搜档网
当前位置:搜档网 › 沸石分子筛

沸石分子筛

沸石分子筛
沸石分子筛

沸石分子筛定义

沸石分子筛是结晶铝硅酸金属盐的水合物,Mx/m[(AlO2)x·(SiO2)y]·zH2O。M代表阳离子,m表示其价态数,z表示水合数,x和y是整数。沸石分子筛活化后,水分子被除去,余下的原子形成笼形结构,孔径为3~10Å。分子筛晶体中有许多一定大小的空穴,空穴之间有许多同直径的孔(也称“窗口”)相连。由于分子筛能将比其孔径小的分子吸附到空穴内部,而把比孔径大的分子排斥在其空穴外,起到筛分分子的作用,故得名分子筛。

沸石分子筛结构

(1)四个方面、三种层次:

分子筛的结构特征可以分为四个方面、三种不同的结构层次。第一个结构层次也就是最基本的结构单元硅氧四面体(SiO4)和铝氧四面体(AlO4),它们构成分子筛的骨架。相邻的四面体由氧桥连结成环。环是分子筛结构的第二个层次,按成环的氧原子数划分,有四元氧环、五元氧环、六元氧环、八元氧环、十元氧环和十二元氧环等。环是分子筛的通道孔口,对通过分子起着筛分作用。氧环通过氧桥相互联结,形成具有三维空间的多面体。各种各样的多面体是分子筛结构的第三个层次。多面体有中空的笼,笼是分子筛结构的重要特征。笼分为α笼,八面沸石笼,β笼和γ笼等。

(2)分子筛的笼:

α笼:是A型分子筛骨架结构的主要孔穴,它是由12个四元环,8个六元环及6个八元环组成的二十六面体。笼的平均孔径为1.14nm,空腔体积为

760[?]3。α笼的最大窗孔为八元环,孔径0.41nm。

八面沸石笼:是构成X-型和Y-型分子筛骨架的主要孔穴,由18个四元环、4个六元环和4个十二元环组成的二十六面体,笼的平均孔径为1.25nm,空腔体积为850[?]3。最大孔窗为十二元环,孔径0.74nm。八面沸石笼也称超笼。

β笼:主要用于构成A型、X-型和Y型分子筛的骨架结构,是最重要的一种孔穴,它的形状宛如有关削顶的正八面体,空腔体积为160[?]3,窗口孔径为约0.66nm,只允许NH3、H2O等尺寸较小的分子进入。此外还有六方柱笼和γ笼,这两种笼体积较小,一般分子进不到笼里去。

不同结构的笼再通过氧桥互相联结形成各种不同结构的分子筛,主要有A-型、X型和Y型。

沸石分子筛的性质

沸石分子筛与一般常用的固体吸附剂如硅胶、活性炭、活性氧化铝等相比,在吸附性能方面有二个显著的特点,一个是选择性吸附,另一个是高效率吸附。下面分别讨论。

1、吸附性质

沸石分子筛根据分子大小不同进行选择吸附,由于分子筛具有空旷的骨架结构,在结构中存在着很多排列得非常整齐而有规则的孔穴,而且孔的直径也很均匀,其大小和一般分子有相近的数量级。它们只能使直径比孔小的分子进入,直径比孔大的分子则排斥在外,因此,沸石分子筛在吸附时具有筛分分子的作用,或者说对分子的形状大小具有选择作用。利用这一性质,分子筛在吸附时可按形状不同,把物质分离开来。例如正构烷烃分子的临界截面直径是4.9埃,而其他烃类的临界截面直径均大于5埃,用孔径为5埃的5A分子筛为吸附剂时,则只有正构烷烃能进入笼子中而被吸附,其他烃类则都被排斥在外,这样就可把正构烷烃和其他烃类分离开来,这种过程工业上叫分子筛脱蜡。在催化领域里,也可利用分子筛的筛分性能进行所谓的择形催化。水是极性很强的物质,很容易被沸石所吸附,因此常把沸石作为干燥剂使用,而且和其他干燥剂相比,有其突出的优点。对硅胶和氧化铝等一般吸附剂讲,在水蒸气的分压或浓度很低时,或者吸附温度较高、气流速度较大时,它们的吸水率就很差。可是沸石分子筛,即便在低分压、低浓度、高温和高速等条件下,仍具有很好的吸水效率。

2、离子交换性能

沸石分子筛中存在着大量的阳离子,对合成沸石讲,都是钠离子。这些钠离子能和其他阳离子进行可逆交换,交换后,可使晶体内部的静电场发生变化,从而改变其吸附性能,其改变程度随阳离子性质以及交换度的不同而不同。这样,就可利用不同的阳离子进行不同程度的交换来调节分子筛的吸附性能,并进一步调节它的催化性能,因此离子交换是沸石分子筛的一个极其重要的性质。

沸石分子筛之所以能得到极其的广泛的应用,和它具有离子交换性能是分不开的。上面所讲的阳离子的性质包括阳离子电荷的多少,电子构型以及和阳离子半径有关的各种特性。不同的阳离子,这些性质是不相同的,它们能引起沸石对吸附质分子的吸附速度、吸附选择性以及吸附容量的变化。除这些性质以外,有时还必须考虑阳离子的数目、大小和位置等几个因素对沸石性能的影响。对孔径比较小的沸石,这种影响更为明显。例如NaA分子筛其孔径为4埃,故又叫4A 分子筛,当NaA分子筛中三分之一的钠离子被钙离子所交换时,由于一个钙离子取代了二个钠离子,阳离子数目减少,腾出位置,分子筛的孔径就扩大为5埃,故CaA又叫5A分子筛;若~25%的钠离子被钾离子所交换时,由于钾离子比钠离子大,故分子筛的孔径明显减小,变为3埃,故KA又叫3A分子筛。孔径改变必然引起筛分性能的变化。又如,NaX一般称为13X,如果其中的钠离子被钙离子所交换,则其有效孔径为10埃左右,即得到10X型分子筛。离子交换对沸石的热稳定性也有影响,NaY用稀土金属离子交换后,热和水热稳定性都明显增加,表现在晶体结构破坏的温度大大提高。如SiO2/Al2O3为4.8的NaY,当Na的交换度达到~80%时,晶体结构开始破坏的温度从原来的700℃上升为

840℃。但有些阳离子如Ba2+、Cu2+、Ni2+、Fe3+等却能使沸石的稳定性下降,特别是硅铝比较低的沸石下降更为明显。例如,硅铝比为2的NaA沸石,用Ba2+交换后,结构开始破坏的温度从原来的600℃下降到90℃。分子筛的离子交换一般在金属盐的水溶液中进行。所用的金属盐有氯化物、硝酸盐、硫酸盐等。交换时,溶液中的金属阳离子进入沸石中,而沸石中的阳离子则被交换下来进入溶液中。在一定条件下,离子交换式可以达到平衡的。

3、催化性能

沸石分子筛具有独特的规整晶体结构,其中每一类都具有一定尺寸、形状的孔道结构,并具有较大比表面积。大部分沸石分子筛表面具有较强的酸中心,同时晶孔内有强大的库仑场起极化作用。这些特性使它成为性能优异的催化剂。多相催化反应是在同体催化剂上进行的,催化活性与催化剂的晶孔大小有关。沸石分子筛作为催化剂或催化剂载体时,催化反应的进行受到沸石分子筛晶孔大小的控制。晶孔和孔道的大小和形状都可以对催化反应起着选择性作用。在一般反应条件下沸石分子筛对反应方向起主导作用,呈现了择形催化性能,这一性能使沸石分子筛作为催化新材料具有强大生命力。

常见的沸石分子筛材料

A型分子筛

类似于NaCl的立方晶系结构。若将NaCl晶格中的Na+和Cl-全部换成β笼,并将相邻的β笼用γ笼联结起来就得到A-型分子筛的晶体结构。8个β笼联结后形成一个方钠石结构,如用γ笼做桥联结,就得到A-型分子筛结构。中心有一个大的α的笼。α笼之间通道有一个八元环窗口,其直径为4?,故称4A分子筛。若4A分子筛上70%的钠离子为Ca2+交换,八元环可增至5?,对应的沸石称5A分子筛。反之,若70%的Na+为K+交换,八元环孔径缩小到3?,对应的沸石称3A分子筛。 X-型和Y-型分子筛类似金刚石的密堆六方晶系结构。若以β笼为结构单元,取代金刚石的碳原子结点,且用六方柱笼将相邻的两个β笼联结,即用4个六方柱笼将5个β笼联结一起,其中一个β笼居中心,其余4个β笼位于正四面体顶点,就形成了八面体沸石型的晶体结构。用这种结构继续连结下去,就得到X-型和Y型分子筛结构。在这种结构中,由β笼和六方柱笼形成的大笼为八面沸石笼,它们相通的窗孔为十二元环,其平均有效孔径为0.74nm,这就是X-型和Y-型分子筛的孔径。这两种型号彼此间的差异主要是Si/Al比不同,X-型为1~1.5;Y型为1.5~3.0。

丝光沸石型分子筛

这种沸石的结构,没有笼而是层状结构。结构中含有大量的五元环,且成对地联系在一起,每对五元环通过氧桥再与另一对联结。联结处形成四元环。这种

结构单元进一步联结形成层状结构。层中有八元环和十二元环,后者呈椭圆形,平均直径0.74nm,是丝光沸石的主孔道。这种孔道是一维的,即直通道。

高硅沸石ZSM(Zeolite Socony Mobil)型分子筛

这种沸石有一个系列,广泛应用的为ZSM-5,与之结构相同的有ZSM-8和ZSM-11;另一组为ZSM-21、ZSM-35和ZSM-38等。ZSM-5常称为高硅型沸石,其Si/Al比可高达50以上,ZSM-8可高达100,这组分子筛还显出憎水的特性。它们的结构单元与丝光沸石相似,由成对的五元环组成,无笼状空腔,只有通道。ZSM-5有两组交叉的通道,一种为直通的,另一种为之字型相互垂直,都由十元环形成。通道呈椭圆形,其窗口直径为(0.55-0.60)nm。属于高硅族的沸石还有全硅型的Silicalite-1,结构与ZSM-5一样,Silicalite-2与ZSM-11一样。

沸石分子筛的作用机理

分子筛具有明确的孔腔分布,极高的内表面积(600m2/s)良好的热稳定性(1000℃),可调变的酸位中心。分子筛酸性主要来源于骨架上和孔隙中的三配位的铝原子和铝离子(AlO)+。经离子交换得到的分子筛HY上的OH基显酸位中心,骨架外的铝离子会强化酸位,形成L酸位中心。像Ca2+、Mg2+、La3+等多价阳离子经交换后可以显示酸位中心。Cu2+、Ag+等过渡金属离子还原也能形成酸位中心。一般来说Al/Si比越高,OH基的比活性越高。分子筛酸性的调变可通过稀盐酸直接交换将质子引入。由于这种办法常导致分子筛骨架脱铝。所以NaY要变成NH4Y,然后再变为HY。

因为分子筛结构中有均匀的小内孔,当反应物和产物的分子线度与晶内的孔径相接近时,催化反应的选择性常取决于分子与孔径的相应大小。这种选择性称之为择形催化。导致择形选择性的机理有两种,一种是由孔腔中参与反应的分子的扩散系数差别引起的,称为质量传递选择性;另一种是由催化反应过渡态空间限制引起的,称为过渡态选择性。

沸石分子筛的应用

沸石分子筛具有复杂多变的结构和独特的孔道体系,是一种性能优良的催化剂。ZSM-5与Y型沸石分子筛共同作用应用于FCC反应,以获得较高产率的汽油、丙烯和丁烯。MCM-22沸石分子筛在烷基化反应上具有显著的优势,例如MCM-22作为液相烷基化催化剂催化苯和乙烯反应制备乙苯,不仅提高了乙苯选择性,并且MCM-22本身的稳定性高,用量少,可以在反应器中进行原位再生,而其它种类催化剂则必须从反应器中取出另行再生。在短链烷基取代芳烃的合成反应上,MCM-56有更好的活性,并且不容易失活。ZSM-22在许多工艺中用作催化剂,但主要是用于丁烯骨架异构和正庚烷异构化两个方面。

近年来,沸石分子筛由于具有独特的结构及性能,已经在吸附分离、催化等领域取得了广泛的应用。但其至今仍具有很大的研究意义,很多学者仍致力于沸石分子筛的研究中。总之,沸石分子筛已经并且继续改变着化工行业及人类的生活。

沸石吸附材料的研究进展

沸石吸附的研究进展 摘要:本文主要通过沸石分子筛吸附剂对碘吸附的原理及传质影响的研究,目的是加强认识脱碘的机理,为进一步开发沸石吸附剂的应用提供一定的理论依据。同时针对目前国内外的研发及应用情况进行了概述,提出了存在的问题和解决的思路。 关键字:沸石脱碘吸附传质 前言 沸石是含碱土金属或碱金属的具有三维空间结构的硅铝酸盐晶体,分为天然沸石和人工沸石。天然沸石空隙中充满大量的水分,加热时会沸腾而得其名。人工合成沸石是以硅和含铝的盐为原料,经过水热合成大小与分子大小相当的材料,也称分子筛。沸石的化学通式为M x/n[(AlO2)x(SiO2)y]·mH2O,其中M通常为Na、K、Ca等金属离子。 沸石比表面积适中,一般为500~800m2/g;其孔结构以微孔为主,孔径较小,一般主孔径最大不超过2.5nm,且分布均一。沸石分子筛是通过氧硅四面体和氧铝四面体单元在过氧架桥作用下形成的,其中氧铝四面体带负电性,且孔道内分布有金属阳离子,容易与外界的阳离子发生交换,表现出离子交换性。常用的分子筛全交换工作容量在2.0~2.5mg/g。 沸石是一种强极性吸附剂,极易水分子等极性分子,且由于自身铝硅比和孔径大小不同,对不同极性分子具有选择性,孔道内有可被交换的金属阳离子,对某些特定分子有特殊的吸附作用。 在废气处理方面,沸石可以吸附废气中的SO2和NO x,但是其吸附量低。利用 改性方法可改变沸石的电性、孔径等,可以用来对不同分子特性和直径的气体进行吸附。在水处理方面,利用沸石的离子交换能力,可以吸附去除废水中的氨氮,也可以利用利用改性沸石处理高氟污水或地下水,有价格低的优势,但吸附容量往往不高。 沸石吸附剂脱碘的特性就是一种选择性吸附,通过选择适合碘分子大小孔径的沸石制成吸附剂,达到吸附碘的目的。 二、沸石吸附剂的脱碘原理 1. 吸附原理 (1)物理吸附 沸石吸附剂吸附碘包括物理吸附和化学吸附。物理吸附主要是由于溶液中的碘与沸石分子筛固体表面之间存在范德华力(Van der waals),而产生了范德华吸附,它是可逆的。当沸石分子筛表面分子与液体中碘之间的引力大于液体内部分子运动时,液体中的碘就被吸附在沸石分子筛表面上。它们之间的吸引机理,与气体的液化和冷凝时的机理类似,其吸附热比较低。从分子运动观点看,这些吸附在沸石吸附剂表面的分子由于分子运动,也会从固体表面脱离而进入液体中去,但其本身不发生化学变化。所以物理吸附的特征就是吸附物质不发生任何化学反应,吸附的进程极快,参与吸附的各相间的平衡瞬时即可达到。而且这种吸附通常在固体表面几个分子直径的厚度区域,单位体积固体表面所吸附的量非常小。(2)化学吸附 化学吸附是由于沸石通过所存在的孔道和空腔中的阳离子交换,使其吸附性能发生较大变化,即沸石通过与含Ag的可溶性盐类溶液进行离子交换成银离子型沸石。其脱碘的原理是这种载在沸石上的可交换的银离子从沸石上解离出来,与

沸石与分子筛的区别讲解

沸石与分子筛的区别研究 摘要 随着天然与人工分子筛在化工行业的应用的推广,以及各方面的生产要求的提高,促使分子筛的研究成为当今的热门。作为初学者,本文主要围绕沸石、分子筛的不同应用分别从二者的概念、特征、结构、性能、用途等几个方面阐述分子筛与沸石的区别。 关键词沸石分子筛应用区别 一、简介 1932年,McBain提出了“分子筛”的概念。表示可以在分子水平上筛分物质的多孔材料。虽然沸石只是分子筛的一种,但是沸石在其中最具代表性,因此“沸石”和“分子筛”这两个词经常被混用。人造沸石是:磺酸化聚苯乙烯;天然沸石:铝硅酸钠。沸石族矿物常见于喷出岩,特别是玄武岩的孔隙中,也见于沉积岩、变质岩及热液矿床和某些近代温泉沉积中。浙江省缙云县为我国境内沸石储量最高的地区。 狭义上讲,分子筛是结晶态的硅酸盐或硅铝酸盐,由硅氧四面体 或铝氧四面体通过氧桥键相连而形成的分 子尺寸大小(通常为0.3nm至2.0 nm)的 孔道和空腔体系,从而具有筛分分子的特 性。然而随着分子筛合成与应用研究的深

入,研究者发现了磷铝酸盐类分子筛,并且分子筛的骨架元素(硅或铝或磷)也可以由B、Ga、Fe、Cr、Ge、Ti、V、Mn、Co、Zn、Be和Cu等取代,其孔道和空腔的大小也可达到2 nm以上,因此分子筛按骨架元素组成可分为硅铝类分子筛、磷铝类分子筛和骨架杂原子分子筛;按孔道大小划分,孔道尺寸小于2 nm、2~50 nm和大于50 nm的分子筛分别称为微孔、介孔和大孔分子筛。由于具有较大的孔径,成为较大尺寸分子反应的良好载体,但介孔材料的孔壁为非晶态,致使其水热稳定性和热稳定性尚不能满足石油化工应用所需的苛刻条件。由于含有电价较低而离子半径较大的金属离子和化合态的水,水分子在加热后连续地失去,但晶体骨架结构不变,形成了许多大小相同的空腔,空腔又有许多直径相同的微孔相连,这些微小的孔穴直径大小均匀,能把比孔道直径小的分子吸附到孔穴的内部中来,而把比孔道大的分子排斥在外,因而能把形状直径大小不同的分子,极性程度不同的分子,沸点不同的分子,饱和程度不同的分子分离开来,即具有“筛分”分子的作用,故称为分子筛。目前分子筛在冶金,化工,电子,石油化工,天然气等工业中广泛使用。 二,结构 沸石有很多种,已经发现的就有36种。它们的共同特点就是具有架状结构,就是说在它们的晶体内,分子像搭架子似地连在一起,中间形成很多空腔。因为在这些空腔里还存在很多水分子,因此它们是含水矿物。这些水分在遇到高温时会排出来,比如用火焰去烧时,

丝光沸石应用前景

丝光沸石应用前景 丝光沸石是一种架状硅铝酸盐,具有特殊结构。其结构决定了丝光沸石具有优良的选择性、吸附性、选择性离子交换、催化反应性、耐酸耐碱性、高热稳定性和耐辐射性,对不同种类、不同大小分子、不同极性物质具有分子筛功能。 丝光沸石应用前景 1、丝光沸石用作催化剂 丝光沸石是一种性能优异的催化剂,最具有代表性的丝光沸石催化剂为美国UOP公司开发的TA系列催化剂,目前工业应用的催化剂牌号为TA-2、TA-3和TA-4。作为催化剂已广泛应用于催化裂化,歧化与烷基转移,烷烃和芳烃异构化,烷基化,甲醇氧化等石化工业中。工业试验表明,丝光沸石的活性优于其他沸石。目前,世界甲苯歧化与烷基转移技术的催化剂研究领域主要集中在丝光沸石、ZSM-5沸石及HAT系列3中催化剂体系。 2、丝光沸石用作吸附剂 丝光沸石其特殊结构决定了其具有优良的选择性吸附作用,既可以进行气体吸附,也可以进行液体吸附。比如,丝光沸石用作净水剂就属于液体吸附剂。 丝光沸石作为气体吸附剂可用来吸附甲醛(有害物质),降低人造板中残留甲醛含量。对人造板中残留甲醛的释放量,国家已有明确规定。各种去除甲醛危害的相关技术和产品应运而生。权威部门掌握的情况表明,目前这类技术和产品基本都采用了化学反应方式,也都不同程度有去除甲醛作用。但同时也影响了甲醛作为粘结剂的重要成分在人造板的产品质量。北京国

投盛世科技股份有限责任公司分子筛助剂则采用物理吸附方式,即丝光沸石吸附法,在粘结剂其他成分结合过程中,不发生化学反应,既能有效地去除甲醛,又不影响产品质量。表1列出了丝光沸石对几种有害气体的吸附。 表1丝光沸石及改性后丝光沸石对几种有害气体的饱和吸附量 3、其它领域中的应用 丝光沸石可作为土壤的改良剂,沸石施入土壤中,可以提高土壤的保肥能力,疏松土壤,改善透气性,促进农作物根系发育生长。国投盛世沸石另外还可用作饲料添加剂、以及用作脱叶剂、杀虫剂、催熟剂等的载体。 目前国内已成功研制了A型分子筛,X型分子筛,Y型等分子筛系列,并得到广泛的应用。随着各种研究的不断深入,丝光沸石尤其是具有高热稳定性的高硅丝光沸石其应用性能将得到进一步开发和发展,将应用到更多的催化工艺过程及更多的领域当中,因此,该产品必将具有广泛的应用领域和较好的工业化应用前景。直接水热合成高硅丝光沸石,成为这类沸石合成研究的重要方向之一,也成为人们亟待解决的问题。

沸石分子筛膜的合成方法

沸石分子筛膜的合成方法 人工制备分子筛的合成得到的一般是松散的晶粒,要得到致密的分子筛膜,分子筛晶体之间必须互生,在多孔载体上定向长成致密层,具有一定的渗透性能。近年来,随着膜技术的发展,分子筛膜制备技术取得了不小的进展,常用的有原位生长法,二次晶种法和微波合成法,此外,还有溶胶-凝胶法、嵌入法、蒸汽相法等。 一、原位水热法 原位生长法采用与分子筛粉末合成相同的方法,将载体、硅源、铝源、模板剂、碱和水按照一定的生长比例加入反应釜中,在一定温度和自生压力下水热晶化,多孔材料在载体表面附着生长,多孔载体表面生长一层致密的分子筛膜层。使用该方法已经成功制备的分子筛膜有MFI、A、SAPO-34和八面沸石膜、丝光沸石膜等。原位水热合成中,沸石膜经历成核期和生长期两个阶段。成核期,母液中的营养随着水热能量的给与而随机成核,附着在载体上,也有部分散落在营养液中;生长期,已经生成的晶核不断原位长大,载体上附着的晶核也长大并互生,连成一片致密的膜层。 膜是由分子筛晶粒互生相连而成。生长液中硅铝比、碱浓度、模板剂的比例、温度和晶化时间都对合成的膜有影响,载体的适当修饰也会对提高分子筛膜的质量。该制备方法设备简单,方法易行,易实现大批量生产,具有工业化前景。不足之处在于可控性差,晶体要优先在载体表面成核而不是溶液主体,受载体表面性质影响和晶核随机生长的影响,膜层的生长很容易不均匀,难致密,膜层厚度不易控制。该方法比较适用于管状的载体生长沸石分子筛膜。迄今为止,人们已经成功的在石英、金属、氧化铝、玻璃等多孔材料表面原位合成了高质量的MFI 型分子筛膜。而且对合成的分子筛膜进行了气体分离和液体渗透汽化分离等测试,膜表现良好。 二、二次晶种法 二次晶种法,顾名思义,先要合成纳米级或者微米级的晶种,然后将纳米晶涂覆在载体的一侧表面,再将载体置于二次生长的母液中水热晶化成膜。合成的晶种的尺寸最好控制在纳米级别,将得到的纳米晶种洗干净后使之均匀分散在溶剂中,得到晶种的悬浮液。然后采用一定的办法,例如沾取涂布法、滴涂法,旋

制氧机进口分子筛和国产分子筛的区别

很多人在买家用制氧机的时候,都会遇到一个问题,就是到底该买进口分子筛,还是国产分子筛。在回答这个问题之前,我们先来看看什么是分子筛。 家用制氧机的分子筛 分子筛是一种具有立方结构的硅酸铝化合物,由于分子筛的表面积很大,所起分子筛的内部就形成了很多空隙,可以把空隙小的分子吸附进来,而把比孔道大的分子排斥在外,因而能把形状直径大小不同的分子,极性程度不同的分子,沸点不同的分子,饱和程度不同的分子分离开来,即具有“筛分”分子的作用,故称为分子筛。而现在的家用制氧机就是利用了分子筛的这种筛分功能,把空气中的氧气和氮气分离开来。我们知道空气中的氧气含量是21%,但其含量是78%,还含有少量其他气体,分子筛把氮气除去后,剩下的几乎就是氧气了。 分子筛对家用制氧机价格的影响 分子筛是制氧机中的关键部件,所以分子筛质量的好坏,就决定了制氧机的使用效果和使用寿命,所以我们看到市场上的制氧机进口分子筛和国产分子筛价格还是相差很多的。拿健康之宝热卖的奥吉制氧机来说,采用进口分子筛的AJ-300B售价2650元,而采用国产分子筛的AJ-300A售价只有2350元,而两款制氧机的其他方面完全一样,进口分子筛的售价要比国产分子筛贵了300元,几乎是机器售价的12%。再比如神鹿制氧机SL-03,国产分子筛的型号售价2450元,进口分子筛的SL-03售价就达到了2800元,价格相差了350元,还是相差比较大的。 分子筛对家用制氧机寿命的影响 既然分子筛的价格相差不少,那么进口分子筛是否物有所值呢,我们有必要花大价钱购买进口分子筛的制氧机呢。其实进口分子筛的寿命比国产分子筛要长很多的,进口分子筛的寿命一般能达到1.8万小时,而国产分子筛寿命只有1.2万小时,两者相差50%左右,以每天家用制氧机的使用时间3个小时计算,采用进口分子筛的制氧机,可以多用6000天,相当于十多年的时间。当然制氧机的寿命也取决于制氧机的其他部件,比如压缩机,电路板等等,而且如果空气中的灰尘较多,对分子筛的寿命影响也很大。另外美国英维康制氧机采用的进口分子筛,其寿命远远超过其他普通进口分子筛,其寿命可达到惊人的3万小时。当然英维康制氧机的售价也是比较高的,健康之宝特价期间,最便宜的一款IRC5LXO2AW也要售价5800元,毕竟是一分钱一分货的。 家用制氧机选购 说了这么多,相信大家对于家用制氧机的分子筛已经有一个比较全面的了解了。购买的时候你可以根据自己的需要选择购买进口分子筛还是国产分子筛。对于一般保健用途,由于每天使用的时间不够多,您可以选择购买国产分子筛的制氧机。对于患有呼吸道疾病的人家来说,最好购买进口分子筛的制氧机。因为您每天的使用时间很长,使用进口分子筛的家用制氧机可以为您服务更长的时间。https://www.sodocs.net/doc/f810938744.html,

分子筛的一些知识

分子筛的一些知识 沸石分子筛的广泛应用,在于它具有优异的性能。为了深刻了解这些性能,就必须弄清分子筛的结构,而深入研究分子筛的结构与性能,反过来又将进一步促进它的应用和发展。 分子筛是一种晶体硅铝酸盐,因而,可以应用X-射线衍射进行结构分析。通常合成分子筛是10μ以下的粉末,在使用粉末衍射法进行测试时,对于对称性较差的沸石类型,指标化及搜集强度的工作都十分困难,因此,到目前为止,仅确定了四十多种沸石的结构,还有一半左右尚未测定出来。 倘若能够得到较大的佛石单晶,采用X-射线衍射的单晶转动法更为有效。较大的A型分子筛单晶可由种子晶体的再结晶得到。用X-射线衍射的单晶转动法,不仅可在指标化之前,引出晶胞参数,确定骨架结构,而且还可以推定出非骨架原子(或离子)和分子和位置。每一种分子筛都有特征的X-射线粉末衍射图样,因此由衍射图样的比较,可以确定沸石的类型。非晶态度的凝胶不产生衍射,故X-射线分析也可以用来观察分子筛结晶的情况,混和物的衍射图样,由各组分的粉末线迭合而成,并且衍射强度随含量而变化。所以X-射线衍射也用以确定分子筛的纯度。 现在又有一种新的红外光谱法测定分子筛的结构。通过测定已知结构分子筛的红外光谱,找出普带的特征频率与骨架结构基团间的关系,进而测定未知结构的光谱,推导出骨架结构。一般采用频率1300-200厘米-1的红外线。因为这一范围包含着(Si,Al)O4四面体的基本振动,反映出骨架结构的特征。目前,红外光谱已用于测定沸石骨架的结构类型,结构基团、骨架的硅铝组成,热分解过程中结构的变化和脱水、脱羟基过程中阳离子的迁移等。 在分子筛的应用中,表面性质十分重要。借助红外光谱,我们可以更透彻地了解沸石的表面性质以及在各种处理中的变化,如根据吸附分子引起的光谱变化,就可知道沸石表面与吸附分子相互作用,吸附分子的位置以及催化活性和表面性质的关系等。由于红外光谱的高度灵敏性,沸石结构的微小变化都在光谱中得到反映。 其他的物理测试技术如紫外光谱等也可以帮助确定分子筛的结构,但目前主要采用的是X-射线衍射和红外光谱法。 沸石A、沸石X、沸石Y和丝光沸石应用最广,对它们的结构和性能的研究也最为深刻。第一节分子筛结构概述 分子筛是一类具有骨架结构的硅铝酸盐晶体,晶体内的阳离子和水分子在骨架中有很大的移动自由度,可进行阳离子交换和可逆地脱水。 分子筛的化学组成可用以下实验式表示:M2/nO. Al2O3. xSiO2. yH2O M是金属离子,n是M的价数,x是SiO2.的分子数,也是SiO2/Al2O3克分子比,y是水分子数. 上式可以改写成M p/n[(AlO2)p()q] yH2O P是AlO2分子数,q是SiO2分子数,M,n,y同上.由上式可以看出:每个铝原子和硅原子平均加起来都有二个氧原子,若金属原子M的化合价n=1,则M的原子数等于铝原子数,若n=2,则M 的原子数等于铝原子数的一半。各种分子筛的区别,首先是化学组成的不同,如经验式中的M可为Na、K、Li、Ca、Mg等金属离子,也可以是有机胺或复合离子。 化学组成的一个重要区别是硅铝克分子比的不同。例如,沸石A、沸石X、沸石Y和丝光沸石的硅铝比分别为1.5~2、2.1~3.0、3.1~6.0和9~11。 当式中的x数值不同时,分子筛的抗酸性、热稳定性以及催化活性等都不同,一般x的数值越大,而酸性和热稳定性越高。各种分子筛最根本的区别是晶体结构的不同,因而,不同的分子筛具有不同的性质。

沸石分子筛的研究进展

第26卷第1期2004年1月 南 京 工 业 大 学 学 报 JOURNA L OF NAN J I NG UNI VERSITY OF TECH NO LOGY V ol.26N o.1 Jan.2004气相法制备沸石分子筛的研究进展 姚建峰,张利雄,徐南平 (南京工业大学化学化工学院,江苏南京210009) 摘 要:综述了气相法,包括气相转移法和干胶法在合成沸石分子筛、磷铝分子筛和其它杂原子分子筛及分子筛膜方面的研究进展。介绍了合成过程中一些影响因素,如时间、温度、干胶组分或有机模板剂对合成的影响。并且对气相法制备分子筛成型体作了简单介绍。 关键词:气相转移法;干胶法;沸石分子筛;分子筛膜;成型Ξ 中图分类号:O643.3 文献标识码:A 文章编号:1671-7643(2004)01-0103-07 沸石分子筛作为吸附剂、催化剂等,在化学工业、石油化工等领域发挥着越来越重要的作用,其制备方法也越来越受到人们的关注。长期以来,沸石分子筛都由传统的水热法合成[1~4],但是,1985年首次报道了在乙二醇等有机溶液体系中合成S OD 结构沸石分子筛[5],随后出现了在其它有机溶剂体系中合成ZS M25、ZS M235和ZS M248等沸石分子筛[6,7]的报道。Xu等[8]在1990年提出了一种全新的制备沸石分子筛的方法———气相转移法。气相转移法是指把不含有模板剂的沸石分子筛合成液制备成干胶,然后把干胶搁置于内衬聚四氟乙烯(T eflon)的不锈钢反应釜中,水和有机胺作为液相部分,在一定温度下在混合蒸汽作用下干胶转化为沸石分子筛。与水热法和有机溶剂法制备沸石分子筛相比,气相转移法有显著的优势[8]:可以大大减少有机模板剂的使用量;省去产品与母液分离的繁杂步骤;不会产生大量废液,对环境友好等优点。Sano等[9~11]以气相转移法为依据,使用干胶法制备了ZS M25分子筛薄膜及粉末。干胶法与气相转移法相类似,只是液相部分仅为水。Matsukata等[12]对用气相法合成沸石分子筛、磷铝分子筛和骨架中含T i、Zn、B等BE A结构分子筛作了一些总结,同时对合成分子筛膜[13]也进行了介绍。国内董晋湘等[14]和任瑜等[15]也分别对气相法制备分子筛及分子筛膜进行了综述。 本文在他们的基础上,更加全面的介绍气相法(气相转移法和干胶法)用于合成硅铝分子筛、磷铝分子筛、其它杂原子分子筛、分子筛膜及分子筛成型体。 1 气相法制备分子筛 1.1 硅铝沸石分子筛的制备 Xu等[8]首次提出用气相转移法制备ZS M25分子筛。首先把一定量的硫酸铝、硅酸钠、氢氧化钠和去离子水按一定的顺序混合均匀后过滤、洗涤,得到无定形凝胶。以乙二胺(E DA)、三乙胺(E t3A)和水的混合液作为模板剂,在453~473K下反应5~7d,制备出ZS M25分子筛粉末。这是气相法制备分子筛的首次报道,为分子筛的制备提供了一条新的途径。 Sano等[9~11]用干胶法合成ZS M25分子筛薄膜和粉末,并对ZS M25分子筛粉末进行了合成过程中的原位观察,给出了晶体生长的动力学信息。首先制备含有模板剂的干胶,把干胶搁置于反应釜中,在一定温度下在水蒸气的作用下进行反应。由XRD 表征可以得出,当用干胶法制备ZS M25时,随着反应时间的增加,结晶度越来越高;结晶速度随着温度的升高而加快。通过对结晶过程中晶粒生成的原位观察[11],发现在反应初期干胶表面首先被水蒸气浸润而变得光滑,经过一段时间后,表面开始有小晶粒出现,随着反应时间的延长,晶粒变得越来越大,但是当晶粒长到一定大小后,就停止生成。最终能用干 Ξ收稿日期:2003-06-12 基金项目:国家自然科学基金项目(N o.20141003和N o.20201007) 作者简介:姚建峰(1978-),男,江苏常州人,博士生,主要研究方向为沸石分子筛合成及催化。

关于沸石分子筛

沸石是呈架状结构的多孔含水铝硅酸盐的晶体的总称,通用的化学式: (Na,K)x(Mg,Ca,Sr,Ba)y[Al x +2y Si n-(x +2y)].mH2O X:碱金属离子个数; Y:碱士金属离子个数; n:铝硅离子个数之和; m:水分子的个数。 从电价配位情况看:一价、二价阳离子的电价数之和等于铝离子的个数。沸石水不参与电价平衡。 1 沸石的分类 1.1 天然沸石与合成沸石 天然沸石能形成规模较大的工业矿床有:斜发沸石、丝光沸石、菱沸石、毛沸石、钙十字沸石等五种。而我国真正被利用的主要是斜发沸石和丝光沸石。 合成沸石现在应用的沸石多为人工合成,如标注为x 型、Y 型、A 型的,都是人工合成的即,使可以有天然存在。合成的沸石规整?且稳定?,还可以有杂原子骨架沸石。 硅氧四面体可以直接相连。硅氧四面体中的硅,可被铝原子置换而构成铝氧四面体。但铝原子是三价的,所以在铝氧四面体中,有一个氧原子的电价没有得到中和,而产生电荷不平衡,使整个铝氧四面体带负电。为了保持中性,必须有带正电的离子来抵消,一般是由碱金属和碱土金属离子来补偿,如Na、Ca及Sr、Ba、K、Mg等金属离子。 后发现磷铝酸盐类分子筛,并且分子筛的骨架元素(硅或铝或磷)也可以由B、Ga、Fe、Cr、Ge、Ti、V、Mn、Co、Zn、Be和Cu等取代,因此分子筛按骨架元素组成可分为硅铝类分子筛、磷铝类分子筛和骨架杂原子分子筛 1.2 沸石的晶体结构 SiO2和Al2O3两种成份占沸石矿物总量的80%。但不同的铝硅比值却构成不同的沸石矿物种类。H2O也是沸石的主要成份之一,含量在10%左右,但水不参与沸石的骨架构成,仅吸附在沸石晶体的微孔中。 各种沸石之问的主要差别在于它们之间的骨架结构不同。所谓“骨架”,是指由氧、硅、铝三种原子构成的三维空间结构,不包括碱、碱土金属和水。沸石骨架结构中的基本单元是由四个氧原子和一个硅(铝)原子堆砌而成的硅(铝)氧四面体。硅氧四面体和铝氧四面体再逐级组成单元环、双元环、笼(结晶多面体)构成三维空间的架状构造沸石晶体。 作为次级单位的各种环联合起来即形成各种沸石的空洞和孔道(或称孔穴和通道)。各种沸石都有自己特定的形状和大小的空洞和孔道能吸附和截留不同形状和大小的分子。

沸石分子筛

沸石分子筛的合成与应用 分子筛是一类具有均匀微孔,主要由硅、铝、氧及其它一些金属阳离子构成的吸附剂或薄膜类物质,根据其有效孔径来筛分各种流体分子。沸石分子筛是指那些具有分子筛作用的天然及人工合成的硅铝酸盐[1]。沸石分子筛由于其特有的结构和性能,它的应用已遍及石油化工、环保生物工程、食品工业、医药化工等领域,随着国民经济各行业的发展,沸石分子筛的应用前景日益广阔。 一、沸石分子筛的结构 沸石是沸石族矿物的总称,是一种含水的碱或碱土金属的铝硅酸盐矿物,加热脱水后,沸石晶体孔道可以吸附比孔道小的物质分子,而排斥比孔道直径大的物质分子,使分子大小不同的混合物分开,起着筛分的作用。 沸石分子筛是硅铝四面体形成的三维硅铝酸盐金属结构的晶体,是一种孔径大小均一的强极性吸附剂。沸石或经不同金属阳离子交换或经其他方法改性后的沸石分子筛,具有很高的选择吸附分离能力。工业上最常用的合成分子筛仅为A型、X型、Y型、丝光沸石和ZSM系列沸石。沸石分子筛的化学组成通式为:[M2(Ⅰ)M(Ⅱ)]O?Al2O3?nSiO2?mH2O[2],式中M2(Ⅰ)和M(Ⅱ)分别为为一价和二价金属离子,多半是纳和钙,n称为沸石的硅铝比,硅主要来自于硅酸钠和硅胶,铝则来自于铝酸钠和氢氧化铝等,它们与氢氧化钠水溶液反应制得的胶体物,经干燥后便成沸石。 沸石分子筛的最基本结构是硅氧四面体和铝氧四面体,四面体相互连接成多元环以及具有三维空间多面体,即构成了沸石的骨架结构,由于骨架结构中有中空的笼状,常称为笼,笼有多种多样,如α笼、β笼、γ笼等,这些笼相互连接就可构成A型、X型、Y型分子筛。 二、沸石分子筛的合成方法 随着沸石分子筛在化学工业等领域发挥着越来越重要的作用,出现了多种制备方法,如传统的水热合成法、非水体系合成法、蒸汽相体系合成法、气相转移法等。 1. 水热合成法 这种合成法是以水作为沸石分子筛晶化的介质,将其它反应原料按比例混合,放入反应釜中,在一定的温度下晶化而合成沸石分子筛[3]。水热合成使晶体成核速度和晶化速度提高。合成过程中加料顺序、搅拌速度及晶化时间都会对晶化产物的结构和形貌产生很大的影响。

沸石分子筛

第三章 酸碱平衡 同步练习 P71 1.已知某成人胃液中,0.032H =+)(c mol?dm -3,)(-OH c =? 解:1314 w 103.10.032101.0) (H )(OH --+ - ?=?==c K c 2.据表3?1计算,100℃时,纯水中)(+H c 和)(-OH c 分别是多少? 解:714w 102.3105.474)H )OH --+-?=?=== K c c (( P72 1.某葡萄酒样品的pH=3.70,计算该葡萄酒中H 3O +之浓度。 解:pH= ?lg )(+H c 3.70= –lg c (H +) c (H +)=2.0×10-4(mol/L) 2.一漂白剂溶液,0.036OH =-)(c mol?dm -3,计算该漂白剂的pH 值。 解:pOH= ?lg )(O - H c =–lg0.036=1.4 pH=14–pOH=14–1.4=12.6 3.pH 值的适用范围是多少? 答:1~14 4.人体温度为37℃时,其 w K =14104.2-?,若此时,血液的pH 值为7.4,计算此时血 液中)(+H c 、)(-OH c 。 解:pH= ?lg )(+H c 7.4= –lg c (H +) c (H +)=3.9×10-8(mol/L) ∵ c (H +)×c (OH ?)= w K ∴ 78 -14w 106.0103.9102.4) H )OH --+- ?=??= =((c K c P75 1.判断正误,并说明理由。 (1)麻黄素(C 10H 15NO )是一种一元弱碱,常用作充血药物,室温时其 b K =4104.1-?, 所以,其碱性强于氨水。 答:正确。 (2)因为氢氟酸的解离度大于醋酸的解离度,因此,氢氟酸的酸性强于醋酸。

沸石分子筛如何制备合成

沸石分子筛及其复合材料新型合成方法研究进展 沸石分子筛作为离子交换材料、吸附剂、催化剂等,在化学工业、石油化工等领域发挥着重要作用。随着新材料领域和电子、信息等行业的不断发展,其使用范围已经跳出传统行业,在诸如新型异形分子筛吸附剂、催化剂和催化蒸馏元件、气体和液体分离膜、气体传感器、非线性光学材料、荧光材料、低介电常数材料和防腐材料等方面得到应用或具有潜在的应用前景。因此,沸石分子筛的制备方法也越来越受到人们的关注。 沸石分子筛传统的制备方法主要包括水热法、高温合成法、蒸汽相体系合成法等,但随着组合化学技术在材料领域应用的不断扩大,20世纪90年代末人们将组合化学的概念与沸石分子筛水热法结合,建立了组合水热法。将组合化学技术应用到沸石分子筛水热合成之中,加快了合成条件的筛选与优化。除此之外,气相转移和干胶法等新型制备方法也被提出并应用于实践,本文对这些方法进展进行简单概述。 1. 组合化学水热法 组合化学是一种能建立化学库的合成方法,其大的优势是能在短时间内合成大量的化合物,从而达到快速、高效合成与筛选的目的。水热法合成沸石分子筛及相关材料,要考察的因素比较多,包括多种反应原料的选择及配比、反应温度及反应时间等。使用组合化学法可以减轻实验工作量和劳动强度,大大提高工作效率。 ·石墨烯·分子筛·碳纳米管·黑磷·类石墨烯·纳米材料 江苏先丰纳米材料科技有限公司是国际上提供石墨烯产品很早的公司之一,现专注于石墨烯、

利用组合化学水热法制备沸石分子筛,设计了一种组合反应釜,即在圆形聚四氟乙烯片上钻100个小孔,然后在其上、下表面分别用不锈钢片夹紧,形成100个水热反应器,将不同配比的水热合成液分别置于各反应器中。在一定条件下,和传统水热法一样合成沸石分子筛。他们对Na2O-Al2O3-SiO2-H2O的四组分体系进行了考察,比较了使用传统的水热法和组合水热法的差别,证实了组合化学的高效性和快速筛选性。在此基础上,科学家对组合水热法进行了改进,设计出易于自动化X射线衍射测定的装置,并用这种方法对TS-1分子筛的合成配方进行了筛选。 组合化学水热法在分子筛的制备和无机材料合成方面已有一定的应用,但其应用还很有限。同时,要利用组合化学水热法,具备以下特点:(1)每次合成要产生出尽可能多的平行结果;(2)减少每组试样量;(3)增加合成与表征过程中的自动化程度;(4)实验过程与计算机充分结合,提高实验效率。 2. 气相转移法 2.1 气相转移法制备分子筛粉末 气相转移法可用于制备MFI、FER、MOR等结构的沸石分子筛。Zhang等利用气相转移法合成了ZnAPO-34和SAPO-34分子筛,证明水是气相法合成磷铝分子筛不可缺少的组分。后来,也有人利用气相法合成了AFI和AEI的磷铝分子筛,验证了水在合成过程中的作用。在n(P2O5)/n(Al2O3)=1时,分别用三乙胺和二正丙胺与水作为模板剂合成了AlPO4-5和AlPO4-11分子筛。 ·石墨烯·分子筛·碳纳米管·黑磷·类石墨烯·纳米材料 江苏先丰纳米材料科技有限公司是国际上提供石墨烯产品很早的公司之一,现专注于石墨烯、

沸石分子筛的绿色合成路线

沸石分子筛的绿色合成路线 沸石分子筛材料在石油精细化工及环境治理等方面发挥着巨大的作用。通常,绝大多数沸石分子筛都是需要在有机模板参与的条件下合成,然而使用的大部分模板剂都是有毒的,这对沸石的实际生产应用有着强烈的影响。绿色合成路线是指使用较为绿色的原料来合成目标产品,并且在合成过程中减少甚至消除对环境的负面影响、减少废物的排放和提高效率。 首先,沸石分子筛所需的原料混合后,主要物种硅酸盐与铝酸盐聚合生成硅铝酸盐初始凝胶。这种硅铝酸盐凝胶是在高浓度条件下快速形成的,因此具有很高无序度,但是这种硅铝酸盐凝胶中可能含有某些初级结构单元,如:四元环、六元环等等。同时,这种凝胶和液相之间建立了溶解平衡。另外,硅铝酸根离子的溶度积与凝胶的结构和温度息息相关,随着晶化温度的变化,这种凝胶和液相之间建立起新的凝胶和溶液的平衡。其次,液相中多硅酸根与铝酸根浓度的增加导致晶核的形成,然后是沸石分子筛晶体的生长。在沸石分子筛的成核和晶体生长过程中,消耗了液相中的多硅酸根与铝酸根离子,从而引起硅铝凝胶的继续溶解。由于沸石晶体的溶解度小于无定形凝胶的溶解度,最后结果是凝胶的完全溶解,沸石分子筛晶体的完全生长。

对于合成沸石分子筛,温度是一个很重要的因素。温度变化会影响水在反应釜中的压力的变化、硅铝酸盐的聚合状态和聚合反应、凝胶的生成和溶解与转变、分子筛的成核与生长以及介稳相间的转晶。相同的体系在不同的温度下可能会得到完全不一样的物相,温度越高得到的沸石的尺寸和孔体积越小,晶体骨架密度相应增大。一般而言在150C以下,初级结构往往是四元环或六元环,而当温度高于150C,则往往是五元环的初级结构单元。由此可见,在高温水热条件下,无机物(主要是硅铝酸盐物种)的造孔规律和晶化温度与水蒸汽压之间存在着密切的联系。 为克服常规水热法合成沸石分子筛过程中由于溶剂水的引入造成的含碱废水排放,合成体系压力过高、单釜产率过低等问题,人们开发出了无溶剂法绿色沸石分子筛合成路线。过对晶化过程中晶化产物的表征结果发现,无溶剂法合成沸石分子筛经历如下过程:晶化初期,固相原料在无定形二氧化硅中逐渐发生扩散,并伴随着硅物种的聚合;随着晶化时间的延长,无定形的二氧化硅逐渐向晶体转换。总的来说,固相合成反应过程经历了初始原料混合和扩散,硅羟基的不断缩合等过程,最终使得反应原料在固相状态下转换为silicalite-1沸石分子筛。

分子筛

《催化作用原理》第二章作业对不同分子筛结构的总结

1.A型分子筛(LAT)的结构 A型分子筛(LAT)由一下三个基本结构组成(如图1所示): 图1.A型分筛(LAT)基本组成结构 A型分子筛(LAT)的基本晶胞组成:中间是图1中的lat结构,其八个角处的六元环在接八个sod结构,sod结构与lat结构中的四圆环以d4R结构连接,形成的立体结构如图2所示。 立体图平面截图 图2.A型分子筛(LAT)的晶胞立体结构 2.A型分子筛的应用 A型分子筛具有较强的吸水性,利用其固有的特点,制成的A型分子筛膜具有很好的脱水性能。例如,用A沸石膜采用全蒸发分离醇—水混合物。由均质溶液在大孔氧化锆复合物载体上制备出片状和管状的NaA沸石膜。KA沸石膜是从钠型通过离子交换而得。通过全蒸发测试了这些膜从异丙醇/水混合物中脱出水的性能,Na型和K型A沸石都有高选择性,热处理温度达150℃时膜的性能不受影响。

1、Y型分子筛(FAU)的结构 Y型分子筛(FAU)由以下两个结构组成(如图3所示): 图3.Y型分筛(FAU)基本组成结构 Y型分子筛(FAU)的立体结构组成:sod结构和d6R结构相互连接形成一个十二圆环,四个十二圆环近似按四面体的各个面排列形成一个晶胞。晶胞间相互连接排列形成了层状结构。如图4所示。 图4.Y型分子筛(FAU)的晶胞及立体结构 2、Y型分子筛的应用 FAU型沸石分子筛是硅铝酸盐结晶体,由于其孔径较大(O.74 rim),将其生长在多孔陶瓷等载体上则形成不同于其他沸石膜的大孔分子筛膜,适用于对较大分子的分离和石油化工、精细化工领域。且由于其孔径可调,是通过物理和化学方法修饰获得不同孔径的分子筛膜的理想材料,受到国内外膜科技工作者的重视。FAU型沸石膜根据其Si/A1比的不同,分为NaX型沸石膜和NaY型沸石膜,当硅铝比在1.5以下时,称为NaX型沸石膜;当硅铝比大于1。5时,称为NaY型沸石膜。 物质的结构决定性能,NaY 分子筛相对均匀的、发达的孔结构,离子交换后保留的丰富的质子酸位使其酸催化作用成为可能。但是NaY 沸石由于N a O

分子筛与硅胶的区别

Date: 2009-04-06/MLN
Technical Information Sheet
Adsorption materials, comparison between Silica Gel and Molecular Sieves For Rotary Heat Exchangers with a high moisture transfer capability different adsorption materials are used. The two main types of adsorption materials used for moisture transfer in normal comfort ventilation applications are Silica gel and Molecular Sieve. Silica gel: Silica gel is a partially dehydrated form of polymeric colloidal silicic acid. Silica gel has an amorphous micro-porous structure with a distribution of pore opening sizes of roughly 3-60 angstroms. These interconnected pores form a vast surface area that will attract and hold water by adsorption and capillary condensation, allowing silica gel to adsorb up to 40% of its weight in water. Silica gel is extremely efficient at temperatures below 25°C (77°F) (see Figures 1 and 2), but will lose some of its adsorbing capacity as temperatures begin to rise (Figure 3). Much of silica gel's popularity is due to its non-corrosive, nontoxic nature and its having received US government approval for use in food and drug packaging. Molecular sieves: Molecular sieves (also known as Synthetic Zeolite) adsorb moisture more strongly than silica gel. This can be seen by the high initial slope of the adsorption isotherm for molecular sieve as compared to the other desiccants (Figure 2). Where a very low relative humidity is required, molecular sieves are often the most economic desiccant because of their high adsorption capacity at low relative humidity. Also, molecular sieves will not give up moisture as readily as silica gel as temperatures rise (Figure 3). Molecular sieve contains a uniform network of crystalline pores and empty adsorption cavities, which give it an internal adsorptive surface area of 700 to 800 sq. m per g (1/2 the total volume of the crystals). Molecular sieve can adsorb up to 25% of its weight in water. Because of its uniform structure,
Page 1 of 4

沸石分子筛催化剂的发展现状

沸石分子筛催化剂的发展现状 姓名: 班级: 学号:

沸石分子筛催化剂的发展现状 摘要:从工业催化的角度思考和表述了沸石分子筛催化剂合成、催化及应用,综述了国内外相关的最新研究进展,探讨了分子筛催化剂未来的发展方向。旨在引发人们对分子筛催化未来向经济、可控、高效催化、绿色环保和新应用等方面发展的思考与探索。 关键词:沸石分子筛催化剂、工业应用、未来发展 在我国的经济发展,工业是国民经济的重要组成部分,化学工业中80% 以上的过程涉及催化技术,尤其对于炼油与石化工业,催化剂更是不可或缺,其中分子筛催化剂未来的发展方向又深切关系着工业的发展。目前,分子筛催化剂在炼油与化工工业得到了研究与应用,如催化裂化、加氢裂化、带支链芳烃的烷基化、异构脱蜡以及轻烯烃聚合等。国内外已开发出一批有发展前景的高功能化、多功能化、精密化的分子筛催化剂材料。分子筛催化剂的合成方法主要有:①水热晶化法;②非水体系合成法;③干胶转换法;④无溶剂干粉体系合成法;⑤微波辐射合成法;⑥蒸汽相体系合成法;⑦多级孔道沸石分子筛的合成;⑧化学后处理法;⑨硬模板法;⑩软模板法[1]。 而沸石分子筛是其中重要一员。沸石分子筛的工业催化应用始于上世纪60 年代,Mobil 公司首先发现并采用八面沸石替代无定形硅铝催化剂, 应用于炼油中催化裂化(FCC) 过程, 大大提高了汽油产量以及原油利用率。目前,仅作为FCC催化剂一项,沸石分子筛催化剂的销售额就占全球催化剂的18.5%。沸石分子筛具有确定的孔体系,大的晶内比表面积和与硫酸或氯化铝相当的酸性,同时具有分子筛分或择形作用以及可改性或易掺杂等优点,它们对许多工业催化反应有高效促进作用。在各种酸性催化剂高性能中,反应了它的催化潜力。此外,还有其他类型的高效分子筛催化剂。 1、沸石分子筛结构 沸石分子筛是一族结晶性硅铝酸盐的总称。沸石最基本的结构是由(SiO4)四面体和(AlO4)四面体。相邻的四面体由氧桥连结成环,环有大有小,按成环的氧原子数划分,有四元氧环,五元氧环,六元氧环,八元氧环,十元氧环和十二元氧环;环是分子筛的通道孔口,对通过的分子筛起筛分作用。氧环通过氧桥相互

分子筛改性

分子筛改性- 沸石分子筛的改性方法 2沸石分子筛的结构及性能 2.1沸石分子筛的结构特点 沸石结构可以分为三个部分[3]:铝硅酸盐格架;格架中相互连结的孔隙(孔道和空穴):在孔道或空穴中的阳离子和水分子。在一般情况下,沸石的中心大空穴和孔道都充满水分子,这些水分子围绕着可交换阳离子形成水化球,通常在350℃或400℃下加热数小时或更长时间,沸石将失去水。这时,有效直径小到足以通过孔道的分子将易于被沸石吸附在脱水孔道和中心空穴中;而直径过大无法进入孔道的分子将被排斥,这就是大家所熟知的“分子筛”性质。 沸石的骨架中的每一个氧原子都为相邻的两个四面体所共用。构成沸石骨架的最基本的结构是硅氧(SiO4)四面体和铝氧(AlO4)四面体。几个硅(铝)氧四面体通过氧桥相互联结在一起,可以形成四元环、五元环、六元环、八元环、十二元环、十八元环等。而各种不同的多元环通过氧桥相互联结,又可形成具有三维空间的笼。由于铝原子是三价的,所以铝氧四面体中有一个氧原子的价电子没有得到中和,这样就使整个铝氧四面体带有一个负电荷,为了保持电中性,这个负电荷由处在骨架外的单价或多价阳离子来补偿。

沸石中的阳离子可被其它阳离子交换,并保持骨架结构不发生变化。由于阳离子的大小不同,以及在晶穴中位置的改变,可以影响沸石的孔径发生变化。另外,由于沸石中不同阳离子所产生的局部静电场不同,水合阳离子的离解度也不同,因而对吸附质分子的极化能的影响也不同,从而影响了沸石筛分分子的作用和吸附、催化性能,所以沸石的离子交换作用是沸石能够改性的原因之一。沸石中的阳离子位置可以发生改变,也可以被其它阳离子交换,并保持骨架结构不发生变化,这一点对沸石的应用是非常重要的。 沸石分子筛的结构特点归纳为以下几点: 1沸石分子筛具有高度有序的晶体结构和大量均匀的微孔,其孔径与一般物质的分子大小属同一数量级,空旷的骨架结构,使得晶穴体积约为总体积的40%~50%。 2分子筛具有很大的表面积,其表面积主要存在于晶穴内部,外表面积仅占总表面积的1%左右。 3明确的孔结构,对客体分子表现择形性。择形性是由反应物、产物或过渡态分子的扩散差别引起的,这方面已有大量的研究。沸石分子筛的这一性质可以通过孔道尺寸的剪裁来改变[4]。 4沸石呈现离子型电导性,这是由于阳离子可以通过孔道移动。阳离子携带电流的能力取决于离子的淌度、电荷大小和其在结构中的位置。 5沸石的酸碱稳定性各不相同,

相关主题