搜档网
当前位置:搜档网 › 相似三角形的性质及其应用

相似三角形的性质及其应用

相似三角形的性质及其应用
相似三角形的性质及其应用

23.3相似三角形的性质及其应用(1)

教学目标:

1、经历相似三角形性质“相似三角形对应高线、对应中线、对应角平分线之比等于相似比”“相似三角形的周长之比等于相似比”和“相似三角形的面积之比等于相似比的平方”的探究过程.

2、掌握“相似三角形对应高线、对应中线、对应角平分线之比等于相似比”“相似三角形的周长之比等于相似比”和“相似三角形的面积之比等于相似比的平方”的两个性质.

3、会运用上述两个性质解决简单的几何问题.

重点与难点:

1、本节教学的重点是关于相似三角形的周长和面积的两个性质及对应线段的性质.

2、相似三角形的性质的证明,要用到相似三角形的判定及性质,过程比较复杂,是本节教学的难点.

知识要点:

三角形相似的条件:

1、相似三角形的对应角相等,对应边成比例.

2、相似三角形对应高线、对应中线、对应角平分线之比等于相似比.

3、相似三角形的周长比等于相似比;相似三角形的面积比等于相似比的平方.

重要方法:

1、相似三角形的相似比等于面积比的算术平方根.

2、相似三角形中的相似比和面积比的关系,应注意相似三角形这个前提,否则不成立.

教学过程:

一、问题情境

某施工队在道路拓宽施工时遇到这样一个问题,马路旁边原有一个面积为100平方米,周长为80米的三角形绿化地,由于马路拓宽绿地被削去了一个角,变成了一个梯形,原绿化地一边AB的长由原来的30米缩短成18米.现在的问题是:被削去的部分面积有多大?它的

周长是多少?

思考:你能够将上面生活中的问题转化为数学问题吗?

二、新课

1、如图,4 ×4正方形网格

看一看:

ΔABC与ΔA′B′C′有什么关系?为什么?(相似)

算一算:

ΔABC与ΔA′B′C′的相似比是多少?( 2 )

ΔABC与ΔA′B′C′的周长比是多少? ( 2 )

面积比是多少?(2)

想一想:

上面两个相似三角形的周长比与相似比有什么关系?面积比与相似比又有什么关系?结论:相似三角形的周长比等于相似比;相似三角形的面积比等于相似比的平方

验一验:

是不是任何相似三角形都有此关系呢?你能加以验证吗?

已知:如图4-24,△ABC∽△A′B′C′,且相似比为k.

求证:△ABC的周长

△A′B′C′的周长=k,

△ABC的面积

△A′B′C′的面积

=k2

例题

已知:如图,△ABC∽△A′B′C′, △

、A′D′是对应高。

求证:AD

A′D′

=k

证明:

∵△ABC∽△A′B′C′∴∠B= ∠B′

∵AD、A′D′是对应高。

∴∠ADB=∠A′D′B′=90O∴△ABD∽△A’B’D’

C′A

B C

A′

B′C′

A′

B′C′

D′

练一练:

1、已知两个三角形相似,请完成下列表格

注:周长比等于相似比,已知相似比或周长比,求面积比要平方,而已知面积比,求相似比或周长比则要开方。

2、如图,D 、E 分别是AC ,AB 上的点,∠ADE =∠B ,AG ⊥BC 于点G ,AF ⊥DE 于点F.若AD =3,AB =5,求:

(1)AG AF

(2)△ADE 与△ABC 的周长之比; (3)△ADE 与△ABC 的面积之比.

例1 如图:是某市部分街道图,比例尺为1∶10000;请估计三条道路围成的三角形地块ABC 的实际周长和面积.

问题解决:如图,已知DE//BC,AB=30m,BD=18m, ΔABC 的周长为80m ,面积为100m 2

,求ΔADE 的周长和面积

拓展延伸

1.过E 作EF//AB 交BC 于F,其他条件不变,则ΔEFC

少?

2.

若设S ΔABC =S, S ΔADE =S 1, S ΔEFC =S 2.请猜想:S 与S 1、S 2之间存在怎样的关系?你能加以验证吗?

证明:△ADE ∽△ABC S 1S =(AE AC )2 S 1S

=AE

AC

A

B

C D

E F

A B C D

相似三角形基本知识点+经典例题

相似三角形知识点与经典题型 知识点1 有关相似形的概念 (1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形. (2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数). 知识点2 比例线段的相关概念 (1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是 n m b a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。 (2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说 a 是 d c b ,,的第四比例项,那么应得比例式为: a d c b =.② ()a c a b c d b d ==在比例式::中, a 、d 叫比例外项, b 、 c 叫比例内项, a 、c 叫比 例前项,b 、d 叫比例后项,d 叫第四比例项,如果,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。 (3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =?,叫做把线段AB 黄金分割,点C 叫做线段AB 的 黄金分割点,其中AB AC 215-= ≈0.618AB .即AC BC AB AC == 简记为: 1 2 长短== 全长 注:黄金三角形:顶角是360 的等腰三角形。黄金矩形:宽与长的比等于 黄金数的矩形 知识点3 比例的性质(注意性质立的条件:分母不能为0) (1) 基本性质: ①bc ad d c b a =?=::;②2::a b b c b a c =?=?.

11、相似三角形的性质及其应用

11 1 1 1 1 1111111 1 11旋转变换型 将EAD 绕点A 旋转 BD AC 向下平 移DE 对称交 换型 交换AD 与AE A E D D E D D E D E D E C B A A B C A B C C B A C B(E)A C B C B A B C D E D A 老师姓名 学生姓名 教材版本 北师大版 学科名称 年级 上课时间 课题名称 相似三角形的性质及其应用 教学目标 及重难点 教 学 过 程 知识点回顾: 一、相似三角形: 1、定义:如果两个三角形的各角对应 各边对应 那么这两个三角形相似 2、性质:⑴相似三角形的对应角 对应边 ⑵相似三角形对应高线的比、对应角平分线的比、对应 的比都等于 ⑶相似三角形周长的比等于 面积的比等于 3、判定:⑴两角 的两三角形相似 ⑵两边对应 且夹角 的两三角形相似 ⑶三组对应边的比 的两三角形相似 【提醒:1、全等是相似比为 的特殊相似 2、根据相似三角形的性质的特质和判定,要证四条线段的比相等一般要先证 判定方法中最常用的是 三组对应边成比例的两三角形相似多用在“方格”三角形中】 4、直角三角形射影定理: 5、相似的常见基本图形: 【经典例题】 例1、如图,DE ∥BC ,S ΔDOE ∶S ΔCOB =4∶9,求AD ∶BD. 例2、在锐角△ABC 中,AB=4,BC=5,∠ACB=45°,将△ABC 绕点B 按逆时针方向旋转,得 D A B C

到△A1BC1. (1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数; (2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积; 例3、如图,在RtΔABC中,∠C=90°,AC=4,BC=3. (1)如图(1),四边形DEFG为ABC的内接正方形,求正方形的边长. (2)如图(2),三角形内有并排的两个相等的正方形,它们组成的矩形内接于ΔABC,求正方形的边长. (3)如图(3),三角形内有并排的三个相等的正方形,它们组成的矩形内接于ΔABC,求正方形的边长. (4) 如图(4),三角形内有并排的n个相等的正方形,它们组成的矩形内接于ΔABC,请写出正方形的边长. 相似三角形的应用: 知识点1:利用阳光下的影子 例1、某同学的身高为1.66米,测得他在地面上的影长为2.49米,如果这时测得操场上旗杆的 影长为42.3,那么该旗杆的高度是多少米? 知识点2:利用标杆 例2、某小组的同学利用标杆测量某旗杆的高度,将一条5米高的标杆竖在某一位置,有一名同学

相似三角形性质应用

相似三角形的性质及应用 相似三角形对应角相等,对应边成比例;相似三角形周长的比等于相似比,面积比等于相似比的平方。 1.△ABC∽△DEF,若△ABC的边长分别为5cm、6cm、7cm,而4cm是△DEF中一边的长度,你能求出△DEF的另外两边的长度吗?试说明理由. 总结:一定要深刻理解“对应”,若题中没有给出图形,要特别注意是否有图形的分类 2.如图所示,已知△ABC中,AD是高,矩形EFGH内接于△ABC中,且长边FG在BC上,矩形相邻两边的比为1:2,若BC=30cm,AD=10cm.求矩形EFGH的面积. 总结:解决有关三角形的内接矩形、内接正方形的计算问题,经常利用相似三角形“对应高的比等于相似比”和“面积比等于相似比的平方”的性质,若图中没有高可以先作出高. 举一反三 【变式1】△ABC中,DE∥BC,M为DE中点,CM交AB于N,若,求. 总结:图中有两个“”字形,已知线段AD与AB的比和要求的线段ND与NB的比分别在这两个“”字形,利用M为DE中点的条件将条件由一个“”字形转化到另一个“”字形,从而解决问题.

相似三角形的应用 1.如图,我们想要测量河两岸相对应两点A、B之间的距离(即河宽) ,你有什么方法? 方案1:如上左图,构造全等三角形,测量CD,得到AB=CD,得到河宽. 方案2: 思路点拨:这是一道测量河宽的实际问题,还可以借用相似三角形的对应边的比相等,比例式中四条线段,测出了三条线段的长,必能求出第四条. 如上右图,先从B点出发与AB成90°角方向走50m到O处立一标杆,然后方向不变,继续向前走10m到C处,在C处转90°,沿CD方向再走17m到达D处,使得A、O、D在同一条直线上.那么A、B之间的距离是多少? 解:∵AB⊥BC,CD⊥BC ∴∠ABO=∠DCO=90° 又∵∠AOB=∠DOC ∴△AOB∽△DOC ∴ ∵BO=50m,CO=10m,CD=17m ∴AB=85m 答:河宽为85m. 总结:方案2利用了“”型基本图形,实际上测量河宽有很多方法,可以用“”型基本图形,借助相似;也可用等腰三角形等等. 举一反三 【变式1】如图:小明欲测量一座古塔的高度,他站在该塔的影子上前后移动,直到他本身影子的顶端正好与塔的影子的顶端重叠,此时他距离该塔18 m,已知小明的身高是1.6 m,他的影长是2 m. (1)图中△ABC与△ADE是否相似?为什么? (2)求古塔的高度.

相似三角形的性质及应用练习题

相似三角形的性质及应用练习卷 一、填空题 1、已知两个相似三角形的相似比为3,则它们的周长比为 ; 2、若△ABC ∽△A ′B ′C ′,且 4 3 =''B A AB ,△ABC 的周长为12cm,则△A ′ B ′ C ′的周长为 ; 3、如图1,在△A BC 中,中线BE 、C D 相交于点G,则BC DE = ;S △GE D:S △GB C = ; 4、如图2,在△ABC中, ∠B=∠AED,AB=5,AD=3,CE=6,则AE= ; 5、如图3,△ABC 中,M 是AB 的中点,N 在BC 上,BC=2AB,∠BM N=∠C,则△ ∽△ ,相似比为 , NC BN = ; 6、如图4,在梯形ABCD 中,AD ∥BC ,S △ADE :S △BCE =4:9,则 S △A BD :S △A BC = ; 7、如图5,在△ABC 中,BC=12c m,点D 、F 是AB 的三等分点,点E 、G 是AC 的三等分点,则DE+FG+B C= ; 8、两个相似三角形的周长分别为5cm 和16cm ,则它们的对应角的平分线的比为 ; 9、两个三角形的面积之比为2:3,则它们对应角平分线的比为 ,对应边的高的比为 ;对应边的中线的比 周长的比 10、已知有两个三角形相似,一个边长分别为2、3、4,另一个三角形最长边长为12,则x、 y的值为 ; 二、选择题 11、下列多边形一定相似的为( ) A 、两个矩形 B 、两个菱形 C 、两个正方形 D 、两个平行四边形 12、在△ABC 中,BC=15cm,CA=45c m,AB =63c m,另一个和它相似的三角形的最短边是5cm , 则最长边是( ) A B C D E G 图1 A B C D E 图2 A B M N 图3 A B C D E 图4 A B D F 图5 G E

相似三角形的性质(经典全面)

一、相似的有关概念 1.相似形 具有相同形状的图形叫做相似形.相似形仅是形状相同,大小不一定相同.相似图形之间的互相变换称为相似变换. 2.相似图形的特性 两个相似图形的对应边成比例,对应角相等. 3.相似比 两个相似图形的对应角相等,对应边成比例. 二、相似三角形的概念 1.相似三角形的定义 对应角相等,对应边成比例的三角形叫做相似三角形. 如图,ABC △与A B C '''△相似,记作ABC A B C '''△∽△,符号∽读作“相似于”. A ' B ' C ' C B A 2.相似比 相似三角形对应边的比叫做相似比.全等三角形的相似比是1.“全等三角形”一定是“相似形”,“相似形”不一定是“全等形”. 三、相似三角形的性质 1.相似三角形的对应角相等 如图,ABC △与A B C '''△相似,则有A A B B C C '''∠=∠∠=∠∠=∠,,. A ' B ' C ' C B A 2.相似三角形的对应边成比例 如图,ABC △与A B C '''△相似,则有 AB BC AC k A B B C A C ==='''''' (k 为相似比) . 相似三角形的性质及判定

A ' B ' C ' C B A 3.相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比. 如图1,ABC △与A B C '''△相似,AM 是ABC △中BC 边上的中线,A M ''是A B C '''△中B C ''边上的 中线,则有AB BC AC AM k A B B C A C A M ==== '''''''' (k 为相似比). M ' M A ' B ' C 'C B A 图1 如图2,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AH k A B B C A C A H ==== ''''''''(k 为相似比). H 'H A B C C 'B 'A ' 图2 如图3,ABC △与A B C '''△相似,AD 是ABC △中BAC ∠的角平分线,A D ''是A B C '''△中B A C '''∠的 角平分线,则有AB BC AC AD k A B B C A C A D ==== '''''''' (k 为相似比). D ' D A ' B C 'C B A 图3 4.相似三角形周长的比等于相似比. 如图4,ABC △与A B C '''△相似,则有 AB BC AC k A B B C A C ==='''''' (k 为相似比) .应用比例的等比性质有AB BC AC AB BC AC k A B B C A C A B B C A C ++===='''''''''''' ++.

相似三角形的综合应用(提高)

相似三角形的应用 【学习目标】 1、探索相似三角形的性质,能运用性质进行有关计算. 2、通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题). 【知识回顾】 一、相似三角形的性质 (1)对应边的比相等,对应角相等. (2)相似三角形的周长比等于相似比. (3)相似三角形的面积比等于相似比的平方...... . (4)相似三角形的对应边上的高、中线、角平分线的比等于相似比. 二、相似三角形的应用: 1、利用三角形相似,可证明角相等;线段成比例(或等积式); 2、利用三角形相似,求线段的长等 3、利用三角形相似,可以解决一些不能直接测量的物体的长度.如求河的宽度、求建筑物的高度等. 【典型例题】 例1:如图,△ABC 是一块锐角三角形余料,边BC=120mm , 高AD=80mm , 要把它加工成矩形零件,使一边在BC 上,其余两个顶点分别在边AB 、AC 上, (1)若这个矩形是正方形,那么边长是多少? (2)若这个矩形的长是宽的2倍,则边长是多少? 【同步练习】如图,△ABC 是一块三角形余料,AB=AC=13cm ,BC=10cm ,现在要把它加工成正方形零件,使正方形的一边在△ABC 的边上,其余两个顶点分别在三角形另外两条边上.试求正方形的边长是多少? 例2:阅读以下文字并解答问题: 在“测量物体的高度” 活动中,某数学兴趣小组的4名同学选择了测量学校里的四棵树的高 A B C Q M D N P E

度.在同一时刻的阳光下,他们分别做了以下工作: 小芳:测得一根长为1米的竹竿的影长为0.8米,甲树的影长为4.08米(如图1). 小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图2),墙壁上的影长为1.2米,落在地面上的影长为2.4米. 小丽:测量的丙树的影子除落在地面上外,还有一部分落在教学楼的第一级台阶上(如图3),测得此影子长为0.2米,一级台阶高为0.3米,落在地面上的影长为4.4米. 小明:测得丁树落在地面上的影长为2.4米,落在坡面上影长为3.2米(如图4).身高是1.6m 的小明站在坡面上,影子也都落坡面上,小芳测得他的影长为2m . (1)在横线上直接填写甲树的高度为 米. (2)求出乙树的高度(画出示意图). (3)请选择丙树的高度为( ) A 、6.5米 B 、5.75米 C 、6.05米 D 、7.25米 (4)你能计算出丁树的高度吗?试试看. 【同步练习】如图,有一路灯杆AB(底部B 不能直接到达),在灯光下,小明在点D 处测得自己的影长DF =3m ,沿BD 方向到达点F 处再测得自己得影长FG =4m ,如果小明得身高为1.6m ,求路灯杆AB 的高度. 图1 图2 图3 图 4

经典相似三角形练习题(附参考答案)

相似三角形 一.解答题(共30小题) 1.如图,在△ABC 中,DE ∥BC ,EF ∥AB ,求证:△ADE ∽△EFC . 2.如图,梯形ABCD 中,AB ∥CD ,点F 在BC 上,连DF 与AB 的延长线交于点G . (1)求证:△CDF ∽△BGF ; (2)当点F 是BC 的中点时,过F 作EF ∥CD 交AD 于点E ,若AB=6cm ,EF=4cm ,求CD 的长. 3.如图,点D ,E 在BC 上,且FD ∥AB ,FE ∥AC . 求证:△ABC ∽△FDE . 4.如图,已知E 是矩形ABCD 的边CD 上一点,BF ⊥AE 于F ,试说明:△ABF ∽△EAD . 5.已知:如图①所示,在△ABC 和△ADE 中,AB=AC ,AD=AE ,∠BAC=∠DAE ,且点B ,A ,D 在一条直线上,连接BE ,CD ,M ,N 分别为BE ,CD 的中点. (1)求证:①BE=CD ;②△AMN 是等腰三角形; (2)在图①的基础上,将△ADE 绕点A 按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立; (3)在(2)的条件下,请你在图②中延长ED 交线段BC 于点P .求证:△PBD ∽△AMN . 6.如图,E 是?ABCD 的边BA 延长线上一点,连接EC ,交AD 于点F .在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明. 7.如图,在4×3的正方形方格中,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上. (1)填空:∠ABC= _________ °,BC= _________ ; (2)判断△ABC 与△DEC 是否相似,并证明你的结论. 8.如图,已知矩形ABCD 的边长AB=3cm ,BC=6cm . 某一时刻,动点M 从A 点出发沿AB 方向以1cm/s 的速度向B 点匀速运动;同时,动点N 从D 点出发沿DA 方向以2cm/s 的速度向A 点匀速运动,问: (1)经过多少时间,△AMN 的面积等于矩形ABCD 面积的? (2)是否存在时刻t ,使以A ,M ,N 为顶点的三角形与△ACD 相似?若存在,求t 的值;若不存在,请说明理由. 9.如图,在梯形ABCD 中,若AB ∥DC ,AD=BC ,对角线BD 、AC 把梯形分成了四个小三角形. (1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例) (2)请你任选一组相似三角形,并给出证明. 10.如图△ABC 中,D 为AC 上一点,CD=2DA ,∠BAC=45°,∠BDC=60°,CE ⊥BD 于E ,连接AE . (1)写出图中所有相等的线段,并加以证明; (2)图中有无相似三角形?若有,请写出一对; 若没有,请说明理由; (3)求△BEC 与△BEA 的面积之比.

初中数学 相似三角形的性质及应用练习卷

第2页 共2页 相似三角形的性质及应用练习卷 班级 姓名 座号 评分 一、填空题 1、已知两个相似三角形的相似比为3,则它们的周长比为 ; 2、若△ABC ∽△A ′B ′C ′,且 4 3 =''B A AB , △ABC 的周长为12cm ,则△A ′B ′C ′的周长为 ; 3、如图1,在△ABC 中,中线BE 、CD 相交于点G ,则BC DE = ;S △GED :S △GBC = ; 4、如图2,在△ABC 中, ∠B=∠AED ,AB=5,AD=3,CE=6,则AE= ; 5、如图3,△ABC 中,M 是AB 的中点,N 在BC 上,BC=2AB ,∠BMN=∠C ,则△ ∽△ ,相似比为 , NC BN = ; 6、如图4,在梯形ABCD 中,AD ∥BC ,S △ADE :S △BCE =4:9,则S △ABD :S △ABC = ; 7、两个相似三角形的周长分别为5cm 和16cm ,则它们的对应角的平分线的比为 ; 8、如图5,在△ABC 中,BC=12cm ,点D 、F 是AB 的三等分点,点E 、G 是AC 的三等分点,则DE+FG+BC= ; 9、两个三角形的面积之比为2:3,则它们对应角的比为 ,对应边的高的比为 ; 10、已知有两个三角形相似,一个边长分别为2、3、4,另一个边长分别为x 、y 、12,则x 、y 的 值分别为 ; 二、选择题 11、下列多边形一定相似的为( ) A 、两个矩形 B 、两个菱形 C 、两个正方形 D 、两个平行四边形 12、在△ABC 中,BC=15cm ,CA=45cm ,AB=63cm ,另一个和它相似的三角形的最短边是5cm , 则最长边是( ) A 、18cm B 、21cm C 、24cm D 、19.5cm 13、如图,在△ABC 中,高BD 、C E 交于点O ,下列结论错误的是( ) A 、CO ·CE=CD ·CA B 、OE ·OC=OD ·OB C 、A D ·AC=A E ·AB D 、CO ·DO=BO ·EO 14、已知,在△ABC 中,∠ACB=900,CD ⊥AB 于D ,若BC=5,CD=3,则AD 的长为( ) A 、2.25 B 、2.5 C 、2.75 D 、3 15、如图,正方形ABCD 的边BC 在等腰直角三角形PQR 的底边QR 上, 其余两个顶点A 、D 在PQ 、PR 上,则PA :PQ 等于( ) A 、1:3 B 、1:2 C 、1:3 D 、2:3 A B C D E G 图1 A B C D E 图2 A B C M N 图3 A B C D E 图4 A B C D F 图5 G E A E B C D O A P B C D Q R

相似三角形的判定与性质综合运用经典题型(供参考)

1文档来源为:从网络收集整理.word 版本可编辑. 相似三角形的判定与性质综合运用经典题型 考点一:相似三角形的判定与性质: 例1、如图,△PCD 是等边三角形,A 、C 、D 、B 在同一直线上,且∠APB=120°. 求证:⑴△PAC ∽△BPD ;⑵ CD 2 =AC ·BD. 例2、如图,在等腰△ABC 中, ∠BAC=90°,AB=AC=1,点D 是BC 边上的一个动点(不与B 、C 重合),在AC 上取一点E ,使∠ADE=45°(1)求证:△ABD ∽△DCE ; (2)设BD=x ,AE=y ,求y 关于x 函数关系式及自变量x 值范围,并求出当x 为何值时AE 取得最小值? (3)在AC 上是否存在点E ,使得△ADE 为等腰三角形?若存在,求AE 的长;若不存在,请说明理由? 例3、如图所示,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE=∠B :1)求证:△ADF ∽△DEC ; 2)若AB=4, 3 3=AD ,AE=3 ,求AF 的长。 考点二:射影定理: 例4、如图,在Rt ΔABC 中,∠ACB=90°,CD ⊥AB 于D ,CD=4cm,AD=8cm,求AC 、BC 及BD 的长。 例5、如图,已知正方形ABCD ,E 是AB 的中点,F 是AD 上的一点,且AF=1 4 AD ,EG ⊥CF 于点G , (1)求证:△AEF ∽△BCE ; (2)试说明:EG 2 =CG ·FG. 例6、已知:如图所示的一张矩形纸片ABCD (AD>AB ),将纸片折叠一次,使点A 与点C 重合,再展开,折痕EF 交AD 边于E ,交BC 边于F ,分别连结AF 和CE . (1)求证:四边形AFCE 是菱形;(2)若AE=10cm ,△ABF 的面积为24cm 2 ,求△ABF 的周长; (3)在线段AC 上是否存在一点P ,使得2AE 2 =AC ·AP ?若存在,请说明点P 的位置,并予以证明;若不存在,请说明理由. 考点三:相似之共线线段的比例问题: 例7、已知如图,P 为平行四边形ABCD 的对角线AC 上一点,过P 的直线与AD 、BC 、CD 的延长线、AB 的延长线分别相交于点E 、F 、G 、H. 求证:PG PH PF PE = 例8、如图,点P 是菱形ABCD 的对角线BD 上一点,连接CP 并延长,交AD 于点E ,交BA 的延长线于点F .(1)求证:PC 2 =PE ?PF ;(2)若菱形边长为8,PE=2,EF=6,求FB 的长. 例9、如图,CD 是Rt △ABC 斜边上的高,E 为AC 的中点,ED 交CB 的延长线于F . 求证:BD ?CF=CD ?DF . 例10、如图:已知在等边三角形ABC 中,点D 、E 分别是AB 、BC 延长线上的 点,且BD=CE ,直线CD 与AE 相交于点F .(1)求证:DC=AE ;(2)求证:AD 2 =DC ?DF . 例11、如图,E 是矩形ABCD 的边BC 上一点,EF ⊥AE ,EF 分别交AC ,CD 于点M ,F ,BG ⊥AC ,垂足为G ,BG 交AE 于点H .(1)找出与△ABH 相似的三角形,并证明;(2)若E 是BC 中点,BC=2AB ,AB=2,求EM 的长. 例12、如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG ,AE 与CG 相交于点M ,CG 与AD 相交于点N .求证:(1)AE=CG ;(2)AN ?DN=CN ?MN . 例13、如图,在Rt △ABC 中,CD 是斜边AB 上的高,点M 在CD 上,DH ⊥ BM 且与AC 的延长线交于点E .求证:(1)△AED ∽△CBM ; (2)AE ?CM=AC ?CD . 例14、如图,△ABC 是直角三角形,∠ACB=90°,CD ⊥AB 于D ,E 是AC 的中点,ED 的延长线与CB 的延长线交于点F .(1)求证:FD 2 =FB ?FC ; (2)若G 是BC 的中点,连接GD ,GD 与EF 垂直吗?并说明理由. 例15、如图,四边形ABCD 、CDEF 、EFGH 都是正方形. (1)⊿ACF 与⊿ACG 相似吗?说说你的理由.(2)求∠1+∠2的度数. 考点四:相似三角形的实际应用: 例16、如图,△ABC 是一块锐角三角形余料,边BC=120mm ,高AD=80mm ,要把它加工成矩形零件,使一边在BC 上,其余两个顶点分别在边AB 、AC 上. (1)若这个矩形是正方形,那么边长是多少? (2)若这个矩形的长PQ 是宽PN 的2倍,则边长是多少? 例17、已知左,右并排的两棵大树的高分别是AB=8m 和CD=12m ,两树的 根 A B C D F

相似三角形性质及其应用练习题

相似三角形性质及其应用 1.掌握相似三角形对应高线的比,对应中线的比和对应角平分线的比都等于相似比,相似三角形面积的比等于相似比的平方等性质,能应用他们进行简单的证明和计算。 2.掌握直角三角形中成比例的线段:斜边上的高线是两条直角边在斜边上的射影的比例中项;每一条直角边是则条直角边在斜边上的射影和斜边的比例中项,会用他们解决线段成比例的简单问题。 考查重点与常见题型 1. 相似三角形性质的应用能力,常以选择题或填空形式出现,如: 若两个相似三角形的对应角的平分线之比是1∶2,则这两个三角形的对应高线之比是---------,对应中线之比是------------,周长之比是---------,面积之比是-------------,若两个相似三角形的面积之比是1∶2,则这两个三角形的对应的角平分线之比是----------,对应边上的高线之比是-------- 对应边上的中线之比是----------,周长之比是--------------, 2. 考查直角三角形的性质,常以选择题或填空题形式出现,如: 如图,在Rt ΔABC 中,∠ACB=90°, CD ⊥AB 与D ,AC=6,BC=8, 则AB=--------,CD=---------, AD=---------- ,BD=-----------。, 3. 综合考查三角形中有关论证或计算能力,常以中档解答题形式出现。 预习练习 1. 已知两个相似三角形的周长分别为8和6,则他们面积的比是( ) 2. 有一张比例尺为1 4000的地图上,一块多边形地区的周长是60cm ,面积是250cm 2,则这个地区的实际周长-------- m ,面积是----------m 2 3. 有一个三角形的边长为3,4,5,另一个和它相似的三角形的最小边长为7,则另一个 三角形的周长为----------,面积是------------- 4. 两个相似三角形的对应角平分线的长分别为10cm 和20cm ,若它们的周长的差是60cm , 则较大的三角形的周长是----------,若它们的面积之和为260cm 2,则较小的三角形的面积为 ---------- cm 2 5. 如图,矩形ABCD 中,AE ⊥BD 于E ,若BE=4,DE=9,则矩形的面积是----------- 6.已知直角三角形的两直角边之比为12,则这两直角边在 斜边上的射影之比------------- 考点训练 1.两个三角形周长之比为95,则面积比为( ) (A )9∶5 (B )81∶25 (C )3∶ 5 (D )不能确定 2.Rt ΔABC 中,∠ACB=90°,CD ⊥AB 于D ,DE ⊥AC 于E ,那么和ΔABC 相似但不全等的三角形共有( ) (A)1个 (B)2个 (C)3个 (D)4个 3.在Rt ΔABC 中,∠C=90°,CD ⊥AB 于D ,下列等式中错误的是( ) (A )AD ? BD=CD 2 (B )AC ?BD=CB ?AD (C )AC 2 =AD ?AB (D )AB 2 =AC 2 +BC 2 4.在平行四边形ABCD 中,E 为AB 中点,EF 交AC 于G ,交AD 于F ,AF FD =13 则CG GA 的比值 是( ) (A )2 (B )3 (C )4 (D )5 5.在Rt ΔABC 中,AD 是斜边上的高,BC=3AC 则ΔABD 与ΔACD 的面积的比值是( ) (A )2 (B )3 (C )4 ( D )8

451相似三角形性质及其应用教学设计

4.5.1 相似三角形性质及其应用 课型:新授课 备课人: 教材分析: 《相似三角形的性质及其应用》在初中几何中《相似三角形》的这章重点内容之一。而 且这是学生学完相似三角形定义及其判定的基础上,进一步研究相似三角形的特性, 以完成 对相似三角形的全面研究。相似三角形的性质也是全等三角形性质的拓展, 也是研究相似多 边形的基础。这些性质是解决有关实际问题的重要工具,因此,这一节课无论在知识上,还 是对学生能力的培养上,都起着十分重要的作用。 教学目标 1、 掌握相似三角形的对应角相等,对应边成比例。 2、 会运用上述两个性质解决简单的几何问题。 3、 了解三角形重心和的概念和重心分每一条中线成 1:2的两条线段的性质。 4、 思想方法:类比思想和转化思想 重点:相似三角形性质的基本性质 :对应角相等,对应边成比例的应用。 难点:例2证明需要添加辅助线,是本节教学难点。 学情分析: 学生已经学习过相似三角形的定义: 对应角相等,对应边成比例的两个三角形是相似三 角形;已经掌握相似三角形的基本性质:相似三角形的对应角相等,对应边成比例;还掌握 了判定相似三角形的方法: 1、预备定理; 2、两个角对应相等的两个三角形相似; 3、两边 对应成比例,且夹角相等的两个三角形相似; 4、三边对应成比例的两个三角形相似。相似 三角形的性质应用非常广泛, 学生也经历过很多用到相似三角形性质的应用,且判定方法也 掌握比较熟练。 教学过程: 一、复习导入 如图,△ A ' 1 又??? A ' D'为/B' A ' C '的角平分线,??? /B' A ' D' =— / B ' A ' C' 2 1 ??? AD 为 ZBAC 的角平分线,? /BAD* ZBAC ?/B ' A' D =/BAD 2 ? △ A ' B ' D' ◎△ ABD(ASA),: A' D' =AD 教师:我们发现什么结论呢? 学生:全等三角形的对应角的角平分线相等。 (说明:本节课的导入以全等三角形的角度切入,学生在八年级已经将全等三角形的定义, 性质及其判定方法熟练掌握, 而相似三角形为全等三角形的拓展, 在知识的构架基础上思维 连贯,为后面相似三角形的性质及其应用做好铺垫。 ) 二、探索新知 教师:现在老师将全等三角形的 条件弱化,将全等三角形变成相似三角形,则对应角的角平 /B ' A C =/BAC,A' B ' =AB B' C'也厶ABC A D'、AD 分别是对应角平分线,问 A D'、AD 的数量 = /B , 关系? C

北师大九上第16讲 相似三角形的性质及应用(提高)

相似三角形的性质及应用 【学习目标】 1、探索相似三角形的性质,能运用性质进行有关计算; 2、通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题). 【要点梳理】 要点一、相似三角形的应用 1.测量高度 测量不能到达顶部的物体的高度,通常使用“在同一时刻物高与影长的比例相等”的原理解决. 要点诠释:测量旗杆的高度的几种方法: 平面镜测量法影子测量法手臂测量法标杆测量法 2.测量距离 测量不能直接到达的两点间的距离,常构造如下两种相似三角形求解。 1.如甲图所示,通常可先测量图中的线段DC、BD、CE的距离(长度),根据相似三角形的性质,求出AB的长. 2.如乙图所示,可先测AC、DC及DE的长,再根据相似三角形的性质计算AB的长. 要点诠释: 1.比例尺:表示图上距离比实地距离缩小的程度,比例尺= 图上距离/ 实际距离; 2.太阳离我们非常遥远,因此可以把太阳光近似看成平行光线.在同一时刻,两物体影子之比等于其对应高的比; 3.视点:观察事物的着眼点(一般指观察者眼睛的位置); 4. 仰(俯)角:观察者向上(下)看时,视线与水平方向的夹角. 要点二、相似三角形的性质 1.相似三角形的对应角相等,对应边的比相等. 2. 相似三角形中的重要线段的比等于相似比. 相似三角形对应高,对应中线,对应角平分线的比都等于相似比. 要点诠释:要特别注意“对应”两个字,在应用时,要注意找准对应线段. 3. 相似三角形周长的比等于相似比.

∽,则 由比例性质可得: 4. 相似三角形面积的比等于相似比的平方. ∽,则分别作出与的高和,则 要点诠释:相似三角形的性质是通过比例线段的性质推证出来的. 【典型例题】 类型一、相似三角形的应用 1. 在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上。已知铁塔底座宽CD=12m,塔影长DE=18m,小明和小华的身高都是1.6m,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m和1m,那么塔高AB为(). A.24m B.22m C.20m D.18m 2 11 22= 11 22 ABC A B C BC AD k B C k A D S k S B C A D B C A D ''' '''' ???? == ''''''''' ?? △ △

相似三角形的判定性质经典例题分析

相似形(一) 一、比例性质 1.基本性质: bc ad d c b a =?=(两外项的积等于两内项积) 2.反比性质: c d a b d c b a =?= (把比的前项、后项交换) 3.合比性质: d d c b b a d c b a ±= ±?=(分子加(减)分母,分母不变) . 4.等比性质:(分子分母分别相加,比值不变.) 如果 )0(≠++++====n f d b n m f e d c b a ,那么 b a n f d b m e c a =++++++++ . 谈重点:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法. (2)应用等比性质时,要考虑到分母是否为零. (3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立. 5.黄金分割: ○ 1内容 ○2尺规作图作一条线段的黄金分割点 经典例题回顾: 例题1.已知a 、b 、c 是非零实数,且 k c b a d d a b c d c a b d c b a =++=++=++=++,求k 的值. 例题2.已知 111 x y x y +=+,求y x x y +的值。 概念: 谈重点: ⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关. ⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况.

⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的. ⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形. 知识点二、平行线分线段成比例定理 ①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。 ②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。 ③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。 ○ 4推论:如果一条直线平行于三角形的一条边,截其它两边(或其延长线),那么所截得的三角形与原三角形相似.推论○ 4的基本图形有三种情况,如图其符号语言:∵DE ∥BC ,∴△ABC ∽△ADE ; 知识点三、相似三角形的判定 判定定理1:两角对应相等,两三角形相似. 符号语言: 拓展延伸:(1)有一组锐角对应相等的两个直角三角形相似。 (2)顶角或底角对应相等的两个等腰三角形相似。 【重难点高效突破】 例题1.如图,直线DE 分别与△ABC 的边AB 、AC 的反向延长线相交于D 、E ,由ED ∥BC 可以推出 AD AE BD CE =吗?请说明理由。(用两种方法说明) 例题2.(射影定理)已知:如图,在△ABC 中,∠BAC=90°,AD ⊥BC 于D. 求证:(1)2AB BD BC =?;(2)2AD BD CD =?;(3)CB CD AC ?=2 例题3.如图,AD 是Rt ΔABC 斜边BC 上的高,DE ⊥DF ,且DE 和DF 分别交AB 、AC 于E 、F.则 BD BE AD AF = 吗?说说你的理由. 例题4.如图,在平行四边形ABCD 中,已知过点B 作BE ⊥CD 于E,连接AE ,F 为AE 上一点,且∠BFE=∠C (1) 求证:△ABF ∽△EAD ; (2) 若AB=4,∠BAE=30°,求AE 的长; (3) 在(1)(2)条件下,若AD=3,求BF 的长。 【即时训练】 一、选择题 例题精讲 A E D B C A B C D A D C B F

相似三角形的判定、性质及应用(习题)

相似三角形的判定、性质及应用(习题) ?例题示范 例1:如图,在正方形ABCD中,E为边AD的中点,点F在边CD上,且CF=3FD,△ABE与△DEF相似吗?为什么? F E D C B A 解:△ABE与△DEF相似.理由如下: 在正方形ABCD中, ∠A=∠D=90°,AB=AD=CD 设AB=AD=CD=4a ∵E为边AD的中点,CF=3FD ∴AE=DE=2a,DF=a ∴ 4 2 2 AB a DE a ==, 2 2 AE a DF a == ∴AB AE DE DF = 又∵∠A=∠D ∴△ABE∽△DEF 例2:小红用下面的方法来测量学校教学大楼AB的高度:如图在水平地面点E处放一面平面镜,镜子与教学大楼的距离AE=20米.当她与镜子的距离CE=2.5米时,她刚好能从镜子中看到教学大楼的顶端B.已知她的眼睛距地面高度DC=1.6米,请你帮助小红测量出大楼AB的高度(注:入射角=反射角). F E D C B A 解:由题意,AE=20,CE=2.5,DC=1.6,∠FEB=∠FED ∴∠BEA=∠DEC

∵∠BAE =∠DCE =90° ∴△BAE ∽△DCE ∴AB AE DC EC = ∴201.6 2.5AB = ∴AB =12.8 ∴大楼AB 的高为12.8米. ? 巩固练习 1. 如图,在△ABC 中,点P 为边AB 上一点,则下列四个条件:①∠ACP =∠B ; ②∠APC =∠ACB ;③2AC AP AB =?; ④AB CP AP CB ?=?.其中能判定△ABC ∽△ACP 相似的是__________. B P C A E C A B D 第1题图 第2题图 2. 有( ) A .△AED ∽△BED B .△AED ∽△CBD C .△AE D ∽△ABD D .△BAD ∽△BCD 3. 在如图4×4的正方形网格中,小正方形的边长均为1 点上,则与△ABC 相似的三角形所在的网格图形是( A B C D 4. 如图,在梯形ABCD 中,AD ∥BC ,对角线AC ,BD 交于点O , 1 2 OD OC =,若OA =1,92OB = ,则OD =_____, AD BC =______.

相似三角形经典讲义

相似三角形 一、本章的两套定理 第一套(比例的有关性质): 涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。 二、有关知识点: 1.相似三角形定义: 对应角相等,对应边成比例的三角形,叫做相似三角形。 2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。 3.相似三角形的相似比: 相似三角形的对应边的比叫做相似比。 4.相似三角形的预备定理: 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。 5.相似三角形的判定定理: 从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边 成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。 6.直角三角形相似: (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。 (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。 7.相似三角形的性质定理: (1)相似三角形的对应角相等。 (2)相似三角形的对应边成比例。 (3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。 (4)相似三角形的周长比等于相似比。 (5)相似三角形的面积比等于相似比的平方。 8. 相似三角形的传递性 如果△∽△A 1B 1C 1,△A 1B 1C 1∽△A 2B 2C 2,那么△∽A 2B 2C 2 三、注意 1、相似三角形的基本定理,它是相似三角形的一个判定定理,也是后面学习的相似三 角形的判定定理的基础,这个定理确定了相似三角形的两个基本图形“A ”型和“ 8 ”型。 c d a b = d b c a a c b d ==或 合比性质:d d c b b a ±= ± ?=?=bc ad d c b a (比例基本定理) b a n d b m c a n d b n m d c b a =++++++?≠+++===ΛΛΛΛ:)0(等比性质

相似三角形性质及其应用

1 相似三角形性质及其应用 知识点相似三角形性质,直角三角形中成比例线段 要求 1. 掌握相似三角形对应高线的比,对应中线的比和对应角平分线的比都等于相似比,相似三 角形面积的比等于相似比的平方等性质,能应用他们进行简单的证明和计算。 2. 掌握直角三角形中成比例的线段:斜边上的高线是两条直角边在斜边上的射影的比例中项; 每一条直角边是则条直角边在斜边上的射影和斜边的比例中项,会用他们解决线段成比例的 简单问题。 考查重点与常见题型 1. 相似三角形性质的应用能力,常以选择题或填空形式出现,如: 若两个相似三角形的对应角的平分线之比是 1 : 2,则这两个三角形的对应高线之比是 ―― 对应中线之比是 ,周长之比是----—,面积之比是 ,若两个相似三角形的面积之 比是1 : 2,则这两个三角形的对应的角平分线之比是 -――,对应边上的高线之比是 ----- 对应边上的中线之比是----—,周长之比是 , 2. 考查直角三角形的性质,常以选择题或填空题形式出现,如: 如图,在 Rt △ ABC 中,/ ACB=90 , CDL AB 与 D, AC=6 BC=8 贝U AB=— ,CD=—, AD=-— ,BD=_—。, 3. 综合考查三角形中有关论证或计算能力,常以中档解答题形式出现。 预习练习 1 . 2. 3. 4. 已知两个相似三角形的周长分别为 8和6,则他们面积的比是( ) 有一张比例尺为1 4000的地图上,一块多边形地区的周长是 60cm 面积是250cm 2,则这 个地区的实际周长--—m ,面积是---—-m 有一个三角形的边长为 3,4,5,另一个和它相似的三角形的最小边长为 7,则另一个三 角形的周长为---—,面积是—— 两个相似三角形的对应角平分线的长分别为 10cm 和20cm,若它们的周长的差是 60cm,则 较大的三角形的周长是 ----—,若它们的面积之和为 260cm 2 ,则较小的三角形的面积为 2 -- cm 如图,矩形 ABCD 中, AE1 BD 于E ,若BE=4, DE=9,则矩形的面积是 12,则这两直角边在 5. 6. 已知直角三角形的两直角边之比为 斜边上的射影之比 ------ 考点训练 1?两个三角形周长之比为 95,则面积比为 (A ) 9 : 5 2. Rt △ ABC 中,/ 形共有 (A)1 个 (B)2 3 .在 Rt △ ABC 中, (A ) AD? BD=C D (B ) 81 : 25 ACB=90, (C ) 3 ??岳 (D )不能确定 CDL AB 于 D, DEL AC 于E ,那么和 △ ABC 相似但不全等的三 角 () (D)4 个 下列等式中错误的是( (C)3 个 / C=90°, CDL AB 于 D, (B) AC?BD=CBAD (C) A C=AD ?AB (D) A ^A C+B C

相关主题