搜档网
当前位置:搜档网 › 五年级奥数相遇问题(2)及答案

五年级奥数相遇问题(2)及答案

五年级奥数相遇问题(2)及答案
五年级奥数相遇问题(2)及答案

相遇问题(2) 年级 班 姓名 得分

一、填空题

1. 两列对开的火车途中相遇,甲车上的乘客从看到乙车到乙车从旁边开过去,共用6秒钟.已知甲车每小时行45千米,乙车每小时行36千米,乙车全长_____米.

2. 甲、乙两地间的路程是600千米,上午8点客车以平均每小时60千米的速度从甲地开往乙地.货车以平均每小时50千米的速度从乙地开往甲地.要使两车在全程的中点相遇,货车必须在上午______点出发.

3. 甲乙两地相距450千米,快慢两列火车同时从两地相向开出,3小时后两车在距中点12千米处相遇,快车每小时比慢车每小时快______千米.

4. 甲乙两站相距360千米.客车和货车同时从甲站出发驶向乙站,客车每小时行60千米,货车每小时行40千米,客车到达乙站后停留0.5小时,又以原速返回甲站,两车对面相遇的地点离乙站______千米.

5. 列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,又知列车的前方有一辆与它行驶方向相同的货车,货车车身长320米,速度为每秒17米,列车与货车从相遇到离开需______秒.

6. 小冬从甲地向乙地走,小青同时从乙地向甲地走,当各自到达终点后,又立刻返回,行走过程中,各自速度不变,两人第一次相遇在距甲地40米处,第二次相遇在距乙地15米处.甲、乙两地的距离是______米.

7. 甲、乙二人分别从B A ,两地同时相向而行,乙的速度是甲的速度的3

2,二人相遇后继续行进,甲到B 地、乙到A 地后都立即返回.已知二人第二次相遇的地点距第一次相遇的地点是20千米,那么B A ,两地相距______千米.

8. B A ,两地间的距离是950米.甲、乙两人同时由A 地出发往返锻炼.甲步行每分走40米,乙跑步每分行150米,40分后停止运动.甲、乙二人第____次迎面相遇时距B 地最近,距离是______米.

9. B A ,两地相距540千米.甲、乙两车往返行驶于B A ,两地之间,都是到达一地之后立即返回,乙车比甲车快.设两辆车同时从A 地出发后第一次和第二次相遇都在途中P 地.那么,到两车第三次相遇为止,乙车共走了______千米.

10. 甲、乙两个运动员分别从相距100米的直跑道两端同时相对出发,甲以每秒6.25米,乙以每秒3.75米的速度来回匀速跑步,他们共同跑了8分32秒,在这段时间内两人多次相遇(两人同时到达同一地点叫做相遇).他们最后一次相遇的地点离乙的起点有______米.甲追上乙_____次,甲与乙迎面相遇_____次.

二、解答题

11. 甲、乙两地相距352千米.甲、乙两汽车从甲、乙两地对开.甲车每小时行36千米,乙车每小时行44千米.乙车因事,在甲车开出32千米后才出发.两车从各自出发起到相遇时,哪辆汽车走的路程多?多多少千米?

12. 甲、乙两车从B A ,两城市对开,已知甲车的速度是乙车的6

5.甲车先从A 城开55千米后,乙车才从B 城出发.两车相遇时,甲车比乙车多行驶30千米.试求B A ,两城市之间的距离.

13. 设有甲、乙、丙三人,他们步行的速度相同,骑车的速度也相同.骑车的速度为步行速度的3倍.现甲自A 地去B 地;乙、丙则从B 地去A 地.双方同时出发.出发时,甲、乙为步行,丙骑车.途中,当甲、丙相遇时,丙将车给甲骑,自己改为步行,三人仍按各自原有方向继续前进;当甲、乙相遇时,甲将车给乙骑,自己又步行,三人仍按各自原有方向继续前进.问:三人之中谁最先到达自己的目的地?谁最后到达目的地?

14. 一条单线铁路线上有B A ,E D C ,,,五个车站,它们之间的路程如下图所示(单位:千米).两列火车从E A ,相向对开,A 车先开了3分钟,每小时行60千米,E 车每小时行50千米,两车在车站上才能停车,互相让道、错车.两车应该安排在哪一个车站会车(相遇),才能使停车等候的时间最短,先到的火车至少要停车多长时间?

———————————————答 案——————————————————————

答 案:

1. 135

根据相向而行问题可知乙车的车长是两车相对交叉6秒钟所行路之和.所以

乙车全长

(45000+36000)×

60601 ×6 =81000×

600

1 =135(米)

2. 7 根据中点相遇的条件,可知两车各行600×

2

1=300(千米). 其间客车要行300÷60=5(小时); 货车要行300÷50=6(小时).

所以,要使两车同时到达全程的中点,货车要提前一小时出发,即必须在上午7点出发.

3. 8

快车和慢车同时从两地相向开出,3小时后两车距中点12米处相遇,由此可见快车3小时比慢车多行12×2=24(千米).

所以,快车每小时比慢车快24÷3=8(千米).

4. 60

利用图解法,借助线段图(下图)进行直观分析.

解法一 客车从甲站行至乙站需要

360÷60=6(小时).

客车在乙站停留0.5小时后开始返回甲站时,货车行了

40×(6+0.5)=260(千米).

货车此时距乙站还有

360-260=100(千米).

货车继续前行,客车返回甲站(化为相遇问题)“相遇时间”为

100÷(60+40)=1(小时).

所以,相遇点离乙站60×1=60(千米).

解法二 假设客车到达乙站后不停,而是继续向前行驶(0.5÷2)=0.25小时后返回,那么两车行驶路程之和为

360×2+60×0.5=750(千米)

两车相遇时货车行驶的时间为

750÷(40+60)=7.5(小时)

所以两车相遇时货车的行程为

40×7.5=300(千米)

故两车相遇的地点离乙站

360-300=60(千米).

5. 190

列车速度为(250-210)÷(25-23)=20(米/秒).列车车身长为20×25-250= 250(米).列车与货车从相遇到离开需(250+320)÷(20-17)=190(秒).

6. 105

根据题意,作线段图如下:

根据相向行程问题的特点,小冬与小青第一次相遇时,两人所行路程之和恰是甲、乙之间的路程.

由第一次相遇到第二次相遇时,两人所行路程是两个甲、乙间的路程.因各自速度不变,故这时两人行的路程都是从出发到第一次相遇所行路的2倍.

根据第一次相遇点离甲地40米,可知小冬行了40米,从第一次到第二次相遇小冬所行路程为40×2=80(米).

因此,从出发到第二次相遇,小冬共行了40+80=120(米).由图示可知,甲、乙两地的距离为120-15=105(米).

7. 50.

因为乙的速度是甲的速度的3

2,所以第一次相遇时,乙走了B A ,两地距离的52(甲走了53),即相遇点距B 地5

2个单程.因为第一次相遇两人共走了一个单程,第二次相遇共走了三个单程,所以第二次相遇乙走了52×3=5

6(个)单程,即相遇点距A 地51个单程(见下图).可以看出,两次相遇地点相距1-51-52=5

2(个)单程,所以两地相距20÷5

2=50(千米).

8. 二,150.

两个共行一个来回,即1900米迎面相遇一次,1900÷(45+50)=20(分钟). 所以,两个每20分钟相遇一次,即甲每走40×20=800(米)相遇一次.第二次相遇时甲走了800米,距B 地950-800=150(米);第三次相遇时甲走了1200米,距B 地1200-950=250(米).所以第二次相遇时距B 地最近,距离150米.

9. 2160

如上图所示,两车每次相遇都共行一个来回,由甲车两次相遇走的路程相等

可知,AP =2PB ,推知PB =31AB .乙车每次相遇走3

4AB ,第三次相遇时共走 3

4AB ×3=4AB =4×540=2160(千米).

10. 87.5,6,26.

8分32秒=512(秒).

当两人共行1个单程时第1次迎面相遇,共行3个单程时第2次迎面相遇, ……,共行n 2-1个单程时第n 次迎面相遇.因为共行1个单程需100÷(6.25+3.75)=10(秒),所以第n 次相遇需10×(n 2-1)秒,由10×(n 2-1)=510解得n =26,即510秒时第26次迎面相遇.

此时,乙共行 3.75×510=1912.5(米),离10个来回还差200×10-1912.5=87.5(米),即最后一次相遇地点距乙的起点87.5米.

类似的,当甲比乙多行1个单程时,甲第1次追上乙,多行3个单程时,甲第2 次追上乙,……,多行n 2-1个单程时,甲第n 次追上乙.因为多行1个单程需100÷(6.25-3.75)=40(秒),所以第n 次追上乙需40×(n 2-1)秒.当n =6时, 40×(n 2

-1)=440<512;当n =7时,40×(n 2-1)=520>512,所以在512秒内甲共追上乙6次.

11. 由相遇问题的特点及基本关系知,在甲车开出32千米后两车相遇时间为 (352-32)÷(36+44)=4(小时)

所以,甲车所行距离为

36×4+32=176(千米)

乙车所行距离为

44×4=176(千米)

故甲、乙两车所行距离相等.

注: 这里的巧妙之处在于将不是同时出发的问题,通过将甲车从开出32千米后算起,化为同时出发的问题,从而利用相遇问题的基本关系求出“相遇时间”.

12. 从乙车出发到两车相遇,甲车比乙车少行55-30=25(千米).这25千米

是乙车行的1-6

165 ,所以乙车行了25÷61=150(千米).B A ,两城市的距离为 150×2+30=330(千米).

13. 谁骑车路程最长,谁先到达目的地;谁骑车路程最短谁最后到达目的地.

画示意图如下:依题意,甲、丙相遇时,甲、乙各走了全程的4

1,而丙走了全程的4

3.

用图中记号, AB AC 41=; AB CD 34=; AB CD 21=; AB CD CE 8343==; AB CD ED 8141==;AB AB AC CE AE 8

5)4183(=+=+=.

由图即知,丙骑车走AB 43,甲骑车走了AB 8

3,而乙骑车走了AB 85,可见丙最先到达而甲最后到达.

14. A 车先开3分,行3千米.除去这3千米,全程为

45+40+10+70=165(千米).

若两车都不停车,则将在距E 站 1657550

6050=+?(千米). 处相撞,正好位于C 与D 的中点.所以,A 车在C 站等候,与E 车在D 站等候,等候的时间相等,都是A ,E 车各行5千米的时间和,

6011606605=+(时)=11分.

小学四年级奥数相遇问题练习题

四年级奥数练习题(相遇问题) 1、甲乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇? 2、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。两地相距多少千米? 3、甲乙两艘轮船同时从相距126千米的两个码头相对开出,3小时相遇,甲船每小时航行22千米,乙船每小时航行多少千米? 4、甲乙两艘轮船从相距654千米的两地相对开出,8小时两船还相距22千米。已知乙船每小时行42千米,甲船每小时行多少千米? 5、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇。乙车每小时行多少千米? 6、甲、乙两地相距280千米,一辆汽车和一辆拖拉机同时分别从两地相对开出,经过4小时两车相遇。已知汽车的速度是拖拉机速度的4倍,相遇时,汽车比拖拉机多行多少千米? 7、姐妹俩同时从家里到少年宫,路程全长440米。妹妹步行每分钟行60米,姐姐骑自行车以每分钟160米的速度到达少年宫后立即返回,途中与妹妹相遇。这时妹妹走了几分钟?

8、一列快车从甲站开往乙站每小时行驶65千米,一列慢车同时从乙站开往甲站,每小时行驶60千米,相遇时快车比慢车多走10千米。求甲、乙两站间的距离是多少千米? 9、A、B两地相距300千米,两辆汽车同时从两地出发,相向而行。各自达到目的地后又立即返回,经过9小时后它们第二次相遇。已知甲车每小时行42千米,乙车每小时行多少千米? 10、(2005+2006+2007+2008+2009+2010+2011)÷2008=_________ 11、长征时期,一支红军部队的76位指战员要坐船过河,渡口处只有一条可载16人的木船(无船工),那么要将这支部队全部送到河对岸,则用这条木船渡河至少______次。 12、一只猴吃63只桃,第一天吃了一半加半只,以后每天吃前一天剩下的一半再加半只,则_______天后桃子被吃完。 家庭作业: 1、甲、乙两人从相距36千米的两地相向而行。甲速度为每小时3千米,乙速度为每小时4千米,若乙先出发2小时,甲才出发,则甲经过几小时后与乙相遇? 2、A、B两地相距600千米,两辆汽车同时从两地出发,相向而行。各自达到目的地后又立即返回,经过12小时后它们第二次相遇。已知甲车每小时行65千米,乙车每小时行多少千米?

小学奥数四年级 相遇问题及答案

小学奥数四年级参考资料 第五讲:相遇问题 【知识与方法】:相遇问题是两个物体,从不同的地点做面对面的运动,即相向运动,相向运动会使两个物体在途中相遇。其路程、速度和、相遇时间之间的关系为:路程=速度和×相遇时间速度和=路程÷时间时间=路程÷速度和 【例题精讲】 例1:两列火车同时从两地相对开出,快车每小时行80千米,慢车每小时行60千米,4小时相遇,两地相距多少千米? 思维点拨:速度和×时间=路程 模仿练习:两汽车同时从两个车站对开,甲车每小时行40千米,乙车每小时行38千米,经过6小时两车相遇。这两个车站相距多少千米? 例2、甲乙两人同时从相距1080米的两地相对而行,8分钟相遇。已知甲每分钟走65米,乙每分钟走多少米? 思维点拨:乙的速度=路程÷相遇时间-甲的速度 模仿练习:北京到沈阳的铁路长830千米,两火车同时相对开出,10小时相遇。已知甲车每小时行41千米,乙车每小时行多少千米? 例3:两辆汽车同时从甲乙两地相对开出,A车每小时行50千米,B车每小时行40千米,两车在距中点20千米处相遇。则甲乙两地相距多少千米? 思维点拨:相遇时,A车比B车多行40千米,A车的速度比B车的速度快10千米,即得出相遇时间为4小时。再根据:速度和×相遇时间=路程

模仿练习:甲、乙两汽车同时从A、B两地相对开出,已知A车每小时行40千米,经过4小时,A车已经驶过中点25千米,这时与B车还相距6千米,B车每小时行多少千米? 例4:甲乙两地相距300千米,客车和货车同时从甲地出发驶向乙地。货车的速度为每小时60千米,客车的速度为每小时40千米,货车到达乙地后立即以原速返回甲地,从甲地出发后几小时两车相遇? 思维点拨:用线段图分析行程问题,直观明了。 模仿练习:甲、乙两人同时从学校出发到少年宫去,已知学校到少年宫的距离是2400米,甲到少年宫后立即返回学校,在距离少年宫300米的地方遇到乙,此时他们已经离开学校30分钟了。问:甲、乙的速度各是多少? 例5:小米渣和妈妈晚饭后分别从一座桥的两端同时相向出发,往返于两端之间。小米渣每分钟走60米,妈妈每分钟走75米,经过6分钟两人第二次相遇。这座桥长多少米? 思维点拨:列线段图分析。 模仿练习:甲乙两人从A、B两地同时出发,相向而行,相遇时距A地48千米,相遇后二人继续前进,分别到达A、B两地后立即返回,在距A地94千米处第二次相遇。A、B两地相距多少千米? 【巩固与提高】 A级

奥数专题之相遇问题

奥数专题之相遇问题  1.甲、乙两车分别从相距240千米的A、B两城同时出发,相向而行,已知甲车到达B城需4小时,乙车到达A城需6小时,问:两车出发后多长时间相遇? 2.东、西镇相距45千米,甲、乙二人分别从两镇同时出发相向而行,甲比乙每小时多行1千米,5小时后两人相遇,问两人的速度各是多少? 3.甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离。 4.甲、乙二人从相距100千米的A、B两地出发相向而行,甲先出发1小时,他们二人在乙出后的4小时相遇,又已知甲比乙每小时快2千米,求甲、乙二人的速度。 5.一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长为385米,坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少? 6.前进钢铁厂用两辆汽车从距工厂90千米的矿山运矿石,现有甲、乙两辆汽车,甲车自矿山,乙车自钢铁厂同时出发相向而行,速度分别为每小时40千米和50千米,到达目的地后立即返回,如此反复运行多次,如果不计装卸时间,且两车不作任何停留,则两车在第三次相遇时,距矿山多少千米? 7.解放军某部先遣队,从营地出发,以每小时6千米的速度向某地前进,6小时后,部队有急事,派通讯员骑摩托车以每小时78千米的速度前去联络,问多少时间后,通讯员能赶上先遣队? 8.小明以每分钟50米的速度从学校步行回家,12分钟后小强从学校出发骑自行车去追小明,结果在距学校1000米处追上小明,求小强骑自行车的速度。 9.甲、乙两架飞机同时从一个机场起飞,向同一方向飞行,甲行每小时行300千米,飞机每小时行340千米,飞行4小时后它们相隔多少千米?这时候甲机提高速度用2小时追上乙机,甲机每小时要飞行多少千米? 10.两人骑自行车从同一地点出发沿着长900千米环形路行驶,如果他们反向而行,那么经过2分钟就相遇,如果同向而行,那么每经过18分钟快者就追上慢者,求两要骑车的速度? 11.一条环形跑道长400米,甲骑自行车每分钟骑450米,乙跑步每分钟250米,两人同时从同地同向出发,经过多少分钟两人相遇? 12.上午8点零8分,小明骑自行车从家里出发,8分钟后,爸爸骑

五年级下册数学《相遇问题》习题北师大版(含答案)

《相遇问题》习题 一、认真填空。 1.一件上衣90元,一条裤子比一件上衣便宜x元,一条裤子()元 2.柳树有a棵,比杨树多50棵。杨树有()棵。 3.修路队x天修了2.4千米的公路,平均每天修()千米。 4.一个兴趣小组有男生a人,女生是男生的2倍,女生有()人,兴趣小组一共有()人。 5.果园里有梨树x棵,苹果树的棵数比梨树的2倍多10棵。苹果树有()棵。 6.如下图,仪器架分3层,每层存放的药水量同样多,一个中瓶的药水等于()个小瓶的药水。 一个大瓶的药水等于()个小瓶的药水。 7.每个菠萝一样重,每个苹果也一样重。 一个菠萝和()个苹果一样重。 8.一辆汽车从甲地到乙地,每小时行x千米,行了8小时,还剩40千米。甲乙两地之间的距离是()千米。 9.在括号里填上大于,小于,或等于。 (1)当x=73时,x+13()87 (2)当x=9时,2÷x( )0.4 10.有三个连续的自然数,第一个是b,第二个是(),第三个是()。 11.在括号里填上适当的数,使每个方程的解都是x=10。 x+( )=91 x-( )=8.9 ( )x=5.1 ( )÷x=63 12.如果2x+4=32,那么3x+4=() 13.小明买6本书,每本x元,付出5元,找回( )元。 二、根据下图列方程 1.

2. x元x元x元65元 245元 3. x辆 货车 28辆 客车 三、用方程解决问题 1. 小明和小红在校门口分手,7分钟后他们同时到家,小明平均每分钟走45米,小红平均每分钟走多少米? 2.截至2010年广州亚运会开幕,广州形成了235.7千米长的地铁线网,线路总长比之前的地铁线路长 度的2倍少64.3千米。之前广州地铁的长度是多少千米?

【含答案】四年级奥数行程问题精选练习(相遇、追及)

小学奥数行程问题 知识点一:相遇问题 1、两辆汽车同时从相距325 千米的两地相对开出,甲车的速度为35 千米/时,乙车的速度为30 千米/ 时。当甲、乙两车相遇时,它们各行驶了多少千米? 2、高小帅家距离学校3000 米,小帅妈妈从家出发接小帅放学,而小帅也要从学校回家,他们恰巧同时出发。小帅妈妈每分钟比小帅多走24 米,30 分钟后两人相遇,那么小帅的速度是多少? 3、甲、乙两辆汽车分别从A、B 两地相对而行,已知甲车的速度为38 千米/ 时,乙车的速度为40 千米/ 时。甲车先行2 小时后,乙车才开始出发,乙车行驶5 小时后两车相遇。求A、B 两地的距离。 4、两列城际列车从两城同时相对开出,其中一列车的速度为40 千米/ 时,另一列车的速度为45 千米/ 时。在行驶途中,两列车先后各停车4 次,每次停车15 分钟,这样经过7 小时后两车相遇。求两城的距离。

5、孙悟空住在水帘洞,铁扇公主住在火焰山,水帘洞和火焰山之间有条流沙河。一天,他们约好在流沙河见面,孙悟空的速度是200 千米/小时,铁扇公主的速度是150 千米/小时。他们同时出发,2 小时后还相距500 千米。求水帘洞和火焰山之间的距离。 6、两列货车从相距450 千米的两个城市相向开出,甲货车的速度为38 千米/时,乙货车的速度为40 千米/时。两车同时行驶4 小时后,还相距多少千米? 知识点二:追及问题 7、甲、乙两地相距300 千米,一列慢车从甲地出发,速度为70 千米/时。同时一列快车从乙地出发,速度为100 千米/时。如果两车同向行驶,快车在后,慢车在前,经过多少小时快车可以追上慢车? 8、艾小米步行上学,每分钟走70 米。艾小米从家出发10 分钟后,爸爸发现她将文具盒落在了家中。于是爸爸带着文具盒,以每分钟170 米的速度骑车追赶艾小米。请问:爸爸出发几分钟后可追上艾小米?当爸爸追上艾小米时他们离家多远?

小学奥数相遇问题电子教案

小学奥数相遇问题 一.甲乙两人同时从A、B两地相向而行,第一次在距A 地300米处相遇,相遇后两人继续以原速前进,各自到达对方出发点立即返回,第二次又在距B地100米相遇。求A、B两地相距多少米? 参考答案:第一次相遇,甲乙共行了1个全程,甲行了1个300米 第二次相遇,甲乙共行了3个全程,甲行了3个300米 同时甲行的还是1个全程多100米 A、B两地相距 300×3-100=800米300*3-100=800 回复:300*3-100=800米 二. 甲、乙两辆汽车同时从A、B两地相对开出,第一次在离A 地75千米处相遇。相遇后两辆汽车继续前进,到达目的地后又立刻返回,第二次相遇在离B地55千米处。求A、B两地的距离。不列方程怎么算啊 两车两次相遇是共行驶了3个全程,第一次相遇(共走一个全程)时,甲车走了75千米,那么在两车行驶了3个全程时,甲车应该走了75*3=225(千米),那么AB两地的距离

为:225-55=170(千米)。 由“第一次在离A地75千米处相遇”可知:两车每行完一个A、B间距离,甲车行驶75千米; 从出发到第二次相遇,两车共行驶了3个A、B间距离,所以甲车共行驶了3个75千米:75*3=225千米; 由“第二次在离B地55千米处相遇”可知:甲车到达B地后又返回行驶了55千米,也就是比一个A、B间距离多55千米。所以A、B两地的距离是: 225-55=170千米。 三.五星级题解:两车两次相遇问题 题目:A、B两城同时对开客车,两车第一次在距A城60千米处相遇,到站后各停了30分钟,让乘客上下后再返回,返回是在距B城45千米处相遇。求A、B两城相距多少千米? 分析:本题要注意利用两个等量关系,即第一次相遇时两车用的时间相等,第二次返回相遇时两车用的时间相等,由于停的时间相等,所以不影响计算距离。 设A、B两城相距X千米。 60:(X-60)=(X+45):(X+X-45)

五年级奥数相遇问题及答案

五年级奥数相遇问题及 答案 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

相遇问题 年级 班 姓名 得分 一、填空题 1. 一列火车长152米,它的速度是每小时公里.一个人与火车相向而行,全列火车从他身边开过用8秒钟.这个人的步行速度是每秒_____米. 2. 甲乙两地相距258千米.一辆汽车和一辆拖拉机同时分别从两地相对开出,经过4小时两车相遇.已知汽车的速度是拖拉机速度的2倍.相遇时,汽车比拖拉机多行_____千米. 3. 甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲乙两人从A 地,丙一人从B 地同时相向出发,丙遇到乙后2分钟又遇到甲,A 、B 两地相距____米. 4. 一辆客车和一辆货车,分别从甲、乙两地同时相向而行,4小时相遇.如果客车行3小时,货车行2小时,两车还相隔全程的 3011,客车行完全程需____小时. 5. 甲、乙两人从A 、B 两地相向而行,相遇时,甲所行路程为乙的2倍多千米,乙所行的路程为甲所行路程的 52,则两地相距______千米. 6. 从甲城到乙城,大客车在公路上要行驶6小时,小客车要行驶4小时.两辆汽车分别从两城相对开出,在离公路中点24千米处相遇.甲、乙两城的公路长______千米 7. 甲、乙两车分别同时从A 、B 两城相向行驶6小时后可在途中某处相遇.甲车因途中发生故障抛描,修理小时后才继续行驶.因此,从出发到相遇经过小时.那么,甲车从A 城到B 城共有______小时.

8. 王明回家,距家门300米,妹妹和小狗一齐向他奔来,王明和妹妹的速 度都是每分钟50米,小狗的速度是每分钟200米,小狗遇到王明后用同样的速度不停往返于王明与妹妹之间.当王明与妹妹相距10米时,小狗一共跑了______米. 9. A、B两地相距10千米,一个班学生45人,由A地去B地.现有一辆 马车,车速是人步行速度的3倍,马车每次可乘坐9人,在A地先将第一批9名学生送往B地,其余学生同时步行向B地前进;车到B地后,立即返回,在途中与步 行学生相遇后,再接9名学生送往B地,余下学生继续向B地前进;……;这样多次 往返,当全体学生都到达B地时,马车共行了______千米. 10. 从电车总站每隔一定时间开出一辆电车.甲和乙两人在一条街上沿着同一方向步行,甲每分钟步行82米,每隔10分钟遇上一辆迎面开来的电车;乙每分钟步行60米,每隔10分15秒遇上迎面开来的一辆电车.则电车总站每隔 ______分钟开出一辆电车. 二、解答题 11. 甲、乙两货车同时从相距300千米的A、B两地相对开出,甲车以每小 时60千米的速度开往B地,乙车以每小时40千米的速度开往A地.甲车到达B 地停留2小时后以原速返回,乙车到达A地停留半小时后以原速返回,返回时两 车相遇地点与A地相距多远 12. 甲、乙两车分别从A、B两站同时相向开出,已知甲车速度是乙车速度的倍,甲、乙到达途中C站的时刻依次为5:00和15:00,这两车相遇是什么时 刻

四年级奥数题相遇问题习题及答案A

十五、相遇问题(A 卷) 年级 班 姓名 得分 一、填空题 1.小张从甲地到乙地步行需要36分钟,小王骑自行车从乙地到甲地需要12分钟.他们同时出发,______分钟后两人相遇 2.甲、乙二人同时从学校出发到少年宫去,已知学校到少年宫的距离是2400米,甲到少年宫后立即返回学校,在距离少年宫300米处遇到乙,此时他们离开学校已30分钟.甲每分钟走_______米,乙每分钟走_______米. 3.甲、乙两车同时从A 、B 两地相向而行,它们相遇时距A 、B 两地中心处8千米,已知甲车速度是乙车的倍,求A 、B 两地的距离是_______千米. 4.一列火车长152米,它的速度是每小时公里.一个人与火车相向而行,全列火车从他身边开过用8秒钟.这个人的步行速度是每秒_______米. 5.如图,A 、B 是圆直径的两端,小张在A 点,小王在B 点同时出发反向行走,他们在C 点第一次相遇,C 离A 点80米;在D 点第二次相遇,D 点离B 点60米.求这个圆的周长. 6.甲、乙两地间的路程是600千米,上午8点客车以平均每小时60千米的速度从甲地开往乙地.货车以平均每小时50千米的速度从乙地开往甲地.要使两车在全程的中点相遇,货车必须在上午_______点出发. 7.两列对开的火车途中相遇,甲车上的乘客从看到乙车到乙车从旁边开过去,共用6秒钟.已知甲车每小时行45千米,乙车每小时行36千米,乙车全长______米. 8.小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村千米处第一次相遇,在离乙村2千米处第二次相遇,问他们两人第四次相遇的地点离乙村______千米.(相遇指迎面相遇) 9.甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后马上返回).在出发后40分钟两人第一次相遇.小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇.小张每小时走______千米,小王每小时走______千米. 10.小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地,每小时步行4千米.两人同时出发,然后在离甲、乙两地的中点1千米的地方相遇,求甲、乙两地间的距离是______千米. 二、解答题 11.甲乙两站相距360千米.客车和货车同时从甲站出发驶向乙站,客车每小时行60千米,货车每小时行40千米,客车到达乙站后停留小时,又以原速返回甲站,两车对面相遇的地点离乙站多少千米 12.甲每分钟走50米,乙每分钟走60米,丙每分钟70米,甲乙两人从A 地,丙一人从B 地同时相向出发,丙遇到乙后2分钟又遇到甲,A 、B 两地相距多少米 、B 两地相距21千米,甲从A 地出发,每小时行4千米,同时乙从B 地出发相向而行,每小时行3千米.在途中相遇以后,两人又相背而行.各自到达目的的地后立即返回,在途中二次相遇.两次相遇点间相距多少千米 14.一列客车和一列货车同时从两地相向开出,经过18小时两车在某处相遇,已知两地相距1488千米,货车每小时比客车少行8千米,货车每行驶3小时要停驶1小时,客车每小时行多少千米 B

五年级奥数:相遇问题(A)(含答案)

五年级奥数:相遇问题(A)(含答案) 一、填空题 1。 两列对开的火车途中相遇,甲车上的乘客从看到乙车到乙车从旁边开过去,共用6秒钟。已知甲车每小时行45千米,乙车每小时行36千米,乙车全长_____米。 2。 甲、乙两地间的路程是600千米,上午8点客车以平均每小时60千米的速度从甲地开往乙地。货车以平均每小时50千米的速度从乙地开往甲地。要使两车在全程的中点相遇,货车必须在上午______点出发。 3。 甲乙两地相距450千米,快慢两列火车同时从两地相向开出,3小时后两车在距中点12千米处相遇,快车每小时比慢车每小时快______千米。 4。 甲乙两站相距360千米。客车和货车同时从甲站出发驶向乙站,客车每小时行60千米,货车每小时行40千米,客车到达乙站后停留0。5小时,又以原速返回甲站,两车对面相遇的地点离乙站______千米。 5。 列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,又知列车的前方有一辆与它行驶方向相同的货车,货车车身长320米,速度为每秒17米,列车与货车从相遇到离开需______秒。 6。 小冬从甲地向乙地走,小青同时从乙地向甲地走,当各自到达终点后,又立刻返回,行走过程中,各自速度不变,两人第一次相遇在距甲地40米处,第二次相遇在距乙地15米处。甲、乙两地的距离是______米。 7。 甲、乙二人分别从B A ,两地同时相向而行,乙的速度是甲的速度的3 2,二人相遇后继续行进,甲到B 地、乙到A 地后都立即返回。已知二人第二次相遇的地点距第一次相遇的地点是20千米,那么B A ,两地相距______千米。 8。 B A ,两地间的距离是950米。甲、乙两人同时由A 地出发往返锻炼。甲步行每分走40

四年级奥数题:相遇问题习题及答案(B)

十五、相遇问题(B卷) 年级班姓名得分 一、填空题 1.某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒.问:该列车与另一列长320米、时速64.8千米的列车错车而过需要______秒? 2.甲、乙二人骑车同时从环形公路的某点出发,背向而行,已知甲骑一圈需48分钟,出发后30分钟两人相遇.问:乙骑一圈需______分钟. 3.甲、乙二人从相距36千米的两地相向而行.若甲先出发2小时,则在乙动身2.5小时后两人相遇;若乙先出发2小时,则甲动身3小时后两人相遇.甲每小时走______千米.乙每小时走_______千米. 4.两列火车相向而行,甲车每小时行48千米,乙车每小时行60千米,两车错车时,甲车上一乘客从乙车车头经过他的车窗时开始计时,到车尾经过他的车窗共用13秒钟,求乙车全长_______米. 5.李华从学校出发,以每小时4千米的速度步行到20.4千米外的冬令营报到.半小时后,营地老师闻讯前往迎接,每小时比李华多走1.2千米.又过了1.5小时,张明从学校骑车去营地报到,结果三人在途中某地相遇.问骑车人每小时行________千米. 6.甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车的速度分别为每小时60千米和48千米.有一辆迎面开来的卡车分别在他们出发后6小时、7小时、8小时先后与甲、乙、丙三辆车相遇.求丙车的速度是_______千米/小时. 7.已知甲、乙两车站相距470千米,一列火车于中午1时从甲站出发,每小时行52千米,另一列火车于下午2时30分从乙站开出,下午6时两车相遇.问:从乙站开出的火车的速度是_______千米/小时. 8.一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米.坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是______秒? 9.操场正中央有一旗竿,小明开始站在旗竿正东离旗竿10米远的地方.然后向正北走了10米,再左转弯向正西走了20米,再左转弯向正南走了30米,再左转弯向正东走了40米,再左转弯向正北走了20米.这时小明离旗竿______米. 10.甲乙两地相距258千米.一辆汽车和一辆拖拉机同时分别从两地相对开出,经过4小时两车相遇.已知汽车的速度是拖拉机速度的2倍.相遇时,汽车比拖拉机多行_______千米. 二、解答题 11.甲、乙二人分别从A、B两地同时出发,在A、B之间往返跑步.甲每秒跑3米,乙每秒跑7米,如果他们第四次迎面相遇点与第五次迎面相遇点之间相距150米,求A、B间相距多少米? 12.如下图,A、C两地相距2千米,CB两地相距5千米.甲、乙两人同时从C 地出发,甲向B地走,到达B地后立即返回;乙向A地走, 到达A地后立即返回;如果甲速度是乙速度的1.5倍,那么在乙到达D地时,还未能与甲相遇,他们还相

小学奥数专题——第1讲:相遇问题与追及问题(老师版)

第1讲:相遇问题与追及问题 1、速度的定义: 速度就是单位时间内所经过的路程。 2、速度、时间和路程是行程问题中最重要的三个量,它们的关系如下: 路程=速度×时间 速度=路程÷时间 时间=路程÷速度 3、行程问题中常用的数量单位 (1)常用的路程单位:米、千米。 (2)常用的时间单位:秒、分钟和小时。 (3)常用的速度单位:米/秒、米/分、千米/小时。 【例1】甲、乙两地相距360千米,一辆汽车原计划用8小时从甲地到乙地,那么汽车每小时应该行驶多少千米?实际上汽车行驶了一半路程后发生了故障,在途中停留了1小时.如果按照原定的时间到达乙地,汽车在后一半路程每小时应该行驶多少千米? 【例1】45千米/时;60千米/时 详解:(1)行驶路程是360千米,行驶时间是8小时,所以行驶速度是360÷8=45千米/时; (2)后一半路程是360÷2=180千米,行驶总时间仍然是8小时,前半程花了 4+1=5小时,所以后半程行驶时间是3小时,后半程的速度是180÷3=60千米/时. 【例2】A、B两地相距4800米,甲、乙两人分别从A、B两地同时出发,相向而行如果甲每分钟走60米,乙每分钟走100米,请问:(1)甲从A走到B需要多长时间? (2)两个人从出发到相遇需要多长时间? 【例2】(1)80分钟;(2)30分钟 详解:(1)甲行驶的路程是4800米,行驶的速度是60米/分,所以行驶的时间是4800÷60=80分钟;(2)两人从出发到相遇行驶的路程和是4800米,行驶的速度和是60+100=160米/分,所以相遇时间是4800÷160=30分钟.

1、墨莫练习慢跑,12分钟跑了3000米,按照这个速度,跑25000米需要多少分钟?如果墨莫每天都以这个速度跑10分钟,连续跑一个月(30天),他一共跑了多少千米? 1、100分钟;75千米 解答墨莫跑的速度为3000÷12=250米/分,跑25000米需要 25000÷250=100分钟.每天跑10分钟,跑一个月,一共跑了 250×10×30=75000米,即75千米. 2、兔子和乌龟赛跑,从A地跑到B地,全程共6000米.兔子计 划5分钟跑完全程,结果比赛时兔子实际每分钟跑的路程比计划的 要少200米.那么兔子实际跑完全程用了多长时间? 2、6分钟 简答:原计划5分钟跑完6000米,所以原计划速度为6000÷5=1200米/分,实际每分钟跑1200-200=1000米,所以实际时间为6000÷1000=6分钟. 3、阿呆和阿瓜从相距5000米的A、B两地同时出发,相向而行.如果阿呆每分钟走150米,阿瓜每分钟走350米,那么两人从出发到相遇需要多长时间? 3、10分钟 简答:从出发到相遇,路程和为5000米,速度和为150+350=500米/分,所以相遇时间为5000÷500=10分钟 两个运动物体在一条直线上运动,行进的方向可能相同,也可能相反。当它们行进方向相反时,如果它们面对面地接近,我们称为“相向而行”;如果它们背对背远离,我们就称为“相背而行”。 相遇问题关心的是两个移动物体的“速度和”以及“路程和”。根据行程问题基本公式,我们可以类似得到相遇问题的三个基本公式:路程和=速度和×相遇时间 相遇时间=路程和÷速度和 速度和=路程和÷相遇时间 使用上述公式的时候一定要注意,两个运动物体必须同时行进。如果相遇过程中并不是同时行进的,这个公式就不能直接用了,需要分段考虑。 对于一些复杂的行程问题,单靠凭空想象已经无能为力了,这时需要用一种形象的语言,把运动过程直观地表现出来,这就是我们解行程问题的最得力的助手——线段图。 画线段图时要特别注意:

四年级奥数题:相遇问题习题及答案A

十五、相遇问题(A卷)年级班姓名得分 一、填空题 1.小张从甲地到乙地步行需要36分钟,小王骑自行车从乙地到甲地需要12分钟.他们同时出发,______分钟后两人相遇? 2.甲、乙二人同时从学校出发到少年宫去,已知学校到少年宫的距离是2400米,甲到少年宫后立即返回学校,在距离少年宫300米处遇到乙,此时他们离开学校已30分钟.甲每分钟走_______米,乙每分钟走_______米. 3.甲、乙两车同时从A、B两地相向而行,它们相遇时距A、B两地中心处8千米,已知甲车速度是乙车的1.2倍,求A、B两地的距离是_______千米. 4.一列火车长152米,它的速度是每小时63.36公里.一个人与火车相向而行,全列火车从他身边开过用8秒钟.这个人的步行速度是每秒_______米. 5.如图,A、B是圆直径的两端,小张在A点,小王在B点 同时出发反向行走,他们在C点第一次相遇,C离A点80米;在D点第二次相遇,D点离B点60米.求这个圆的周长. 6.甲、乙两地间的路程是600千米,上午8点客车以平均每小时60千米的速度从甲地开往乙地.货车以平均每小时50千米的速度从乙地开往甲地.要使两车在全程的中点相遇,货车必须在上午_______点出发.

7.两列对开的火车途中相遇,甲车上的乘客从看到乙车到乙车从旁边开过去,共用6秒钟.已知甲车每小时行45千米,乙车每小时行36千米,乙车全长______米. 8.小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇,问他们两人第四次相遇的地点离乙村______千米.(相遇指迎面相遇) 9.甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后马上返回).在出发后40分钟两人第一次相遇.小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇.小张每小时走______千米,小王每小时走______千米. 10.小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地,每小时步行4千米.两人同时出发,然后在离甲、乙两地的中点1千米的地方相遇,求甲、乙两地间的距离是______千米. 二、解答题 11.甲乙两站相距360千米.客车和货车同时从甲站出发驶向乙站,客车每小时行60千米,货车每小时行40千米,客车到达乙站后停留0.5小时,又以原速返回甲站,两车对面相遇的地点离乙站多少千米? 12.甲每分钟走50米,乙每分钟走60米,丙每分钟70米,甲乙两人从A地,丙一人从B地同时相向出发,丙遇到乙后2分钟又遇到甲,A、B两地相距多少米? 13.A、B两地相距21千米,甲从A地出发,每小时行4千米,同时乙从B地出发相

四年级奥数相遇问题与追击问题练习题

四年级奥数(相遇问题) 知识概要: 相遇问题是行程问题的一种常见情况,一般讲的两辆车从两地出发,相向而行,经过若干时间,两车相遇的问题。 解答相遇问题的数量关系主要是:相遇时间=路程÷速度和 路程=速度和X相遇时间 速度和=路程÷相遇时间 例题1、甲乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇? 例题2、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。两地相距多少千米? 例题3、甲乙两艘轮船同时从相距126千米的两个码头相对开出,3小时相遇,甲船每小时航行22千米,乙船每小时航行多少千米? 练一练: 1.甲、乙两地相距450千米,客车10小时行完全程,货车15小时行完全程,客车和货车同时从两地出发,相向而行,几小时后相遇?相遇时两车各行了多少千米? 2.两辆汽车从A、B两地相对开出,甲车每小时行55千米,乙车每小时行45千米,经过2小时后,两车还相距50千米。A、B两地的距离是多少千米?

奥数提升: 4、甲、乙两人从相距36千米的两地相向而行。甲速度为每小时3千米,乙速度为每小时4千米,若乙先出发2小时,甲才出发,则甲经过几小时后与乙相遇? 5、甲乙两艘轮船从相距654千米的两地相对开出,8小时两船还相距22千米。已知乙船每小时行42千米,甲船每小时行多少千米? 5、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇。乙车每小时行多少千米? 6、甲、乙两地相距280千米,一辆汽车和一辆拖拉机同时分别从两地相对开出,经过4小时两车相遇。已知汽车的速度是拖拉机速度的4倍,相遇时,汽车比拖拉机多行多少千米?

完整版五年级奥数相遇问题及答案

一、填空题 1. 一列火车长152米,它的速度是每小时63.36公里.一个人与火车相向而 行,全列火车从他身边开过用8秒钟.这个人的步行速度是每秒 ______ 米. 2. _____ 甲乙两地相距258千米.一辆汽车和一辆拖拉机同时分别从两地相对开出, 经过4小时两车相遇.已知汽车的速度是拖拉机速度的 2倍.相遇时,汽车比拖拉 机多行 ___________ 千米. 3. 甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲乙两人从A 地, 丙 一人从B 地同时相向出发,丙遇到乙后2分钟又遇到甲,A 、B 两地相距___ 米. 4. 一辆客车和一辆货车,分别从甲、乙两地同时相向而行,4小时相遇.如果 客车行3小时,货车行2小时,两车还相隔全程的,客车行完全程需 小时. 30 5. 甲、乙两人从A 、B 两地相向而行,相遇时,甲所行路程为乙的2倍多1.5 2 千米,乙所行的路程为甲所行路程的-,则两地相距 千米. 5 6. 从甲城到乙城,大客车在公路上要行驶6小时,小客车要行驶4小时.两辆 汽 车分别从两城相对开出,在离公路中点24千米处相遇.甲、乙两城的公路长 米? 7. 甲、乙两车分别同时从A 、B 两城相向行驶6小时后可在途中某处相遇. 甲车因途中发生故障抛描,修理2.5小时后才继续行驶.因此,从出发到相遇经过 7.5小时.那么,甲车从A 城到B 城共有 ___________ 小时. 8. _______________________________________________________ 王明回家,距家门300米,妹妹和小狗一齐向他奔来,王明和妹妹的速度都 是每分钟50米,小狗的速度是每分钟200米,小狗遇到王明后用同样的速度不停 往返于王明与妹妹之间.当王明与妹妹相距10米时,小狗一共跑了 ____________________________ 米. 9. A 、B 两地相距10千米,一个班学生45人,由A 地去B 地.现有一辆马车, 车速是人步行速度的3倍,马车每次可乘坐9人,在A 地先将第一批9名学生送往 B 地,其余学生同时步行向B 地前进;车到B 地后,立即返回,在途中与步行学生 相遇后,再接9名学生送往B 地,余下学生继续向B 地前进; ................. ;这样多次往返, 当全体学生都到达B 地时,马车共行了 _______ 米. 10. 从电车总站每隔一定时间开出一辆电车 .甲和乙两人在一条街上沿着同 _____ 年级 ______ 班 相遇问题 姓名 得分

五年级数学教案:相遇问题(一)

五年级数学教案:相遇问题(一) 教学目的 1.了解相遇效果的基本特点,并能解回答杂的相遇求路程的运用题. 2.培育先生初步的逻辑思想才干和处置复杂实践效果的才干. 3.浸透运动和时间变化的辩证关系. 教学重点 掌握求路程的相遇效果的解题方法. 教学难点 了解相遇效果中时间和路程的特点. 教学进程 一、以旧引新 〔一〕口答列式,并说明理由. 1.一辆汽车每小时行60千米,4小时行多少千米? 2.一辆汽车4小时行了240千米,每小时行多少千米?3.一辆汽车每小时行60千米,行驶240千米需求几小时?教员板书:速度时间=路程 〔二〕创设情境 1.录音〔或录相〕有一天,张华放学回家,翻开书包正预备做作业.发现没在意将同桌李诚的作业本带回了家,她赶忙给李诚打通知他,两人在中商量了一会,假设步

行的话,有几种方法可以让张华把作业本还给李诚呢?同窗们你能协助他们想出几种方法呢? 2.小组团体讨论 〔1〕张华送到李诚家; 〔2〕李诚来张华家取走; 〔3〕两人同时从家动身,向对方走去,在途中相遇,交给李诚. 3.看法相遇效果 〔1〕找两名先生扮演第三种状况,其他先生观察并说出是怎样走的? 〔同时,从两地,相对而行〕 〔2〕两团体之间的距离有什么变化?〔越来越近,最后变为零〕 教员指出:当两团体的距离为零时,称为相遇 具有两物、同时从两地相对而行这种特点的行程效果,叫做相遇效果 板书课题:相遇效果 〔三〕出示预备题: 张华距李诚家390米,两人同时从家里动身,向对方走去.张华每分走60米,李诚每分走70米. 依据条件填写下表 走的时间

张华走的路程 李诚走的路程70米 两人所走路程的和 如今两人的距离 1分 60米 70米 2分 3分 思索: 1.动身3分钟后,两团体之间的距离是多少?说明什么?〔相遇〕 2.两团体所走路程的和与两家的距离有什么关系?〔两人所走路程和=两家距离〕 二、教学新课 〔一〕教学例3 小强和小丽同时从自己家里走向学校,小强每分走65米,小丽每分走70米.经过4分钟,两人在校门口相遇.他们两家相距多少米? 1.教员指名读题,并在例题中同时、相遇的下边用红笔做上标志. 请同窗解释这两个词的含义.

奥数相遇问题(含答案)精编版

相遇问题 相遇问题一般是指两个物体从两地出发,相向而行,共同行一段路程,直至相遇,这类应用题的基本数量关系是: 总路程=速度和×相遇时间 这里的“速度和”是指两个物体在单位时间内共同行的路程。 例题与方法 例1.甲、乙两辆汽车同时从东村、西村之间公路的中点向相反方向行驶,6小时后,甲车到达东村,乙车离西村还有42千米。已知甲车的速度是乙车的2倍。东、西两村之间的公路长多少千米? 42×2×2=168 例2.一支1800米长的队伍以每分90米的速度行进,队伍前端的联系员用9分的时间跑到队伍末尾传达命令。联络员每分跑多少米? 1800÷9-90=110 例3.甲、乙两车相距516千米,两车同时从两地出发相向而行,乙车行驶6小时后停下修理车子,这时两车相距72千米。甲车保持原速继续前进,经过2小时与乙车相遇。求乙车的速度。 72÷2=36 【 516-36×(6+2)】÷6=38 例4.甲、乙两列车同时从A、B两地相对开出,第一次在离A地75千米处相遇。相遇后两列车继续前进,到达目的地后又立刻返回,第二次相遇在离B地55千米处。求A、B两会间的路程。 75×3-55=170 练习与思考 1.甲、乙两人分别从东、西两地同时相向而行。2小时后两人相距96千米,5小时后两人相距36千米。东、西两地相距多少千米? (96-36)÷(5-2)=20 20×2+96=136 2.甲、乙两人骑车从同一地点向相反方向出发,甲车每小时行13千米,乙车每小时行12千米。如果甲先行2小时,那么,乙行几小时后两人相距99千米?

(99-13×2)÷(13+12)=2.92 3.甲、乙两地相距49千米,汽车行完全程要0.7小时,步行要14小时。一个人从甲地出发,步行1.5小时后改乘汽车,他到达乙地共要几小时? (49-49÷14×1.5)÷(49÷0.7)+1.5=2.125 4.甲、乙两车分别从A、B两地同时相向而行。甲车每小时行82千米,乙车每小时行72千米,两车在离中点30千米处相遇。AB两地相距多少千米? 30×2÷(82-72) ×(82+72) =924 5.甲、乙两车同时从东、西两地相向开出,甲车每小时行40千米,经过3小时已驶过中点25千米,这时乙车与甲车还相距7千米。求乙车的速度。 (40×3-25×2-7) ÷3=21 6.甲、乙两车同时同地同向行进,甲车每小时行30千米,乙车每小时行的路程是甲车的1.5倍。当乙车行到90千米的地方时立即按原路返回,又行了几小时和甲车相遇? [90-90÷(30×1.5) ×30] ÷(30+30×1.5)=0.4 7.两辆汽车从同一地点向相反方向开出,第一辆汽车每小时行48千米,第二辆汽车每小进行52千米。如果第一辆车先行1.2小时,那么,两辆汽车同时行驶几小时后,它们之间的距离为557.6千米? (557.6-48×1.2) ÷(48+52)=5 8.一架运输机和一架客机同时从某地起飞相背飞行,2.5小时后两机相距3650千米。已知客机比运输机每小时多飞行100千米,运输机每小时飞行多少千米?

最新小学奥数的二次相遇问题

例1、甲、乙两车分别从A、B两地同时相向而行,甲、乙两车的速度比是7:11,相遇后继续行驶,分别到达A、B两地后立即返回,第二次相遇时甲车距B地80千米,A、B两地相距多少千米? 关键词:速度比=路程比两次相遇三倍路程 第二次相遇时甲、乙两车的路比为: 7:11总路程为两地距离的3倍. 解:设甲乙两地相距s千米,则共行了S+80 ,乙行了 2S-80。 (s+80):(2s-80)=7:11 7(2s-80)=11(s+80) s=480 答:A、 B两地相距480千米 例2、一段路程分为上坡、平路、下坡三段,各段路程长为比依次是1:2:3。某人走各段路程所用时间之比依次是4:5:6。已知他上坡速度每小时3千米,路程全长50千米。问此人走完全程用了多少时间? 解: 关键词:分数应用题与行程问题组合 上坡路长: 50*【1/(1+2+3)】=25/3km 上坡的时间:(25/3)/3=25/9小时 走完全程的时间:(25/9)/【4/(4+5+6)】=125/12小时 答:此人走完全程用了125/12小时 例3、甲、乙、丙,3人环湖跑步。从湖边同一地点出发,甲与乙、丙,逆向跑。在甲第一次遇到乙后的1又4分之1分钟后遇到丙,再3又4分之3分钟,第二次遇到乙。已知甲乙的速度比是3:2,湖的周长是2000米。问乙丙每分钟各跑多少米? 解:关键词:封闭曲线上的相遇问题 从题知,甲乙第一次相遇与第二次相遇间隔得时间为 1又4分之1+3又4分之3=5分钟。 甲乙的速度和是:2000÷5=400(米/分) 甲的速度是:400×3/(3+2)=240(米/分) 乙的速度是:400×2/(3+2)=160(米/分) 甲丙的速度和是:2000÷(25/4)=320(米/分) 丙的速度是:320-240=80(米/分) 答:乙每分钟跑160米,丙每分钟跑80米 设计思想:本课教学设计依据"利用音像教材培养学生数学素质"的课题研究目标,以现代教

五年级奥数题:相遇问题(A)

十五 相遇问题(A) 年级 班 姓名 得分 一、填空题 1. 两列对开的火车途中相遇,甲车上的乘客从看到乙车到乙车从旁边开过去,共用6秒钟.已知甲车每小时行45千米,乙车每小时行36千米,乙车全长_____米. 2. 甲、乙两地间的路程是600千米,上午8点客车以平均每小时60千米的速度从甲地开往乙地.货车以平均每小时50千米的速度从乙地开往甲地.要使两车在全程的中点相遇,货车必须在上午______点出发. 3. 甲乙两地相距450千米,快慢两列火车同时从两地相向开出,3小时后两车在距中点12千米处相遇,快车每小时比慢车每小时快______千米. 4. 甲乙两站相距360千米.客车和货车同时从甲站出发驶向乙站,客车每小时行60千米,货车每小时行40千米,客车到达乙站后停留0.5小时,又以原速返回甲站,两车对面相遇的地点离乙站______千米. 5. 列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,又知列车的前方有一辆与它行驶方向相同的货车,货车车身长320米,速度为每秒17米,列车与货车从相遇到离开需______秒. 6. 小冬从甲地向乙地走,小青同时从乙地向甲地走,当各自到达终点后,又立刻返回,行走过程中,各自速度不变,两人第一次相遇在距甲地40米处,第二次相遇在距乙地15米处.甲、乙两地的距离是______米. 7. 甲、乙二人分别从B A ,两地同时相向而行,乙的速度是甲的速度的3 2,二人相遇后继续行进,甲到B 地、乙到A 地后都立即返回.已知二人第二次相遇的地点距第一次相遇的地点是20千米,那么B A ,两地相距______千米. 8. B A ,两地间的距离是950米.甲、乙两人同时由A 地出发往返锻炼.甲步行每分走40米,乙跑步每分行150米,40分后停止运动.甲、乙二人第____次迎面相遇时距B 地最近,距离是______米. 9. B A ,两地相距540千米.甲、乙两车往返行驶于B A ,两地之间,都是到达一地之后立即返回,乙车比甲车快.设两辆车同时从A 地出发后第一次和第二次相遇都在途中P 地.那么,到两车第三次相遇为止,乙车共走了______千米. 10. 甲、乙两个运动员分别从相距100米的直跑道两端同时相对出发,甲以每秒6.25米,乙以每秒3.75米的速度来回匀速跑步,他们共同跑了8分32秒,在这段时间内两人多次相遇(两人同时到达同一地点叫做相遇).他们最后一次相遇的地点离乙的起点有______米.甲追上乙_____次,甲与乙迎面相遇_____次. 二、解答题 11. 甲、乙两地相距352千米.甲、乙两汽车从甲、乙两地对开.甲车每小时行36千米,乙车每小时行44千米.乙车因事,在甲车开出32千米后才出发.两车从各自出发起到相遇时,哪辆汽车走的路程多?多多少千米? 12. 甲、乙两车从B A ,两城市对开,已知甲车的速度是乙车的6 5.甲车先从A 城开55千米后,乙车才从B 城出发.两车相遇时,甲车比乙车多行驶30千米.试求B A ,两城市之间的距离.

相关主题