搜档网
当前位置:搜档网 › (完整版)相似三角形性质及其应用练习题

(完整版)相似三角形性质及其应用练习题

(完整版)相似三角形性质及其应用练习题
(完整版)相似三角形性质及其应用练习题

相似三角形性质及其应用

1.掌握相似三角形对应高线的比,对应中线的比和对应角平分线的比都等于相似比,相似三角形面积的比等于相似比的平方等性质,能应用他们进行简单的证明和计算。

2.掌握直角三角形中成比例的线段:斜边上的高线是两条直角边在斜边上的射影的比例中项;每一条直角边是则条直角边在斜边上的射影和斜边的比例中项,会用他们解决线段成比例的简单问题。

考查重点与常见题型

1. 相似三角形性质的应用能力,常以选择题或填空形式出现,如: 若两个相似三角形的对应角的平分线之比是1∶2,则这两个三角形的对应高线之比是---------,对应中线之比是------------,周长之比是---------,面积之比是-------------,若两个相似三角形的面积之比是1∶2,则这两个三角形的对应的角平分线之比是----------,对应边上的高线之比是-------- 对应边上的中线之比是----------,周长之比是--------------,

2. 考查直角三角形的性质,常以选择题或填空题形式出现,如: 如图,在Rt ΔABC 中,∠ACB=90°,

CD ⊥AB 与D ,AC=6,BC=8, 则AB=--------,CD=---------,

AD=---------- ,BD=-----------。,

3. 综合考查三角形中有关论证或计算能力,常以中档解答题形式出现。 预习练习

1. 已知两个相似三角形的周长分别为8和6,则他们面积的比是( )

2. 有一张比例尺为1 4000的地图上,一块多边形地区的周长是60cm ,面积是250cm 2

,则

这个地区的实际周长-------- m ,面积是----------m 2

3. 有一个三角形的边长为3,4,5,另一个和它相似的三角形的最小边长为7,则另一个

三角形的周长为----------,面积是-------------

4. 两个相似三角形的对应角平分线的长分别为10cm 和20cm ,若它们的周长的差是60cm ,

则较大的三角形的周长是----------,若它们的面积之和为260cm 2

,则较小的三角形的面积

为---------- cm 2

5. 如图,矩形ABCD 中,AE ⊥BD 于E ,若BE=4,DE=9,则矩形的面积是----------- 6.已知直角三角形的两直角边之比为12,则这两直角边在 斜边上的射影之比------------- 考点训练

1.两个三角形周长之比为95,则面积比为( )

(A )9∶5 (B )81∶25 (C )3∶ 5 (D )不能确定

2.Rt ΔABC 中,∠ACB=90°,CD ⊥AB 于D ,DE ⊥AC 于E ,那么和ΔABC 相似但不全等的三角形共有( )

(A)1个 (B)2个 (C)3个 (D)4个

3.在Rt ΔABC 中,∠C=90°,CD ⊥AB 于D ,下列等式中错误的是( )

(A )AD ? BD=CD 2 (B )AC ?BD=CB ?AD (C )AC 2=AD ?AB (D )AB 2=AC 2+BC

2

4.在平行四边形ABCD 中,E 为AB 中点,EF 交AC 于G ,交AD 于F ,AF FD =13 则CG

GA 的比值

是( )

(A )2 (B )3 (C )4 (D )5

5.在Rt ΔABC 中,AD 是斜边上的高,BC=3AC 则ΔABD 与ΔACD 的面积的比值是( ) (A )2 (B )3 (C )4 ( D )8

6.在Rt ΔABC 中,∠ACB=90°,CD ⊥AB 于D ,则BD ∶AD 等于( )

(A )a ∶b (B )a 2

∶b 2

(C ) a ∶ b (D )不能确定

7.若梯形上底为4CM ,下底为6CM ,面积为5CM 2

,则两腰延长线与上底围成的三角形的面积是----------

8.已知直角三角形的斜边的长为13CM ,两条直角边的和为17CM ,则斜边上的高的长度为

-------------

9..Rt ΔABC 中,CD 是斜边上的高线,,AB=29。AD=25,则DC=--------- 10.平行四边形ABCD 中,E 为BA 延长线上的一点,CE 交AD 于F 点,若AE ∶AB=1∶3则S ABCF ∶S CDF =--------- 11.如图,在ΔABC 中,D 为AC 上一点,E 为延长线上一点,

且BE=AD ,ED 和AB 交于F 求证:EF ∶FD=AC ∶BC

12.如图,在ΔABC 中,∠ABC =90°,CD ⊥AB 于D ,DE ⊥AC 于E , 求证:CE AE =BC 2

AC

2

解题指导

1. 如图,在Rt ΔABC 中,∠ADB=90°,CD ⊥AB 于C ,AC=20CM,BC=9CM,求AB 及BD 的长

2. 如图,已知ΔABC 中,AD 为BC 边中线,E 为AD 上一点,并且CE=CD,

∠EAC=∠B,求证:ΔAEC ∽ΔBDA,DC 2

=AD ?AE

A B C D

A B C D

E

A

B

C

D

E A B D

E C

3. 如图,已知P 为ΔABC 的BC 边上的一点,PQ ∥AC 交AB 于Q ,PR ∥AB 交AC 于R ,求证:

ΔAQR 面积为ΔBPQ 面积和ΔCPQ 面积的比例中项。

4. 如图,已知P ΔABC 中,AD ,BF 分别为BC ,AC 边上的高,过D 作AB 的垂线交AB 于E ,

交BF 于G ,交AC 延长线于H ,求证:DE 2

=EG ?EH

5. 如图,已知正方形ABCD ,E 是AB 的中点,F 是AD 上的一点,EG ⊥CF 且AF=14 AD ,于,(1)求证:CE 平分∠BCF,(2) 14

AB 2

=CG ?FG

6.如图,在正方形ABCD 中,M 为AB 上一点,N 为BC 上一点,并且BM=BN ,BP ⊥MC 于P 求证:DP ⊥NP

D

A M N

B

C P B A C P Q

R A B

C

D E F G H

A B C D E F G

A C

G F

B

D

E

G 《相似三角形的性质》习题精选

一. 填空:

1. 在△ABC 中,AB=AC ,∠A=360 ,∠B 的平分线交 AC 于 D , △BCD ∽△____,且BC_____。

2. △ABC ∽△A 1B 1C 1,,AB=4,A 1B 1=12,则它们对应边上的高的比是 ,若BC 边上的中线为1.5,则B 1C 1上的中线A 1D 1=_______ 3. 如果两个相似三角形的周长为6cm 和15cm ,那么两个相似三角形的相似比为_______

4. 在△ABC 中,BC=54cm ,CA=45cm ,AB=63cm ,若另一个与它相似的三角形的最短边长为15cm ,则其周长为_____ 5. 在Rt △ABC 中,CD 是斜边AB 上的高,若BD=9,DC=12,则AD=_____,BC=_____ 6. △ABC ∽△A 1B 1C 1,,且△ABC 的周长:△A 1B 1C 1的周长=11:13,又A 1B 1-AB=1cm ,则AB=_____cm ,A 1B 1=_______cm 。 7. 在梯形ABCD 中,AD ∥BC ,对角线BD 分成的两部分面积的比是1:2,

EF 是中位线,则被EF 分成的两部分面积的比S 四边形AEFD :S 四边形BCEF =_______

8. 如图,DEFG 是Rt △ABC 的内接正方形,若CF=8,DG=42, 则BE=_______, 二. 选择题:

9.两相似三角形面积的比是1:4,则它们对应边的比是( ) A.1:4 B 1:2 C 2:1 D 1:2

10 在Rt △ABC 中,∠C=900,,∠B=300,,

AD 为∠A 的平分线,DC 长为5cm ,那么BD=( ) A 10 cm B 5 cm C 15 cm D 以上都不对

11.三角形的3条中位线长是3cm ,4cm ,5cm ,则这个三角形面积是( ) A . 12cm B. 18cm C 24cm D 48cm 12.在◇ABCD ,AE :EB=1:2,S △AEF =6,S △CDF =( ) 13.A 12 B 15 C 24

三. 几何证明

13.△ABC 中,∠C=900,D ,E 分别是 AB ,AC 上的点,AD · AB=AE ·AC , 求证 ED ⊥AB

14 在△ABC 中,M 是AC 边的中点,且AE=4

1

BA ,连接EM ,并延长交BC 的延长线于D ,求证 BC=2CD

15 已知等腰三角形ABC 中,AB=AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F , 求证 :BF 2=EF ·EG

16 已知:在△ABC 中,∠BAC=900 AD ⊥BC 于D ,P 为AD 中点,BP 延长线交AC 于E ,EF ⊥BC 于F 求证: EF 2=AE ·AC

17 已知△ABC ,(1)∠ACB=900,P 为AB 边上一动点(不与点A 、B 重合)过点P 引直线截△ABC ,使截得三角形与△ABC 相似,则符合题意的直线最多能引多少条?并画图说明;(2)在第一问中,若BC=3,AC=4,设线段AP=X ,过点P 的直线截得的三角形面积为Y ,求Y 与X 之间的函数关系式,并注明X 的取值范围;(3)若∠ACB 为锐角或钝角,请回答第(1)问的问题

九年级数学下册相似三角形的性质同步测试(新版)新人教版

九年级数学下册相似三角形的性质同步测试(新版)新人教 版 1. 已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为3∶4,则△ABC 与△DEF 的面积之比为( D ) A .4∶3 B .3∶4 C .16∶9 D .9∶16 2. 如图27-2-41,AB ∥CD ,AO OD =23 ,则△AOB 的周长与△DOC 的周长比是 ( D ) 图27-2-41 A.25 B.32 C.49 D.23 3.两个相似多边形的面积比是9∶16,其中较小多边形的周长为36 cm ,则较大多边形的周长为( A ) A .48 cm B .54 cm C .56 cm D .64 cm 4.如图27-2-42,在△ABC 中,点D , E 分别是AB ,AC 的中点,则下列结论不正确的是( D ) A .BC =2DE B .△ADE ∽△ABC C.AD AE =AB AC D .S △ABC =3S △ADE 【解析】 ∵在△ABC 中,点D ,E 分别是边AB ,AC 的中点,∴DE ∥BC ,DE =12 BC ,∴BC =2DE ,故A 正确;∵DE ∥BC ,∴△ADE ∽△ABC ,故B 正确;∴AD AE =AB AC ,故C 正确;∵DE 是△ABC 的中位线,∴DE ∶BC =1∶2,∴S △ABC =4S △ADE ,故D 错误. 图27-2-42 图27-2-43 5.如图27-2-43,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( B )

A .23 B .33 C .43 D .63 【解析】 作DF ⊥BC 于F , ∵边长为4的等边△ABC 中,DE 为中位线, ∴DE =2,BD =2,∠B =60°, ∴BF =1,DF =BD2-BF2=22-12=3, ∴四边形BCED 的面积为12DF ·(DE +BC )=12 ×3×(2+4)=33.故选B. 6.在△ABC 和△DEF 中,AB =2DE ,AC =2DF ,∠A =∠D ,如果△ABC 的周长是16,面积是12,那么△DEF 的周长﹨面积依次为( A ) A .8,3 B .8,6 C .4,3 D .4,6 【解析】 ∵AB =2DE ,AC =2DF ,∴ AB DE =AC DF =2,又∠A =∠D ,∴△ABC ∽△DEF ,且相似比为2,∴△ABC 与△DEF 的周长比为2,面积比为4,又∵△ABC 的周长为16,面积为12,∴△DEF 的周长为16×12 =8,△DEF 的面积为12×14 =3. 7. 如图27-2-44,在△ABC 中,点D ,E 分别在边AB ,AC 上,且AE AB =AD AC =12 ,则S △ADE ∶S 四 边形BCED 的值为( C ) 图27-2-44 A .1∶3 B. 1∶2 C. 1∶3 D. 1∶4 8.已知△ABC ∽△A ′B ′C ′,相似比为3∶4,若△ABC 的周长为6,则△A ′B ′C ′的周长为__8__. 【解析】 ∵△ABC ∽△A ′B ′C ′,∴△ABC 的周长∶△A ′B ′C ′的周长=3∶4,∵△ABC 的周长为6,∴△A ′B ′C ′的周长=6×43 =8. 9.已知△ABC ∽△DEF ,△ABC 的周长为3,△DEF 的周长为1,则△ABC 与△DEF 的面积之比为__9∶1__. 【解析】 ∵△ABC ∽△DEF ,△ABC 的周长为3,△DEF 的周长为1,∴△ABC 与△DEF 的相似比是3∶1,∴△ABC 与△DEF 的面积之比为9∶1. 图27-2-45 10.如图27-2-45,在△ABC 中,DE ∥BC ,DE 分别交边AB ,AC 于D ,E 两点,若AD ∶AB =1∶3,则△ADE 与△ABC 的面积比为__1∶9__.

经典相似三角形练习题(附参考答案)

相似三角形 一.解答题(共30小题) 1.如图,在△ABC 中,DE ∥BC ,EF ∥AB ,求证:△ADE ∽△EFC . 2.如图,梯形ABCD 中,AB ∥CD ,点F 在BC 上,连DF 与AB 的延长线交于点G . (1)求证:△CDF ∽△BGF ; (2)当点F 是BC 的中点时,过F 作EF ∥CD 交AD 于点E ,若AB=6cm ,EF=4cm ,求CD 的长. 3.如图,点D ,E 在BC 上,且FD ∥AB ,FE ∥AC . 求证:△ABC ∽△FDE . 4.如图,已知E 是矩形ABCD 的边CD 上一点,BF ⊥AE 于F ,试说明:△ABF ∽△EAD . 5.已知:如图①所示,在△ABC 和△ADE 中,AB=AC ,AD=AE ,∠BAC=∠DAE ,且点B ,A ,D 在一条直线上,连接BE ,CD ,M ,N 分别为BE ,CD 的中点. (1)求证:①BE=CD ;②△AMN 是等腰三角形; (2)在图①的基础上,将△ADE 绕点A 按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立; (3)在(2)的条件下,请你在图②中延长ED 交线段BC 于点P .求证:△PBD ∽△AMN . 6.如图,E 是?ABCD 的边BA 延长线上一点,连接EC ,交AD 于点F .在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明. 7.如图,在4×3的正方形方格中,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上. (1)填空:∠ABC= _________ °,BC= _________ ; (2)判断△ABC 与△DEC 是否相似,并证明你的结论. 8.如图,已知矩形ABCD 的边长AB=3cm ,BC=6cm . 某一时刻,动点M 从A 点出发沿AB 方向以1cm/s 的速度向B 点匀速运动;同时,动点N 从D 点出发沿DA 方向以2cm/s 的速度向A 点匀速运动,问: (1)经过多少时间,△AMN 的面积等于矩形ABCD 面积的? (2)是否存在时刻t ,使以A ,M ,N 为顶点的三角形与△ACD 相似?若存在,求t 的值;若不存在,请说明理由. 9.如图,在梯形ABCD 中,若AB ∥DC ,AD=BC ,对角线BD 、AC 把梯形分成了四个小三角形. (1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例) (2)请你任选一组相似三角形,并给出证明. 10.如图△ABC 中,D 为AC 上一点,CD=2DA ,∠BAC=45°,∠BDC=60°,CE ⊥BD 于E ,连接AE . (1)写出图中所有相等的线段,并加以证明; (2)图中有无相似三角形?若有,请写出一对; 若没有,请说明理由; (3)求△BEC 与△BEA 的面积之比.

11、相似三角形的性质及其应用

11 1 1 1 1 1111111 1 11旋转变换型 将EAD 绕点A 旋转 BD AC 向下平 移DE 对称交 换型 交换AD 与AE A E D D E D D E D E D E C B A A B C A B C C B A C B(E)A C B C B A B C D E D A 老师姓名 学生姓名 教材版本 北师大版 学科名称 年级 上课时间 课题名称 相似三角形的性质及其应用 教学目标 及重难点 教 学 过 程 知识点回顾: 一、相似三角形: 1、定义:如果两个三角形的各角对应 各边对应 那么这两个三角形相似 2、性质:⑴相似三角形的对应角 对应边 ⑵相似三角形对应高线的比、对应角平分线的比、对应 的比都等于 ⑶相似三角形周长的比等于 面积的比等于 3、判定:⑴两角 的两三角形相似 ⑵两边对应 且夹角 的两三角形相似 ⑶三组对应边的比 的两三角形相似 【提醒:1、全等是相似比为 的特殊相似 2、根据相似三角形的性质的特质和判定,要证四条线段的比相等一般要先证 判定方法中最常用的是 三组对应边成比例的两三角形相似多用在“方格”三角形中】 4、直角三角形射影定理: 5、相似的常见基本图形: 【经典例题】 例1、如图,DE ∥BC ,S ΔDOE ∶S ΔCOB =4∶9,求AD ∶BD. 例2、在锐角△ABC 中,AB=4,BC=5,∠ACB=45°,将△ABC 绕点B 按逆时针方向旋转,得 D A B C

到△A1BC1. (1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数; (2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积; 例3、如图,在RtΔABC中,∠C=90°,AC=4,BC=3. (1)如图(1),四边形DEFG为ABC的内接正方形,求正方形的边长. (2)如图(2),三角形内有并排的两个相等的正方形,它们组成的矩形内接于ΔABC,求正方形的边长. (3)如图(3),三角形内有并排的三个相等的正方形,它们组成的矩形内接于ΔABC,求正方形的边长. (4) 如图(4),三角形内有并排的n个相等的正方形,它们组成的矩形内接于ΔABC,请写出正方形的边长. 相似三角形的应用: 知识点1:利用阳光下的影子 例1、某同学的身高为1.66米,测得他在地面上的影长为2.49米,如果这时测得操场上旗杆的 影长为42.3,那么该旗杆的高度是多少米? 知识点2:利用标杆 例2、某小组的同学利用标杆测量某旗杆的高度,将一条5米高的标杆竖在某一位置,有一名同学

相似三角形性质应用

相似三角形的性质及应用 相似三角形对应角相等,对应边成比例;相似三角形周长的比等于相似比,面积比等于相似比的平方。 1.△ABC∽△DEF,若△ABC的边长分别为5cm、6cm、7cm,而4cm是△DEF中一边的长度,你能求出△DEF的另外两边的长度吗?试说明理由. 总结:一定要深刻理解“对应”,若题中没有给出图形,要特别注意是否有图形的分类 2.如图所示,已知△ABC中,AD是高,矩形EFGH内接于△ABC中,且长边FG在BC上,矩形相邻两边的比为1:2,若BC=30cm,AD=10cm.求矩形EFGH的面积. 总结:解决有关三角形的内接矩形、内接正方形的计算问题,经常利用相似三角形“对应高的比等于相似比”和“面积比等于相似比的平方”的性质,若图中没有高可以先作出高. 举一反三 【变式1】△ABC中,DE∥BC,M为DE中点,CM交AB于N,若,求. 总结:图中有两个“”字形,已知线段AD与AB的比和要求的线段ND与NB的比分别在这两个“”字形,利用M为DE中点的条件将条件由一个“”字形转化到另一个“”字形,从而解决问题.

相似三角形的应用 1.如图,我们想要测量河两岸相对应两点A、B之间的距离(即河宽) ,你有什么方法? 方案1:如上左图,构造全等三角形,测量CD,得到AB=CD,得到河宽. 方案2: 思路点拨:这是一道测量河宽的实际问题,还可以借用相似三角形的对应边的比相等,比例式中四条线段,测出了三条线段的长,必能求出第四条. 如上右图,先从B点出发与AB成90°角方向走50m到O处立一标杆,然后方向不变,继续向前走10m到C处,在C处转90°,沿CD方向再走17m到达D处,使得A、O、D在同一条直线上.那么A、B之间的距离是多少? 解:∵AB⊥BC,CD⊥BC ∴∠ABO=∠DCO=90° 又∵∠AOB=∠DOC ∴△AOB∽△DOC ∴ ∵BO=50m,CO=10m,CD=17m ∴AB=85m 答:河宽为85m. 总结:方案2利用了“”型基本图形,实际上测量河宽有很多方法,可以用“”型基本图形,借助相似;也可用等腰三角形等等. 举一反三 【变式1】如图:小明欲测量一座古塔的高度,他站在该塔的影子上前后移动,直到他本身影子的顶端正好与塔的影子的顶端重叠,此时他距离该塔18 m,已知小明的身高是1.6 m,他的影长是2 m. (1)图中△ABC与△ADE是否相似?为什么? (2)求古塔的高度.

相似三角形的性质(2)练习题

4.7相似三角形的性质(2) 1.判断题: (1)如果把一个三角形各边同时扩大为原来的10倍,那么它的周长也扩大为原来的10倍。 (2)如果把一个三角形的面积扩大为原来的9倍,那么它的三边也扩大为原来的9倍。 2. (1)已知ΔABC与ΔA′B′C′的相似比为2:3,则对应边上中线之比,周长比为 ,面积之比为。 (2)已知ΔABC∽ΔA′B′C′,且面积之比为9:4,则相似比,周长之比为 ,对应边上的高线之比。 3.把一个三角形变成和它相似的三角形,如果面积扩大为原来的100倍,那么边长扩大为原来的______倍。 4.两个相似三角形的一对对应边分别是3厘米和2 厘米, (1)它们的周长之差是6厘米,这两个三角形的周长分别是。 (2)它们的面积之和是26平方厘米,这两个三角形的面积分别是_____________。 例2:如图:将△ABC沿BC方向平移得到△DEF,△ABC与△DEF重叠部分(图中阴影部分)的面积是△ABC的面积的一半。已知BC=2,求△ABC平移的距离。 C F E

5.如图1,在△ABC 中,D 是AB 的中点,DE//BC , 则(1)S △ADE ﹕S △ABC = ; (2)S △ADE ﹕S 梯形DBCE = . 6.如图2,在△ABC 中,D 、F 是AB 的三 等分点,DE//FG//BC , 则(1)S △ADE ﹕S △AFG ﹕S △ABC = ; (2)S △ADE ﹕S 梯形DFGE ﹕S 梯形FBCG= . 7.在△ABC 中,DE//BC ,且△ADE 的面积等于梯形BCED 的面积,则△ADE 与△ABC 的相似比是_______。 8.在△ABC 中, DE// FG// BC ,且△ADE 的面积,梯形FBCG 的面积,梯形DFGE 的面积均相等,则△ADE 与△ABC 的相似比是_______;△AFG 与△ABC 的相似比是_______. 9.已知:如图,在△ABC 中,DE//BC ,EF//AB ,△ADE 和△EFC 的面积分别为4和9。 求:△ABC 的面积。 10.如图,平行四边形ABCD 中,AE :EB=1:2, (1)求△AEF 与△CDF 周长的比; (2)如果S △AEF=6 cm 2,求S △CDF 。 图2

相似三角形经典证明题解析

相似三角形经典证明题 1.如图,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,B ∠和C ∠都为锐角,M 为AB 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在AMN △中,设MN 的长为x ,MN 上的高为h . (1)请你用含x 的代数式表示h . (2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面的点为1A ,1A MN △与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少?

2.如图,已知直线128:33 l y x =+与直线2:216l y x =-+相交于点C l l 12,、分别交x 轴于A B 、两点.矩形DEFG 的顶点D E 、分别在直线12l l 、上,顶点F G 、都在x 轴上,且点G 与点B 重合. (1)求ABC △的面积; (2)求矩形DEFG 的边DE 与EF 的长; (3)若矩形DEFG 从原点出发,沿x 轴的反方向以每秒1个单位长度的速度平移,设移动时间为(012)t t ≤≤秒,矩形DEFG 与ABC △重叠部分的面积为S ,求S 关于t 的函数关系式,并写出相应的t 的取值范围.

3.如图,矩形ABCD 中,3AD =厘米,AB a =厘米(3a >).动点M N ,同时从B 点出发,分别沿B A →,B C →运动,速度是1厘米/秒.过M 作直线垂直于AB ,分别交AN ,CD 于P Q ,.当点N 到达终点C 时,点M 也随之停止运动.设运动时间为t 秒. (1)若4a =厘米,1t =秒,则PM =______厘米; (2)若5a =厘米,求时间t ,使PNB PAD △∽△,并求出它们的相似比; (3)若在运动中,存在某时刻使梯形PMBN 与梯形PQDA 的面积相等,求a 的取值范围; (4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN ,梯形PQDA ,梯形PQCN 的面积都相等?若存在,求a 的值;若不存在,请说明理由. 4.如图,已知△ABC 是边长为6cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 匀速运动,其中点P 运动的速度是1cm/s ,点Q 运动的速度是2cm/s ,当点Q 到达点C 时,P 、Q 两点都停止运动,设运动时间为t (s ),解答下列问题: (1)当t =2时,判断△BPQ 的形状,并说明理由; (2)设△BPQ 的面积为S (cm 2),求S 与t 的函数关系式; (3)作QR //BA 交AC 于点R ,连结PR ,当t 为何值时,△APR ∽△PRQ ? N

相似三角形的性质及应用练习题

相似三角形的性质及应用练习卷 一、填空题 1、已知两个相似三角形的相似比为3,则它们的周长比为 ; 2、若△ABC ∽△A ′B ′C ′,且 4 3 =''B A AB ,△ABC 的周长为12cm,则△A ′ B ′ C ′的周长为 ; 3、如图1,在△A BC 中,中线BE 、C D 相交于点G,则BC DE = ;S △GE D:S △GB C = ; 4、如图2,在△ABC中, ∠B=∠AED,AB=5,AD=3,CE=6,则AE= ; 5、如图3,△ABC 中,M 是AB 的中点,N 在BC 上,BC=2AB,∠BM N=∠C,则△ ∽△ ,相似比为 , NC BN = ; 6、如图4,在梯形ABCD 中,AD ∥BC ,S △ADE :S △BCE =4:9,则 S △A BD :S △A BC = ; 7、如图5,在△ABC 中,BC=12c m,点D 、F 是AB 的三等分点,点E 、G 是AC 的三等分点,则DE+FG+B C= ; 8、两个相似三角形的周长分别为5cm 和16cm ,则它们的对应角的平分线的比为 ; 9、两个三角形的面积之比为2:3,则它们对应角平分线的比为 ,对应边的高的比为 ;对应边的中线的比 周长的比 10、已知有两个三角形相似,一个边长分别为2、3、4,另一个三角形最长边长为12,则x、 y的值为 ; 二、选择题 11、下列多边形一定相似的为( ) A 、两个矩形 B 、两个菱形 C 、两个正方形 D 、两个平行四边形 12、在△ABC 中,BC=15cm,CA=45c m,AB =63c m,另一个和它相似的三角形的最短边是5cm , 则最长边是( ) A B C D E G 图1 A B C D E 图2 A B M N 图3 A B C D E 图4 A B D F 图5 G E

相似三角形的性质练习题

§18.3.3 相似三角形的性质 一、教学目标 1.利用前面几节的相关结论经过简单的推导得出相似三角形的各条性质; 2.运用相似三角形性质解决简单的问题。 二、教学重难点 教学重点:相似三角形的各条性质的掌握 教学难点:相似三角形性质中面积比的结论的得出。 三、教学过程设计 1、创设情境,设疑激趣 两个三角形相似,除了对应边成比例、对应角相等之外,还可以得到许多有用的结果.例如,在图18.3.9中,△ABC和△A′B′C′是两个相似三角形,相似比为k,其中AD、A′D′分别为BC、B′C′边上的高,那么AD、A′D′之间有什么关系? 2、探索研究,形成新知 △ABD和△A′B′D′都是直角三角形,而∠B=∠B′,因为有两个角对应相等,所以这两个三角形相似.那么 由此可以得出结论:相似三角形对应高的比等于相似比. (通过研究讨论,让学生借助已有的知识对新问题进行研究,培养学生的思考探索能力,同时让他们自己得出结论,感受成功的喜悦。) 思考 图18.3.11中,△ABC和△A′B′C′相似,AD、A′D′分别为对应边上 的中线,BE、B′E′分别为对应角的角平分线,那么它们之间有什么关系呢?

可以得到的结论是_________________________________________. 想一想:两个相似三角形的周长比是什么? 可以得到的结论是_________________________________________.(让学生用类似于“相似三角形对应高的比等于相似比”的方法进行研究,培养学生的推理能力。) 3、深入探究,得出结论 图18.3.10中(1)、(2)、(3)分别是边长为1、2、3的等边三角形,它们都相似. (2)与(1)的相似比=________________, (2)与(1)的面积比=________________; (3)与(1)的相似比=________________, (3)与(1)的面积比=________________. 从上面可以看出当相似比=k时,面积比=k2.数学上可以说明,对于一般的相似三角形也具有这种关系. 由此可以得出结论:相似三角形的面积比等于________________________.(通过形象的图形比较,使学生直观地感知相似图形面积比与相似比之间的关系,便于被学生所接受。) 4、反馈练习,思维拓展 练习 (1)如果两个三角形相似,相似比为3∶5,则对应角的角平分线的比等于多少? (2)相似三角形对应边的比为0.4,那么相似比为___________,对应角的角平分线的比为__________,周长的比为___________,面积的比为_____________. (3)如图,在正方形网格上有△A1B1C1和△A2B2C2,这两个三角形相似吗?如果相似,求出△A1B1C1和△A2B2C2的面积比. (4)若两个相似三角形的最大边长为35cm和14cm,它们的周长差为60cm,则教大三角形的周长是多少?

相似三角形的综合应用(提高)

相似三角形的应用 【学习目标】 1、探索相似三角形的性质,能运用性质进行有关计算. 2、通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题). 【知识回顾】 一、相似三角形的性质 (1)对应边的比相等,对应角相等. (2)相似三角形的周长比等于相似比. (3)相似三角形的面积比等于相似比的平方...... . (4)相似三角形的对应边上的高、中线、角平分线的比等于相似比. 二、相似三角形的应用: 1、利用三角形相似,可证明角相等;线段成比例(或等积式); 2、利用三角形相似,求线段的长等 3、利用三角形相似,可以解决一些不能直接测量的物体的长度.如求河的宽度、求建筑物的高度等. 【典型例题】 例1:如图,△ABC 是一块锐角三角形余料,边BC=120mm , 高AD=80mm , 要把它加工成矩形零件,使一边在BC 上,其余两个顶点分别在边AB 、AC 上, (1)若这个矩形是正方形,那么边长是多少? (2)若这个矩形的长是宽的2倍,则边长是多少? 【同步练习】如图,△ABC 是一块三角形余料,AB=AC=13cm ,BC=10cm ,现在要把它加工成正方形零件,使正方形的一边在△ABC 的边上,其余两个顶点分别在三角形另外两条边上.试求正方形的边长是多少? 例2:阅读以下文字并解答问题: 在“测量物体的高度” 活动中,某数学兴趣小组的4名同学选择了测量学校里的四棵树的高 A B C Q M D N P E

度.在同一时刻的阳光下,他们分别做了以下工作: 小芳:测得一根长为1米的竹竿的影长为0.8米,甲树的影长为4.08米(如图1). 小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图2),墙壁上的影长为1.2米,落在地面上的影长为2.4米. 小丽:测量的丙树的影子除落在地面上外,还有一部分落在教学楼的第一级台阶上(如图3),测得此影子长为0.2米,一级台阶高为0.3米,落在地面上的影长为4.4米. 小明:测得丁树落在地面上的影长为2.4米,落在坡面上影长为3.2米(如图4).身高是1.6m 的小明站在坡面上,影子也都落坡面上,小芳测得他的影长为2m . (1)在横线上直接填写甲树的高度为 米. (2)求出乙树的高度(画出示意图). (3)请选择丙树的高度为( ) A 、6.5米 B 、5.75米 C 、6.05米 D 、7.25米 (4)你能计算出丁树的高度吗?试试看. 【同步练习】如图,有一路灯杆AB(底部B 不能直接到达),在灯光下,小明在点D 处测得自己的影长DF =3m ,沿BD 方向到达点F 处再测得自己得影长FG =4m ,如果小明得身高为1.6m ,求路灯杆AB 的高度. 图1 图2 图3 图 4

最新《相似三角形》判定与性质测试卷

《相似三角形》判定与性质测试卷 一、细心填一填(共30分) 1.已知:如图,在ABC △中,DE ∥BC ,DE 分别与AB 、AC 相交于D 、E ,:1:3AD AB =.若2DE =,则BC =_________. 第1题图 第2题图 第6题图 第7题图 2.在□ABCD 中,E 为CD 上一点,连接AE 、BD,且AE 、BD 交于点F ,S △DEF :S △ABF =4:25,则DE :AB=_________. 3.已知789x y z ==,则x y z x z +++的值为 . 4.在一张由复印机复印出来的纸上,一个多边形图案的一条边由原来的1cm 变成2cm ,那么这次复印出来的多边形图案面积是原来的 . 5.已知,,,a b c d 是成比例线段,且3,6,15,a cm b cm c cm d ===则= . 6.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O )20米的A 处,则小明的影子AM 长为 米. 7.如图,∠DAB=∠CAE,请你再补充一个条件___ (写一个即可)使得△ABC ∽△ADE. 8.在ΔABC 中,AB =4,BC =9,AC =8,在AC 上取一点M ,当AM 的长为 时,ΔAMB∽ΔABC. 9.如图,已知L 1//L 2//L 3,下列比例式中不成立的是 . (填序号及可) ① BC CE DF AD = ②AF BC BE AD = ③CE AD DF BC = ④CE BE DF AF = 第9题图 第11题图 第13题图 10.已知AD 为Rt △ABC 斜边BC 上的高,且AB=15cm ,BD=9cm ,则AD= ,CD= . 二、选择题 (每题3分,共30分) 11.如图,在Rt △ABC 中,AD ⊥BC 与D ,DE ⊥AB 与E ,若AD=3,DE=2,则AC=( ) A 、2 21 B 、215 C 、29 D 、15 12.下列三角形中,一定相似的是( ) A .两个等腰三角形 B .两个直角三角形 C .两个等边三角形 D .两个钝角三角形

经典相似三角形练习的题目(附参考答案详解)

实用标准文案 相似三角形 一.解答题(共30小题) 1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC. 2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF; (2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长. 3.如图,点D,E在BC上,且FD∥AB,FE∥AC. 求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD. 5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形; (2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立; (3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.

6.如图,E是?ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明. 7.如图,在4×3的正方形方格中,△ABC和△DEF 的顶点都在边长为1的小正方形的顶点上. (1)填空:∠ABC= _________ °,BC= _________ ; (2)判断△ABC与△DEC是否相似,并证明你的结论. 8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm. 某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问: (1)经过多少时间,△AMN的面积等于矩形ABCD面积的? (2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t 的值;若不存在,请说明理由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD 、AC 把梯形分成了四个小三角形. (1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例) (2)请你任选一组相似三角形,并给出证明. 10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE. (1)写出图中所有相等的线段,并加以证明; (2)图中有无相似三角形?若有,请写出一对; 若没有,请说明理由; (3)求△BEC与△BEA的面积之比.

初中数学 相似三角形的性质及应用练习卷

第2页 共2页 相似三角形的性质及应用练习卷 班级 姓名 座号 评分 一、填空题 1、已知两个相似三角形的相似比为3,则它们的周长比为 ; 2、若△ABC ∽△A ′B ′C ′,且 4 3 =''B A AB , △ABC 的周长为12cm ,则△A ′B ′C ′的周长为 ; 3、如图1,在△ABC 中,中线BE 、CD 相交于点G ,则BC DE = ;S △GED :S △GBC = ; 4、如图2,在△ABC 中, ∠B=∠AED ,AB=5,AD=3,CE=6,则AE= ; 5、如图3,△ABC 中,M 是AB 的中点,N 在BC 上,BC=2AB ,∠BMN=∠C ,则△ ∽△ ,相似比为 , NC BN = ; 6、如图4,在梯形ABCD 中,AD ∥BC ,S △ADE :S △BCE =4:9,则S △ABD :S △ABC = ; 7、两个相似三角形的周长分别为5cm 和16cm ,则它们的对应角的平分线的比为 ; 8、如图5,在△ABC 中,BC=12cm ,点D 、F 是AB 的三等分点,点E 、G 是AC 的三等分点,则DE+FG+BC= ; 9、两个三角形的面积之比为2:3,则它们对应角的比为 ,对应边的高的比为 ; 10、已知有两个三角形相似,一个边长分别为2、3、4,另一个边长分别为x 、y 、12,则x 、y 的 值分别为 ; 二、选择题 11、下列多边形一定相似的为( ) A 、两个矩形 B 、两个菱形 C 、两个正方形 D 、两个平行四边形 12、在△ABC 中,BC=15cm ,CA=45cm ,AB=63cm ,另一个和它相似的三角形的最短边是5cm , 则最长边是( ) A 、18cm B 、21cm C 、24cm D 、19.5cm 13、如图,在△ABC 中,高BD 、C E 交于点O ,下列结论错误的是( ) A 、CO ·CE=CD ·CA B 、OE ·OC=OD ·OB C 、A D ·AC=A E ·AB D 、CO ·DO=BO ·EO 14、已知,在△ABC 中,∠ACB=900,CD ⊥AB 于D ,若BC=5,CD=3,则AD 的长为( ) A 、2.25 B 、2.5 C 、2.75 D 、3 15、如图,正方形ABCD 的边BC 在等腰直角三角形PQR 的底边QR 上, 其余两个顶点A 、D 在PQ 、PR 上,则PA :PQ 等于( ) A 、1:3 B 、1:2 C 、1:3 D 、2:3 A B C D E G 图1 A B C D E 图2 A B C M N 图3 A B C D E 图4 A B C D F 图5 G E A E B C D O A P B C D Q R

相似三角形的性质与判定练习题 含答案

相似三角形的性质与判定 副标题 题号一二总分 得分 一、选择题(本大题共7小题,共分) 1.如图,在中,点P在边AB上,则在下列四个条件中::; ;;,能满足与相似的条件是 A. B. C. D. 【答案】D 【解析】【分析】 本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似根据有两组角对应相等的两个三角形相似可对进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对 进行判断. 【解答】 解:当,, 所以∽; 当,, 所以∽; 当, 即AC::AC, 所以∽; 当,即PC::AB, 而, 所以不能判断和相似. 故选D. 2.如图,在矩形ABCD中,,,将其折叠使AB落在对角线AC上,得到 折痕AE,那么BE的长度为 A. B. C. D. 【答案】C 【解析】【分析】 根据对称性可知:,,又,所以 ∽,根据相似的性质可得出:,,在 中,由勾股定理可求得AC的值,,,将这些值代入该式求出BE的值.【解答】

解:设BE的长为x,则、 在中, , ∽两对对应角相等的两三角形相似 ,, , 故选:C. 3.如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测 得一根长为1m的竹竿的影长是,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上如图,他先测得留在墙壁上的影高为,又测得地面的影长为,请你帮她算一下,树高是 A. B. C. D. 【答案】C 【解析】 解:如图,设BD是BC在地面的影子,树高为x, 根据竹竿的高与其影子的比值和树高与其影子的比值相同得而, , 树在地面的实际影子长是, 再竹竿的高与其影子的比值和树高与其影子的比值相同得, , 树高是. 故选C. 此题首先要知道在同一时刻任何物体的高与其影子的比值是相同的,所以竹竿的高与其影子的比值和树高与其影子的比值相同,利用这个结论可以求出树高. 解题的关键要知道竹竿的高与其影子的比值和树高与其影子的比值相同. 4.如图,是在以点O为位似中心经过位似变换得到的,若 的面积与的面积比是16:9,则OA:为( ) A. 4:3 B. 3:4 C. 9:16 D. 16:9 【答案】A 【解析】【分析】 本题考查了位似变换、位似图形和相似三角形的性质的知识点,如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心先求出位似比,根据位似比等于相似比,再由相似三角形的面积比等于相似比的平方即可 【解答】

初三数学相似三角形典型例题(含标准答案)

初三数学相似三角形典型例题(含答案)

————————————————————————————————作者:————————————————————————————————日期:

初三数学相似三角形 (一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是: 1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。 2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。 3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。 4. 能熟练运用相似三角形的有关概念解决实际问题 本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。 本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。 相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。 (二)重要知识点介绍: 1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b c d a b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。 把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。 2. 比例性质: ①基本性质:a b c d ad bc =?= ②合比性质:±±a b c d a b b c d d =?= ③等比性质: ……≠……a b c d m n b d n a c m b d n a b ===+++?++++++=()0

相似三角形性质及其应用练习题

相似三角形性质及其应用 1.掌握相似三角形对应高线的比,对应中线的比和对应角平分线的比都等于相似比,相似三角形面积的比等于相似比的平方等性质,能应用他们进行简单的证明和计算。 2.掌握直角三角形中成比例的线段:斜边上的高线是两条直角边在斜边上的射影的比例中项;每一条直角边是则条直角边在斜边上的射影和斜边的比例中项,会用他们解决线段成比例的简单问题。 考查重点与常见题型 1. 相似三角形性质的应用能力,常以选择题或填空形式出现,如: 若两个相似三角形的对应角的平分线之比是1∶2,则这两个三角形的对应高线之比是---------,对应中线之比是------------,周长之比是---------,面积之比是-------------,若两个相似三角形的面积之比是1∶2,则这两个三角形的对应的角平分线之比是----------,对应边上的高线之比是-------- 对应边上的中线之比是----------,周长之比是--------------, 2. 考查直角三角形的性质,常以选择题或填空题形式出现,如: 如图,在Rt ΔABC 中,∠ACB=90°, CD ⊥AB 与D ,AC=6,BC=8, 则AB=--------,CD=---------, AD=---------- ,BD=-----------。, 3. 综合考查三角形中有关论证或计算能力,常以中档解答题形式出现。 预习练习 1. 已知两个相似三角形的周长分别为8和6,则他们面积的比是( ) 2. 有一张比例尺为1 4000的地图上,一块多边形地区的周长是60cm ,面积是250cm 2,则这个地区的实际周长-------- m ,面积是----------m 2 3. 有一个三角形的边长为3,4,5,另一个和它相似的三角形的最小边长为7,则另一个 三角形的周长为----------,面积是------------- 4. 两个相似三角形的对应角平分线的长分别为10cm 和20cm ,若它们的周长的差是60cm , 则较大的三角形的周长是----------,若它们的面积之和为260cm 2,则较小的三角形的面积为 ---------- cm 2 5. 如图,矩形ABCD 中,AE ⊥BD 于E ,若BE=4,DE=9,则矩形的面积是----------- 6.已知直角三角形的两直角边之比为12,则这两直角边在 斜边上的射影之比------------- 考点训练 1.两个三角形周长之比为95,则面积比为( ) (A )9∶5 (B )81∶25 (C )3∶ 5 (D )不能确定 2.Rt ΔABC 中,∠ACB=90°,CD ⊥AB 于D ,DE ⊥AC 于E ,那么和ΔABC 相似但不全等的三角形共有( ) (A)1个 (B)2个 (C)3个 (D)4个 3.在Rt ΔABC 中,∠C=90°,CD ⊥AB 于D ,下列等式中错误的是( ) (A )AD ? BD=CD 2 (B )AC ?BD=CB ?AD (C )AC 2 =AD ?AB (D )AB 2 =AC 2 +BC 2 4.在平行四边形ABCD 中,E 为AB 中点,EF 交AC 于G ,交AD 于F ,AF FD =13 则CG GA 的比值 是( ) (A )2 (B )3 (C )4 (D )5 5.在Rt ΔABC 中,AD 是斜边上的高,BC=3AC 则ΔABD 与ΔACD 的面积的比值是( ) (A )2 (B )3 (C )4 ( D )8

相似三角形的性质和判定测试试题

F E A C 相似三角形的性质和判定测试 姓名 得分? ? 一、 填空题 (每题3分,共30分) 1、相似三角形对应 、 、 的比都等于相似比. 2、相似多边形的周长比等于 ,面积比等于 . 3、如图,要使ΔABC ∽ΔACD ,从角的角度,需补充的条件是 . 4、已知ΔABC ∽ΔA′B′C′,若AC =1,A′C′=2,则ΔA′B′C′与ΔABC 的相似比是 . 5、已知ΔA BC ∽ΔA′B′C′,ΔABC 的周长是20cm,ΔA′B′C′的周长是12cm,ΔAB C的最长边为8cm ,则ΔA′B′C′的最长边是 cm . 6、如图,P 是ΔABC 的边AB 上一点,若ΔAPC ∽ΔA CB ,,则∠1=∠ . 7、在ΔA BC 中,AB =4,BC=9,A C=8,在AC 上取一点M,当A M的长为 时, ΔAM B∽ΔABC . (第11题) (第13题) 8、已知AD 为Rt △ABC 斜边BC 上的高,且AB=15cm,BD=9cm ,则AD = ,C D= 。 9、若△AB C∽△A ′B ′C′,且4 3 =''B A AB ,△ABC 的周长为12cm ,则△A ′ B ′ C ′的周长为 ;若△ABC 的面积为18cm 2 ,则△A ′B ′C ′的面积为 c m2。 10、两个相似三角形,其中一个三角形的两个内角分别是40°和30°,则另一个三角形的最大内角的度数是 . 二、选择题 (每题3分,共30分) 11、如图,在Rt △ABC 中,AD ⊥B C与D,DE ⊥AB 与E,若AD =3,DE=2,则AC =( ) D (第2题) 1 C P (第5题)

(完整版)相似三角形知识点及典型例题

相似三角形知识点及典型例题 知识点归纳: 1、三角形相似的判定方法 (1)定义法:对应角相等,对应边成比例的两个三角形相似。 (2)平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角 形与原三角形相似。 (3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两 个三角形相似。简述为:两角对应相等,两三角形相似。 (4)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。简述为:两边对应成比例且夹角相等,两三角形相似。 (5)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。简述为:三边对应成比例,两三角形相似。 (6)判定直角三角形相似的方法: ①以上各种判定均适用。 ②如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例, 那么这两个直角三角形相似。 ③直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。 #直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。 每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。 如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高, 则有射影定理如下: (1)(AD)2=BD·DC,(2)(AB)2=BD·BC , (3)(AC)2=CD·BC 。 注:由上述射影定理还可以证明勾股定理。即(AB)2+(AC)2=(BC)2。

典型例题: 例1 如图,已知等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ‖AB ,BG 分别交AD ,AC 于E 、 F ,求证:BE 2=EF·EG 证明:如图,连结EC ,∵AB =AC ,AD ⊥BC , ∴∠ABC =∠ACB ,AD 垂直平分BC ∴BE =EC ,∠1=∠2,∴∠ABC-∠1=∠ACB-∠2, 即∠3=∠4,又CG ∥AB ,∴∠G =∠3,∴∠4=∠G 又∵∠CEG =∠CEF ,∴△CEF ∽△GEC ,∴EG CE =CE EF ∴EC 2=EG· EF ,故EB 2=EF·EG 【解题技巧点拨】 本题必须综合运用等腰三角形的三线合一的性质,线段的垂直平分线的性质和相似三角形的基本图形来得到证明.而其中利用线段的垂直平分线的性质得到BE=EC ,把原来处在同一条直线上的三条线段BE ,EF ,EC 转换到相似三角形的基本图形中是证明本题的关键。 例2 已知:如图,AD 是Rt △ABC 斜BC 上的高,E 是AC 的中点,ED 与AB 的延长线相交于F ,求证:BA FB =AC FD 证法一:如图,在Rt △ABC 中,∵∠BAC =Rt ∠,AD ⊥BC , ∴∠3=∠C ,又E 是Rt △ADC 的斜边AC 上的中点, ∴ED=21 AC =EC ,∴∠2=∠C ,又∠1=∠2,∴∠1=∠3, ∴∠DFB =∠AFD ,∴△DFB ∽△AFD ,∴FD FB =AD BD (1) 又AD 是Rt △ABC 的斜边BC 上的高,∴Rt △ABD ∽Rt △CAD ,∴AD BD =AC BA (2) 由(1)(2)两式得FD FB =AC BA ,故BA FB =AC FD 证法二:过点A 作AG ∥EF 交CB 延长线于点G ,则BA FB =AG FD (1) ∵E 是AC 的中点,ED ∥AC ,∴D 是GC 的中点,又AD ⊥GC ,∴AD 是线段GC 的垂直平分线,∴AG =AC (2) 由(1)(2)两式得:BA FB =AC FD ,证毕。 【解题技巧点拨】

相关主题