解析】选A.根据题意,由于关于x 的不等式x 2+ax -2>0在区间[1,5]上有解,可知a >-x 2+2x =-x +2x 在[1,5]上有解,又由于函数y =-x +2x 在区间[1,5]上是减函数,

故只需a 大于函数的最小值即可,又y =-x +2x ≥-5+25=-23

5

,故a 的取值范围是

???

?-235,+∞,故选A.

10.【解析】选C.不等式2x +2

x 2+x +1>k 等价于2x +2>k (x 2+x +1),kx 2+(k -2)x +(k -2)

<0对任意x ∈R 均成立;注意到k =0时该不等式不恒成立,于是有

?

????k <0,Δ=(k -2)2

-4k (k -2)<0, 由此解得k <-2

3

因此k 的取值范围是?

???-∞,-2

3. 11.【解析】选A.因为Δ=(-2m )2-4(m +6)≥0, 所以m 2-m -6≥0,所以m ≥3或m ≤-2. 而(α-1)2+(β-1)2=α2+β2-2(α+β)+2 =(α+β)2-2αβ-2(α+β)+2 =(2m )2-2(m +6)-2(2m )+2 =4m 2-6m -10 =4????m -342

-49

4

, 因为m ≥3,或m ≤-2,所以当m =3时,(α-1)2+(β-1)2的最小值为8.

12.【解析】选C.因为(x -a )?(x +a )<1,所以(x -a )(1-x -a )<1,即x 2-x -a 2+a +1>0.因为此不等式对任意实数x 成立,则有1-4(-a 2+a +1)<0.所以-12<a <3

2

.故选C.

13.【解析】x =1是不等式k 2x 2-6kx +8≥0的解,把x =1代入不等式得k 2-6k +8≥0,解得k ≥4或k ≤2.

【答案】k ≥4或k ≤2

14.【解析】因为a ,b 为正实数,所以1a +1b -1a +b =a +b ab -1

a +

b =(a +b )2-ab ab (a +b )

a 2+a

b +b 2ab (a +b )

>0,所以1a +1b >1

a +

b .

【答案】1a +1b >1

a +b

15.【解析】因为1<α<3,所以12<12α<3

2,①

因为-4<β<2,所以-2<-β<4,② ①②相加得-32<12α-β<11

2.

【答案】???

?-32,112 16.【解析】lg 1

2<0,①是错误的;a >b >0,a 2>b 2,c >d >0,c >d >0,-c <

-d ,a 2

-d >b 2

-c ,②正确;y =????13x

是减函数,a >b ,则????13a

<???

?13b

,③正确;④中α=π

2

时, 1-sin α=0,不正确. 【答案】②③

17.【解】原不等式等价于????

?x 2

-1≥0x ≥12或x ≤-2①,

或?

???

?3+2x -x 2

≥0-2<x <12②,

由①得x ≥1或x ≤-2, 由②得-1≤x <12,

故原不等式的解集为

???x ?

?

???x ≥1或x ≤-2或-1≤x <12.

18.【解】(1)由-x 2+2x +3>0,得x 2-2x -3<0, 即(x -3)(x +1)<0,所以-1<x <3,

所以f (x )=log 2(-x 2+2x +3)的定义域为(-1,3).

(2)法一:若x 2-2x +k 2-1≥0对一切实数x 恒成立,则Δ=(-2)2-4(k 2-1)≤0?k 2≥2?k ≥2或k ≤- 2.

即实数k 的取值范围是(-∞,-2]∪[2,+∞).

法二:若x 2-2x +k 2-1≥0对一切实数x 恒成立,即k 2≥-x 2+2x +1对一切实数x 恒成立.

因为-x 2+2x +1=-(x -1)2+2≤2, 所以当k 2≥2时,x 2-2x +k 2-1≥0恒成立, 所以k ≤-2或k ≥ 2.

即实数k 的取值范围是(-∞,-2]∪[2,+∞).

19.【解】当m =0时,原方程可化为x =0;当m ≠0时,Δ=[-(2m +1)]2-4m 2=4m +1<0,即m <-14时,原方程没有实数解;由Δ=4m +1>0,得m >-1

4且m ≠0时,原方

程有两个不相等的实数根;Δ≥0时原方程有实数解.此时m ≥-1

4

且m ≠0.

综上,(1)当m <-1

4时,原方程没有实数解.

(2)当m ≥-1

4

时,原方程有实数解.

(3)当m >-1

4且m ≠0时,原方程有两个不相等的实数解.

20.【解】(1)由题意知,△NDC ∽△NAM , 则

DC AM =ND

NA

, 即x 30=20-AD 20,解得AD =20-23

x . 所以矩形ABCD 的面积S 关于x 的函数解析式为S =20x -2

3x 2(0<x <30).

(2)由题意得20x -2

3x 2≥144,

即x 2-30x +216≤0, 解得12≤x ≤18.

故AB 的长度的取值范围是[12,18].

21.【证明】左边-右边=(a )3+(b )3

ab -(a +b )

=(a +b )(a -ab +b )-ab (a +b )

ab

(a +b )(a -2ab +b )

ab

=(a +b )(a -b )2ab ≥0,

所以原不等式成立.

22.【解】原不等式可以变形为(ax -1)(x -2)≤0.

(1)当a =0时,(ax -1)(x -2)≤0可化为-(x -2)≤0,所以x ≥2.

(2)当a <0时,(ax -1)(x -2)≤0可化为????x -1

a (x -2)≥0. 所以x ≤1

a

或x ≥2.

(3)当a >0时,(ax -1)(x -2)≤0可化为(x -1a )(x -2)≤0,对应方程的两个根分别为1

a 和

2,

①当1a >2,即0<a <12时,????x -1a (x -2)≤0?2≤x ≤1

a

; ②当1a =2,即a =1

2时,????x -1a (x -2)≤0?(x -2)2≤0,所以x =2; ③当0<1a <2,即a >12时,????x -1a (x -2)≤0?1

a ≤x ≤2. 综上所述,当a <0时,原不等式的解集为???x ?????

x ≤1a 或x ≥2; 当a =0时,原不等式的解集为{x |x ≥2}; 当0<a <12时,原不等式的解集为???

x ?????2≤x ≤1a ; 当a =1

2时,原不等式的解集为{x |x =2};

当a >12时,原不等式的解集为???x ?????

1a ≤x ≤2.

不等关系与基本不等式同步练习题

不等关系与基本不等式同步练习题(一) (时间:120分钟 满分:150分) A.基础卷 一、选择题(5×8=40分) 1.函数)2(2 1 >-+ =x x x y 的最小值为( ) A. 2 B . 3 C . 4 D .23 2.不等式0)31(>-x x 的解集是( ) A .)31,(-∞ B . )31,0()0,( -∞ C . ),31(+∞ D .)3 1,0( 3.已知,R b a ∈、且0>ab ,则下列不等式不正确的是( ) A .b a b a ->+ B .b a b a +<+ C .b a ab +≤2 D . 2≥+b a a b 4.已知无穷数列{}n a 是各项均为正数的等差数列,则有( ) A. 8 6 64a a a a ≤ B. 8664a a a a < C.8664a a a a > D.8664a a a a ≥ 5.已知01,0<<-> B.a ab ab >>2 C.2 ab a ab >> D.a ab ab >>2 6.已知,1117,32-≤<-<≤-y x 则1 2 -y x 的取值范围是( ) A.??? ??-- 92,43 B.??? ??-0,43 C.??? ??-0,21 D.??? ??-0,43 7.若 ,11 <++b a a b 则b a 与中必( ) A.一个大于1,一个小于1 B.两个都大于1 C.两个都小于1 D.两个的积小于1 8.已知,,d c b a >>则( ) A. d b c a ->- B. c b d a > C.a d b c ->- D.bd ac >

必修五 3.1不等式与不等关系(第一课时)教案

§3.1不等式与不等关系 【教学目标】 1.知识与技能:通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)的实际背景,掌握不等式的基本性质; 2.过程与方法:通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法; 3.情态与价值:通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯。 【教学重点】 用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题。理解不等式(组)对于刻画不等关系的意义和价值。 【教学难点】 用不等式(组)正确表示出不等关系。 【教学过程】 1.课题导入 在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系。如两点之间线段最短,三角形两边之和大于第三边,等等。人们还经常用长与短、高与矮、轻与重、胖与瘦、大与小、不超过或不少于等来描述某种客观事物在数量上存在的不等关系。在数学中,我们用不等式来表示不等关系。 下面我们首先来看如何利用不等式来表示不等关系。 2.讲授新课 1)用不等式表示不等关系 引例1:限速40km/h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40km/h ,写成不等式就是: 40v ≤ 引例2:某品牌酸奶的质量检查规定,酸奶中脂肪的含量应不少于2.5%,蛋白质的含量p 应不少于2.3%,写成不等式组就是——用不等式组来表示 2.5%2.3% f p ≤??≥? 问题1:设点A 与平面α的距离为d,B 为平面α上的任意一点,则||d AB ≤。 问题2:某种杂志原以每本2.5元的价格销售,可以售出8万本。据市场调查,若单价每提高0.1元,销售

一元二次不等式及其解法教学设计

一元二次不等式及其解法 【设计思想】 新的课程标准指出:数学课程应面向全体学生;促进学生获得数学素养的培养和提高;逐步形成数学观念和数学意识;倡导学生探究性学习。这与建构主义教学观相吻合。本节课正是基于上述理念,通过对已学知识的回忆,引导学生主动探究。强调学习的主体性,使学生实现知识的重构,培养学生“用数学”的意识。本节课的设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对书本知识的再创造、再发现的过程,从而培养学生的创新意识。 【教材分析】 本节课是人教社普通高中课程标准实验教材数学必修5第三章《不等式》第二节一元二次不等式及其解法,本节主要内容是从实际问题中建立一元二次不等式,并能解一元二次不等式。这一节共分三个课时,本节课属于第一课时,课题为《一元二次不等式及其解法》。学数学的目的在于用数学,除了让学生探究并掌握一元二次不等式的解法外,更重要的是要领悟函数、方程、不等式的密切联系,体会数形结合,分类讨论,等价转换等数学思想。 【学情分析】 学生在初中就开始接触不等式,并会解一元一次不等式。 【教学目标】 知识与技能:通过学生自主预习与课上探究掌握一元二次方程、一元二次不等式、二次函数之间的关系和一元二次不等式的解法; 过程与方法:自主探究与讨论交流过程中,培养学生运用等价转化和数形结合等数学思想解决数学问题的能力; 情感态度价值观:培养学生的合作意识和创新精神。 【教学重点】一元二次不等式的解法。 【教学难点】一元二次方程、一元二次不等式和二次函数的关系。 【教学策略】 探究式教学方法 (创设问题情境——界定问题——选择问题解决策略——执行策略——结果评价) 【课前准备】 教具:“几何画板”及PPT课件. 粉笔:用于板书示范.

不等关系与不等式经典教案

不等关系与不等式 【学习目标】 1.了解不等式(组)的实际背景. 2.掌握比较两个实数大小的方法. 3.掌握不等式的八条性质. 【学法指导】 1.不等关系广泛存在于现实生活中,应用不等式(组)表示不等关系实质是将“自然语言”或“图形语言” 转化成“数学语言”,是用不等式知识解决实际问题的第一步.只需根据题意建立相应模型,把模型中的量具体化即可. 2.作差法是比较两个数(或式)大小的重要方法之一,可简单概括为“三步一结论”,其中关键步骤“变形”要彻底,当不能“定号”时注意分类讨论. 3.不等式的基本性质是解决不等式的有关问题的依据,应用时每步都要做到等价变形. 一、知识温故 a-b>0?; a-b=0?; a-b<0?. 3.常用的不等式的基本性质 (1)a>b?b a(对称性); (2)a>b,b>c?a c(传递性); (3)a>b?a+c b+c(可加性); (4)a>b,c>0?ac bc;a>b,c<0?ac bc; (5)a>b,c>d?a+c b+d; (6)a>b>0,c>d>0?ac bd; (7)a>b>0,n∈N,n≥2?a n b n; (8)a>b>0,n∈N,n≥2?n b. 二、经典范例 问题探究一实数比较大小 问题1(实数比较大小的依据) 在数轴上不同的点A与点B分别表示两个不同的实数a与b,右边的点表示的数比左 边的点表示的数大,从实数减法在数轴上的表示可以看出a,b之间具有以下性质:

如果a-b是正数,那么; 如果a-b是负数,那么; 如果a-b等于零,那么. 以上结论反过来也成立,即a-b>0?a>b;a-b<0?a<b;a-b=0?a=b. 问题2(作差法比较实数的大小) 向一杯a克糖水中加入m克糖,糖水变得更甜了.你能把这一现象用一个不等式表示出来吗?并证明你的结论. 问题探究二不等式的基本性质 问题3在实数大小比较的基础上,可以给出不等式八条基本性质的严格证明.证明时,可以利用前面的性质推证后续的性质. 请同学们借助前面的性质证明性质6: 如果a>b>0,c>d>0,那么ac>bd.

高二数学必修5不等式与不等关系主要知识点

高一数学必修5不等式与不等关系主要知识点 1.不等关系 两实数之间有且只有以下三个大小关系之一:a>b;a-?>b a b a ;0<-?, a b b a >?< (2)传递性:,a b b c >>?,a c > (3)可加性:a b >?. a c b c +>+ 移项法则:a b c a c b +>?>- 推论:同向不等式可加. ,a b c d >>? a c b d +>+ (4)可乘性:bc ac c b a >?>>0,,,0a b c >>>>?ac bd > 推论2:可乘方(正):0a b >>? n n a b >` (,2)n N n *∈≥ (5) 可开方(正):0a b >>? >(,2)n N n *∈≥ 2. 一元二次不等式20(0)ax bx c a ++>>与相应的函数2(0)y ax bx c a =++>、相应的方程2 之间的关系:

3.一元二次不等式恒成立情况小结: 2 0ax bx c ++>(0a ≠)恒成立?00a >???+表示直线上方的平面区域;y kx b <+表示直线下方的平面区域. 说明:(1)y kx b ≥+表示直线及直线上方的平面区域; y kx b ≤+表示直线及直线下方的平面区域. (2)对于不含边界的区域,要将边界画成虚线. 5.基本不等式: (1).如果R b a ∈,,那么ab b a 22 2≥+. (2). ≤2 a b +(0,0)a b >>. (当且仅当b a =时取“=”)

不等关系与不等式-教学设计

不等关系与不等式(第一课时) 一、教学任务分析 1、感受不等关系的普遍存在 通过一系列的具体情境,使学生感受到在现实世界和日常生活中存在着大量的不等关系。 2、利用不等式(组)表示实际问题中的不等关系 通过具体问题情境,让学生学习如何利用不等式(组)研究及表示不等关系,进一步理解不等式(组)刻画不等关系的意义和价值。 3、初步掌握运用作差比较法比较实数和代数式的大小。 二、教学重点和难点 重点:用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题,理解不等式(组)刻画不等关系的意义和价值。 难点:用不等式(组)正确表示出不等关系。 三、教学基本流程

四、教学情景设计

1、引入:章头图及古诗《题西林壁》引入,介绍不等量关系也是自然界中存在的基本数量关系,它们在现实世界和日常生活中大量存在,在数学研究和数学应用中也起着重要的作用,也正是实际问题的需要我们要研究不等量关系。介绍本章将要研究表示不等量关系的不等式的基本知识。 设计意图:使学生体会不等关系的普遍存在,了解学习不等式的意义。 2、创设情境,让学生感受生活中的不等关系。 师:多媒体出示情景:(1)交通标志(限速、限高、限宽);(2)商家打折海报(一折起、低至几折);(3)产品含量指标。问:表示什么含义?怎么表示其中的不等关系? 生:分析各种不等关系,口答并尝试用不等式(组)表示。 师:引导学生准确表述,给出不等式定义,板书学生口答的各问题中不等式(组)。 设计意图:进一步让学生感受生活中的不等关系,知道用不等式(组)表示这种不等关系。 3、知识探究一:具体情境中如何用不等式研究及表示不等关系。 师:多媒体出示问题1(销售收入问题)、2(实际安排生产问题)。 学生:独立思考后,与本组同学交流讨论结果。完成后交流展示,小组代表板书结果,并说明式子的含义。 师:点评学生结果,找有不同结果的小组讲解不同方法或补充,引导学生分析比较。 设计意图:问题方式给出,强化学生的问题意识,使学生在具体问题情境中经历如何利用不等式研究及表示不等关系。小组合作探究,使学生交流对于问题的认识。展示不同结果,使学生认识思考问题严谨性和不同角度。师最后介绍两问题中反映的生产要求如何解决,是本章后续章节会解决的问题。激发学生学习欲望,体会数学知识与生活的密切相关。 4、知识探究二:比较实数和代数式大小的方法——作差法。 生:结合学案上知识探究二中所填结果,与同组学生交流结论。 师:提问引导学生表述:要比较两数或代数式大小,可以让两数或两式相减,比较结果和0的大小。若结果大于0,则前者大于后者;若……。 设计意图:让学生分析作差法具体做法,明确这种比较大小的方法如何运用。 5、课堂练习:作差法比较代数式的大小。 生:可独立完成,也可与同组同学交流,在规定时间完成。 师:巡视,指导学生疑难处,找完成好的两生板演结果,并让板演学生讲解。点评学生思路,进一步总结作差法中变形结果的形式:

导学案不等式与不等关系

不等式与不等关系 考纲要求 1.了解现实世界和日常生活中的不等关系. 2.了解不等式(组)的实际背景. 考情分析 1.从高考内容上来看,不等关系、不等式的性质及应用 是命题的热点. 2.着重突出考查对不等式性质的灵活运用,有时与充要性的判断交汇命题,体现了化归转化思想,难度中、 低档. 3.考查题型多为选择、填空题. 教学过程 基础梳理 一、实数大小顺序与运算性质之间的关系 a - b >0? ;a -b =0? ; a -b <0? . 二、不等式的基本性质 1.对称性a >b ? 2.传递性a >b ,b >c ? 3.可加性a >b ? 4.可乘性 a >b c >0? , ? ?? a > b c <0? 5.同向可加性 ? ?? a > b c > d ? 6.同向同正可乘性 ? ?? a > b >0 c > d >0? 7.可乘方性a >b >0? (n ∈N ,n ≥2) 8.可开方性a >b >0? (n ∈N ,n ≥2) 两条常用性质

① a >b ,ab >0?1a <1 b ② 若a >b >0,m >0,则b a <b +m a +m ; 双基自测 1.若x +y >0,a <0,ay >0,x -y 的值为 ( ) A .大于0 B .等于0 C .小于0 D .不确定 2.(教材习题改编)已知a ,b ,c 满足c ac B .c (b -a )<0 C .cb 20 3.已知a ,b ,c ,d 均为实数,且c >d ,则“a >b ”是“a -c >b -d ”的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 4.(教材习题改编)3+7与25的大小关系是________. 5.已知a ,b ,c ∈R ,有以下命题: ①若a >b ,则ac 2>bc 2;②若ac 2>bc 2,则a >b ; ③若a >b ,则a ·2c >b ·2c 以上命题中正确的是____________(请把正确命题的序号都填上).

不等关系与基本不等式同步练习题

a 6 B. C. D. 6.已知 - 2 ≤ x < 3,-17 < y ≤ -11, 则 的取值范围是( ) A. -? 3 2 ? ? 3 ? ? 1 ? ?3,- ? B. - ,0 C. - ,0 D. - ,0 ? ??A. a - c > b - d B. a 不等关系与基本不等式同步练习题(一) (时间:120 分钟 满分:150 分) A.基础卷 一、选择题(5×8=40 分) 1.函数 y = x + 1 ( x > 2) 的最小值为( x - 2 ) A. 2 B . 3 C . 4 D . 3 2 2.不等式 x (1 - 3x) > 0 的解集是( ) 1 1 1 1 A . (-∞, ) B . (-∞,0) (0, ) C . ( ,+∞) D . (0, ) 3 3 3 3 3.已知 a 、b ∈ R, 且 ab > 0 ,则下列不等式不正确的是( ) A . a + b > a - b B . a + b < a + b C . 2 ab ≤ a + b D . b a + ≥ 2 a b 4.已知无穷数列 { n }是各项均为正数的等差数列,则有( ) A. a 4 ≤ a 6 a a 5.已知 a < 0,-1 < b < 0 ,则 a, ab, ab 2 的大小关系是( ) A. a > ab > ab 2 B. ab 2 > ab > a C. ab > a > ab 2 D. ab > ab 2 > a x 2 y - 1 ? ? 4 9 ? ? 4 ? ? 2 ? ? 4 ? 7.若 ab + 1 a + b < 1, 则 a 与 b 中必( ) A.一个大于1,一个小于1 B.两个都大于1 C.两个都小于1 D.两个的积小于1 8.已知 a > b , c > d , 则( ) b > C. c - b > d - a D. ac > bd d c

如何解一元二次不等式

如何解一元二次不等式,例如:x?2+2x+3≥0. 请大家写出解题过程和思路 解:对于高中“解一元二次不等式”这一块, 通常有以下两种解决办法: ①运用“分类讨论”解题思想; ②运用“数形结合”解题思想。 以下分别详细探讨。 例1、解不等式x2 -- 2x -- 8 ≥ 0。 解法①:原不等式可化为: (x -- 4) (x + 2) ≥ 0。 两部分的乘积大于等于零, 等价于以下两个不等式组: (1)x -- 4 ≥ 0 或(2)x -- 4 ≤ 0 x + 2 ≥ 0 x + 2 ≤ 0 解不等式组(1)得:x ≥ 4(因为x ≥ 4 一定满足x ≥ -- 2,此为“同大取大”) 解不等式组(2)得:x ≤ -- 2(因为x ≤ --2 一定满足x ≤ 4,此为“同小取小”) ∴不等式x2 -- 2x -- 8 ≥ 0的解为:x ≥ 4 或x ≤ -- 2。 其解集为:( -- ∞,-- 2 ] ∪[ 4,+ ∞)。 解法②:原不等式可化为: [ (x2 -- 2x + 1) -- 1 ] -- 8 ≥ 0。 ∴(x -- 1)2 ≥ 9 ∴x -- 1 ≥ 3 或x -- 1 ≤ -- 3 ∴x ≥ 4 或x ≤ -- 2。 ∴原不等式的解集为:( -- ∞,-- 2 ] ∪[ 4,+ ∞)。 解法③:如果不等式的左边不便于因式分解、不便于配方,

那就用一元二次方程的求根公式进行左边因式分解, 如本题,用求根公式求得方程x2 -- 2x -- 8 = 0 的两根为x1 = 4,x2 = -- 2,则原不等式可化为:(x -- 4) (x + 2) ≥ 0。下同解法①。 体会:以上三种解法,都是死板板地去解; 至于“分类讨论”法,有时虽麻烦,但清晰明了。 下面看“数形结合”法。 解法④:在平面直角坐标系内,函数f(x) = x2 -- 2x -- 8 的图像 开口向上、与x 轴的两交点分别为(-- 2,0) 和(4,0), 显然,当自变量的取值范围为x ≥ 4 或x ≤ -- 2 时, 图像在x 轴的上方; 当自变量的取值范围为-- 2 ≤ x ≤ 4 时,图像在x 轴的下方。 ∴当x ≥ 4 或x ≤ -- 2 时,x2 -- 2x -- 8 ≥ 0, 即:不等式x2 -- 2x -- 8 ≥ 0的解为:x ≥ 4 或x ≤ -- 2。 顺便说一下,当-- 2 ≤ x ≤ 4 时,图像在x 轴的下方,即:x2 -- 2x -- 8 ≤ 0,∴不等式x2 -- 2x -- 8 ≤ 0 的解为:-- 2 ≤ x ≤ 4 。其解集为:[ -- 2,4 ]。 领悟:对于ax2 + bx + c >0 型的二次不等式,其解为“大于大根或小于小根”; 对于ax2 + bx + c <0 型的二次不等式,其解为“大于小根且小于大根”。例2、解不等式x2 + 2x + 3 >0。 在实数范围内左边无法进行因式分解。 配方得:(x + 1)2 + 2 >0。 无论x 取任何实数,(x + 1)2 + 2 均大于零。 ∴该不等式的解集为x ∈R。 用“数形结合”考虑, ∵方程x2 + 2x + 3 = 0的根的判别式△<0, ∴函数f(x) = x2 + 2x + 3 的图像与x 轴无交点且开口向上。 即:无论自变量x取任意实数时,图像恒位于x 轴的上方。 ∴不等式x2 + 2x + 3 >0的解集为x ∈R。

《一元二次不等式及其解法》典型例题透析

《一元二次不等式及其解法》典型例题透析 类型一:解一元二次不等式 例1. 解下列一元二次不等式 (1)2 50x x -<; (2)2 440x x -+>; (3)2 450x x -+-> 思路点拨: 转化为相应的函数,数形结合解决,或利用符号法则解答. 解析: (1)方法一: 因为2(5)410250?=--??=> 所以方程2 50x x -=的两个实数根为:10x =,25x = 函数25y x x =-的简图为: 因而不等式2 50x x -<的解集是{|05}x x <<. 方法二:2 50(5)0x x x x -???-? 解得05x x >?? ?,即05x <<或x ∈?. 因而不等式2 50x x -<的解集是{|05}x x <<. (2)方法一: 因为0?=, 方程2440x x -+=的解为122x x ==. 函数2 44y x x =-+的简图为: 所以,原不等式的解集是{|2}x x ≠ 方法二:2244(2)0x x x -+=-≥(当2x =时,2 (2)0x -=) 所以原不等式的解集是{|2}x x ≠ (3)方法一: 原不等式整理得2 450x x -+<.

因为0?<,方程2 450x x -+=无实数解, 函数245y x x =-+的简图为: 所以不等式2 450x x -+<的解集是?. 所以原不等式的解集是?. 方法二:∵2245(2)110x x x -+-=---≤-< ∴原不等式的解集是?. 总结升华: 1. 初学二次不等式的解法应尽量结合二次函数图象来解决,培养并提高数形结合的分析能力; 2. 当0?≤时,用配方法,结合符号法则解答比较简洁(如第2、3小题);当0?>且是一个完全平方数时,利用因式分解和符号法则比较快捷,(如第1小题). 3. 当二次项的系数小于0时,一般都转化为大于0后,再解答. 举一反三: 【变式1】解下列不等式 (1) 2 2320x x -->;(2) 2 3620x x -+-> (3) 2 4410x x -+≤; (4) 2 230x x -+->. 【答案】 (1)方法一: 因为2(3)42(2)250?=--??-=> 方程2 2320x x --=的两个实数根为:11 2 x =-,22x = 函数2 232y x x =--的简图为: 因而不等式2 2320x x -->的解集是:1 {|2}2 x x x <- >或. 方法二:∵原不等式等价于 21)(2)0x x +->(, ∴ 原不等式的解集是:1 {|2}2 x x x <->或. (2)整理,原式可化为2 3620x x -+<, 因为0?>, 方程2 3620x x -+=的解131x =231x =,

5第五讲 不等关系与基本不等式(教师版) - 副本 - 副本

第一课时:不等式关系与不等式 知识点一 不等关系 思考 限速40km /h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40 km /h ,用不等式如何表示? 答案 v ≤40. 梳理 试用不等式表示下列关系: (1)a 大于b a >b (2)a 小于ba b ?a -b >0;a =b ?a -b =0; a b ?b b ,b >c ?a >c (传递性); 第三节.不等关系与基本不等式 基本不等式

(3)a >b ?a +c >b +c (可加性); (4)a >b ,c >0?ac >bc ;a >b ,c <0?ac b ,c >d ?a +c >b +d ; (6)a >b >0,c >d >0?ac >bd ; (7)a >b >0?a n >b n (n ∈N +); (8)a >b >0n ∈N +). 类型一 用不等式(组)表示不等关系 例1 某种杂志原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本.若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢? 考点 用不等式(组)表示不等关系 题点 用不等式(组)表示不等关系 解 提价后销售的总收入为? ?? ?? 8-x -2.50.1×0.2x 万元, 那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式? ?? ?? 8-x -2.50.1×0.2x ≥20. 反思与感悟 数学中的能力之一就是抽象概括能力,即能用数学语言表示出实际问题中的数量关系.用不等式(组)表示实际问题中的不等关系时: (1)要先读懂题,设出未知量; (2)抓关键词,找到不等关系; (3)用不等式表示不等关系.思维要严密、规范. 跟踪训练1 某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 两种.按照生产的要求,600mm

知识讲解_不等关系与不等式

不等关系与不等式 编稿:张希勇 审稿:李霞 【学习目标】 1.了解实数运算的性质与大小顺序之间的关系; 2.会用差值法比较两实数的大小; 3.掌握不等式的基本性质,并能运用这些性质解决有关问题. 【要点梳理】 要点一、符号法则与比较大小 实数的符号: 任意x R ∈,则0x >(x 为正数)、0x =或0x <(x 为负数)三种情况有且只有一种成立. 两实数的加、乘运算结果的符号具有以下符号性质: ①两个同号实数相加,和的符号不变 符号语言:0,00a b a b >>?+>; 0,00a b a b <>?>; 0,00a b ab < ③两个异号实数相乘,积是负数 符号语言:0,00a b ab >?>; ②0b a b a -,a b =,a b <三种关系有且只有一种成立. 要点诠释:这三个式子实质是运用实数运算来比较两个实数的大小关系.它是本章的基础,也是证明不等式与解不等式的主要依据.要点二、不等式的性质 不等式的性质可分为基本性质和运算性质两部分 基本性质有: (1) 对称性:a>b b

(2)传递性:a>b, b>c a>c ? (3) 可加性:a b a c b c >?+>+ (c ∈R) (4) 可乘性:a>b ,?? ????>bc ac c bc ac c bc ac c 000运算性质有: (1)可加法则:,.a b c d a c b d >>?+>+ (2) 可乘法则:,a b>0c d>0a c b d>0>>??>? (3)可乘方性:*0,0n n a b n N a b >>∈?>> (4) 可开方性:a b 0,n N ,n 1+>>∈>?>要点诠释:不等式的性质是不等式同解变形的依据. 要点三、比较两代数式大小的方法 作差法: 任意两个代数式a 、b ,可以作差a b -后比较a b -与0的关系,进一步比较a 与b 的大小. ①0b a b a ->?>; ②0b a b a -?>; ②1b a a b b 且b>c ,则a>c (实质是不等式的传递性).一般选择0或1为中间量. 利用函数的单调性比较大小 若两个式子具有相同的函数结构,可以利用相应的基本函数的单调性比较大小. 作差比较法的步骤: 第一步:作差; 第二步:变形,常采用配方、因式分解等恒等变形手段,将“差”化为“积”; 第三步:定号,就是确定差是大于、等于还是小于0; 最后下结论. 要点诠释:概括为:“三步一结论”.这里“定号”是目的,“变形”是关键过程.

完整版一元二次不等式及其解法教学设计

元二次不等式及其解法 设计思想】 新的课程标准指出:数学课程应面向全体学生;促进学生获得数学素养的培养和提高; 逐步形成数学观念和数学意识;倡导学生探究性学习。这与建构主义教学观相吻合。本节课 正是基于上述理念,通过对已学知识的回忆,引导学生主动探究。强调学习的主体性,使学 生实现知识的重构,培养学生“用数学”的意识。本节课的设计以问题为中心,以探究解决 问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学 生对书本知识的再创造、再发现的过程,从而培养学生的创新意识。 教材分析】 本节课是人教社普通高中课程标准实验教材数学必修5 第三章《不等式》第二节一元 次不等式及其解法,本节主要内容是从实际问题中建立一元二次不等式,并能解一元二次不 等式。这一节共分三个课时,本节课属于第一课时,课题为《一元二次不等式及其解法》。学数学的目的在于用数学,除了让学生探究并掌握一元二次不等式的解法外,更重要的是要领 悟函数、方程、不等式的密切联系,体会数形结合,分类讨论,等价转换等数学思想。 学情分析】 学生在初中就开始接触不等式,并会解一元一次不等式。 教学目标】 知识与技能:通过学生自主预习与课上探究掌握一元二次方程、一元二次不等式、二次函数 之间的关系和一元二次不等式的解法; 过程与方法:自主探究与讨论交流过程中,培养学生运用等价转化和数形结合等数学思想解 决数学问题的能力; 情感态度价值观:培养学生的合作意识和创新精神。 教学重点】一元二次不等式的解法。 教学难点】一元二次方程、一元二次不等式和二次函数的关系。 教学策略】 探究式教学方法 创设问题情境——界定问题——选择问题解决策略——执行策略——结果评价)课前准备】教具:“几何画板”及PPT 课件. 粉笔:用于板书示范. 第1 页共4 页

一元二次不等式的解法(新版教材)

一元二次不等式的解法 基础知识 1.一元二次不等式的概念 一般地,形如ax 2+bx +c >0的不等式称为一元二次不等式,其中a ,b ,c 是常数,而且a ≠0.一元二次不等式中的不等号也可以是“<”“≥”“≤”等. 2.一元二次不等式的解法 (1)因式分解法 如果x 10__的解集是(-∞,x 1)∪(x 2,+∞). (2)配方法: 一元二次不等式ax 2+bx +c >0(a ≠0)通过配方总是可以变为__(x -h )2>k 或(x -h )22} D .{x |x >3 2 或x <-2} 解析:不等式变形为2x 2+x -6>0,即(2x -3)(x +2)>0,∴不等式的解集为{x |x <-2或x >3 2}.故 选D . 2.不等式3x +1 1-4x ≥0的解集是( B ) A .{x |-13≤x ≤1 4} B .{x |-13≤x <1 4} C .{x |x >14或x ≤-1 3 } D .{x |x ≥14或x ≤-1 3 } 解析:原不等式可化为????? (3x +1)(4x -1)≤0, 1-4x ≠0, 解得-13≤x <1 4 ,

故其解集为{x |-13≤x <1 4 }.故选B . 3.①x 2+x +1<0,②-x 2-4x +5≤0,③x +y 2+1>0,④mx 2-5x +1>0,⑤-x 3+5x ≥0,⑥(a 2+1)x 2+bx +c >0(m ,n ∈R ).其中关于x 的不等式是一元二次不等式的是__①②⑥__.(请把正确的序号都填上) 解析:①②是;③不是;④不一定是,因为当m =0时,它是一元一次不等式;⑤不是,因为未知数的最高次数是3;⑥是,尽管x 2的系数含有字母,但a 2+1≠0,所以⑥与④不同,故答案为①②⑥. 4.不等式组0≤x 2-2x -3<5的解集为__(-2,-1]∪[3,4)__. 解析:由x 2-2x -3≥0得x ≤-1或x ≥3; 由x 2-2x -3<5得-20; (2)(3x -1)(x +1)>4. 思路探究:(1)用配方法解不等式即可;(2)利用因式分解法求解. 解析:(1)由题意,可得x 2+x +1=(x +12)2+3 4>0, 所以不等式的解集为R . (2)由不等式(3x -1)(x +1)>4,可化为3x 2+2x -5>0,即(x -1)(x +5 3)>0, 所以不等式的解集为{x |x <-5 3或x >1}. 归纳提升:一元二次不等式的解题策略 1.因式分解法:不等式的左端能够进行因式分解的可用此法,它只能适应于解决一类特殊的不等式. 2.配方法:一元二次不等式ax 2+bx +c >0(a ≠0)通过配方总可以化为(x -h )2>k 或(x -h )2

不等关系与不等式

1 不等关系与不等式 知识回顾 一、不等式性质: 1.a >b ? b <a .(反身性) 2.a >b ,b >c =>a >c .(传递性) 3.a >b ? a+c >b+c.(平移性) 4.a >b ,c >0 => ac >bc ; a > b , c <0 => ac <bc .(伸缩性) 5.a >b ≥0 => ,n ∈N ,且n ≥2.(乘方性) 6.a >b ≥0 => a >nb ,n ∈N ,且n ≥2.(开方性) 7.a >b ,c >d => a+c >b+d.(叠加性) 8.a >b ≥0,c >d ≥0 => ac >bd .(叠乘性) 二、如果a -b 是正数,则a >b ;如果a >b ,则a -b 为正数; 如果a -b 是负数,则a ?->=?-=,求证: b m b a m a +> + 2.若0x y <<,试比较()()22x y x y +-与()()22x y x y -+的大小;

2 3.已知1260a <<,1536b <<,求12a b -及 a b 的取值范围; 1.若0a b <<,则下列结论不正确的是 .A 22a b < .B 2ab b < .C 2b a a b +> .D a b a b -=- 2.设,(,0)a b ∈-∞,则“a b >”是“11a b a b - >- ”成立的 .A 充分非必要条件 .B 必要非充分条件 .C 充要条件 .D 既不充分也不 必要条件 3.下列不等式:()1 232()x x x R +≥∈, () 2553223 (,)a b a b a b a b R +≥+∈, () 322 2(1)a b a b +≥--.其中正确的个数为 .A 0 .B 1 .C 2 .D 3 4.已知,,a b c 满足c b a <<,且ac <0,那么下列选项中不一定成立的是 .A ab ac > .B c b a ()-<0 .C cb ab 22< .D 0)(<-c a ac 5.若, a b c R a b ∈>、、,则下列不等式成立的是 . A b a 11< .B 22b a > . C 1 1 2 2 +> +c b c a .D ||||c b c a > 6.若0a >,0b >,则不等式1b a x -< <等价于 .A 10x b - <<或10x a << .B 11x a b -<< .C 1x a <-或1x b > .D 1x b <-或1x a > 7.若集合{|23}A x x =-≤≤,{|14}B x x x =<->或,则集合A B 等于 A .{}|34x x x ≤>或 B .{}|13x x -<≤ C .{}|34x x ≤< D .{}|21x x -≤-< 8.若0a b a >>>-,0c d <<,则下列命题:()1ad bc >;() 20a b d c +<; ()3a c b d ->-;()4()()a d c b d c ->-中能成立的个数是 .A 1 .B 2 .C 3 .D 4

一元二次不等式及其解法练习题.doc

一元二次不等式及其解法练习 班级: 姓名: 座号: 1 比较大小: (1)2 6+ (2)2 21)-; (3 ; (4)当0a b >>时,12log a _______12 log b . 2. 用不等号“>”或“<”填空: (1),____a b c d a c b d >><>? (4)2211 0___a b a b >>?. 3. 已知0x a <<,则一定成立的不等式是( ). A .220x a << B .22x ax a >> C .20x ax << D .22x a ax >> 4. 如果a b >,有下列不等式:①22a b >,②11 a b <,③33a b >,④lg lg a b >, 其中成立的是 . 5. 设0a <,10b -<<,则2,,a ab ab 三者的大小关系为 . 6.比较(3)(5)a a +-与(2)(4)a a +-的大小. 7. 若2()31f x x x =-+,2()21g x x x =+-,则()f x 与()g x 的大小关系为( ). A .()()f x g x > B .()()f x g x = C .()()f x g x < D .随x 值变化而变化 8.(1)已知1260,1536,a a b a b b <<<<-求及的取值范围. (2)已知41,145a b a b -≤-≤--≤-≤,求9a b -的取值范围. 9. 已知22 ππ αβ-≤<≤,则2αβ-的范围是( ). A .(,0)2 π - B .[,0]2π - C .(,0]2π- D .[,0)2 π - 10.求下列不等式的解集. (1)2230x x +->; (2)2230x x -+-> (3)2230x x -+-≤.

一元二次不等式及其解法例题分类

一对一个性化辅导教案

一元二次不等式及其解法 【要点梳理】 要点一、一元二次不等式及一元二次不等式的解集 只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.比如: 250x x -<.一元二次不等式的一般形式:20ax bx c ++>(0)a ≠或20ax bx c ++<(0)a ≠. 设一元二次方程20(0)ax bx c a ++=>的两根为12x x 、且12x x <,则不等式20ax bx c ++>的解集为 {}2 1 x x x x x ><或,不等式2 0ax bx c ++<的解集为{}21x x x x << 要点诠释:讨论一元二次不等式或其解法时要保证(0)a ≠成立. 要点二、一元二次不等式与相应函数、方程之间的联系 对于一元二次方程20(0)ax bx c a ++=>的两根为12x x 、且12x x ≤,设ac b 42-=?,它的解按照 0>?,0=?,0的图像与x 轴的位置关系也分为三种情况.因此我们分三种情况来讨论一元二次不等式20ax bx c ++>(0)a >或 20ax bx c ++<(0)a >的解集.

二次函数 c bx ax y ++=2(0>a )的图象 20(0)ax bx c a ++=>的根 有两相异实 根 )(,2121x x x x < 有两相等实根 a b x x 221- == 无实根 的解集 )0(02>>++a c bx ax {} 2 1 x x x x x ><或???? ??-≠a b x x 2 R 的解集 )0(02><++a c bx ax {}21 x x x x << ? ? 要点诠释: (1)一元二次方程20(0)ax bx c a ++=≠的两根12x x 、是相应的不等式的解集的端点的取值,是抛物线=y c bx ax ++2与x 轴的交点的横坐标; (2)表中不等式的二次系数均为正,如果不等式的二次项系数为负,应先利用不等式的性质转化为二次项系数为正的形式,然后讨论解决; (3)解集分0,0,0?>?=?<三种情况,得到一元二次不等式20ax bx c ++>与20ax bx c ++<的解集. 要点三、解一元二次不等式的步骤 (1)先看二次项系数是否为正,若为负,则将二次项系数化为正数; (2)写出相应的方程20ax bx c ++=(0)a >,计算判别式?: ①0?>时,求出两根12x x 、,且12x x <②0?=时,求根a b x x 221- ==;

《一元二次不等式的解法》说课稿[001]完美版

全国高中数学说课竞赛 《一元二次不等式的解法》说课稿 各位评委、各位老师:大家好! 我叫李长杉,来自甘肃省嘉峪关市第一中学。今天我说课的课题是《一元二次不等式的解法》(第一课时)。下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材内容分析、教法学法分析、教学过程分析和课堂意外预案等几个方面逐一加以分析和说明。 一.教材内容分析: 1.本节课内容在整个教材中的地位和作用。 概括地讲,本节课内容的地位体现在它的基础性,作用体现在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式组的延续和深化,对已学习过的集合知识的巩固和运用具有重要的作用,也与后面的函数、数列、三角函数、线形规划、直线与圆锥曲线以及导数等内容密切相关。许多问题的解决都会借助一元二次不等式的解法。因此,一元二次不等式的解法在整个高中数学教学中具有很强的基础性,体现出很大的工具作用。 2.教学目标定位。 根据教学大纲要求、高考考试大纲说明、新课程标准精神、高一学生已有的知识储备状况和学生心理认知特征,我确定了四个层面的教学目标。第一层面是面向全体学生的知识目标:熟练掌握一元二次不等式的两种解法,正确理解一元二次方程、一元二次不等式和二次函数三者的关系。第二层面是能力目标,培养学生运用数形结合与等价转化等数学思想方法解决问题的能力,提高运算和作图能力。第三层面是德育目标,通过对解不等式过程中等与不等对立统一关系的认识,向学生逐步渗透辨证唯物主义思想。第四层面是情感目标,在教师的启发引导下,学生自主探究,交流讨论,培养学生的合作意识和创新精神。 3.教学重点、难点确定。 本节课是在复习了一次不等式的解法之后,利用二次函数的图象研究一元二次不等式的解法。只要学生能够理解一元二次方程、一元二次不等式和二次函数三者的关系,并利用其关系解不等式即可。因此,我确定本节课的教学重点为一元二次不等式的解法,关键是一元二次方程、一元二次不等式和二次函数三者的关系。 二.教法学法分析: 数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,使学生在学习中培养坚强的意志品质、形成良好的道德情感。为了更好地体现课堂教学中“教师为主导,学生为主体”的教学关系和“以人为本,以学定教”的教学理念,在本节课的教学过程中,我将紧紧围绕教师组织——启发引导,学生探究——交流发现,组织开展教学活动。我设计了①创设情景——引入新课,②交流探究——发现规律,③启发引导——形成结论,④练习小结——深化巩固,⑤思维拓展——提高能力,五个环环相扣、层层深入的教学环节,在教学中注意关注整个过程和全体学生,充分调动学生积极参与教学过程的每个环节。 三.教学过程分析: