搜档网
当前位置:搜档网 › 风电场复合储能系统容量配置的优化设计_张坤

风电场复合储能系统容量配置的优化设计_张坤

风电场复合储能系统容量配置的优化设计_张坤
风电场复合储能系统容量配置的优化设计_张坤

风力发电用储能系统的优化配置及其仿真研究

华中科技大学 硕士学位论文 风力发电用储能系统的优化配置及其仿真研究 姓名:张琳 申请学位级别:硕士 专业:电气工程 指导教师:唐跃进 2011-05

摘 要 随着环境压力不断增加,新能源发电技术得到了广泛的发展和应用,其中风力发电技术在近几年发展尤为迅速。但由于自然风具有波动性与间歇性的特点,使得风电场输出功率不稳定。随着电力系统中风电装机容量的不断增加,由并网风电场带来的危害不容忽视。超导磁储能装置具有快速的响应速度和四象限独立控制有功功率和无功功率输出的特性,能有效增强风电场稳定性,克服自然风波动带来的危害。蓄电池储能装置存储容量大,技术成熟且价格低廉,能够有效增强电力系统供电可靠性,克服自然风间歇性带来的危害。 本文主要对超导磁储能装置增强风电场稳定性、蓄电池储能装置增强风电场供电可靠性进行了研究,并运用遗传算法优化设计了蓄电池储能装置的容量。通过仿真分析验证了有效性。 论文首先研究了风电并网存在的主要问题及储能装置在风电场中的应用现状,分析了储能装置增强风电场稳定性和供电可靠性的原理。在此基础上搭建了超导磁储能装置和蓄电池储能装置的数学模型,并运用遗传算法,以经济性指标为目标函数,给出了以求解蓄电池装置容量的适应度函数。 最后,在Matlab平台下,搭建了含风电场的电力系统模型,仿真分析了超导磁储能装置对于抑制风电场并网瞬间功率波动、风电场输出功率波动和风电机组三相短路故障的作用。利用Matlab遗传算法工具箱,对蓄电池储能装置容量进行了优化配置,仿真分析验证了蓄电池在增强风电场供电可靠性和增加经济效益方面的作用。 关键词:风力发电超导磁储能蓄电池储能遗传算法

风力发电系统中储能技术的研究

风力发电系统中储能技术的研究 发表时间:2018-09-17T15:37:22.667Z 来源:《基层建设》2018年第25期作者:张亚云[导读] 摘要:在这个阶段,随着社会经济的不断发展,资源短缺问题越来越严重,新能源的发展已成为人们关注的焦点。 北京天润新能投资有限公司西北分公司新疆乌鲁木齐 830000 摘要:在这个阶段,随着社会经济的不断发展,资源短缺问题越来越严重,新能源的发展已成为人们关注的焦点。因此,很多国家都很早就开始探索新能源,取得了很好的效果。在风力发电方面,风电高度随机,风电来源缺乏稳定性。这是使用风力发电的瓶颈问题。为了解决风力不稳定问题,必须采用储能技术来提高风力发电的稳定性和可靠性。 关键词:风力发电、储能技术、研究 引言:风力发电是将风能作为大规模清洁能源的最有效方式,它不仅可以改善能源结构,而且可以减少对环境的污染,因此,在日益突出的环境问题上,风电技术也得到了迅速发展。随着发展,大型和大容量风电场已在全球范围内投入生产,对于风力发电系统,储能技术的重要作用主要体现在以下几个方面:一是提高风电系统的稳定性,解决风能资源稳定性差的问题;其次,风力发电系统的稳定运行可以保证整个电网系统的稳定性,确保电力输出的稳定性,可以提供大规模的能源支持。最后,储能技术还可以确保电力系统中存储足够的电力,为人们提供持续,稳定的电力支持。 1储能技术的分类 储能技术主要包括四大类:电磁储能,物理储能,电化学储能和热能储存,电磁能量存储包括超导能量存储和超级电容器能量存储。物理储能包括抽水蓄能,压缩空气储能和飞轮储能,电化学储能包括储氢,液流电池。 1.1 电磁储能。超导储能技术主要是利用超导体制成的线圈来储存电网励磁产生的磁场,并将储存的能量在正确的时间送回电网。超导储能技术具有能量储存密度高,长期无损储能,能够快速释放能量,能够在大范围内独立选择,使用寿命长的特点,超导储能装置不受位置限制维护简单,污染低。当然,超导储能技术的缺点在于其成本高昂,超级电容储能技术是一种新型的储能装置。具有功率密度大,储能效果好,安装方便等特点,它是免维护的,可以单独使用或与其他储能装置组合使用。 1.2 物理储能。抽水蓄能主要用于在电力负荷低负荷期将水从下水库泵送至上池水库,将电能转化为重力势能,并在电网高峰负荷期间释放能量。到目前为止,抽水蓄能技术已被应用于最为成熟,是风电场储能方案的最佳应用。压缩空气储能主要利用电力系统负荷低时的剩余电量来驱动空压机,将空气压入大容量封闭的地下溶洞,并将压缩空气转化为压力势能储存在储气室。飞轮储能系统属于机械能方法。它主要将电能转换成飞轮在“充电”期间的动能并存储。当需要电力时,飞轮的动能转化为电能。储能方式不适合风电场。但是,它可以快速抑制风力发电的快速波动,因此可以与其他储能系统结合使用。 1.3 电化学储能。电化学储能技术包括氢燃料电池,全钒液流电池,铅酸电池,锂离子电池和钠硫电池。当风能无法充分利用时,氢燃料电池将这些多余的能量转化为氢气用于储存。氢燃料电池将燃料的化学能直接转换成电能,全钒液流电池是液流电池发展的主流。该技术可以达到兆瓦级水平,因此主要用于大型风电场。铅酸蓄电池在储能技术上更加成熟,历史悠久。产品主要密封,免维护,储能容量可达20MW。与其他储能技术相比,铅酸蓄电池的制造成本更低,可靠性更高,能量密度适中,是电力系统中应用最广泛的蓄电池。锂离子电池是磷酸铁锂电池发展的主流,其成本较低,且环境小,因此风电的应用前景广阔。钠液流电池是当前报告的大容量蓄电池,具有良好的发展前景。 2风力发电的储能技术的研究现状 2.1低电压穿透能力在风电系统中的提高。风电技术中低压普及的发展一直是关键因素,对于系统稳定系统而言,这也是风力发电技术发展中的重要挑战之一。从两个级别的风力涡轮机和风力农场工作是一种改善低电压穿透的方法,有两种方法可以提高风机工作水平低压的渗透率:首先,改进控制方法,其优点是不需要添加其他附加设备,因此该方案实施起来更简单;缺点是电网故障引起的暂态能量不平衡,改进后的方案不能从根本上解决瞬时能量不平衡问题,难以达到预期的效果。其次,添加硬件设备。优点是有很多方法来实现这种方法;缺点是附加成本会显着增加。增加硬件设备是风电场故障穿越能力的有效方法。 2.2平衡抑制风力发电产生功率的波动。风电出力波动是电网稳定,电能质量和经济动员的根本原因之一,因此,在使风力发电系统发挥作用的情况下,需要将不确定风速的变化对风力发电系统的输出的影响抑制为最小限度,并且控制风力发电的输出的功率的变化通过合理引入ESS并制定相应的控制策略。为了达到上述目的。通过大量的研究,可以看出,对于风电的波动,ESS可以用来稳定风电机组和风电场的风电波动。从其独立的角度来看,超级电容器与风力发电系统中的独立DC并行使用。在母线上,为抑制风电机组功率的波动,采用模糊理论对现象进行调节和控制。通过实验验证,风力发电系统中风力涡轮机的预测可能在很大程度上干扰了拟议策略的实际控制结果。风力发电系统中的大型风电场的单个单元受到塔阴影效应和尾流效应的影响。预测风力发电机的输出量非常困难,实际实施起来非常困难。因此,在风电场层面,在上述中,在用于存储能量的装置中,选择并联连接的方法以连接到DC总线,同时,该方法通过测试和检验是可行的。 3储能技术在风力发电系统中的应用 3.1储能设备的接入。储能技术在风力发电系统中的应用,可以提高整个系统的稳定性,降低电力公司的投资成本,为公司带来更大的经济效益,为此,我们必须积极开发和应用有效的储能技术。如果要采用储能技术,首先要连接储能设备,使储能设备成为风电系统的重要组成部分。在获取之前,要充分了解当地风资源的特点,必须明确电力公司自身的情况和条件,根据实际需要选择不同的储能装置,以预留多余的风资源,提高稳定性的电力系统,风资源不足时投入使用,实现电能的稳定输出。 对于风力发电系统的储能技术,可根据结构形式的差异对储能技术进行合理分类。具体而言,根据不同的储能结构,储能技术可分为分布式和集中式两种。首先,分布式储能设备安装在风力涡轮机的位置,每台发电机安装储能设备以确保稳定供电。虽然这种方法能够有效提高供电质量和水平,但也存在一些不可避免的缺陷:但是,使用这种技术会增加能源的能量,必须使用先进的转换器和储能装置来满足需求,许多电力公司在这方面不具备条件,这也限制了这项技术的进一步推广。 3.2分布式储能技术的应用。在风力发电系统中,存在直流环节,如果您想使用分布式储能技术,则需要连接直流母线和电容。如果风力不够,可以使用储能设备补充直流母线和直流侧变速器的功率,然后通过变流器传输到电网,从而提高系统的稳定性。如果风电上升,剩余的能源也可以送到直流侧,这些电能可以传输到储能装置,充分利用电能资源。

风电场电力二次系统安全防护方案(通用版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 风电场电力二次系统安全防护 方案(通用版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

风电场电力二次系统安全防护方案(通用 版) 第一章总则 1.1为了加强本单位二次系统安全防护,确保电力监控系统及电力调度数据网络的安全,依据国家电力监管委员会第5号令《电力二次系统安全防护规定》和原国家经贸委第30号令《电网和电厂计算机监控系统及调度数据网安全防护规定》,制定本方案。 1.2本方案是电网调度《电力二次系统安全防护总体方案》配套的系列文件之一。 1.3本方案描述了风电机组监控系统及与电网直接相关部分的安全防护,包括变电站部分的安全防护。 1.4二次系统的防护目标是抵御黑客、病毒、恶意代码等通过各种形式对风电场电力二次系统发起的恶意破坏和攻击,以及其它非

法操作,防止电力二次系统瘫痪和失控,并由此导致的一次系统事故。 1.5安全防护的重要措施是强化电力二次系统的边界防护。 1.6本方案适用于各部门落实电力二次系统安全防护工作。 第二章风电场二次系统结构 风电场监控系统主要包括:变电站自动化系统、五防系统、继电保护装置、安全自动装置、故障录波装置、电能量采集装置、风电机群集控装置、集电线继电保护装置和生产管理系统等。 二次系统安全分区表 序号 业务系统及设备 控制区 非控制区 管理信息大区 1 变电站自动化系统

300KW储能系统初步设计方案及配置

中山铨镁能源科技有限公司 储能系统项目 初 步 设 计 方 案 2017年06月

目录 1 项目概述?错误!未定义书签。 2项目方案?错误!未定义书签。 2.1智能光伏储能并网电站................................................................... 错误!未定义书签。 3.2储能系统?错误!未定义书签。 3.2.1磷酸铁锂电池............................................................................... 错误!未定义书签。 3.2.2电池管理系统(BMS)................................................................ 错误!未定义书签。 3.2.3储能变流器(PCS)?错误!未定义书签。 3.2.4 隔离变压器?错误!未定义书签。 3.3能量管理监控系统............................................................................ 错误!未定义书签。 3.3.1微电网能量管理........................................................................ 错误!未定义书签。 3.3.2系统硬件结构............................................................................. 错误!未定义书签。 3.3.3系统软件结构?错误!未定义书签。 3.3.4系统应用功能................................................................................ 错误!未定义书签。

储能系统方案设计doc资料

储能系统方案设计

商用300KW储能方案 技术要求及参数 电倍率0.5C; 储能系统配置容量:300kWh。 电池系统方案 术语定义 池采集均衡单元:管理一定数量串联电池模块单元,进行电压和温度的采集,对本单元电池模块进行均衡管理。在本方案中管计60支的电池。电池簇管理单元:管理一个串联回路中的全部电池采集均衡单元,同时检测本组电池的电流,在必要时采取本方案中管理17台电池采集均衡单元。电池阵列管理单元:管理PCS下辖全部电池簇管理单元,同时与PCS和后台监控系统池组状态请求PCS调整充放电功率。在本方案中管理2个并联的电池簇。 池模块:由10支5并2串的单体电池组成。 1 电池成组示意图 电池系统集成设计方案 .1电池系统构成 照系统配置300kWh储存能量的技术需求,本储能系统项目方案共使用1台150kW的PCS。储能单元由一台PCS和2个电池簇组台电池阵列管理单元设备。每个电池簇由一台电池簇管理设备和17 个电池组组成。

.2 电池系统计算书项目单体电池模块电池组电池簇电池阵列 体电池数目 1 10 60 1020 2040 称电压(V) 3.2 6.4 38.4 652.8 652.8 量(Ah) 55 275 275 275 -- 定能量(kWh) 0.176 1.76 10.56 179.52 359.04 低工作电压(V) 2.5 5 30 510 510 高充电电压(V) 3.6 7.2 43.2 734.4 734.4 统配置裕量 (359.04kWh -300 kWh)/300 kWh =19.68% 于以上各项分析设计,300kWh 电池系统计算如下。 .3电池柜设计方案 池机柜内部主要安装电池箱和BMS主控管理系统、配套电线电缆、高低压电气保护部件等。机柜采用分组分层设计,机柜外观柜采用免维护技术、模数化组合的装配式结构,保证柜体结构具有良好的机械强度,整体结构能最大程度地满足整个系统的可。其中,三个电池架组成的示意图如图3所示,尺寸为3600mm×700mm×2300mm。

户用储能系统中的电池的配置

户用储能系统中的电池如何配置 一、电池类型的选择 随着电池技术发展和成本的快速下降,目前在户用储能项目中,锂电池已成为主流选择,新增化学电池市场占有率达95%以上。 【解读】相比铅酸电池,锂电池具有效率高、循环寿命长、电池数据精确,一致性高等优势。 二、电池容量设计常见四大误区 1、只根据负载功率和用电量选择电池容量 电池容量设计中,负载情况是最重要的参考因素。但电池充放电能力、储能机的最大功率、负载的用电时段等同样不容忽视。 2、电池的理论容量和实际容量

通常,电池手册上面标注的是电池的理论容量,也就是在理想状态下,电池从SOC100%到SOC0%时电池能够释放的最大电量。 而在实际的应用中,考虑到电池寿命,不允许放电到SOC0%,会设置保护电量。 3、电池容量选择越大越好 在实际应用中,要考虑电池使用率。如果光伏系统容量较小,或负载用电量较大,电池无法充满即造成浪费。 4、电池容量设计完美契合 由于过程损耗的原因,电池放电量小于电池存电量,负载耗电量小于电池放电量。忽视效率损耗很可能造成电池供电不足的现象。

三、不同应用场景下的电池容量设计 本文主要介绍三种常见应用场景下的电池容量设计思路:自发自用(电费较高或没有补贴)、峰谷电价、备用电源(电网不稳定或有重要负载)。 1、“自发自用” 由于电价较高或者光伏并网补贴较低(无补贴),安装光伏储能系统以降低电费支出。 ·假设电网稳定,不考虑离网运行 ·光伏只是为了降低电网用电量 ·一般白天光照比较充足 最理想状态是,光伏+储能系统能够完全覆盖家庭用电。但是这种情况很难实现。所以我们综合考虑投入成本和用电情况,可以选择根据家庭平均日用电量(kWh)来选择电池的容量(默认光伏系统能量充足)。设计逻辑如下:

风电功率波动平抑效能与储能容量之间关系的分析

2009年中国电机工程学会年会 风电功率波动平抑效能与储能容量之间关系的分析 研究 宇航,张真卿,苑田芬,黄亚峰 (东北电力大学,吉林吉林 132012) The relationships between the efficiency of stabilizing wind power fluctuations and capacity of storage system YU Hang,ZHANG Zhenqing,YUAN Tianfen,HUANG Yanfeng (Northeast Dianli University,Jilin 132012,JilinProvince,China) abstract: This paper takes the relationships between the efficiency of stabilizing wind power fluctuations and capacity of storage system as research objectives while proposing the methods of stabilizing wind power fluctuations and the algorithms of calculating the storage system capacity based on the principles of low-pass filter.Then simulating the process of stabilizing power fluctuations based on the output power data. The simulation results show that stabilizing the short-tem fluctuations in minutes level could reduce the change rate of wind farm output power and the needed storage capacity is smaller, while stabilizing the mid-tem or long-tem fluctuations in hours level could make the waves of output power more stably but the increase amplitude of the needed storage capacity is larger. keywords:storage system;wind power fluctuations;low-pass fliter 摘 要:本文以风电功率波动平抑效能与储能容量之间的关系为研究目标,提出了基于低通滤波原理的风电功率波动储能平抑方法及满足平抑过程能量需求的储能容量算法,根据风电场实际输出功率数据对功率波动平抑过程进行仿真。研究结果表明,滤除风电功率的分钟级短期波动,可明显减小风电场输出功率的变化率,而且所需的储能容量较小,滤除风电功率的小时级甚至一天的中、长期波动,虽然可以使风电场输出功率更加平稳,但所需储能容量增幅很大。 关键字:储能;风功率波动;低通滤波 0 引言 随着能源和环境问题的日益突出,作为一种新型的可再生能源,风力发电具有环境友好、技术成熟、全球可行的特点,越来越受到人们的重视。近年来我国风电得到较快发展,截止到2008年底,装机容量达到892万千瓦,预计在2020年,我国风电累计装机可以达到1亿千瓦。 风电机组输出功率取决于风速,具有不可预期性和波动性。当电网所接纳的风电容量超过一定份额时,风电功率波动将增加电网运行调整负担[1],因此,对于大型风电场往往需要限制其输出功率的波动,如中华人民共和国国家标准化指导性文件GB/Z 19963-2005中对风电场输出功率变化率作出了明确的规定[2]。 在风电场出口处安装储能系统是减小风电场输出功率变化率的理想途径[3-4],当储能系统容量足够大时,可以利用储能系统对风电功率波动进行有效调控,使风电场成为可调度电源。然而,由于储能系统成本往往比较昂贵,实际上只能利用有限容量的储能系统来优化风电场的功率输出,风电场输出功率的可控程度与所配置的储能容量密切相关。因此,分析风电功率波动平抑效能与储能容量之间的关系是风电控制领域前沿的研究课题之一。 本文提出了一种利用储能系统抑制风电功率变化率的方法以及满足平抑过程能量需求的储能容量算法,以某额定容量为50MW的风电场为例,根据其实际输出功率数据对功率波动平抑过程进行仿真,验证该平抑方法的有效性,分析风电功率波动平抑效能与储能容量之间的关系,为风电场通过配置储能系统平抑风电功率波动提供有效的参考。 1 基于低通滤波原理的风电功率波动储能平抑方法 应用储能系统平抑风电功率波动的原理如图1

风光储能系统容量配比等关键技术研究

一、风光储能系统的智能能量管理控制技术研究 风光互补储能系统,就是按照一定的配置关系,将风力机和光伏组件和蓄电池进行组合,综合考虑系统配置的性能和储能成本,得出最佳的系统配置。在风光储能系统的容量配比中,需要从所在地区自然资源条件、负载情况以及综合成本几个方面考虑,以下是基本的配置原则: 1)在用电负荷相同时,由于太阳能电池板的费用较高。为降低系统投资,在保证用电安全和自然资源条件允许时,应尽量降低太阳能在发电系统 中的能源比率; 2)水平轴风机的启动风速高、需较高风速才能发电、能量转化效率低;垂直轴风机在较低的风速时即可发电。在同样的用电需求时,所用水平轴 风机功率一般要大于垂直轴风机,导致水平轴风机费用较高;但对于同 样功率的风力发电机,垂直轴风机费用高于水平轴风机,但其体积、重 量和所需运行空间均小于水平轴风机,且具有运行稳定、噪音低、无对 风要求等优点; 3)储能系统中,蓄电池的费用较高且寿命较短(一般5~10年),设计时应认真分析所在区域的资源条件和用电设备情况,合理地确定储能时间, 以减少蓄电池用量、降低系统投资; 虽然风能的成本低于风光互补,但风光互补系统利用了两种自然资源,能较好地避免蓄电池过放电,延长电池寿命,虽一次性投资稍高,但供电的安全性、稳定性高于风能系统。 风光互补储能系统主要由风力发电机组、太阳能光伏电池组、智能能量控制与管理、电池管理与蓄电池、安全控制与远程维护、逆变器、交流直流负载等部分组成。

(1)风力发电部分是利用风力机将风能转换为机械能,通过风力发电机将机械能转换为电能,再通过控制器对蓄电池充电,经过逆变器对负载供电; (2)光伏发电部分利用太阳能电池板的光伏效应将光能转换为电能,然后对蓄电池充电,通过逆变器将直流电转换为交流电对负载进行供电; 智能能量控制管理部分是保证电源系统正常运行的重要核心设备。一方面根据日照强度、风力大小以及瞬态储能系统和储能电池组的状态,实时调整暂态储能设备和储能电池组之间的能量分配,达到对风光发电不确定性的平滑和储能能量匹配;另一方面实时监控负载的变化,不断对蓄电池组的工作状态进行切换和调节:或者把调整后的电能直接送往直流或交流负载,或者把多余的电能送往蓄电池组存储。发电量不能满足负载需要时,控制器把蓄电池的电能送往负载,保证了整个系统工作的连续性和稳定性; (3)储能电池组部分由多块蓄电池组成,在系统中同时起到能量调节和平衡负载两大作用。它将风力发电系统和光伏发电系统输出的电能转化为化学能储存起来,以备供电不足时使用。 (4)逆变系统由几台逆变器组成,把蓄电池中的直流电变成标准的220V交流电,保证交流电负载设备的正常使用。同时还具有自动稳压功能,可改善风光互补发电系统的供电质量。

曹罗坪子风电场二次系统安全防护方案

曹罗坪子风电场二次系统安全防护方案 1、1、为了防范黑客及恶意代码等对电力二次系统的攻击侵害,保障我公司电力二次系统的安全可靠、稳定运行,提高电力二次系统的安全管理水平,根据国家电监会颁布的《电力二次系统安全防护规定》(电监会5号令)及《电力二次系统安全防护总体方案》(电监安全[xx]34号),特制定本管理办法。+ T; T3 q* A8 [; \# i# x 1、2我站电力二次系统安全防护工作以“安全第一、预防为主,管理和技术并重、综合防范”为方针,坚持“安全分区、网络专用、横向隔离、纵向认证”的原则。+ p7 o4 [* f0 m3 N; k8 N5 k 1、3本管理办法适用于我站电力二次系统的规划、设计、系统改造、工程实施、运行管理等。 1、4引用标准及规范& O7 q* ~6 r7 x: E( u; ?1 e1 t9 | 1、4、1 《电力二次系统安全防护规定》国家电监会5号令 P ! B6 U 1、4、 2、《电力二次系统安全防护总体方案》电监安全[xx]34号文 1、4、3、《电网和电站计算机监控系统及调度数据网络安全防护的规定》(国家经贸委[2002]第30号令)。第二章管理职责 2、1二次系统安全防护管理组织机构0 H8 `6 n& A3 H R; N+ c3 N组长:高修煬 u2 K; i- v! Q* |; _% j% U w z" Q# S [3 k2 b( u5d组织成员:赵迪、朱天计、王纯、张泽鹏、夏文强、邓鹏、徐铁瑞、韩福明、谢杰君、罗庆卫。; Fw0 m、 B1 V- F2 u1 o: h* q1 n 2、2组长:为二次系统安全防护管理的主要负责人。负责审评相关的制度编写、签发;组织人员对二次系统安全防护的评估,制定评估计划;负责监督、考核各项规章制度的实施情况。负责组织对二次系统突发事故及安全隐患的处理、指挥。 2、3组织成员:二次系统安全防护日常管理工作的具体执行者。负责各项相关制度的具体实施,机房制度具体实施情况的监管、考评;负责组织对网络运行设备的巡视,发现问题、缺陷及故障隐患必须及时汇报,负责对突发事件的判

户用储能系统中的电池的配置

户用储能系统中的电池如何配置 一. 电池类型的选择 随着电池技术发展和成本的快速下降z 目前在户用储能项目中z 锂电池已 成为主流选择,新增化学电池市场占有率达95%以上。 【解读】相比铅酸电池,锂电池具有效率高、循环寿命长、电池数据精 确,—致性高等优势。 二. 电池容量设计常见四大误因 1. 只根据负载功率和用电量选择电池容量 电池容量设计中,负载情况是最重要的参考因素。但电池充放电能力、储 能机的最大功率、负载的用电时段等同样不容忽视。 2、电池的理论容量和实际容量 液潦电述 2000-2017年全球化学储能技术分布 铅酸电池 2017年全球新増化学储能技术分布

通常,电池手册上面标汪的是电池的理论容量z也就是在理想状态下,电池从SOC100%到SOCO%时电池能够释放的最大电量。 而在实际的应用中,考虑到电池寿命,不允许放电到SOCO% ,会设置保 护电量。 SOC保护 电池保护电量 3. 电池容量选择越大趣好 在实际应用中,要考虑电池使用率。如果光伏系统容量较小,或负载用电量较大,电池无法充满即造成浪费。 4. 电池容量设计完美契合 由于过程损耗的原因,电池放电量小于电池存电量,负载耗电量小于电池放电量。忽视效率损耗很可能造成电池供电不足的现氨

纟E 件功率充电:电迪充电效率 -T — 电迪供负载:电迪放电效率岌逆变效率孩负裁端效率 u E.不同应用场景下的电池容量设讯 本文主要介绍三种常见应用场景下的电池容量设计思路:自发自用(电费 较高或没有补贴)、峰谷电价、备用电源(电网不稳定或有重要负载)。 1. "自发自用" 由于电价较高或者光伏并网补贴较低(无补贴),安装光伏储能系统以降 低电费支出。 ?假设电网稳定,不考虑离网运行 ?光伏只是为了降低电网用电量 ?—般白天光照比较充足 最理想状态是,光伏+储能系统能够完全覆盖家庭用电。但是这种情况很 难实现。所以我们综合考虑投入成本和用电情况,可以选择根据家庭平均日用 电量(kWh )来选择电池的容量(默认光伏系统能量充足)。设计逻辑如下: 电网 负载 组件 逆变 匚 匚 电池

风光互补发电系统设计

5.3.1风光互补发电系统设计 风能和太阳能都具有能量密度低、稳定性差的弱点,并受到地理分布、季节变化、昼夜交替等影响.然而太阳能与风能在时间上和地域上一般都有一定的互补性,白天太阳光最强时,风较小,晚上太阳落山后,光照很弱,但由于地表温差变化大而风能加强.在夏季,太阳光强度大而风小;冬季,太阳光强度小而风大。太阳能发电稳定可靠,但目前成本较高,而风力发电成本较低,随机性大,供电可靠性差。若将两者结合起来,可实现昼夜发电.在合适的气象资源条件下,风光互补发电系统能提高系统供电的连续性、稳定性和可靠性,在很多地区得到了广泛的应用.如图5.1为某地10 月份某日典型的太阳能和风资源分布,因此采用风光互补发电系统,可以弥补风能和太阳能间歇性的缺陷。 图5.1 某地10 月份典型日太阳能和风能资源分布图风光互补发电的优势: (1)利用风能和太阳能的互补性,弥补了独立风电和独立光伏发电系统的不足,可以获得比较稳定的和可靠性高的电源。 (2)充分利用土地资源。 (3)保证同样供电的情况下,可大大减少储能蓄电池的容量。 (4)对系统进行合理的设计和匹配,可以基本上基本上由风光互补发电系统供电,获得较好的经济效益。 5)大大提高经济效益。

风光互补发电系统主要组成部分(1)发电部分:由一台或者几台风力发电机和太阳能电池阵列构成风—电、光—电发电部分,发电部分输出的电能通过充电控制器与直流中心完成蓄电池组自动充电工作。 (2)蓄电部分:蓄电部分主要作用是将风电或光电储存起来,稳定的向电器供电。蓄电池组在风光互补发电系统中起到能量调节和平衡负载两大作用。 (3)控制及直流中心部分:控制及直流中心部分由风能和太阳能充电控制器、直流中心、控制柜、避雷器等组成,完成系统各部分的连接、组合及对蓄电池组充放电的自动控制。控制及直流中心具体构成参数由最大用电负荷与日平均用电量决定。 (4)供电部分:供电部分不可缺少的部分是逆变器,逆变器把蓄电池储存的直流电转换为交流电,保证交流负载的正常使用。同时,还有稳压功能,以改善风光互补系统的供电质量。 图5.2 风光互补发电系统 设计一个完善的风光互补发电系统需要考虑多种因素.如各个地区的气候条件,当地的太阳辐照量情况,太阳能方阵及风力发电机功率的选用,作为储能装置蓄电池的特性等.因此,必须选择建立一些先进的数学模型进行多种计算,确定合理的太阳能电池方阵和风力发电机容量,使系统设计最优化. 数学模型计算 1.蓄电池容量计算 蓄电池的容量C 通常按照保证连续供电的天数来计算:

风电储能容量优化计算

大型并网风电场储能容量优化方案 2012-08-17 00:00 原文链接 为减少大型并网风电场输出功率不稳定给系统频率造成的较大影响,在Matlab平台中仿真了风电机组输出功率随风速变化的规律,以风电机组输出功率特性函数和风电场风速概率分布函数为基础,提出了一种计算大型风电系统长时间稳定输出所需储能容量的方法,并用实际风电场数据验证了该方法的有效性,以期为风电场设计提供决策参考。 0 引言 风能是一种清洁的可再生能源,风力发电是风能利用的主要形式。风力发电作为一种特殊的电力,其原动力是风。自然界风的变化是很难预测的,风速和风向的变化影响着风力发电机的出力。风力发电机输出功率的不稳定性使风力发电具有许多不同于常规能源发电的特点。大规模风电场并网对系统稳定性[1-2]、电能质量[3-6]的影响不容忽视,如果这些问题得不到适当的处理,不仅会危及负荷端用电,甚至可能导致整个电网崩溃,而且会制约风能的利用,限制风电场的规模。 我国《可再生能源发展“十一五”规划》[7]指出,在“十一五”期间全国将重点建设约30 个10万kW以上的大型发电场和5个百万kW 级风电基地。大型风电并网将对电网运行的稳态频率产生一定影响。风电场优化输出[8]是保证电网频率稳定的重要技术问题。 文献[9]用飞轮储能系统来实现风电机输出功率补偿,具有储能密度大、充放电速度快且无环境污染的优点。 文献[10]仿真研究了串并联型超级电容器储能系统对平滑风力发电系统输出功率的影响,具有高功率密度、高充放电速度、控制简单、转换效率高、无污染等特点。 文献[11]研究了电池储能系统(battery energy storage system,BESS)在改善并网风电场电能质量方面的应用情况,具有快速的功率吞吐率和灵活的4 象限调节能力。 文献[12-14]对超导储能装置(superconducting magnetic energy storage,SMES)在并网型风力发电系统中的应用作了深入研究,发现超导储能系统具有良好的动态特性、4 象限运行能力和无损储能等优势。 储能技术在并网风电场中的应用已被广泛研究,相关学者正努力攻克大容量储能技术,并不断降低单位储能成本。目前,容量为5GW.h 的SMES已通过可行性分析和技术论证[1 5]。不过,按现有的储能方式,即风力发电机始终以最大功率点跟踪(maximum power poi nt tracking,MPPT)方式运行,当负荷较轻(如夜间)时,部分电能被储存,当负荷重且遇到弱风时,储能设备中的能力被转换成电能进行补偿,这时因为电网负荷的波动特性往往并不与风电功率的波动特性一致,仍存在如何合理选取储能容量大小的问题。另一种办法是降额发电,即在正常情况下,风电场不按照最大功率点跟踪的方式运行,而是按最大功率的一定百分比发电,当风力下降或上升时,相应地提升或降低发电能力,以减缓发电量的随机波动。这种方法直接影响了风能利用的效率,大大降低了运营利润,且调节能力有限。

以净效益最大为目标的储能电池参与二次调频的容量配置方法

2019年3月电工技术学报Vol.34 No. 5 第34卷第5期TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY Mar. 2019 DOI:10.19595/https://www.sodocs.net/doc/343372373.html,ki.1000-6753.tces.L80372 以净效益最大为目标的储能电池参与 二次调频的容量配置方法 汤杰1李欣然1黄际元2徐飘1何聪1 (1. 湖南大学电气与信息工程学院长沙 410082 2. 国网湖南省电力有限公司长沙供电分公司长沙 410015) 摘要针对储能电源参与电网辅助调频问题,提出一种以净效益最大为目标的储能电池参与二次调频的容量配置方法。综合考虑实时电量、备用功率和环境效益,构建储能电池全寿命周期的成本-效益计算模型;进而建立以净效益最大为目标,以容量及功率为决策变量,综合考虑实时出力、调频需求约束和荷电状态(SOC)约束的储能电池优化配置模型;基于经验模态分解(EMD)原理,设计一种考虑常规机组爬坡率限制的储能参与二次调频的初始功率指令分配方法;并给出了利用遗传算法辅助求解该优化模型的容量配置方法流程。仿真结果表明,所提出的容量配置方法不仅可以得到能够较好地协调经济效益和调频效果的容量配置方案,同时可得到储能出力功率,该功率可作为储能电池的运行调度参考方案,提高了配置方法的工程实用性。 关键词:储能电池二次调频成本-效益容量配置优化模型 中图分类号:TM732 Capacity Allocation of BESS in Secondary Frequency Regulation with the Goal of Maximum Net Benefit Tang Jie1 Li Xinran1 Huang Jiyuan2 Xu Piao1 He Cong1 (1. College of Electrical and Information Engineering Hunan University Changsha 410082 China 2. State Grid Hunan Electric Power Corporation Limited Changsha Power Supply Company Changsha 410015 China) Abstract Energy storage power has brought some problems involved in the auxiliary frequency regulation, aiming at the problems, a capacity allocation method of BESS in secondary frequency regulation with the goal of maximum net benefit is proposed. Considering the real-time electricity, reserve power and environmental benefit, the cost-benefit calculation model of full life cycle of BESS is constructed. Then taking the maximum net benefit as the goal, the capacity and the power as the decision variables, and considering the real-time output, the frequency regulation demand constraint and the SOC boundary, the optimization configuration model of BESS is established; Based on the principle of empirical mode decomposition (EMD) and considering the limitation of ramp rate of conventional units, this paper designs an initial power instruction allocation method for BESS in secondary frequency regulation; Also this paper gives the flow chart of capacity allocation method assisted by genetic algorithm. The simulation results show that the proposed capacity allocation method can not only obtain the capacity allocation scheme that can coordinate the economic benefit and frequency regulation effect, but also obtain the energy storage output power. The output power can be used as a reference scheme of BESS, which improves the engineering 国家自然科学基金(51477043)、湖南省科技重大专项(2016GK1003)和国网湖南省电力有限公司科技项目(5216A1170002)资助。 收稿日期 2018-06-29 改稿日期 2018-09-09

浅论风电项目二次系统设计

浅论风电项目二次系统设计 发表时间:2018-10-17T10:37:19.733Z 来源:《电力设备》2018年第17期作者:贾天翼[导读] 摘要:本文对风电场二次系统进行组网设计,并对二次系统组网设计的网络配置、特点和存在问题进行论述。 (中国华电科工集团有限公司 100160)摘要:本文对风电场二次系统进行组网设计,并对二次系统组网设计的网络配置、特点和存在问题进行论述。 关键词:风力发电;电气二次;系统设计概述 随着近年来风电的迅速发展,风机的布置越来越分散,乃至分散式风电的出现,如何将风电场箱变监控系统和风力发电机组控制系统一起纳入变电站控制系统,进一步实现数字化风电场,成为一种全新的设计思路。电气二次系统设计方案是至关重要的组成部分,更是数字化变电站先进、安全的设计方案的重要前提。 1 监控范围 1.1风电场变电站监控系统 风电场变电站监控系统的对象主要包含风电场箱变和变电站二次设备。 1.1.1箱变的监控 监测箱变高低压侧电流、电压、高低压开关状态、变压器油温等必要的报警信号,实现高低压侧开关远方/就地控制。 1.1.2变电站设备的监控 监控220kV线路电流、电压、功率及保护信号,220kV线路断路器状态和保护信号,220kV隔离开关和接地开关状态信号,220kV变压器高低压侧电流、电压、保护、非电量及有载开关档位信号。监控35kV母线电压、馈线电流、功率及保护信号及馈线断路器状态信号。监测直流、UPS系统报警及馈线开关状态信号、计量仪表电能量信号、SVC系统报警信号及其他电气控制系统重要信号。 1.2风力发电机组监控系统 风力发电机监控系统由在线的各风力发电机组的控制器和主控室中集中监控装置组成。风力发电机组的控制器系统包括二部分:第一部分为计算机单元,它的主要功能是控制风力发电机组;第二部分为电源单元,它主要功能是使异步风力发电机组与电网同期。集中监控系统的对象包括40台单机容量为1250kW 的风力发电机组。风力发电机组监控系统可对风力发电机组进行远方手动开机、手动停机、马达启动、风力发电机组向顺时针方向旋转或向逆时针方向旋转。风力发电机组在运行过程中,可持续监视风力发电机组的转速、风力发电机组的电流、功率及启停机开关状态。 2 组网系统设计方案 2.1变电站监控系统二次网络及配置 风电场变电站监控系统由监控系统主网,35kV开关柜控制系统子网,箱变控制系统子网和其他非电气控制系统通讯网络组成。 2.1.1监控系统主网 监控系统主网采用双光纤以太网结构,以太网的网络拓扑采用全交换星型网状拓扑。传统变电站监控系统采用了分层分布式结构,即监控系统分为变电站层和间隔层。变电站层包括监控、远动、五防闭锁等需要集中全站信息完成的功能,而间隔层设备主要对应于一次间隔设备的保护、测量和控制。间隔层设备之间,间隔层设备和互感器及开关刀闸等一次设备之间通过大量控制电缆进行信号传输。 2.1.2 35kV开关柜控制系统子网 35kV馈线综保装置和母线PT综保装置与35kV配电装置一起安装在开关柜中,综保装置同时具有测控和保护功能,可直接采集CT/PT 信号,完成馈线断路器的监控功能。35kV综保装置组成通讯子网,通过lEC61850与变电站监控系统主网相连。 2.1.3风电场箱变控制系统子网 对于分布分散的风电场箱变,与风力发电机组控制就地控制器一起,根据其布置位置和集电线路的规划,分成4条光纤通讯线路,每条通讯线路包含10台箱变就地测控装置数据,每条通讯线路内部网络拓扑为环网,4条光纤通讯线路组成通讯子网,通过I EC61850与与变电站监控系统主网相连。 2.2风电机组监控系统二次网络及配置 对于分布分散的风力发电机组,根据其布置位置和集电线路的规划,分成4条光纤通讯线路,每条通讯线路包含10台风机监控数据,每条通讯线路内部网络拓扑为环网,4条光纤通讯线路连接至变电站控制中心,光纤通讯线路与控制中心之间网络拓扑图为星型网状拓扑。 风力发电机组就地控制器通过就地RJ45/光口的光电转换器将电信号转换成光信号,再由光缆向远方控制中心输出风机发电机组的功率、风速、保护及启停机开关状态等监控信号。风力发电机组就地控制器和变电站控制中心之间及风力发电机组监控系统与变电站监控系统之间通过以太网TCP/I P协议进行数据交换。 3 二次系统组网的设计特点 3.1 一体化 35kV馈线综保装置安装在户内开关柜,风电场箱变测控装置按照在变压器就地,实现一体化设计,35kV馈线综保装置和风电场箱变测控装置直接采集CT/PT信号,监控开关状态,可进一步省略智能接口装置。 3.2可靠性保障 采用双以太网,实现双网热备用,提高可靠性;过程层、间隔层、变电站层之间用光缆连接,最大程度减少了电磁兼容问题。提高电气设备的监控水平。对今后运行、检修提供极大便利。 3.3 经济效益提高 风电场二次控制和保护系统统一规划,最大程度的实现了信息共享和系统集成。避免重复投资,减少二次盘柜数量,减小继电器小室面积。同时过程层、问隔层、变电站层之间用光缆连接,基本取消了控制电缆,仅增加了组网光缆,降低了投资,提高了经济性。 3.4网络化

相关主题