搜档网
当前位置:搜档网 › 细胞膜蛋白质

细胞膜蛋白质

细胞膜蛋白质

膜结构中含有蛋白质早已证实,但有兴趣的问题是膜中蛋白质究以何种形式存在。70年代以前,多数人主张蛋白质是平铺在脂质双分子层的内外两侧,后来证明,蛋白质分子是以а-螺旋或球形结构分散镶嵌在膜的脂质双分子层中。膜蛋白质主要以两种形式同膜脂质相结合:有些蛋白质以其肽链中带电的氨基酸或基团,与两侧的脂质极性基团相互吸引,使蛋白质分子像是附着在膜的表面。这称为表面蛋白质;有些蛋白质分子的肽链则可以一次或反复多次贯穿整个脂质双分子层,两端露出在膜的两侧,这称为结合蛋白质。在用分子生物学技术确定了一个蛋白质分子或其中亚单位的一级结构、即肽链中不同氨基酸的排列顺序后,发现所有结合蛋白质的肽链中都有一个或数个主要由20-30个疏水性氨基酸组成的片段。这些氨基酸又由于所含基团之间的吸引而形成а-螺旋,即这段肽链沿一条轴线盘旋,形成每一圈约含3.6个氨基酸残基的螺旋,螺旋的长度大致相当于膜的厚度,因而推测这些疏水的а螺旋可能就是肽链贯穿膜的部分,它的疏水性正好同膜内疏水性烃基相吸引。这样,肽链中有几个疏水性а-螺旋,就可能几次贯穿膜结构;相邻的а-螺旋则以位于膜外侧和内侧的不同长度的直肽链连接。膜结构中的蛋白质,具有不同的分子结构和功能。生物膜所具有的各种功能,在很大程度上决定于膜所含的蛋白质;细胞和周围环境之间的物质、能量和信息交换,大都与细胞膜上的蛋白质分子有关。由于脂质分子层是液态的,镶嵌在脂质层中的蛋白质是可移动的,即蛋白质分子可以在膜脂分子间横向漂浮移位;不同细胞膜中的不同蛋白质分子的移动和所在位置,存在着精细的调控机制。例如,骨骼肌细胞膜中与神经肌肉间信息传递有关的通道蛋白质分子,通常都集中在肌细胞膜与神经未梢分布相对应的那些部分;而在肾小管和消化管上皮细胞,与管腔相对的膜和其余部分的膜中所含的蛋白质种类大不相同,说明各种功能蛋白质分子并不都能在所在的细胞膜中自由移动和随机分布,而实际存在着的有区域特性的分布,显然同蛋白质完成其特殊功能有关。膜内侧的细胞骨架可能对某种蛋白质分子局限在膜的某一特殊部分起着重要作用。

细胞膜蛋白质

膜结构中含有蛋白质早已证实,但有兴趣的问题是膜中蛋白质究以何种形式存在。70年代以前,多数人主张蛋白质是平铺在脂质双分子层的内外两侧,后来证明,蛋白质分子是以а-螺旋或球形结构分散镶嵌在膜的脂质双分子层中。膜蛋白质主要以两种形式同膜脂质相结合:有些蛋白质以其肽链中带电的氨基酸或基团,与两侧的脂质极性基团相互吸引,使蛋白质分子像是附着在膜的表面。这称为表面蛋白质;有些蛋白质分子的肽链则可以一次或反复多次贯穿整个脂质双分子层,两端露出在膜的两侧,这称为结合蛋白质。在用分子生物学技术确定了一个蛋白质分子或其中亚单位的一级结构、即肽链中不同氨基酸的排列顺序后,发现所有结合蛋白质的肽链中都有一个或数个主要由20-30个疏水性氨基酸组成的片段。这些氨基酸又由于所含基团之间的吸引而形成а-螺旋,即这段肽链沿一条轴线盘旋,形成每一圈约含3.6个氨基酸残基的螺旋,螺旋的长度大致相当于膜的厚度,因而推测这些疏水的а螺旋可能就是肽链贯穿膜的部分,它的疏水性正好同膜内疏水性烃基相吸引。这样,肽链中有几个疏水性а-螺旋,就可能几次贯穿膜结构;相邻的а-螺旋则以位于膜外侧和内侧的不同长度的直肽链连接。膜结构中的蛋白质,具有不同的分子结构和功能。生物膜所具有的各种功能,在很大程度上决定于膜所含的蛋白质;细胞和周围环境之间的物质、能量和信息交换,大都与细胞膜上的蛋白质分子有关。由于脂质分子层是液态的,镶嵌在脂质层中的蛋白质是可移动的,即蛋白质分子可以在膜脂分子间横向漂浮移位;不同细胞膜中的不同蛋白质分子的移动和所在位置,存在着精细的调控机制。例如,骨骼肌细胞膜中与神经肌肉间信息传递有关的通道蛋白质分子,通常都集中在肌细胞膜与神经未梢分布相对应的那些部分;而在肾小管和消化管上皮细胞,与管腔相对的膜和其余部分的膜中所含的蛋白质种类大不相同,说明各种功能蛋白质分子并不都能在所在的细胞膜中自由移动和随机分布,而实际存在着的有区域特性的分布,显然同蛋白质完成其特殊功能有关。膜内侧的细胞骨架可能对某种蛋白质分子局限在膜的某一特殊部分起着重要作用。

细胞膜

细胞膜 第3章第1节细胞膜――系统的边界【考点解读】1、细胞膜的结构和功能(B)2、细胞膜系统(B)【基础回顾】 1、细胞膜的组成成分:是由、和组成。细胞膜中的糖类是少量的,主要与蛋白质或脂类结合形成糖蛋白质或糖脂,与细胞的识别有关,如红细胞膜上的即为糖蛋白。 2、细胞膜的结构:流动镶嵌模型。其中基本支架是:,蛋白质在其中的分布: 3、细胞膜结构的特点:。细胞膜中的蛋白质是膜功能的主要体现者,其中有的与物质的运输有关,如载体,有的是酶,有的是激素或其他有生物活性物质的受体。不同膜上的蛋白质的具体种类是不同的,所以其生理功能也不同,如叶绿体膜。线粒体膜、内质网膜等。细胞膜对物质的运输具有选择性是由决定的,载体蛋白具有专一性。 4、细胞膜的功能:(三点) 细胞膜的功能上的特点是:具有选择透过性【学海导航】知识点教师活动学生活动问题探讨讨论: 1、你怎样区分显微镜视野中的 气泡和细胞?光学显微镜下能看见细胞膜吗? 1、气泡的主要特点是_________________。而细胞是一个具有____________、____________和_________的复杂结构,而且是一个立体的结构,在显微镜下,通 过调节焦距可以观察到细胞的不同层面。光学显微镜下______ (能或不能)看见细胞膜。 一、细胞膜的制备体验制备细胞膜的方法:①为什么选择动物细胞? ②为什么选择哺乳动物成熟的红细胞做实验材料?③怎样才能获得 细胞膜?①因为动物细胞没有_________________。②因为哺乳动 物成熟的红细胞中没有_____和_______。③把细胞放在_____中,由于细胞内物质有一定浓度,水会进入细胞,把细胞涨破。(若实验在 试管内进行,要获得较纯的细胞膜可以借助_________法)二、细胞膜的成分 1、细胞膜的成分有哪些?各成分的比例关系如何? 2、细胞膜的功能主要和哪种成分有关? 1、细胞膜主要由__________和 ___________组成,此外,还有少量的_____________。其中_________约占细胞膜总量的50%,________约占40%,___________ 占2%~10%。在组成细胞膜的脂质中,___________ 最丰富。 2、功能越复杂的细

细胞膜及其表面123节答案

第五章细胞膜及其表面 (第1-3节) 一、填空 A-五-1.细胞膜的最显著特性是不对称性和流动性。 A-五-2.生物膜脂在正常生理温度下以液晶态存在,随着温度的上升或下降可发生状态的改变,这种变化称相变。 A-五-3. 生物膜的化学组成主要有膜脂、膜蛋白、膜糖。 A-五-4.动物细胞连接有封闭连接、锚定连接、通讯连接__等几类,其中通讯连接具有细胞通讯作用。 A-五-5.按照膜蛋白与膜脂的结合方式以及膜蛋白存在的位置,可分为膜内在蛋白、膜周边蛋白、脂锚定蛋白三种。 B-五-6.在正常生理温度下,膜脂呈液晶态,具有一定的流动性,影响膜脂流动性的因素中,脂肪酸链的饱和程度越高,膜脂的流动性越小(大或小)。 B-五-7.细胞膜中所含有的主要脂类为磷脂、胆固醇、糖脂,它们都是双亲性分子。 B-五-8. 质膜中磷脂、胆固醇和糖脂等成分是具有双亲性的分子。 C-五-9.真核细胞膜中有四种主要的磷脂分子:磷脂酰胆碱、磷脂酰丝氨酸、磷脂酰乙醇胺和鞘磷脂。C-五-10.膜脂的分子运动方式包括:旋转运动、侧向扩散运动、 内、外层翻转运动和弯曲运动。

C-五-11.点状桥粒的主要结构包括:①__桥粒斑__; ②____钙黏蛋白___;③__中间丝___。 D-五-12.改变溶液温度或离子强度就可以从细胞膜上分离下来的膜蛋白是膜周边蛋白,用去垢剂处理才能从细胞膜上分离下来的膜蛋白是膜内在蛋白。 二、选择题 (一)单项选择题 A-五-1.生物膜的主要化学成分是( C )。 A 蛋白质和水 B 蛋白质和糖类 C 蛋白质和脂类 D 脂类和糖类 A-五-2.膜脂中最多的是( C )。 A 脂肪 B 糖脂 C 磷脂 D 胆固醇 ?A-五-3. 下列哪种结构不是单位膜( C )。 A 细胞膜 B 内质网膜 C 细胞外被 D 线粒体外膜 A-五-4.细胞膜性结构在电镜下都呈现出较为一致的三层结构,即内外两层电子致密层中夹一层疏松层,称为( C )。 A 生物膜 B 质膜 C 单位膜 D 板块模型 A-五-5. 下列关于细胞膜的叙述哪项有误( D ) A 镶嵌蛋白以各种形式镶嵌于脂质双分子层 B 含胆固醇 C 含糖脂 D外周蛋白在外表面 A-五-6.磷脂分子在细胞膜中的排列规律是( A ) A 极性头部朝向膜的内、外两侧,疏水尾部朝向膜的中央 B 极性头部朝向膜的外侧,疏水尾部朝向膜的内侧 C 极性头部朝向膜的内侧,疏水尾部朝向膜的外侧 D 极性头部朝向膜的中央,疏水尾部朝向膜的内、外两侧 A-五-7.生物膜是指( D ) A 单位膜 B 蛋白质和脂质二维排列构成的液晶态膜

细胞膜的研究发展

(1)膜脂 磷脂、胆固醇、糖脂,每个动物细胞质膜上约有109个脂分子,即每平方微米的质膜上约有5x106个脂分子。 (2)膜蛋白 细胞膜蛋白质(包括酶)膜蛋白质主要以两种形式同膜脂质相结合:分内在蛋白和外在蛋白两种。内在蛋白以疏水的部分直接与磷脂的疏水部分共价结合,两端带有极性,贯穿膜的内外;外在蛋白以非共价键结合在固有蛋白的外端上,或结合在磷脂分子的亲水头上。如载体、特异受体、酶、表面抗原。占20%~30%的表面蛋白质(外周蛋白质)以带电的氨基酸或基团——极性基团与膜两侧的脂质结合;占70%~80%的结合蛋白质(内在蛋白质)通过一个或几个疏水的α-螺旋(20~30个疏水氨基酸吸收而形成,每圈3.6个氨基酸残基,相当于膜厚度。相邻的α-螺旋以膜内、外两侧直链肽连接)即膜内疏水羟基与脂质分子结合。理论上,镶嵌在脂质层中的蛋白质是可以横向漂浮移位的,因而该是随机分布的;可实际存在着的有区域性的分布;(这可能与膜内侧的细胞骨架存在对某种蛋白质分子局限作用有关),以实现其特殊的功能:细胞与环境的物质、能量和信息交换等。(Frye和Edidin1970年用发红光的碱性芯香红标记人细胞同用发绿光荧光素标记膜蛋白抗体标记离体培养的小鼠细胞一起培养,然后使它们融合,从各自分布,经过37℃40min后变为均匀分布。光致漂白荧光恢复法,微区监测) 细胞膜上存在两类主要的转运蛋白,即:载体蛋白(carrier protein)和通道蛋白(channel protein)。载体蛋白又称做载体(carrier)、通透酶(permease)和转运器(transporter),能够与特定溶质结合,通过自身构象的变化,将与它结合的溶质转移到膜的另一侧,载体蛋白有的需要能量驱动,如:各类APT驱动的离子泵;有的则不需要能量,以自由扩散的方式运输物质,如:缬氨酶素。通道蛋白与与所转运物质的结合较弱,它能形成亲水的通道,当通道打开时能允许特定的溶质通过,所有通道蛋白均以自由扩散的方式运输溶质。 (3)膜糖 膜糖和糖衣:糖蛋白、糖脂 细胞膜糖类主要是一些寡糖链和多糖链,它们都以共价键的形式和膜脂质或蛋白质结合,形成糖脂和糖蛋白;这些糖链绝大多数是裸露在膜的外面(非细胞质)一侧的。(多糖-蛋白质复合物,细胞外壳cell coat)单糖排序上的特异性作为细胞或蛋白质的“标志、天线”—抗原决定簇(可识别,与递质、激素等结合。ABO血型物质即鞘氨醇上寡糖链不同。131AA+100糖残基)。 细胞膜的基本特征与功能 细胞膜把细胞包裹起来,使细胞能够保持相对的稳定性,维持正常的生命活动。此外,细胞所必需的养分的吸收和代谢产物的排出都要通过细胞膜。所以,细胞膜的这种选择性的让某些分子进入或排出细胞的特性,叫做选择渗透性。这是细胞膜最基本的一种功能。如果细胞丧失了这种功能,细胞就会死亡.。

P-糖蛋白与药物的体内过程

P-糖蛋白与药物的体内过程 来源:中华现代皮肤科学杂志作者:佘晓东陈沄2005-11-8 摘要: 【摘要】ATP结合盒转运载体蛋白作为影响药物体内过程的重要因素已被广泛研究,P-糖蛋白(P-gp)是其中最主要的一种转运子。P-gp的结构、特点及组织分布决定了其在药物的吸收、分布、代谢、排泄方面的重要作用。了解P-gp的这些作用有助于增加临床用药的合理性。经过近三十年的发展,虽然研究P-gp 的方法已经较为成熟。... ?专题推荐: ?临床快报 ?药市动态 ?违法广告 ?医保动态 ?药品价格 ?流感疫情 ?保健常识 ?妇科课堂 ?医改动态 【摘要】ATP结合盒转运载体蛋白作影响药物体内过程的重要因素已被广泛研究, P-糖蛋白(P-gp)是其中最主要的转运子P-gp的结构、特点及组织分布决定了其在药物的吸收、分布、代谢、排泄方面的重要作用。了解P-gp的些作用有助于增加临床用药的合理性。经过近三十年的发展,虽然研究P-gp的方法已经较为成熟;但是,目对转运子的研究仍有许争议存在,还有很多问题需要解决。本文主要阐述P-gp的特性及其对药物体内过程的影响。 【关键词】ATP结合盒转运载体蛋白;P-糖蛋白;药物体内过程 近年来,ATP结合盒转运载体蛋白对药物体内过程的影响已被广泛研究。P-糖蛋白 (P-glycoprotein,P-gp)是其中最的一亚系。研究发现,P-gp在许多组织有分布,是一种ATP依赖性膜转运体,作为药物转运子,其作用类似于排出泵,可将药物从细胞内外

排而使胞内药物浓度降低,从而降低药效[1]。因此,P-gp与底物及调节子之间的相互作用能影响药物的吸收、分布、代谢、排泄。目前主要用细胞内模型(caco-2细胞系)和 动物模型(mdr基因敲除小鼠)研究P-gp对其底物的药代动力学影响,常用的调节子有环孢素A(CsA)和维拉帕米。 1 认识ATP结合盒转运载体蛋白家族 ATP结合盒转运载体蛋白(ATP-binding cassette transporter,ABC)是细胞膜糖蛋白,这些蛋白包括调控性膜通道等,包含有一个ATP结合蛋白盒及一个转运膜区。哺乳类动物,活性ABC至少由四个这样的区域构成(两个转运膜区和两个ATP结合盒)。这些区域或呈现在一个多肽链里(完整转运子),或在两个分离的蛋白中(半转运子);后者是功能性ABC 特殊的转运子二聚体[2]。 已有49种人类ABC基因被命名[3]。基于种系分析,这些转运子已被分为7个亚科(ABCA~ABCG)。三种主要的多药耐药性ABC是MDR1、MRP1和ABCG2[2]。 ABC的主要功能是小分子物质及多肽分子跨膜转运[3]。转运膜区会通过改变形态允许某些分子通过。ATP结合盒结合或水解胞浆中的ATP,以此确保转运底物所需的足够能量。ATP结合盒及转运膜区的这些特殊反应能够使转运子与底物像齿轮一样吻合并通过水解ATP来转运底物[4]。 相同的转运子可存在于多种组织和细胞中。尽管底物的种类多种多样,但ABC家族显现出许多结构相似性。从原核生物系统到哺乳动物系统,ABC趋向于通过增加分子功能单位的量来增加结构的复杂性[5]。 2 P-gp的结构、生化特性及可能的转运机制 2.1 P-gp的结构P-gp是由1280个氨基酸组成的跨膜蛋白,分子量为170kD,由两个相似的部分构成。其中每一个部分包含六个转运膜区和一个ATP结合利用区。两部分被一个线性的易变区域隔开,如果线性区域缺失,虽然细胞表面的蛋白表达与原蛋白相似,但丧失了转运及药物刺激ATP酶活性的功能。如用一个有足够柔韧性二级结构的多肽链替换这个缺失的结构,分子的功能就会恢复。这些数据表明P-gp两个半球的相互作用是分子功能的关键[6]。 2.2 生物化学特性研究表明1mol P-gp可水解1mol的ATP。已证实人和仓鼠提纯的

细胞膜的主要成分

试题: 细胞膜的主要成分是()。 a.磷脂、蛋白质、糖类 c.脂质、蛋白质、无机盐 d.磷脂、蛋白质、核酸 答案:a 【相关阅读】 细胞膜(cellmembrane)又称细胞质膜(plasmamembrane),细胞表面的一层薄膜,有时称为细胞外膜或原生质膜。细胞膜位于细胞表面,厚度通常为7~8nm,由脂类和蛋白质组成。细胞膜的化学组成基本相同,主要由脂类、蛋白质和糖类组成。细胞膜是防止细胞外物质自由进入细胞的屏障,它保证了细胞内环境的相对稳定,使各种生化反应能够有序运行。 细胞膜的化学组成基本相同,主要由脂类、蛋白质和糖类组成。各成分含量分别约为50%、40%、2%~10%。其中,脂质的主要成分为磷脂和胆固醇。此外,细胞膜中还内含少量水分、无机盐与金属离子等。但是细胞务必与周围环境发生信息、物质与能量的交换,才能完成特定的生理功能,因此细胞务必具备一套物质转运体系,用来获得所需物质和排出代谢废物。据估计细胞膜上与物质转运有关的蛋白占核基因编码蛋白的15~30%,细胞用在物质转运方面的能量达细胞总消耗能量的三分之二。 原始生命向细胞进化所获得的重要形态特征之一,是生命物质外面出现了一层膜性结构,即细胞膜。它最重要的特性是半透性,或称选取透过性,对进出入细胞的物质有很强的选取透过性。细胞膜和细胞内膜系统总称为生物膜(biomembrane),具有相同的基本结构特征。 细胞膜又称质膜(plasmalemma),是位于原生质体外围、紧贴细胞壁的膜结构,作

用是保护内部。组成质膜的主要物质是蛋白质和脂类,以及少量的多糖、微量的核酸、金属离子和水。在电子显微镜下,用四氧化锇固定的细胞膜具有明显的暗-明-暗三条平行的带,其内、外两层暗带由蛋白质分子组成,中间一层明带由双层脂类分子组成,三者的厚度分别约为2。5nm、3。5nm和2。5nm,这样的膜称为单位膜(unitmembrane)或生物膜(biomembrane)。

P0033 细胞膜蛋白与细胞浆蛋白提取试剂盒

细胞膜蛋白与细胞浆蛋白抽提试剂盒 产品简介: 碧云天的细胞膜蛋白与细胞浆蛋白抽提试剂盒(Membrane and Cytosol Protein Extraction Kit)提供了一种比较简单、方便地从培养细胞或组织中抽提细胞膜蛋白和细胞浆蛋白的方法。抽提的膜蛋白不仅包括质膜上的膜蛋白,也包括线粒体膜、内质网膜和高尔基体膜等上的膜蛋白。 本试剂盒通过匀浆适度破碎细胞,经低速离心去除细胞核和少数未破碎的细胞产生的沉淀,随后取上清高速离心获得细胞膜沉淀和含有细胞浆蛋白的上清,然后通过优化的膜蛋白抽提试剂从沉淀中抽提获取膜蛋白。 约90分钟即可完成培养细胞或组织的细胞膜蛋白与细胞浆蛋白的分离和抽提。抽提得到的蛋白可以用于SDS-PAGE,Western、酶活性测定等后续实验。 膜蛋白抽提试剂中含有蛋白酶抑制剂、磷酸酯酶抑制剂和EDTA等,后续不适合用于蛋白酶、磷酸酯酶等受这些抑制剂影响的酶的活性测定,但抽提获得的膜蛋白或细胞浆蛋白适合用于检测蛋白的磷酸化水平。 本试剂盒按照本说明书的操作步骤可以抽提100个细胞或组织样品。 保存条件: -20℃保存,一年有效。 注意事项: 需自备PMSF。PMSF一定要在抽提试剂加入到样品中前2-3分钟内加入,以免PMSF在水溶液中很快失效。 PMSF(ST506)可以向碧云天订购。 使用本试剂盒抽提到的细胞膜蛋白与细胞浆蛋白均可直接用碧云天生产的BCA法蛋白浓度测定试剂盒(P0009/P0010/P0010S/P0011/P0012/P0012S)测定蛋白浓度。抽提获得的细胞膜蛋白不适合用Bradford法测定蛋白浓度。 为了您的安全和健康,请穿实验服并戴一次性手套操作。 使用说明: 1.准备试剂:室温融解并混匀膜蛋白抽提试剂A和B,融解后立即置于冰浴上。取适量的膜蛋白抽提试剂A和B备用,在 使用前数分钟内加入PMSF,使PMSF的最终浓度为1mM。 2.准备细胞或组织样品: a. 对于细胞 (1) 收集细胞 对于贴壁细胞:培养约2000-5000万细胞,用PBS洗一遍,用细胞刮子刮下细胞或用含有EDTA但不含胰酶的细胞消化液处理细胞使细胞不再贴壁很紧,并用移液器吹打下细胞。离心收集细胞,吸除上清,留下细胞沉淀备用。尽量避免用胰酶消化细胞,以免胰酶降解需抽提的目的膜蛋白。 对于悬浮细胞:培养约2000-5000万细胞,直接离心收集细胞,吸除上清,留下细胞沉淀备用。 (2) 洗涤细胞:用适量冰浴预冷的PBS轻轻重悬细胞沉淀,取少量细胞用于计数,剩余细胞4℃,600g离心5分钟沉淀 细胞。弃上清,随后4℃,600g离心1分钟,以沉淀离心管管壁上的残留液体并进一步沉淀细胞,尽最大努力吸尽残留液体。 (3) 细胞预处理:把1毫升临用前添加了PMSF的膜蛋白抽提试剂A加入至2000-5000万细胞中,轻轻并充分悬浮细胞, 冰浴放置10-15分钟。 b. 对于组织: 取约100毫克组织,用剪刀尽量小心剪切成细小的组织碎片。加入1毫升临用前添加了PMSF的膜蛋白抽提试剂A,轻轻悬浮组织碎片,冰浴放置10-15分钟。注:如果组织样品比较少,也可以使用更少的组织量,例如30-50mg,后续试剂的用量及操作步骤不变;组织用量较少时,最后获得的膜蛋白也较少。

第二章细胞膜 蛋白质 知识点

3月10日复习题 1、细胞膜的三大主要成分?(脂质、蛋白质、糖类) 2、三大物质谁占的比重最多?(蛋白质) 解析:在细胞膜内蛋白质占比55%,磷脂战脂质的70%。 3、蛋白质功能?(传递物质、传递信息、能量转化) 4、细胞膜外表面糖链可作为 A、离子通道 B、抗原决定簇 C、膜受体可识别部分 D、糖跨膜转运载体 5、氧气肺泡进入血液的方式? A、易化扩散 B、主动转运 C、两者都是 D、两者都不是 6、氧气和氨气在体内跨细胞膜转运的方式? A、单纯扩散 B、易化扩散 C、胞吞或胞吐 D、原发性主动转运 E、继发性主动转运 7、肾小管上皮细胞分泌氨需要? A、钠泵 B、载体 C、两者皆是 D、两者皆不是 8、什么分子可以单纯扩散?(水、乙醇、尿素、气体、脂溶性物质等) 9、什么物质通过通道扩散?(带电离子) 10、钠离子的转运方式?(易化扩散和主动转运) 11、葡萄糖从血液进入脑细胞是那种方式?(易化扩散) 12、葡萄糖跨肠上皮刷状缘进入细胞的模式? A、单纯扩散 B、易化扩散 C、原发性主动运输 D、继发性主动运输 解析:一般的葡萄糖从血液、或者细胞外液进入细胞都是顺浓度,故是易化扩散,从肠腔进入上皮细胞则是逆浓度,故是继发性主动运输。上皮细胞常常是逆浓度的。 14、饱和现象会出现在具有载体也就是蛋白质存在的转运中,但通道的易化扩散不会有饱和现象出现。 15、钠钾泵是3个钠离子出,2个钾离子进。意义是? 1)、细胞内高钾,维持生理 2)、细胞外高钠,维持体积 3)、形成电势差

16、细胞膜内外钠离子和钾离子浓度差的形成和维持是由于? A、膜在安静时钾离子通透性大 B、膜在兴奋时钠离子通透性增加 C、钠离子和钾离子易化扩散的结果 D、膜上钠钾泵的作用 E、膜上ATP的作用

糖蛋白的作用

糖蛋白得作用 含糖得蛋白质,由寡糖链与肽链中得一定氨基酸残基以糖苷键共价连接而成。其主要生物学功能为细胞或分子得生物识别,如卵子受精时精子需识别卵子细胞膜上相应得糖蛋白。受体蛋白、肿瘤细胞表面抗原等亦均属糖蛋白、 糖蛋白普遍存在于动物、植物及微生物中,种类繁多,功能广泛。可按存在方式分为三类:①可溶性糖蛋白,存在于细胞内液、各种体液及腔道腺体分泌得粘液中、血浆蛋白除白蛋白外皆为糖蛋白、可溶性糖蛋白包括酶(如核酸酶类、蛋白酶类、糖苷酶类)、肽类激素(如绒毛膜促性腺激素、促黄体激素、促甲状腺素、促红细胞生成素)、抗体、补体、以及某些生长因子、干扰素、抑素、凝集素及毒素等、②膜结合糖蛋白,其肽链由疏水肽段及亲水肽段组成。疏水肽段可为一至数个,并通过疏水相互作用嵌入膜脂双层中。亲水肽段暴露于膜外、糖链连接在亲水肽段并有严格得方向性。在质膜表面糖链一律朝外;在细胞内膜一般朝腔面。膜结合糖蛋白包括酶、受体、凝集素及运载蛋白等。此类糖蛋白常参与细胞识别,并可作为特定细胞或细胞在特定阶段得表面标志或表面抗原。③结构糖蛋白,为细胞外基质中得不溶性大分子糖蛋白,如胶原及各种非胶原糖蛋白(纤粘连蛋白、层粘连蛋白等)。它们得功能不仅仅就是作为细胞外基质得结构成分起支持、连接及缓冲作用,更重要得就是参与细胞得识别、粘着及迁移,并调控细胞得增殖及分化。 寡糖链通常指由2~10个单糖基借糖苷键连成得聚合体。糖蛋白得寡糖链多有分枝、由于单糖得端基碳(异头碳)原子有α、β两种构型,而且单糖分子中存在多个可形成糖苷键得羟基,因此,糖链结构得多样性超过多核苷酸及肽链。在糖链结构中可以贮存足够得识别信息,从而在分子识别及细胞识别中起决定性作用。糖蛋白参与得生理功能包括凝血、免疫、分泌、内吞、物质转运、信息传递、神经传导、生长及分化得调节、细胞迁移、细胞归巢、创伤修复及再生等、糖蛋白得糖链还参与维持其肽链处于有生物活性得天然构象及稳定肽链结构,并赋予整个糖蛋白分子以特定得理化性质(如润滑性、粘弹性、抗热失活、抗蛋白酶水解及抗冻性等)。 糖蛋白与很多疾病如感染、肿瘤、心血管病、肝病、肾病、糖尿病以及某些遗传性疾病等得发生、发展有关。再者,细胞表面得糖蛋白及糖脂可“脱落”到周围环境或进入血循环,它们可以作为异常得标志为临床诊断提供信息;患某些疾病时体液中得糖蛋白亦常有特异性或强或弱得改变,这可有助于诊断或预后得判断。糖蛋白还日益介入治疗。例如,针对特定细胞表面特异性糖结构得抗体可作为导向治疗药物得定向载体。利用糖类(单糖、寡糖或糖肽)抗感染及抗肿瘤转移也已崭露头角。 生物合成及降解糖蛋白得生物合成就蛋白质部分而言与一般分泌蛋白质相同,在粗面内质网进行。糖链得生物合成在肽链延长得同时与(或)以后进行。始于粗面内质网,经滑面内质网,完成于戈尔吉氏体,有得甚至在到达质膜后在那里最终完成。肽链得糖基化及糖链得延长都在各种糖基转移酶得催化下进行、糖基转移酶有两个作用物、一个就是活化形式得单糖,作为糖基得供体,另一个就是肽链或寡糖链,作为糖基得接受体。糖基转移酶对供体及接受体皆有严格得特异性。一种糖苷键由一种酶催化形成。糖链得结构及糖基排列顺序无模板可循,而就是由糖基转移酶得特异性(包括单糖基种类、端基碳构型、糖苷键连接位置及接受体结构)及其作用得先后顺序决定,因此就是由基因通过糖基转移酶而间接控制得,属于基因得次级产物。 糖蛋白得降解可从糖链开始,亦可从肽链开始,糖蛋白肽链得降解同样就是在各种蛋白水解酶得催化下进行得、糖链得水解由各种糖苷酶催化。糖苷酶分为外切及内切糖苷酸两大类。外切糖苷酶水解糖链非还原末端得糖苷键,每次水解下一个单糖、这类糖苷酶主要存在于溶酶体中,参与糖蛋白、糖脂及蛋白聚糖得分解代谢。糖苷酶对于所水解得糖苷键及作用物得糖结构(有得不仅要求一定得单糖,还要求一定得糖链结构)具有严格得特异性。一条糖链得完全水解就是在一系列糖苷酶依次作用下完成得,每种糖苷酶只能水解下来一个特定得单糖、如果缺少一种糖苷酶,则下一步得糖苷水解被阻断,导致糖链水解不完全,而致分解代

第四章 细胞膜与细胞表面

第四章细胞膜与细胞表面 填空题 1.生物膜上的磷脂主要包括。 2.膜蛋白可以分为和。 3.生物膜的基本特征是。 4.内在蛋白与膜结合的主要方式、离子键作用和共价键结合。 5.真核细胞的鞭毛由蛋白组成,而细菌鞭毛主要由蛋白组成。 6.细胞连接可分为、、。 7.锚定连接的主要方式有和。 8.锚定连接中桥粒连接的是骨架系统中的,而粘着带连接的是。 9.组成氨基聚糖的重复二糖单位是。 10.细胞外基质的基本成分主要有、、和、和等。 11.植物细胞壁的主要成分是、、、和等。 12.植物细胞之间通过相互连接,完成细胞间的通讯联络。 13.通讯连接的主要方式有、、。 14.细胞表面形成的特化结构有、、、、等。 15.统成为生物膜,他们具有共同的结构特征,又称为质膜。 16.流动镶嵌模型强调生物膜的主要基本特征是。 17.膜脂主要的3种类型是、、。 18.根据膜蛋白分离的难易及其与脂分子的结合方式分 为、两种。 1.瞄定连接中,桥粒与半桥粒与细胞骨架系统中的连接,而粘着带 与粘着斑与连接。 2.通信连接的主要方式、、。 3.在蛋白质的肽序列中有三种信号:。 4.紧密连接除了其连接作用外,还具有另外两个功 能: 。 5.连接子的功能除了有机械连接作用外,还有、。 6.蛋白聚糖由的主干和的侧链所组成。 7.原胶原的一级结构中具有的短肽重复序列。 8.纤连蛋白有与和连接的位点,其作用是介导细胞外基质骨 架与膜受体相连。

9.前原胶原是在上合成的,靠N端的信号肽进行转运。 10.在细胞外基质中,透明质酸具有的能力,而胶原纤维使组织具有的 能力。 11.构成胶原亚单位的是,有三条а肽链所组成。 12.在细胞外基质中,透明质酸既能参与蛋白聚糖的形成,又能游离存在。在 软骨组织的细胞外基质中,透明质酸与糖胺聚糖和核心蛋白组成软骨组织的蛋白聚糖复合物,称为。在这种复合物中,透明质酸作为一个长轴,将连接在一起,形成更大的更复杂的蛋白聚糖,使细胞外基质具有更大的抗压性。透明质酸是一种重要的,是增值细胞和迁移细胞的细胞外基质的主要成分,一旦细胞外基质细胞停止移动,透明质酸就会从中消失,此时细胞间开始接触。 选择题 1.由微管组成的细胞表面特化结构是 a 鞭毛 b 微绒毛 c 伪足 1.由微丝组成的细胞表面特化结构是 a 鞭毛 b 纤毛 c 伪足 1.植物的胞间连丝属于哪一种细胞连接方式 a 封闭连接 b 锚定连接 c通讯连接 d都不是 1.细胞粘附分子 A.都是跨膜糖蛋白 B.多为单次跨膜蛋白 C.都依赖钙离子 D.胞外区为肽链的N端部分,带有糖链,负责与配体的识别 E.胞质区为肽链的C端部分,与质膜下的骨架成分直接相连 2.紧密连接存在于 A.神经细胞间 B.肌肉细胞间 C.上皮细胞间 3.跨膜蛋白属于 A.整合蛋白(integral protein) B.外周蛋白(peripheral protein) C.脂锚定蛋白(lipid-anchored protein)

细胞膜的结构和功能

一、细胞膜的结构和功能 (一)基础扫描 1、生物体结构和功能的基本单位是,阐明细胞是一切动植物生命活动的基本单位的理论观点是。判断:细胞是生物体结构和功能的基本单位() 细胞是一切生物体结构和功能的基本单位()细胞是一切动植物结构和功能的基本单位()2、细胞的原核细胞:没有,如、细菌、蓝藻、放线菌 类型真核细胞:有,如绝大多数生物(酵母菌、衣藻、草履虫、变形虫)判断:①成熟的哺乳动物的红细胞,因为没有细胞核,所以是原核细胞() ②生物界可能存在这样的生物:体内既有原核细胞,又有真核细胞() 3、细胞膜的成分:含有、和,其中,和是主要成分 4、细胞膜的分子结构:层磷脂分子形成磷脂双分子层,是细胞膜的基本支架(磷脂分子的头部是的,因此在表面;尾部是的,因此在中间);蛋白质以不同深度结合在磷脂双分子层上。 5、细胞膜的膜外结构:糖被(由组成),消化道和呼吸道上皮细胞表面的糖被有 和作用;糖被还与有关。(请课后试绘:细胞膜结构模式图)结构特点是:构成细胞膜的磷脂和蛋白质分子不是静止的,而是流动的6、细胞膜生理特性是:即水分子能自由通过(自由扩散)、细胞要选择吸收的离 的特点子(主动运输)、小分子(O2、CO2、甘油、乙醇、苯是自由扩散,葡萄糖除 进入红细胞以外是主动运输,氨基酸是主动运输)也可以通过,而其他的 离子、小分子、大分子则不能通过(指细胞膜总量不变的情况下) 7、细胞壁:在植物细胞外表面有一层细胞壁,主要成分是和,起支持和保护作用,是全透性结构;一般的原核细胞的表面也有一层细胞壁,主要成分是。 判断:在由细胞构成的生物中,只有人和动物的细胞外面才没有细胞壁() 8、细菌细胞的基本结构有:、、、 细菌细胞的特殊结构有:、、

糖蛋白有关

糖蛋白主要有以下几个作用: 1、首先糖蛋白主要存在于胃粘膜上面,可以帮助保护胃粘膜的大量细胞成分。 2、其次是对于呼吸道上的细胞而言,糖蛋白可以帮助增加呼吸道的润滑作用,对于出现的咽喉问题,补充糖蛋白可以缓解喉咙的干燥感。 3、第三是在生殖系统上,糖蛋白可以帮助卵细胞膜表面对于精子来进行识别。糖蛋白也是人体重要的一种免疫细胞,可以抵抗细菌和病毒的。 扩展资料: 糖蛋白与很多疾病如感染、肿瘤、心血管病、肝病、肾病、糖尿病以及某些遗传性疾病等的发生、发展有关。再者,细胞表面的糖蛋白及糖脂可“脱落”到周围环境或进入血循环,它们可以作为异常的标志为临床诊断提供信息; 患某些疾病时体液中的糖蛋白亦常有特异性或强或弱的改变,这可有助于诊断或预后的判断。糖蛋白还日益介入治疗。例如,针对特定细胞表面特异性糖结构的抗体可作为导向治疗药物的定向载体。利用糖类(单糖、寡糖或糖肽)抗感染及抗肿瘤转移也已崭露头角。 糖蛋白是一种含有寡糖链的蛋白质,两者之间以共价键相连。其中的寡糖链通常是经由共转译修饰或是后转译修饰过程中的糖基化作用而连结在蛋白质上。 在糖蛋白中,糖的组成常比较复杂,有甘露糖、半乳糖、岩藻糖、葡糖胺、半乳糖胺、唾液酸等。 糖蛋白多肽链常携带许多短的杂糖链。它们通常包括N-乙酰己糠胺和己糖(常是半乳糖和/或甘露糖,而葡萄糖竟较少)。 扩展资料: 糖蛋白的功能: 携带蛋白质代谢去向信息,糖蛋白寡糖链末端的唾液酸残基,决定着某种蛋白质是否在血流中存在或被肝脏除去的信息。A.脊椎动物血液中的铜蓝蛋白。肝细胞能降解丢失了唾液酸的铜蓝蛋白,唾液酸的消除可能是体内“老”蛋白的标记方式之一。 B.红细胞。新生的红细胞膜上唾液酸的含量远高于成熟的红细胞膜。用唾液酸酶处理新生的红细胞,回注机体,几小时后全部消失。而末用酶处理的红细胞,回注几天以后,仍能在体内正常存活。 ①胃黏膜上皮细胞的保护作用与糖蛋白有关,①正确;

细胞合成的糖蛋白并不都是位于细胞膜的外表面

2016上饶二模试题 1、元素和化合物是细胞结构和功能的物质基础,下列关于细胞化学组成的叙述,正确的是 ①ATP脱氧核苷酸线粒体外膜共有的组成元素是CHONP ②细胞合成的糖蛋白均位于细胞膜的外表面,与细胞间相互识别有关 ③酶激素ATP和神经递质等都是细胞中的微量高效物质,作用后都立即被分解 ④蛋白质遇高温变性时,其空间结构被破坏,肽键数不变 ⑤叶肉细胞内的[H]都在光反应阶段产生,用于暗反应 A、①② B、②③ C、①④ D、③⑤ 答案:C 解析: 细胞合成的糖蛋白不全分布在细胞膜的外表面,组织液及血浆中也有糖蛋白,酶作用后不是立即被分解的,叶肉细胞内的【H】有叶绿体光反应阶段产生的,也有氧呼吸过程中在细胞质基质及线粒体基质中产生的。 链接: 1、糖蛋白是广泛存在于生物体内的由肽链和糖链通过共价键结合而形成的大分子。糖蛋白包括酶、激素、载体、凝集素、抗体、糖被等。糖蛋白通常分泌到体液中或定位于细胞膜外。人血清的各类蛋白质中,50%是糖蛋白;鸡蛋蛋清的各类蛋白质中,95%以上是糖蛋白。各类细胞表面上,大多存在着糖蛋白。动、植物的分泌物和体液中有较多的糖蛋白。顶体中也含糖蛋白。 2、组织液中也有糖蛋白。组织液存在于组织间隙,绝大部分组织液呈凝胶状态,不能自由流动,因此不会因重力作用流到身体的低垂部位。组织液包括基质和从毛细血管渗出的不含大分子的物质的黏性液体,基质是一种无色透明的胶状物质,化学成分主要是蛋白多糖、糖蛋白和水。蛋白多糖是基质的主要成分,由少量蛋白质和大量氨基已糖多糖结合成的大分子复物,每个蛋白亚单位以蛋白质分子为轴心,共价地结合上许多多糖侧链。 3、处于细胞表面最外层的糖蛋白(糖被)的糖链储存着大量的生物识别信息,在细胞识别与粘合上有非常重要的作用。细胞表面的糖链依细胞类型、分化阶段、功能状态及行为特点而发生变化。细胞在发生恶性转化后,其表面的糖链亦发生显著变化,而这一变化在高转移性癌细胞中是有一定特点的。在很多肿瘤中,细胞表面的多聚氨基乳糖结构的含量有明显增加。同样重要的是看到多聚氨基乳糖的增加伴随着细胞从良性型向恶性型转化。 4、《实验生物学报》 1985年02期《大鼠精子细胞的糖蛋白合成——电镜放射自显影研究》·汤雪明·上海第二医学院 动物细胞的糖蛋白主要分布于细胞膜、溶酶体(细胞器)和各种分泌产物中,它们在细胞的有关功能活动中起着重要作用。 高尔基体是精子细胞中一种活跃的细胞器,它是联系各种细胞器的一个中心环节,在精子形成过程中起重要作用。早在二十年代初期,光学显微镜观察己经发现精子细胞的高尔基体能“分泌”顶体。后来使用糖蛋白染色技术,进一步描述了高尔基体形成顶体和顶帽的过程。放射自显影技术是研究细胞内糖蛋白合成过程的一种很好的方法,注射放射性同位素标记的各种糖蛋白前体(如氨基酸、单糖),用自显影技术可以动态地示踪前体在细胞内掺入糖蛋白的部位。 实验: 本实验借助电镜放射自显影技术,用“3H—岩藻糖示踪大鼠精子细胞中的糖蛋白合成过程,

细胞膜的结构和功能 教案

细胞膜的结构和功能教案 一、知识结构 二、教学目标 (1)细胞膜的分子结构(D:应用)。 (2)细胞膜的主要功能(D:应用)。 三、重点、难点 (1)重点:①细胞膜的分子结构;②细胞膜的主要功能。 (2)难点:细胞膜内外物质交换的主动运输方式。 四、教学程序 在初中阶段的学习中,我们学习了植物和动物的细胞结构。请同学们回顾一下,植物细胞和动物细胞各有哪些结构?(对这一问题,学生基本上可以回答正确。)现在我们又要学习细胞的结构和功能,高中阶段学习的细胞结构和功能是学习细胞的亚显微结构,亚显微结构是指在电子显微镜下观察到的微小结构,观察到的结构直径在0.2mm以下。这样我们可以看到细胞膜的结构组成,可以看到细胞质和细胞核中还有许多具有一定结构特征的物体,它们都有自己的生理功能。(展示动、植物细胞的亚显微结构示意图像,简单介绍图像中结构。) 从动、植物细胞的亚显微结构可以观察到,动、植物细胞结构不尽相同,它们有哪些不同?(引导学生观察动、植物细胞亚星微结构图,回答问题。) 在植物细胞最外层有一层细胞壁:它的化学成份主要是纤维素和果胶,对于物质的通透属于全透性的;它的主要功能是具有支持和保护的作用。 动、植物细胞外都有一层细胞膜:细胞借以细胞膜和外界环境分开,使细胞内部环境保持相对稳定。细胞膜有什么样的分子结构,它有什么生理功能呢?这是本次课学习的主要内容。 一、细胞膜的分子结构 经科学家研究分析,细胞膜是由蛋白质和磷脂分子组成。磷脂分子具有一个环状的头部和两条长链组成的尾部。(展示一个磷脂分子的结构简图,说明亲水的环状端和疏水的长链端。) 由于一个磷脂分子具有亲水端和疏水端,这样使磷脂分子在水溶液中能形成磷脂双分子层。磷脂双分子层的外侧(上、下或左右)为环状的亲水端,中间为两长链的疏水端。 磷脂双分子层组成细胞膜的中层,形成细胞膜的基本骨架,磷脂双分子层的两侧布满蛋白质分子,有的蛋白质游离表面,有的蛋白质镶嵌在磷脂双分子层之中,有的蛋白质贯穿磷脂分子的双分子层。(展示细胞膜的分子结构示意图像。) 科学家曾经做过一个人体细胞的融合实验:他将人体的某种细胞进行离体培养,再将红色萤光染料和绿色萤光染料分别对两个细胞染色,一个细胞染上红色,另一个细胞染上绿色。再用灭活的病毒(仙台病毒)来影响这两个细胞,使这两个细胞发生融合。在显微镜下观察其融合的过程,发现融合初期,细胞一边为红色,另一边为绿色,40min后观察发现红、绿细胞膜相互渗透,形成红、绿相间斑马状;再过40min后观察,发现细胞膜上红、绿较均匀分布。 这个实验充分说明细胞膜是可以流动的,组成细胞膜的蛋白质分子和磷脂分子都在不断的变化,这是细胞膜的结构特点:具有一定的流动性。 细胞膜的这一结构特点,对完成细胞膜的生理功能有重要作用。 在细胞膜的外表面还有一些多糖分子和细胞膜上蛋白质结合的糖蛋白,称为糖被。 请同学们思考细胞膜有什么生理功能(估计学生会回答具有保护的作用,这时应用过去学习过的知识,例如草履虫皮膜有什么作用,启发学生回答细胞膜具有控制物质交换的作用等。) 二、细胞膜的生理功能 细胞膜是具有许多重要功能的结构,这些功能可以归纳成两个大方面:一具有保护的功能,包括保护、支持、识别、免疫;二是具有控制物质进出细胞的功能,包括吸收、分泌、排泄。

糖蛋白的作用

糖蛋白的作用 含糖的蛋白质,由寡糖链与肽链中的一定氨基酸残基以糖苷键共价连接而成。其主要生物学功能为细胞或分子的生物识别,如卵子受精时精子需识别卵子细胞膜上相应的糖蛋白。受体蛋白、肿瘤细胞表面抗原等亦均属糖蛋白。 糖蛋白普遍存在于动物、植物及微生物中,种类繁多,功能广泛。可按存在方式分为三类:①可溶性糖蛋白,存在于细胞内液、各种体液及腔道腺体分泌的粘液中。血浆蛋白除白蛋白外皆为糖蛋白。可溶性糖蛋白包括酶(如核酸酶类、蛋白酶类、糖苷酶类)、肽类激素(如绒毛膜促性腺激素、促黄体激素、促甲状腺素、促红细胞生成素)、抗体、补体、以及某些生长因子、干扰素、抑素、凝集素及毒素等。②膜结合糖蛋白,其肽链由疏水肽段及亲水肽段组成。疏水肽段可为一至数个,并通过疏水相互作用嵌入膜脂双层中。亲水肽段暴露于膜外。糖链连接在亲水肽段并有严格的方向性。在质膜表面糖链一律朝外;在细胞内膜一般朝腔面。膜结合糖蛋白包括酶、受体、凝集素及运载蛋白等。此类糖蛋白常参与细胞识别,并可作为特定细胞或细胞在特定阶段的表面标志或表面抗原。③结构糖蛋白,为细胞外基质中的不溶性大分子糖蛋白,如胶原及各种非胶原糖蛋白(纤粘连蛋白、层粘连蛋白等)。它们的功能不仅仅就是作为细胞外基质的结构成分起支持、连接及缓冲作用,更重要的就是参与细胞的识别、粘着及迁移,并调控细胞的增殖及分化。 寡糖链通常指由2~10个单糖基借糖苷键连成的聚合体。糖蛋白的寡糖链多有分枝。由于单糖的端基碳(异头碳)原子有α、β两种构型,而且单糖分子中存在多个可形成糖苷键的羟基,因此,糖链结构的多样性超过多核苷酸及肽链。在糖链结构中可以贮存足够的识别信息,从而在分子识别及细胞识别中起决定性作用。糖蛋白参与的生理功能包括凝血、免疫、分泌、内吞、物质转运、信息传递、神经传导、生长及分化的调节、细胞迁移、细胞归巢、创伤修复及再生等。糖蛋白的糖链还参与维持其肽链处于有生物活性的天然构象及稳定肽链结构, 并赋予整个糖蛋白分子以特定的理化性质(如润滑性、粘弹性、抗热失活、抗蛋白酶水解及抗冻性等)。 糖蛋白与很多疾病如感染、肿瘤、心血管病、肝病、肾病、糖尿病以及某些遗传性疾病等的发生、发展有关。再者,细胞表面的糖蛋白及糖脂可“脱落”到周围环境或进入血循环,它们可以作为异常的标志为临床诊断提供信息;患某些疾病时体液中的糖蛋白亦常有特异性或强或弱的改变,这可有助于诊断或预后的判断。糖蛋白还日益介入治疗。例如,针对特定细胞表面特异性糖结构的抗体可作为导向治疗药物的定向载体。利用糖类(单糖、寡糖或糖肽)抗感染及抗肿瘤转移也已崭露头角。 生物合成及降解糖蛋白的生物合成就蛋白质部分而言与一般分泌蛋白质相同,在粗面内质网进行。糖链的生物合成在肽链延长的同时与(或)以后进行。始于粗面内质网,经滑面内质网,完成于戈尔吉氏体,有的甚至在到达质膜后在那里最终完成。肽链的糖基化及糖链的延长都在各种糖基转移酶的催化下进行。糖基转移酶有两个作用物。一个就是活化形式的单糖,作为糖基的供体,另一个就是肽链或寡糖链,作为糖基的接受体。糖基转移酶对供体及接受体皆有严格的特异性。一种糖苷键由一种酶催化形成。糖链的结构及糖基排列顺序无模板可循,而就是由糖基转移酶的特异性(包括单糖基种类、端基碳构型、糖苷键连接位置及接受体结构)及其作用的先后顺序决定,因此就是由基因通过糖基转移酶而间接控制的,属于基因的次级产物。 糖蛋白的降解可从糖链开始,亦可从肽链开始,糖蛋白肽链的降解同样就是在各种蛋白水解酶的催化下进行的。糖链的水解由各种糖苷酶催化。糖苷酶分为外切及内切糖苷酸两大类。外切糖苷酶水解糖链非还原末端的糖苷键,每次水解下一个单糖。这类糖苷酶主要存在于溶酶体中,参与糖蛋白、糖脂及蛋白聚糖的分解代谢。糖苷酶对于所水解的糖苷键及作用物的糖结构(有的不仅要求一定的单糖,还要求一定的糖链结构)具有严格的特异性。一条糖链的完全水解就是在一系列糖苷酶依次作用下完成的,每种糖苷酶只能水解下来一个特定的单糖。如果缺少一种糖苷酶,则下一步的糖苷水解被阻断,导致糖链水解不完全,而致分解代

细胞膜的结构和功能

2.1.1 细胞膜的结构和功能 教学目标 (1)细胞膜的分子结构(D:应用)。 (2)细胞膜的主要功能(D:应用)。 重点、难点 (1)重点:①细胞膜的分子结构;②细胞膜的主要功能。 (2)难点:细胞膜内外物质交换的主动运输方式。 教学程序 在初中阶段的学习中,我们学习了植物和动物的细胞结构。请同学们回顾一下,植物细胞和动物细胞各有哪些结构?(对这一问题,学生基本上可以回答正确。)现在我们又要学习细胞的结构和功能,高中阶段学习的细胞结构和功能是学习细胞的亚显微结构,亚显微结构是指在电子显微镜下观察到的微小结构,观察到的结构直径在0.2mm以下。这样我们可以看到细胞膜的结构组成,可以看到细胞质和细胞核中还有许多具有一定结构特征的物体,它们都有自己的生理功能。(展示动、植物细胞的亚显微结构示意图像,简单介绍图像中结构。) 从动、植物细胞的亚显微结构可以观察到,动、植物细胞结构不尽相同,它们有哪些不同?(引导学生观察动、植物细胞亚星微结构图,回答问题。) 在植物细胞最外层有一层细胞壁:它的化学成份主要是纤维素和果胶,对于物质的通透属于全透性的;它的主要功能是具有支持和保护的作用。 动、植物细胞外都有一层细胞膜:细胞借以细胞膜和外界环境分开,使细胞内部环境保持相对稳定。细胞膜有什么样的分子结构,它有什么生理功能呢?这是本次课学习的主要内容。 一、细胞膜的分子结构 经科学家研究分析,细胞膜是由蛋白质和磷脂分子组成。磷脂分子具有一个环状的头部和两条长链组成的尾部。(展示一个磷脂分子的结构简图,说明亲水的环状端和疏水的长链端。) 由于一个磷脂分子具有亲水端和疏水端,这样使磷脂分子在水溶液中能形成磷脂双分子层。磷脂双分子层的外侧(上、下或左右)为环状的亲水端,中间为两长链的疏水端。 磷脂双分子层组成细胞膜的中层,形成细胞膜的基本骨架,磷脂双分子层的两侧布满蛋白质分子,有的蛋白质游离表面,有的蛋白质镶嵌在磷脂双分子层之中,有的蛋白质贯穿磷脂分子的双分子层。(展示细胞膜的分子结构示意图像。) 科学家曾经做过一个人体细胞的融合实验:他将人体的某种细胞进行离体培养,再将红色萤光染料和绿色萤光染料分别对两个细胞染色,一个细胞染上红色,另一个细胞染上绿色。再用灭活的病毒(仙台病毒)来影响这两个细胞,使这两个细胞发生融合。在显微镜下观察其融合的过程,发现融合初期,细胞一边为红色,另一边为绿色,40min后观察发现红、绿细胞膜相互渗透,形成红、绿相间斑马状;再过40min 后观察,发现细胞膜上红、绿较均匀分布。 这个实验充分说明细胞膜是可以流动的,组成细胞膜的蛋白质分子和磷脂分子都在不断的变化,这是细胞膜的结构特点:具有一定的流动性。 细胞膜的这一结构特点,对完成细胞膜的生理功能有重要作用。 在细胞膜的外表面还有一些多糖分子和细胞膜上蛋白质结合的糖蛋白,称为糖被。 请同学们思考细胞膜有什么生理功能(估计学生会回答具有保护的作用,这时应用过去学习过的知识,例如草履虫皮膜有什么作用,启发学生回答细胞膜具有控制物质交换的作用等。) 二、细胞膜的生理功能 细胞膜是具有许多重要功能的结构,这些功能可以归纳成两个大方面:一具有保护的功能,包括保护、支持、识别、免疫;二是具有控制物质进出细胞的功能,包括吸收、分泌、排泄。 我们常说的新陈代谢是指生物体与外界交换物质和能量,以及生物体内的物质和能量转换。细胞膜控制物质进出细胞就是一种新陈代谢现象,所以,细胞膜的这一功能是其最重要的功能。 细胞膜完成控制物质进出的方式很多,有自由扩散、协助扩散、主动运输、内吞作用、外排作用等,其中常见的、最重要的方式是自由扩散和主动运输。 自由扩散这种物质转运的方式是根据物理扩散作用的原理进行的,被选择的物质从高浓度一侧转运到低浓度的一侧,按浓度梯度的大小进行,这种转运方式不需要消耗新陈代谢时产生的能量。属于自由扩散这种方法转运的物质有氧气、二氧化碳、甘油、乙醇等物质。(展示:物质出入膜示意图)主动运输是细胞转运物质的重要方式,被选择物质从低浓度一侧转运到高浓度一侧,转运的过程中,需要消耗细胞新陈代谢时产生的能量、同时还需要载体蛋白的协助、载体蛋白就是细胞膜上的一种蛋白

相关主题