搜档网
当前位置:搜档网 › 第七章生物氧化.doc

第七章生物氧化.doc

第七章生物氧化.doc
第七章生物氧化.doc

第六章生物氧化

第一节概述

一、生物氧化的意义

生物机体在生命过程中需要能量,如生物合成、物质转运、运动、思维和信息传递等都需要消耗能量,这些能量从哪里来呢?能量的来源,主要依靠生物体内糖、脂肪、蛋白质等有机化合物在体内的氧化。

有机物质在生物细胞内氧化分解,最终彻底氧化成二氧化碳和水,并释放能量的过程,称为生物氧化。生物氧化是在细胞中进行的,所以生物氧化又称为细胞呼吸。生物氧化为机体生命活动所需要的能量。

真核生物细胞的生物氧化在线粒体中进行,原核生物细胞,生物氧化在细胞质膜上进行。

二、生物氧化的特点

生物氧化与体外物质氧化或燃烧的化学本质是相同的,最终产物是二氧化碳和水,所释放的能量也相等。但生物氧化与非生物氧化所进行的方式不同,其特点为:

1、生物氧化在细胞内进行,是在体温和接近中性PH和有水的环境进行的,是在一系列酶、辅酶和传递体的作用下逐步进行的,每一步反应都放出一部分能量,逐步释放的能量的总和与同一氧化反应在体内进行是相同。这样不会因氧化过程中能量骤然释放,体温突然上升而损害机体,而且释放的能量也能有效地利用。

2、生物氧化过程所释放的能量通常先贮存在一些高能化合物如ATP

中,ATP相当于生物体内的能量转运站。

3、有机化合物在体内外是碳在氧中燃烧,产生二氧化碳,而生物氧化是通过羧酸脱羧作用产生二氧化碳。

第二节线粒体氧化体系

生物体内存在多种氧化体系,其中最重要的是存在与线粒体中线粒体氧化体系。此外还有微粒体氧化体系、过氧化体氧化体系、细菌的生物氧化体系等。

一、呼吸链的概念

在生物氧化过程中,代谢物的氢由脱氢酶激活,脱下来的氢经过几种传递体的传递,将电子传递到细胞色素体系,最后将电子传递给氧,活化的氢(H+)和活化的氧(O2-)结合成水,在这个过程中构成的传递链称为电子传递链,或呼吸链。

二、呼吸链的组成

构成呼吸链的成分有20多种。大致可将它们分成五类。即以NAD+或NADP+为辅酶的脱氢酶类;以FAD或FMN为辅基的黄素蛋白酶类;铁硫蛋白类;泛醌和细胞色素类。依具体功能又可分为递氢体和递电

子体。

(一)递氢体

在呼吸链中即可接受氢又可把所接受的氢传递给另一种物质的成分叫递氢体,包括:

1、NAD+和NADP+

NAD+和NADP+是不需氧脱氢酶的辅酶。它们分别可与不同的酶蛋白组成多种功能各异的不需氧脱氢酶。辅酶分子能可逆地加氢和脱氢。

2、FAD和FMN

FAD和FMN是黄素蛋白(又称黄素酶)类的辅基。它们能可逆地加氢和脱氢。

3、泛醌

泛醌(Q),因广泛分布与生物界并具有醌的结构而得名。它以1,4-苯醌作为传递H+和e的反应核心,氧化还原过程是先接受一个H+和e变成半醌,在接受一个H+和e变成氢醌。

氧化还原总反应为:

(二)递电子体

既能接受电子又能将电子传递出去的物质叫做递电子体。呼吸链中的递电子体包括两类。

1、铁硫蛋白类

铁硫蛋白(Fe-S)是存在于线粒体内膜上的一类与电子传递有关的蛋白质。现已发现的铁硫蛋白有九种,各种铁硫蛋白中均含有铁和对硫不稳定的硫,用硫酸处理可释放出H2S。Fe-S代表铁硫蛋白电子传递的反应中心,即称铁硫中心。Fe-S中的Fe均与蛋白质分子中半胱氨酸残基上的-SH中的S结合。

铁硫中心的Fe原子能可逆地获得和丢失电子,在呼吸链中起到传递电子的作用:

2、细胞色素类

细胞色素(Cyt)是广泛分布于需氧生物线粒体内膜上的一类传递电子的色素蛋白,其辅基为含铁卟啉的衍生物。参与线粒体生物氧化体系的有Cyta、a3、b、c和c3。Cyta、b和c的辅基分别是血红素A、B和C。细胞色素电子传递作用就是依靠分子中铁离子化合价的可逆变化而实现的。

目前尚不能将Cyta和a3分开,故将它们合称为细胞色素氧化酶。它们靠分子中所含的铜的氧化还原变化()来实现电子传递作用。

三、呼吸链中传递体的排列顺序

呼吸链中氢和电子的传递有严格的顺序和方向,这些顺序和方向是根据各种递氢体和递电子体的标准氧化还原电位数值的测定,并利用某些特异的抑制剂切断其中的电子流后,再测定电子传递链中各组分的氧化还原态,以及在体外将电子传递体重新组成呼吸链等实验而得到结论。

用去垢剂温和处理线粒体内膜,可以得到四种电子传递复合体,

每一种复合体代表完整呼吸链的一部分,具有各自独特的功能。

复合体Ⅰ:指呼吸链从NAD+到泛醌之间的组分,整个复和物嵌在线粒体内膜上。NADH脱下的氢经复合体Ⅰ中FMN、铁硫蛋白等

传递给Q,与此同时拌有质子从线粒体基质转移到线粒体

外(膜间隙)。

复合体Ⅱ:介于琥珀酸到泛醌之间,能将2H从琥珀酸传给FAD,然后经铁硫蛋白传递至Q。Q可以接受复合体Ⅰ和Ⅱ传递的

氢,将质子释放到线粒体基质中,将电子传递给复合体Ⅲ。复合体Ⅲ:从Q到细胞色素C之间的呼吸链组分,包含Cytb、c1、铁硫蛋白以及其他多种蛋白质。。复合体Ⅲ在Q和细胞色素

之间传递电子,与此同时拌有质子从线粒体基质中转移到

线粒体外。

复合体Ⅳ:又称细胞色素氧化酶,包括细胞色素Cytaa3,电子从细胞色素C通过复合体Ⅳ传递给氧,同时引起质子从线粒体基

质向外流动。

因此,代谢物氧化脱下的氢及电子在四个复合体中的传递顺序是:

代谢物脱下的氢及电子经复合体Ⅰ或Ⅱ传递给Q,Q将氢释放在线粒体基质中,将电子传递给复合体Ⅲ,复合体Ⅲ再将电子转移给复合体Ⅳ,最后将电子传递给氧。这样活化的氧可与基质中的氢结合成水。整个呼吸链电子传递的同时,伴有质子从线粒体基质流向线粒体外,从而产生质子跨膜梯度,形成膜电位,导致ATP的生成。

四、呼吸链的类型

呼吸链按其组成成分、排列顺序和功能上的差异分为两种。

1、NADH呼吸链

该呼吸链由还原型辅酶I作为起始而得名。是人和动物细胞内的主要呼吸。这是因为有机物质在氧化过程中的大多数脱氢酶都是以NAD+作用辅酶的缘故。NADH呼吸链的组分和排列顺序如图:

2、FAD呼吸链

该呼吸链以FADH2起始而得名。体内尚有许多代谢物以FAD为辅基的酶参与脱氢氧化作用。FAD呼吸链个组分和排列顺序如图:

五、呼吸链的作用

无论是NADH呼吸链还是FAD呼吸链,都可将代谢物上脱下的氢与氧结合生成水,同时为机体生命活动提供能量。]

(一)代谢水的生成

根据两种呼吸链显示,呼吸摄入的氧与氢反应生成水。也就是说代谢物脱下的氢(2H++e),通过递氢体和递电子体最终使氧激活(1/2O2+2e→O2-),活化的氧与基质中的2个氢化合成水,完成呼吸链的一次全程传递。这种方式生成的水称代谢水。若无氧的存在,呼吸链也就无法进行。需氧生物不能生存的主要原因就是呼吸链对氧的绝对需求,呼吸链的正常传递为机体提供了足够的能量。

(二)能量的生成

体内ATP形成有两种方式,与呼吸链有关的是氧化磷酸化方式。

1、氧化磷酸化:

供机体生命活动的能量主要来自氧化磷酸化作用。

1)定义:代谢物脱下的氢在呼吸链一系列氢转移和电子传递的氧化过程中释放能量使ADP磷酸化生成ATP的过程。

2)氧化磷酸化的偶联部位:

实验证明,代谢物脱下的氢经NADH呼吸链氧化生成水的P/O比值为3(P/O即为无机磷酸消耗的摩尔数与氧原子消耗的摩尔数之比),即消耗1摩尔氧可生成3摩尔ATP,经FAD呼吸链氧化生成水的P/O,即消耗1摩尔氧原子可生成2摩尔ATP。这样,在NAD呼吸链中存在着两个磷酸化偶联部位。

3)氧化磷酸化机制

目前被普遍接受的是化学渗透学说。

该学说主要论点是呼吸链存在与于线粒体内膜上,当进行氧化时,呼吸链中的复合体起质子泵作用,质子被泵出线粒体内膜的外侧,形成质子浓度的内低外高的浓度梯度,这样造成了膜内外两侧跨膜的化学电位差,其中蕴藏着电化学能量,此能量能使ADP磷酸化生成ATP。

4)氧化磷酸化的影响因素

影响呼吸链的任何因素都影响氧化磷酸化的正常进行,可将这些

因素可分为三种类型:

A:呼吸链抑制剂这些物质以专一的结合部位抑制呼吸链的正常传递,影响氧化磷酸化作用,从而妨碍或破坏能量的供给,如:阿米妥(麻醉药)、鱼藤酮(杀虫剂)、大黄酸等抑制NADH→Q之间的氢传递,抗霉素A抑制Q→Cytc之间的电子传递,氰化物、叠氮化物、CO和H2S则抑制细胞Cytaa3与氧之间的电子传递。

B:解偶联剂这些物质并不影响呼吸链中的电子传递,而解除氧化磷酸化的偶联作用。如:2,4-二硝基苯酚(DNP),使ADP不能磷酸化形成ATP。又如:感冒或患某种传染性疾病时,体温升高就是细菌或病毒产生某种解偶联剂,影响氧化磷酸化的正常进行,导致较多的能量转变成热能。

C:离子载体抑制剂这些物质可与K+、Na+形成脂溶性复和物,将线粒体内的K+、Na+转移到胞液,在转移过程中消耗了能量,从而抑制了ADP磷酸化生成ATP的作用。这些抑制剂主要有短杆菌肽、缬霉素等。

2、底物磷酸化

底物分子内部能量重新分布形成高能磷酸酯键拌有ADP磷酸化生成ATP的作用,称为底物磷酸化。底物磷酸化与呼吸链的电子传递无关。例如:

六、能量的贮存与利用

生物体内能量的生成、贮存和利用总是围绕ADP磷酸化的吸能反应和ATP水解放能反应进行的。

1、能量贮存

机体能量供大于求时,ATP在磷酸肌酸那的作用下,将其所含的能量转移给肌酸C,以磷酸肌酸(C~P)形式贮存。

因此,磷酸肌酸是生物体能量的贮存形式。

2、能量的利用

机体能量供不应求时,在酶的作用下,磷酸肌酸可将贮存的能量交给ADP磷酸化生成ATP以供能量所需。ATP是能量的直接供应者。

第三节非线粒体氧化体系

线粒体以外的氧化体系被称为为非线粒体氧化体系,包括微粒体氧化体系,过氧化体氧化体系等。该体系与能量生成无关,但具有特定的生理功能。

一、微粒体氧化体系

微粒体氧化体系存在于细胞的光滑内质网上。其组成成分复杂,目前尚不完全,根据催化底物氧化反应情况不同,可将它们分为两种

类型。

1、加单氧酶系

加单氧酶是由NADP-细胞色素P450还原酶、细胞色素 P450、FAD等组成的一种复杂酶系。其催化作用使氧分子中的一个氧原子被加到底物分子上,而另一氧原子与NADPH++ H+上的两个质子化合成水。因催化作用具有双重功能又称为混合功能氧化酶,又因催化底物发生羟化反应,也称为羟化酶。

RH+NADPH+H++O2→ROH+NADP+H2O

加单氧酶的主要功能是:①参与体内正常的物质代谢。如肾上腺皮质类固醇的羟化、类固醇激素的合成、维生素D3的羟化以及胆汁酸、胆色素的形成等反应都与其有关;②参与某些毒物(如苯胺)和药物(如吗啡等)解毒转化和代谢清除反应。

2、加双氧酶系

加双氧酶又称转化酶。催化两个氧原子直接加到底物分子特定的双键上,使该底物分子分解成两部分。其催化的反应通式可表示为:

二、过氧化体氧化体系

1、过氧化氢的生成

过氧化体中含较多的需氧脱氢酶,它们可分别催化L-氨基酸、D-氨基酸、黄嘌呤等物质脱氢酶氧化,产生过氧化氢。

由于多种需氧脱氢酶的催化作用使机体产生了大量的过氧化氢,造成对机体的影响。

2、过氧化氢对机体的影响

过氧化氢对机体的作用有两重性。有利的方面表现在:①在粒细胞和巨噬细胞中可杀死吞噬进来的有害细菌。②在甲状腺中参与酪氨酸的碘化反应有利于甲状腺素的合成等。然而,过氧化氢具有毒性,产生过多对机体会造成危害:①氧化含巯基的酶或蛋白,导致它们丧失活性。②氧化生物膜中的不饱和脂肪酸形成过氧化脂质,损伤膜功能。过氧化脂质与蛋白质结合后进入溶酶体,难以分解排除,积累成脂褐色素颗粒。

3、机体对过氧化氢的处理和利用

在过氧化体中存在着能分解过氧化氢的酶类。它们可将过氧化氢转化为机体无害的物质重新利用起来。

1)过氧化氢酶过氧化氢酶又称触酶,是含铁卟啉的结合酶,能催化过氧化氢分解成水和氧:

2)过氧化物酶过氧化物酶也是含铁卟啉的结合酶。它可催化酚类或胺类物质脱氢,并使脱下的氢与H2O2反应生成水。反应如下:

3)谷胱甘肽过氧化物酶在许多组织细胞中(尤其是红细胞中)存在着含硒的谷光甘肽过氧化物酶。可催化还原型谷胱甘肽(G-SH)与过氧化氢反应,使过氧化氢分解,从而保护膜脂和红细胞免受氧化,

维持它们的正常功能。

三、自由基与超氧化物歧化酶

1、自由基的概念

大多数化学键由双电子组成。这些键在断裂时有两种方式:一种是异裂后使两电子全部分配给裂解后的产物之一而形成离子(A:B →A++ :B-);另一种是均裂后将两电子平均分配给裂解后的两部分,生成在水溶液中呈均一态的具有未配对电子的产物(A:B→A。 + B。)。常将带有未配对电子的原子或化学基团称自由基。如:NO(O=N。)、I。、、HO。、O2。-等均为带有未配对电子的自由基。

2、自由基的危害

生物体在代谢过程中产生的自由基主要是超氧化阴离子(O2。-)和羟基自由基(HO。)及其它们的活性衍生物。在生理条件下,生物体内96%-99%的氧通过呼吸链中的细胞色素氧化酶催化而还原成水,近1%-4%的氧产生超氧化阴离子、羟基自由基和过氧化氢。当线粒体的结构受到影响时,氧自由基的产量增多。若产生量超过机体的清除能力便会造成对机体的损伤,主要使DNA氧化、修饰、甚至断裂;可氧化蛋白质的巯基改变蛋白质功能;自由基还可使细胞磷脂膜分子中高度不饱和脂肪酸氧化生成脂质,引起生物膜损伤。

3、机体对自由基的清除

需氧生物体内普遍存在一种超氧化物歧化酶(SOD),它能催化超氧化阴离子与质子发生反应生成氧和过氧化氢,过氧化氢进一步被相应的酶分解,从而保护机体免受氧自由基的损伤。

除了酶对自由基的清除外,许多抗氧化剂也参与了对自由基的清除。如维生素E、谷胱甘肽、抗坏血酸、β-胡萝卜素、不饱和脂肪酸等都以不同的方式直接参与了体内对自由基的清除过程。

生物化学习题(生物能学与生物氧化)

生物化学习题(生物能学与生物氧化)一、名词解释: 生物氧化(bioogical oxidation) 呼吸链(respiratory chain) 氧化磷酸化(oxidative phosphorylation) 磷氧比(P/O) 底物水平磷酸化(substrate level phosphorylation) 能荷(rnergy charge) 化学渗透理论(chemiosmotic theory) 解偶联剂(uncoupling agent) 高能化合物(high energy compound) 电子呼吸传递链(repiratory electron-transport chain)

二、填空题: 1、生物氧化有3种方式:、和。 2、生物氧化是氧化还原过程,在此过程中有、和参与。 3、原核生物的呼吸链位于。 4、ΔG0‘为负值是反应,可以进行。 ‘值小,供出电子的倾向。 5、生物分子的E 6、生物体高能化合物有、、、、、等类。 7、细胞色素a的辅基是与蛋白质以键结合。 8、无氧条件下,呼吸链各传递体都处于状态。 9、NADH呼吸链中氧化磷酸化的偶联部位是、、。 10、举出3种氧化磷酸化解偶联剂、和。 11、举出2例生物细胞中氧化脱羧反应、。 12、生物氧化是在细胞中,同时产生的过程。 13、高能磷酸化合物通常指水解的化合物,其中最重要的是,被称为能量代谢的。 14、真核细胞生物氧化的主要场所是,呼吸链和氧化磷酸化偶联因子都定位于。 15、以NADH为辅酶的脱氢酶类主要参与作用,即参与从到的电子传递作用;以NADPH为辅酶的脱氢酶类主要是将分解代谢中间产物的转移到反应中需电子的中间物上。 16、呼吸链中,氢或电子从氧化还原电势的载体依次向氧化还原电势的载体传递。 -、CO抑制作用分别是、和。17、鱼藤酮、抗霉素A、CN-、N 3 18、典型呼吸链包括和两种,根据接受代谢物脱下的氢的不同而区别的。 19、氧化磷酸化作用机制公认学说,是英国生物化学家于1961年首先提出。 20、化学渗透假说主要论点认为:呼吸链组分定位于内膜上,其递氢体有作用,因而造成内膜两侧的差,同时被膜上合成酶所利用,促使ADP+Pi→ATP。 的生成不是碳与氧的直接结合,而是。 21、体内CO 2

生物化学生物氧化试题及答案

【测试题】 一、名词解释 1、生物氧化 2、呼吸链 3、氧化磷酸化 4、 P/O比值 5、解偶联剂 6、高能化合物 7、细胞色素 8、混合功能氧化酶 二、填空题 9.琥珀酸呼吸链的组成成分有____、____、____、____、____。 10.在NADH 氧化呼吸链中,氧化磷酸化偶联部位分别就是____、____、____,此三处释放的能量均超过 ____KJ。 11.胞液中的NADH+H+通过____与____两种穿梭机制进入线粒体,并可进入____氧化呼吸链或____氧化呼吸链,可分别产生____分子ATP或____分子ATP。 12.ATP生成的主要方式有____与____。 13.体内可消除过氧化氢的酶有____、____与____。 14.胞液中α-磷酸甘油脱氢酶的辅酶就是____, 线粒体中α-磷酸甘油脱氢酶的辅基就是____。 15.铁硫簇主要有____与____两种组成形式,通过其中的铁原子与铁硫蛋白中的____相连接。 16.呼吸链中未参与形成复合体的两种游离成分就是____与____。 17.FMN或FAD作为递氢体,其发挥功能的结构就是____。 18.参与呼吸链构成的细胞色素有____、____、____、____、____、____。 19.呼吸链中含有铜原子的细胞色素就是____。 20.构成呼吸链的四种复合体中, 具有质子泵作用的就是____、____、____。 21.ATP合酶由____与____两部分组成,具有质子通道功能的就是____,____具有催化生成ATP 的作用。 22.呼吸链抑制剂中,____、____、____可与复合体Ⅰ结合,____、____可抑制复合体Ⅲ,可抑制细胞色素c 氧化酶的物质有____、____、____。 23.因辅基不同,存在于胞液中SOD为____,存在于线粒体中的 SOD为____,两者均可消除体内产生的 ____。 24.微粒体中的氧化酶类主要有____与____。 三、选择题 A型题 25.氰化物中毒时被抑制的细胞色素就是: A、细胞色素b560 B、细胞色素b566 C、细胞色素c1 D、细胞色素c E、细胞色素aa3 26.含有烟酰胺的物质就是: A、 FMN B、 FAD C、泛醌 D、 NAD+ E、 CoA 27.细胞色素aa3除含有铁以外,还含有: A、锌 B、锰 C、铜 D、镁 E、钾 28.呼吸链存在于: A、细胞膜 B、线粒体外膜 C、线粒体内膜 D、微粒体 E、过氧化物酶体 29.呼吸链中可被一氧化碳抑制的成分就是: A、 FAD B、 FMN C、铁硫蛋白 D、细胞色素aa3 E、细胞色素c 30.下列哪种物质不就是NADH氧化呼吸链的组分? A、 FMN B、 FAD C、泛醌 D、铁硫蛋白 E、细胞色素c 31.在氧化过程中可产生过氧化氢的酶就是: A、 SOD B、琥珀酸脱氢酶 C、细胞色素aa3 D、苹果酸脱氢酶 E、加单氧酶 32.哪种物质就是解偶联剂?

第八章 生物氧化

第5单元生物氧化 (一)名词解释 1.呼吸链; 2.氧化磷酸化作用; 3.磷氧比值(P/O); 4. 底物水平磷酸化; 5. 解偶联剂; 6. 化学渗透学说 (二)填空 1.生物分子的E0'值小,则电负性,供出电子的倾向。 2.P/O值是指,NADH的P/O值是__,还原性维生素C的P/O值是,在DNP(2,4-二硝基苯酚)存在的情况下,氧化分解琥珀酸的P/O值是__。 3.在呼吸链中,氢或电子从氧还电势的载体依次向氧还电势的载体传递。 4.化学渗透学说认为:呼吸链组分定位于内膜上,其递氢体有泵作用,因而造成内膜两侧的差,同时被膜上合成酶所利用,促使ADP + Pi → ATP。(三)选择题(在备选答案中选出1个或多个正确答案) 1.生物氧化的反应类型不包括下列哪种反应? A.脱氢反应 B.失电子反应 C.羟化反应 D.脱羧反应 E.加水脱氢反应 2.如果质子不经过F1/F0-ATP合成酶回到线粒体基质,则会发生 A.氧化 B.还原 C.解偶联 D.紧密偶联 E.主动运输 3.有关呼吸链的正确叙述是 A.两类呼吸链都由四种酶的复合体组成 B. 电子传递体同时兼有传氢体的功能 C.传氢体同时兼有传递电子的功能 D.抑制细胞色素aa3,则呼吸链各组分都呈氧化态 E.呼吸链组分通常按E0大到小的顺序排列 4.下述哪种物质专一性地抑制F0因子: A.鱼藤酮 B.抗霉素A C.2,4-二硝基酚 D.缬氨霉素 E.寡霉素 5.下列关于化学渗透学说的叙述哪一条是不对的 A.各递氢体和递电子体都有质子泵的作用 B.呼吸链各组分按特定的位置排列在线粒体内膜上 C.H+返回膜内时可以推动ATP酶合成ATP D.线粒体内膜外侧H+不能自由返回膜内 E.ATP酶可以使膜外侧H+返回膜内侧 6.呼吸链的各细胞色素在电子传递中的排列顺序是(福建师范大学1999年考研题) A.c1→b→c→aa3→O2 B.c→c1→b→aa3→O2; C.c1→c→b→aa3→O2; D.b→c1→c→aa3→O2; E.b→c→c1→aa3→O2 (四)是非题 1.生物氧化只有在氧气存在的条件下才能进行。 2.NADH脱氢酶是以NAD+为辅酶的脱氢酶的总称。 3.代谢物脱下的2摩尔氢原子经呼吸链氧化成水时,所释放的能量都储存于高能化合物中。 4.寡霉素专一地抑制线粒体F1F0-ATPase的F0,从而抑制ATP的合成。 (五)分析与计算题 1.什么叫呼吸链?它由哪些组分组成?有哪些方法可用来确定电子传递顺序? 2.为什么在通气条件下生产等量的酵母菌体所消耗的葡萄糖量明显低于静置培养? 参考答案

第七章生物氧化习题

第七章生物氧化 一、名词解释 1. 生物氧化(biological oxidation):生物细胞将糖、脂、蛋白质等燃料分子氧化分解,最终生成CO2和H2O并释放出能量的作用。生物氧化包括:有机碳氧化变成CO2;底物氧化脱氢、氢及电子通过呼吸链传递、分子氧与传递的氢结成水;在有机物被氧化成CO2和H2O的同时,释放的能量使ADP转变成ATP; 2.呼吸链(respiratory chain):有机物在生物体内氧化过程中所脱下的氢原子,经过一系列有严格排列顺序的传递体组成的传递体系进行传递,最终与氧结合生成水,这样的电子或氢原子的传递体系称为呼吸链或电子传递链。电子在逐步的传递过程中释放出能量被用于合成ATP,以作为生物体的能量来源; 3.氧化磷酸化(oxidative phosphorylation):在底物脱氢被氧化时,电子或氢原子在呼吸链上的传递过程中伴随ADP磷酸化生成ATP的作用,称为氧化磷酸化。氧化磷酸化是生物体内的糖、脂肪、蛋白质氧化分解合成ATP的主要方式; 4.磷氧比(P/O):电子经过呼吸链的传递作用最终与氧结合生成水,在此过程中所释放的能量用于ADP磷酸化生成ATP。经此过程消耗一个原子的氧所要消耗的无机磷酸的分子数(也是生成ATP的分子数)称为磷氧比值(P/O)。如NADH的磷氧比值是3,FADH2的磷氧比值是2; 5.底物水平磷酸化(substrate level phosphorylation):在底物被氧化的过程中,底物分子内部能量重新分布产生高能磷酸键(或高能硫酯键),由此高能键提供能量使ADP(或GDP)磷酸化生成ATP(或GTP)的过程称为底物水平磷酸化。此过程与呼吸链的作用无关,以底物水平磷酸化方式只产生少量ATP; 6.铁硫蛋白(iron-sulfur protein, Fe-S):又称铁硫中心,其特点是含铁原子和硫原子,或与蛋白质肽链上半胱氨酸残基相结合; 7. 细胞色素(cytochrome, Cyt):位于线粒体内膜的含铁电子传递体,其辅基为铁卟啉; 二、填空题 1. 生物氧化有3种方式:脱氢、脱质子和与氧结合。 2. 生物氧化是氧化还原过程,在此过程中有酶、辅酶和电子传递体参与。

生物化学重点_第八章 生物氧化和能量转换教学提纲

第八章生物氧化和能量转换 一、生物氧化的概念和特点: 生物氧化(biological oxidation)是指细胞内的糖、蛋白质和脂肪进行氧化分解而生成CO2和H2O,并释放能量的过程。生物氧化在细胞内进行的;在常温、常压、近于中性及有水环境中进行的;反应逐步释放出能量,相当一部分能量以高能磷酸酯键的形式储存起来。 二、线粒体氧化呼吸链: 生物氧化过程中,从代谢物上脱下的氢由一系列传递体依次传递,最后与氧形成水的整个体系称为呼吸链。这些递氢体或递电子体往往以复合体的形式存在于线粒体内膜上。主要的复合体有: 1.复合体Ⅰ(NADH-泛醌还原酶):其作用是将(NADH+H+)传递给CoQ。2.复合体Ⅱ(琥珀酸-泛醌还原酶):其作用是将FADH2传递给CoQ。 3.复合体Ⅲ(泛醌-细胞色素c还原酶):其作用是将电子由泛醌传递给Cytc。4.复合体Ⅳ(细胞色素c氧化酶):其作用是将电子由Cytc传递给氧。 三、呼吸链成分的排列顺序: 由上述递氢体或递电子体组成了NADH氧化呼吸链和琥珀酸氧化呼吸链两条呼吸链。 1.NADH氧化呼吸链:其递氢体或递电子体的排列顺序为:NA DH→ FMN→CoQ→b→ c1 → c →aa3 →1/2O2 。丙酮酸、α-酮戊二酸、异柠檬酸、苹果酸、β-羟丁酸、β-羟脂酰CoA脱氢后经此呼吸链递氢。 2.琥珀酸氧化呼吸链:其递氢体或递电子体的排列顺序为:FAD→CoQ→b→ c1 → c →aa3 →1/2O2 。琥珀酸和脂酰CoA脱氢后经此呼吸链递氢。 四、生物体内能量生成的方式: 1.氧化磷酸化:在线粒体中,底物分子脱下的氢原子经递氢体系传递给氧,在此过程中释放能量使ADP磷酸化生成ATP,这种能量的生成方式就称为氧化磷酸化。

2020年(生物科技行业)第七章生物氧化

(生物科技行业)第七章生 物氧化

第六章生物氧化 第壹节概述 壹、生物氧化的意义 生物机体在生命过程中需要能量,如生物合成、物质转运、运动、思维和信息传递等都需要消耗能量,这些能量从哪里来呢?能量的来源,主要依靠生物体内糖、脂肪、蛋白质等有机化合物在体内的氧化。 有机物质在生物细胞内氧化分解,最终彻底氧化成二氧化碳和水,且释放能量的过程,称为生物氧化。生物氧化是在细胞中进行的,所以生物氧化又称为细胞呼吸。生物氧化为机体生命活动所需要的能量。 真核生物细胞的生物氧化在线粒体中进行,原核生物细胞,生物氧化在细胞质膜上进行。 二、生物氧化的特点 生物氧化和体外物质氧化或燃烧的化学本质是相同的,最终产物是二氧化碳和水,所释放的能量也相等。但生物氧化和非生物氧化所进行的方式不同,其特点为: 1、生物氧化在细胞内进行,是在体温和接近中性PH和有水的环境进行的,是在壹系列酶、辅酶和传递体的作用下逐步进行的,每壹步反应都放出壹部分能量,逐步释放的能量的总和和同壹氧化反应在体内进行是相同。这样不会因氧化过程中能量骤然释放,体温突然上升而损害机体,而且释放的能量也能有效地利用。 2、生物氧化过程所释放的能量通常先贮存在壹些高能化合物如ATP 中,ATP相当于生物体内的能量转运站。

3、有机化合物在体内外是碳在氧中燃烧,产生二氧化碳,而生物氧化是通过羧酸脱羧作用产生二氧化碳。 第二节线粒体氧化体系 生物体内存在多种氧化体系,其中最重要的是存在和线粒体中线粒体氧化体系。此外仍有微粒体氧化体系、过氧化体氧化体系、细菌的生物氧化体系等。 壹、呼吸链的概念 在生物氧化过程中,代谢物的氢由脱氢酶激活,脱下来的氢经过几种传递体的传递,将电子传递到细胞色素体系,最后将电子传递给氧,活化的氢(H+)和活化的氧(O2-)结合成水,在这个过程中构成的传递链称为电子传递链,或呼吸链。 二、呼吸链的组成 构成呼吸链的成分有20多种。大致可将它们分成五类。即以NAD+或NADP+为辅酶的脱氢酶类;以FAD或FMN为辅基的黄素蛋白酶类;铁硫蛋白类;泛醌和细胞色素类。依具体功能又可分为递氢体和递电子体。 (壹)递氢体 在呼吸链中即可接受氢又可把所接受的氢传递给另壹种物质的成分叫递氢体,包括: 1、NAD+和NADP+ NAD+和NADP+是不需氧脱氢酶的辅酶。它们分别可和不同的酶蛋白组成多种功能各异的不需氧脱氢酶。辅酶分子能可逆地加氢和

生物化学 第六章生物氧化

1生物化学第六章生物氧化 生物化学第六章生物氧化 1.相对浓度升高时可加速氧化磷酸化的物质是 A.FAD B.UTP C.NADPH D.NADP+ E.ADP 2.线粒体中呼吸链的排列顺序哪个是正确的 A.NADH-FMN-CoQ-Cyt-O 2 B.ADH 2-NAD +-CoQ-Cyt-O 2 C.FADH 2-FAD-CoQ-Cyt-O 2 D.NADH-FAD-CoQ-Cyt-O 2 E.NADH-CoQ-FMN-Cyt-O 2 3.2H 经过琥珀酸氧化呼吸链传递可产生的ATP 数为 A.1.5 B.2.5 C.4 D.6 E.12 4.体内细胞色素C 直接参与的反应是 A.叶酸还原 B.糖酵解 C.肽键合成 D.脂肪酸合成 E.生物氧化 5.大多数脱氢酶的辅酶是 A.NAD + B.NADP + C.CoA D.Cyt c E.FADH 2 6.电子按下列各途径传递,能偶联磷酸化的是 A.Cyt —Cytaa 3 B.CoQ--Cytb C.Cytaa 3—O 2 D.琥珀酸--FAD E.FAD —CoQ 7.生命活动中能量的直接供体是 A.三磷酸腺苷 B.脂肪酸 C.氨基酸 D.磷酸肌酸 E.葡萄糖 8.下列化合物不属高能化合物的是 A.1,3-二磷酸甘油酸 B.乙酰CoA C.AMP D.氨基甲酰磷酸 E.磷酸烯醇式丙酮酸 9.每mol 高能键水解时释放的能量大于 A.5KJ

B.20KJ C.21KJ D.40KJ E.51KJ 10.关于ATP在能量代谢中的作用,错误的是 A.ATP是生物能量代谢的中心 B.ATP可转变为其他的三磷酸核苷 C.ATP属于高能磷酸化合物 D.ATP与磷酸肌酸之间可以相互转变 E.当ATP较富余时,磷酸肌酸将-P转移给ADP生成ATP 11.氰化物中毒抑制的是 A.细胞色素 b B.细胞色素c C.细胞色素cl D.细胞色素aa3 E.辅酶Q 12.氰化物的中毒机理是 A.大量破坏红细胞造成贫血 B.干扰血红蛋白对氧的运输 C.抑制线粒体电子传递链 D.抑制呼吸中枢,使通过呼吸摄入氧量过低 E.抑制ATP合酶的活性 https://www.sodocs.net/doc/9212960207.html,-.CO中毒是由于 A.使体内ATP生成量减少 B.解偶联作用 C.使Cytaa3丧失传递电子的能力,呼吸链中断 D.使ATP水解为ADP和Pi的速度加快 E.抑制电子传递及ADP的磷酸化 14.下列化合物中除哪一项外都是呼吸链的组成成分 A.CoQ B.Cytb C.CoA D.NAD+ E.aa3 15.生物体内ATP最主要的来源是 A.糖酵解 B.TCA循环 C.磷酸戊糖途径 D.氧化磷酸化作用 E.糖异生 16.通常生物氧化是指生物体内 A.脱氢反应 B.营养物氧化成H2O和CO2的过程 C.加氧反应 D.与氧分子结合的反应 E.释出电子的反应 17.下列有关氧化磷酸化的叙述,错误的是 A.物质在氧化时伴有ADP磷酸北生成ATP的过程 B.氧化磷酸化过程存在于线粒体内 C.P/O可以确定ATP的生成数 D.氧化磷酸化过程有两条呼吸链 E.电子经呼吸链传递至氧都产生3分子ATP 2生物化学第六章生物氧化

第七章 生物氧化

第七章生物氧化 一、A型题 1.下列代谢物中,可通过生物氧化完全分解的是( ) A.核酸 B.胆固醇 C.葡翻糖 D.维生素 E.无机离子 2.糖、脂肪和蛋白质在生物氧化过程中都会生成( ) A.甘油 B.氨基酸 C.丙酮酸 D. 胆固醇 E.乙酰辅酶A 3.关于呼吸链的下列叙述,错误的是( ) A.递氢体同时也传递电子 B.电子载体同时也传递氢 C.一氧化碳可抑制其电子传递 D.传递还原当量过程可偶联ADP磷酸化 E.呼吸链组分通常按E值由小到大的顺序排列 4.在线粒体内进行的代谢是( ) A.糖酵解 B.糖原合成 C 核糖体循环 D.氧化磷酸化 E.脂肪酸合成 5.糖、脂肪酸、氨基酸代谢的结合点是( ) A.丙酮酸 B 琥珀酸 C.延胡索酸 D乙酰辅酶A E 磷酸烯醇式丙酮酸 6.真核生物呼吸链的存在都位是 A.微粒体 B.细胞核 C.细胞质 D.线粒体 E.过氧化物酶体 7.下列酶中,属于呼吸链成分的是 A. NADH脱氢酶 B.丙酮酸脱氢酶 C.苹果酸脱氨酶 D.葡萄糖-6-磷酸酶 E.6-磷酸葡萄糖脱氢酶 8.下列辅助因子中不参与递氢的是( ) A. FH4 B CoQ C. FAD DFMN E. NAD' 9.下列成分中,不属于呼吸链组分的是( ) A. Cu2+ B FAD C.泛醌 D 辅酶A E.细胞色素 10.关于NADH的下列叙述,错误的是( ) A.又称还原型辅酶I B.可在细胞质中生成 C.可在线粒体内生成 D.在细胞质中氧化并生成ATP E.在线粒体内氧化并生成ATP 11、催化电子在NADH与辅酶Q之间传递的是 A FAD B. 黄素蛋白 C细胞色素b D细胞色素C E细胞色素C氧化酶 12、下列成分中,属于呼吸链递氢体的是( ) A 辅醇Q B. 铁硫蛋白 C.细胞色素a D. 细胞色索b E细胞色素c 16.下列成分中,属于呼吸链成分的是( ) A铁蛋白 B 铁硫蛋白 C.血红蛋白 D.转铁蛋白 E细胞色素P450 17.关于细胞色素的下列叙述,正确的是( ) A.见呼吸链递氢体 B.是一类血红素蛋白 C.又称细胞色素c氧化酶 D.都紧密结合在线粒体内膜上 E.在呼吸链中按细胞色素b→细胞色素c→细胞色素c1→细胞色素aa3 18.下列金属离子中,参与呼吸转电子传递的是( ) A.钴离子 B.镁离子 C.钼离子 D.铁离子 E.锌离子 20.下列辅助因子含有B族维生素,例外的是( ) A.轴酶A B.血红素b C. 四氢叶酸 D.磷酸吡哆醛 E.焦磷酸硫胺索 21.体内细胞色素c直接参与的反应是(。) A.生物氧化 B肽键合成 C.无氧酵解 D 叶酸还原 E.脂肪酸合成 22.呼吸链中仅作为电子载体的是( )

生物化学生物氧化试题及答案

【测试题】 一、名词解释 1.生物氧化 2.呼吸链 3.氧化磷酸化 4. P/O比值 5.解偶联剂 6.高能化合物 7.细胞色素 8.混合功能氧化酶 二、填空题 9.琥珀酸呼吸链的组成成分有____、____、____、____、____。 10.在NADH 氧化呼吸链中,氧化磷酸化偶联部位分别是____、____、____,此三处释放的能量均超过____KJ。11.胞液中的NADH+H+通过____和____两种穿梭机制进入线粒体,并可进入____氧化呼吸链或____氧化呼吸链,可分别产生____分子ATP或____分子ATP。 12.ATP生成的主要方式有____和____。 13.体内可消除过氧化氢的酶有____、____和____。 14.胞液中α-磷酸甘油脱氢酶的辅酶是____,线粒体中α-磷酸甘油脱氢酶的辅基是____。 15.铁硫簇主要有____和____两种组成形式,通过其中的铁原子与铁硫蛋白中的____相连接。 16.呼吸链中未参与形成复合体的两种游离成分是____和____。 17.FMN或FAD作为递氢体,其发挥功能的结构是____。 18.参与呼吸链构成的细胞色素有____、____、____、____、____、____。 19.呼吸链中含有铜原子的细胞色素是____。 20.构成呼吸链的四种复合体中,具有质子泵作用的是____、____、____。 21.ATP合酶由____和____两部分组成,具有质子通道功能的是____,____具有催化生成ATP 的作用。 22.呼吸链抑制剂中,____、____、____可与复合体Ⅰ结合,____、____可抑制复合体Ⅲ,可抑制细胞色素c氧化酶的物质有____、____、____。 23.因辅基不同,存在于胞液中SOD为____,存在于线粒体中的 SOD为____,两者均可消除体内产生的____。 24.微粒体中的氧化酶类主要有____和____。 三、选择题 A型题 25.氰化物中毒时被抑制的细胞色素是: A.细胞色素b560 B.细胞色素b566 C.细胞色素c1 D.细胞色素c E.细胞色素aa3 26.含有烟酰胺的物质是: A. FMN B. FAD C. 泛醌 D. NAD+ E. CoA 27.细胞色素aa3除含有铁以外,还含有: A.锌 B.锰 C.铜 D.镁 E.钾 28.呼吸链存在于: A.细胞膜 B.线粒体外膜 C.线粒体内膜 D.微粒体 E.过氧化物酶体 29.呼吸链中可被一氧化碳抑制的成分是: A. FAD B. FMN C. 铁硫蛋白 D. 细胞色素aa3 E.细胞色素c 30.下列哪种物质不是NADH氧化呼吸链的组分? A. FMN B. FAD C. 泛醌 D. 铁硫蛋白 E.细胞色素c 31.在氧化过程中可产生过氧化氢的酶是: A. SOD B.琥珀酸脱氢酶 C.细胞色素aa3 D.苹果酸脱氢酶 E.加单氧酶 32.哪种物质是解偶联剂? A.一氧化碳 B.氰化物 C.鱼藤酮 D.二硝基苯酚 E.硫化氰

第七章 生物氧化--生化习题及答案

第七章生物氧化 一、单项选择题 1. 体内CO2直接来自 A.碳原子被氧原子氧化B.呼吸链的氧化还原过程 C.糖原分解D.脂肪分解 E.有机酸的脱羧 2.关于电子传递链叙述错误的是 A.NADPH中的氢一般不直接进入呼吸链氧化B.1分子铁硫中心(F e2S2)每次传递2个电子C.NADH脱氢酶是一种黄素蛋白酶D.在某些情况下电子传递不一定与磷酸化偶联E.电子传递链各组分组成四个复合体 3.在生物氧化中NAD+的作用是 A.脱氧B.加氧C.脱羧D.递电子E.递氢 4.下列说法正确的是 A.呼吸链中氢和电子的传递有严格的方向和顺序 B.各种细胞色素都可以直接以O2为电子接受体 C.在呼吸链中NADH脱氢酶可催化琥珀酸脱氢 D.递电子体都是递氢体 E.呼吸链所产生的能量均以ADP磷酸化为ATP形式所接受 5.下列说法错误的是 A.泛醌能将2H+游离于介质而将电子传递给细胞色素 B.复合体I中含有以FMN为辅基的黄素蛋白 C.CN–中毒时,电子传递链中各组分处于还原状态 D.复合体Ⅱ中含有以FMN为辅基的黄素蛋白 E.体内物质的氧化并不都伴有ATP的生成 6. NADH脱氢酶可以以下列哪一个辅酶或辅基为受氢体 A.NAD+ B.FMN C.CoQ D.FAD E.以上都不是 7.细胞色素体系中能与CO 和氰化物结合使电子不能传递给氧而使呼吸链中断的是 A.细胞色素b B.细胞色素a3 C.细胞色素c D.细胞色素b1

E.细胞色素c1 8.在生物氧化中不起递氢作用的是 A.FMN B.FAD C.NAD+D.铁硫蛋白E.泛醌 9 .呼吸链存在于 A.胞质B.线粒体外膜 C.线粒体内膜D.线粒体基质 E.微粒体 10.细胞色素氧化酶中除含铁卟啉辅基外还含有参与传递电子的()离子 A.镁B.锌C.钙D.铜E.铁 11.生物体内ATP的生成方式有 A.1种B.2种C.3种D.4种E.5种 12.铁硫蛋白中的铁能可逆地进行氧化还原反应,每次可传递多少个电子 A.3 B.2 C.1 D.4 E.以上都不对 13.下列不是琥珀酸氧化呼吸链成分的是() A.Cyt b562 B.Cyt c1 C.Fe·S D.FAD E.FMN 14.1分子NADH+H+经NADH氧化呼吸链传递,最后交给1/2O2生成水,在此过程中生成几分子ATP? A.1 B.1.5 C.2.5 D.4 E.5 15.在肌肉、脑等的糖有氧氧化过程中,由甘油醛-3-磷酸脱氢产生的NADH通过甘油-3-磷酸穿梭进入线粒体经呼吸链氧化,此时1分子葡萄糖彻底氧化可生成多少分子A TP? A.34、B.32、C.30、D.40、E.42 16.体内80%的ATP是通过下列何种方式生成的? A.糖酵解B.底物水平磷酸化 C.肌酸磷酸化D.有机酸脱羧 E.氧化磷酸化 17. 生物体可以直接利用的能量物质是 A.ADP B.磷酸肌酸C.ATP D.FAD E.FMN 18.琥珀酸氧化时,其P/O值约为多少? A.1 B.1.5 C.2.5 D.4 E.以上都不对19.抑制NADH的氧化而不抑制FADH2氧化的抑制剂是

生物化学-生物氧化 (1)

《生物化学(专1)》生物氧化 1.相对浓度升高时可加速氧化磷酸化的物质是A.FADB.UTPC.NADPHD.NADP+E.ADP 参考答案:E2.线粒体中呼吸链的排列顺序哪个是正确的 A.NADH-FMN-CoQ-Cyt-O2 B.ADH2-NAD+-CoQ-Cyt-O2 C.FADH2-FAD-CoQ-Cyt-O2 D.NADH-FAD-CoQ-C yt-O2 E.NADH-CoQ-FMN-Cyt-O2 参考答案:A3.2H经过琥珀酸氧化呼吸链传递可产生的ATP数为A.1.5B.2.5C.4D.6E.12 参考答案:A 4.体内细胞色素C直接参与的反应是A.叶酸还原B.糖酵解C.肽键合成D.脂肪酸合成E.生物氧化 参考答案:E5.大多数脱氢酶的辅酶是A.NAD+B.NADP+C.CoAD.Cyt cE.FADH2 参考答案:A6.电子按下列各途径传递,能偶联磷酸化的是A.Cyt— Cytaa3B.CoQ--CytbC.Cytaa3—O2D.琥珀酸--FADE.FAD—CoQ 参考答案:C7.生命活动中能量的直接供体是A.三磷酸腺苷B.脂肪酸C.氨基酸D.磷酸肌酸E.葡萄糖 参考答案:A8.下列化合物不属高能化合物的是A.1,3-二磷酸甘油酸B.乙酰CoAC.AMPD.氨基甲酰磷酸E.磷酸烯醇式丙酮酸 参考答案:C9.每mol高能键水解时释放的能量大于A.5KJB.20KJC.21KJD.40KJE.51KJ 参考答案:C10.关于ATP在能量代谢中的作用,错误的是A.ATP是生物能量代谢的中心B.ATP 可转变为其他的三磷酸核苷C.ATP属于高能磷酸化合物D.ATP与磷酸肌酸之间可以相互转变E.当ATP较富余时,磷酸肌酸将-P转移给ADP生成ATP 参考答案:E11.氰化物中毒抑制的是A.细胞色素bB.细胞色素cC.细胞色素clD.细胞色素aa3E.辅酶Q 参考答案:D12.氰化物的中毒机理是A.大量破坏红细胞造成贫血B.干扰血红蛋白对氧的运输C.抑制线粒体电子传递链D.抑制呼吸中枢,使通过呼吸摄入氧量过低E.抑制ATP合酶的活性 参考答案:https://www.sodocs.net/doc/9212960207.html,-.CO中毒是由于A.使体内ATP生成量减少B.解偶联作用C.使Cytaa3丧失传递电子的能力,呼吸链中断D.使ATP水解为ADP和Pi的速度加快E.抑制电子传递及ADP的磷酸化 参考答案:C14.下列化合物中除哪一项外都是呼吸链的组成成分 A.CoQ B.Cytb C.CoA D.NAD+ E.aa3

生物化学5生物能学与生物氧化

生物能学与生物氧化 代谢总论 营养物质进入体内,转变为生物体内自身的分子以及生命活动中所需的物质和能量等等。营养物质在生物体内所经历的一切化学变化总称新陈代谢 新城代谢靠酶催化,都有其特殊的调节机制。 ATP的合成反应在线粒体上进行的,而ATP的供能反应大多是在细胞溶胶内进行的。物质分解代谢产生ATP的的过程大致可分为三个阶段,第一个阶段由营养物的大分子分解为较小的分子,第二个阶段是由各种小分子进一步转化成少数几种共同物质,第三个阶段由柠檬酸循环和氧化磷酸化两个个共同代谢途径组成,这个阶段是形成ATP的主要阶段ATP在提供能量时,在ATP远端的那个磷酸基团水解成无极磷酸分子,ATP分子失掉一个磷酰基而变成腺苷二磷酸(ADP)。腺苷二磷酸又可以在捕获能量的前提下,再与无极磷酸结合形成ATP。 ATP分子一旦形成就马上被利用掉,所以严格的说ATP并不是能量的储存形式,而是一 种传递能量的分子。 递能作用 由营养物质分解大写释放出的化学能,除了通过合成APP的途径捕获外,还有另外一种途径就是以氢原子和电子的形式将自由能转移给生物合成的需能反应。这种具有高能的氢原子是由脱氢反应形成的。脱氢酶催化物质的脱氢反应,将脱下的氢原子和电子传递给一类特殊能接受这种氢原子和电子的辅酶,叫做辅酶一或辅酶二 FMN,译名为黄素腺嘌呤单核甘酸,FAD 译名黄素嘌呤二核苷酸,它们是另一类在传递电子和氢原子中起作用的载体。FMN和FAD都能接受两个电子和两个氢原子,它们在氧化还原反应当中,特别是在氧化呼吸链中起着传递电子和氢原子的作用 辅酶 A 简写为CoA,分子中含有腺嘌呤、D-核糖、磷酸、焦磷酸、泛酸和巯基乙胺。巯基是CoA的活泼基团,它在酶促转乙酰基的反应中个,起着接受或提供乙酰基的作用。乙酰基和辅酶 A 是通过一个硫脂键结合的。这个硫脂键与ATP的高能磷酸键类似,在水解时能放出大量热量,因此乙酰辅酶A具有高的乙酰基转移势能。乙酰辅酶A 携带的乙酰基不是一般的乙酰基,而是活泼的乙酰基团。许多物质代谢都会形成乙酰辅酶 乙酰辅酶 A 是能源物质代谢的重要中间代谢产物,在体内能源物质代谢中是一个枢纽性的物质。糖、脂肪、蛋白质三大营养物质通过乙酰辅酶 A 汇聚成一条共同的代谢通路——三羧酸循环和氧化磷酸化,经过这条通路彻底氧化生成二氧化碳和水,释放能量用以ATP的合成。乙酰辅酶 A 是合成脂肪酸、酮体等能源物质的前体物质,也是合成胆固醇及其衍生物等生理活性物质的前体物质。 代谢作用的特点 1. 代谢过程所包含的化学反应通常不是一部完成,由一系列的中间代谢过程所组成,反应数目虽多,但有极强的顺序性2. 代谢作用需要温和的条件,绝大多数反应都由酶所催化3.代谢作用具有高度灵敏的自我调节4.整体水平上,主要靠激素或激素伴同神经系统进行的综合调节。细胞水平上,主要通过胞内酶布局的区域化而实现。分子水平上,主要通过酶的反馈抑制和基因表达的调控等实现5. 代谢遵循基本的物理学uefa 、化学规律6. 热力学上不能自发进行的反应通过与功能反应相偶联得以进行新陈代谢的研究方法 1. 酶的抑制剂:可使途径受到阻断,结果某一种代谢中间产物的,从而为测定中间产物提供可能2. 利用遗传缺陷症代谢途径:患有遗传缺陷的病人,由于先天性基因的突变,在体内往往表现为缺乏某一种酶,为该酶作用的前体不能进一步参加代谢过程,从而造成这种前体物的积累。这种代谢中间产物因不能进一步利用而出现在血液或随尿排出体外。例如先天缺乏尿黑酸氧化酶的病人,

第八章 生物氧化

第八章生物氧化 一、内容提要 生物氧化是指糖、脂肪、蛋白质等供能物质在生物细胞中彻底氧化分解为CO2和H2O 并逐步释放能量的过程。 CO2的生成方式为有机酸脱羧。脱羧反应根据其发生在α碳原子及β碳原子,分为α脱羧和β脱羧。有的脱羧反应涉及氧化,因此脱羧反应又可分为不伴氧化的单纯脱羧和伴氧化的氧化脱羧。 线粒体内膜存在多种具有氧化还原功能的酶和辅酶,排列组成呼吸链。细胞的线粒体中,代谢物脱下的2H以质子和电子形式通过呼吸链逐步传递给O2生成H2O。从细胞内膜分离得到四种功能的呼吸链复合体:NADH-泛醌还原酶(复合体Ⅰ)、琥珀酸-泛醌还原酶(复合体Ⅱ)、泛醌-细胞色素C还原酶(复合体Ⅲ)和细胞色素C氧化酶(复合体Ⅳ)。CoQ、Cytc不包含在这些复合体中。体内存在两条呼吸链,即NADH氧化呼吸链及琥珀酸氧化呼吸链。 ATP的生成方式有两种:底物水平磷酸化和氧化磷酸化,以氧化磷酸化为主。氧化磷酸化是呼吸链电子传递过程中产生的能量,使ADP磷酸化生产ATP的过程。实验结果表明,每2H经NADH氧化呼吸链传递可产生约2.5个ATP,经琥珀酸氧化呼吸链传递可产生约1.5个ATP。氧化磷酸化受到甲状腺素和ADP/ATP比值的调节,同时易受呼吸链抑制剂、解偶联剂和ATP合酶抑制剂等抑制。底物水平磷酸化是代谢物分子中能量直接转移给ADP生成ATP的过程。 除ATP外还存在其它高能化合物,但生物体内能量的生成、转化、储存和利用都是以ATP为中心。在肌肉和脑组织中,磷酸肌酸可作为ATP的能量储存形式。 胞质中物质代谢生成的NADH不能直接进入线粒体,必须通过α-磷酸甘油和苹果酸-天冬氨酸两种穿梭机制进入线粒体进行氧化。 生物氧化过程中有时会生成反应活性氧类,他们具有强氧化性,对细胞有损伤作用。微粒体中的氧化酶类可以将某些底物分子羟基化,增强其极性,便于从体内排出;过氧化物酶体中的氧化酶类和超氧化物歧化酶对反应活性氧类具有一定的清除作用。 二、学习要求 (一)概述 掌握生物氧化的概念、方式及特点;熟悉生物氧化过程中CO2的生成方式,脱羧反

生物化学与分子生物学生物氧化习题

生物氧化 一、单选题 1. 生物体内CO2的生成是由 A. 代谢物脱氢产生 B. 碳原子与氧原子直接化合产生 C. 有机酸脱羧产生 D. 碳原子由呼吸链传递给氧生成 E. 碳酸分解产生 2. 关于生物氧化的特点描述错误的是 A. 氧化环境是近于中性pH B. 能量逐步释放 C. 在生物体内进行 D. 化学本质与体外氧化相同 E. CO2和H2O是由碳和氢直接与氧结合生成 3. 氰化物中毒时被抑制的细胞色素是 A.细胞色素b560B.细胞色素b566 C.细胞色素C1 D.细胞色素c E.细胞色素aa3 4.呼吸链存在于 A.细胞膜 B.线粒体外膜 C.线粒体内膜 D.微粒体 E.过氧化物酶体5.呼吸链中可被一氧化碳抑制的成分是 A.FAD B.FMN C.铁硫蛋白D.细胞色素aa3 E.细胞色素c 6.下列哪种物质不是NADH氧化呼吸链的组分? A.FMN B.FAD C.泛醌 D.铁硫蛋白 E.细胞色素c 7. 哪种物质是氧化磷酸化解偶联剂? A.一氧化碳 B.氰化物C.鱼藤酮D.二硝基苯酚 E.硫化氢 8.A TP生成的主要方式是 A.肌酸磷酸化 B.氧化磷酸化 C.糖的磷酸化 D.底物水平磷酸化 E.有机酸脱羧 9.呼吸链中细胞色素排列顺序是 A.b→c1→aa3→O2 B.c→b→c1→aa→O2 C.c1→c→b→aa3→O2 D. b→c1→c→aa3→O2 E.c→c1→b→aa3→O2 10.下列哪种不是高能化合物? A.GTP B.A TP C.磷酸肌酸D.3-磷酸甘油醛 E. 1,3-二磷酸甘油酸11.由琥珀酸脱下的一对氢,经呼吸链氧化可产生 A.1.5分子ATP B.2分子ATP C.2.5分子ATP

生物化学 生物氧化

1.什么是生物氧化? 试比较生物氧化与非生物氧化的异同点。 物质在生物体内进行氧化称生物氧化,主要指糖,脂肪,蛋白质等在体内分解 时,逐步释放能量最终生成CO 2和H 2 O的过程。 生物氧化的特点∶ 1 是在酶催化下进行的,反应条件温和。 2 底物的氧化是分阶段进行的,能量也是逐步释放的,这样不会因氧化过程中能量骤然释放而损害机体,同时使释放的能量得到有效的利用。 3 、生物氧化过程中释放的能量通常先储存在一些特殊的高能化合物中( 如ATP),通过这些物质的转移作用满足机体吸能反应的需要。 4 、生物氧化受细胞的精确调节控制 生物氧化与非生物氧化的异同点: 相等点: 1.都需要O2,放出CO2和H2O 2.放出的总能量是相同的 3.反应的实质是电子或H+的转移 2 试简述呼吸链中各种酶复合物的排列顺序及ATP 的生成部位。 复合体Ⅰ NADH-Q还原酶 复合体Ⅱ琥珀酸-Q还原酶 复合体Ⅲ细胞色素C还原酶 复合体Ⅳ细胞色素C氧化酶 合成ATP的途径: 1.由复合体Ⅰ将NADH上的电子传递给辅酶Q的过程 2.由复合体Ⅲ执行的,将电子由辅酶Q传递给细胞色素c的过程 3.由复合体Ⅳ执行,将电子由细胞色素c传递给氧的过程。 3 什么是氧化磷酸化作用? NADH 呼吸链中有几个氧化磷酸化偶联位部位? 氧化磷酸化(oxidative phosphorylation)是指在呼吸链电子传递过程中偶联ADP磷酸化,生成ATP,又称为偶联磷酸化。 有3个氧化磷酸化偶联位部位 1.由复合体Ⅰ将NADH上的电子传递给辅酶Q的过程 2.由复合体Ⅲ执行的,将电子由辅酶Q传递给细胞色素c的过程 3.由复合体Ⅳ执行,将电子由细胞色素c传递给氧的过程。 4 煤气(CO) 中毒时, 机体的耗氧量降低, 为什么? CO会阻断电子在细胞色素氧化酶中的传递作用,抑制a 3 的亚铁形式。 因为CO阻断电子传递作用,所以电子无法最终传递给氧和H+生成水,所以机体的耗氧量降低。 5 何谓P/O 值, 其生物学意义如何? P/O比是指每消耗1 mol 的氧原子使无机磷酸掺入到ATP中的摩尔数。 在氧化磷酸化过程中氧的消耗和ATP生成的个数之间有一定的关系,这种关系

第八章生物氧化

问题1 10 分保存 体内CO2来自: A. 有机酸的脱羧 B. 真脂分解 C. 呼吸链的氧化还原过程 D. 糖原的分解 E. 碳原子被氧原子氧化 问题2 10 分保存 线粒体氧化磷酸化解偶联是意味着: A. 线粒体三羧酸循环停止 B. 线粒体氧化作用停止 C. 线粒体能利用氧,但不能生成ATP D. 线粒体膜的钝化变性 E. 线粒体膜ATP酶被抑制 问题3 10 分保存 劳动或运动时ATP因消耗而大量减少,此时: A. ADP大量磷酸化以维持A TP/ADP不变 B. ADP大量减少,ATP/ADP增高,呼吸随之加快 C. 以上都不对 D. ADP相应增加,A TP/ADP下降,呼吸随之加快 E. ADP相应减少,以维持ATP/ADP恢复正常 问题4 10 分保存 人体活动主要的直接供能物质是: A. ATP B. 脂肪酸 C. GTP D. 磷酸肌酸 E. 葡萄糖 问题5 10 分保存 氰化物中毒时,被抑制的是: A. Cyt b B. Cyt C C. Cyt a D. Cyt aa3 E. Cyt C1 问题6 10 分保存 肝细胞胞液中的NADH进入线粒体的机制是: A. 柠檬酸-丙酮酸循环 B. 肉碱穿梭

C. 苹果酸-天冬氨酸穿梭 D. α-磷酸甘油穿梭 E. 丙氨酸-葡萄糖循环 问题7 10 分保存 在胞质中进行的与生成能量有关的代谢途径是 A. 糖酵解 B. 氧化磷酸化 C. 三羧酸循环 D. 脂肪酸氧化 E. 电子传递 问题8 10 分保存 体内ATP生成的主要方式是 A. 肌酸磷酸化 B. 底物水平磷酸化 C. 糖原磷酸化 D. 有机磷酸化 E. 氧化磷酸化 问题9 10 分保存 下列哪个物质不是琥珀酸呼吸链的组分 A. Cytaa3 B. CoQ C. NAD+ D. Cyt b E. FAD 问题10 10 分保存 脂溶性的递氢体是 A. NAD+ B. Fe-S C. FAD D. CoQ E. FMN 问题11 10 分保存 下列能显著促进氧化磷酸化的物质是 A. ATP B. ADP C. 维生素C D. CoASH E. 琥珀酸

生物化学:生物氧化

1与非生物氧化相比生物氧化的特点:生物氧化是酶促反应,反应条件(如温度、pH)温和;而体外燃烧则是剧烈的游离基反应,要求在高温、干燥的条件下进行;生物氧化分阶段逐步缓慢地氧化,能量也逐步释放;而体外燃烧能量是爆发式释放出来的;生物氧化释放的能量有相当多的转换成ATP中活跃的化学能,用于各种生命活动;体外燃烧产生的能量则转换为光和热,散失在环境中。 2高能化合物:在标准条件下(pH7,25℃,1mol/L)发生水解时,可释放出大量自由能的化合物。习惯上把“大量”定义为5kcal/mol(即20.92kJ/mol)以上。 3高能键:在高能化合物分子中,被水解断裂时释放出大量自由能的活泼共价键。高能键常用符号“~ ”表示 4ATP的特殊作用:ATP起“共同中间体”作用。ATP具较高的磷酸基团转移势能,倾向于把高能磷酸根转移给受体;在传递能量方面起转运站作用。既接受代谢反应释放的能量,又可供给代谢反应所需的能量,是能量的载体和传递者,而不是储存者,储能物质:磷酸肌酸、磷酸精氨酸;生成其它核苷三磷酸(NTP)。 4生物氧化产生ATP:生物体降解燃料分子的主要意义是取得供其发育所需要的能量。因此,利用生物氧化形成ATP,是生物体内ATP形成的主要方式;生物氧化的第一阶段也能产生少量的ATP,这是以底物水平磷酸化的方式产生的;生物氧化的第二阶段是产生ATP的主要阶段,通过氧化磷酸化的方式产生。 5底物水平磷酸化:代谢物通过氧化形成的高能磷酸化合物直接将磷

酸基团转移给ADP,使之磷酸化生成ATP。 6氧化磷酸化:NADH或FADH2将电子传递给O2的过程与ADP的磷酸化相偶联,使电子传递过程中释放出的能量用于ATP的生成。氧化磷酸化的过程需要氧气作为最终的电子受体,它是需氧生物合成ATP的主要途径。 7在光合作用的过程中也能形成ATP,这种ADP的磷酸化方式叫光合磷酸化。光合磷酸化:由光驱动的电子传递过程与ADP的磷酸化相偶联,使电子传递过程中释放出的能量用于ATP的生成。 8能荷= (ATP+0.5ADP) / (ATP+ADP+AMP) 第二节 1概念:在生物氧化过程中,代谢物上脱下的氢经过一系列的按一定顺序排列的氢传递体和电子传递体的传递,最后传递给分子氧并生成水,这种氢和电子的传递体系称为电子传递链(ETC),又称呼吸链。 2其中NADPH不进入呼吸链合成ATP,而是作为生物合成的还原剂,与生物合成有关;只有NADH和FADH2进入呼吸链。所以呼吸链有两条:由NADH开始的呼吸链——NADH呼吸链;由FADH2开始的呼吸链——FADH2呼吸链。 3NADH-CoQ还原酶(复合物I)琥珀酸-CoQ还原酶(复合物Ⅱ)CoQ-细胞色素c还原酶(复合物III )细胞色素氧化酶(复合物Ⅳ) 4烟酰胺脱氢酶是指以NAD+或NADP+为辅酶的脱氢酶, 属于烟酰胺的衍生物。以NAD+为辅酶的脱氢酶主要参与线粒体底物到分子氧的传递,

相关主题