搜档网
当前位置:搜档网 › 含芴基Cardo环水性聚氨酯的制备及其热性能研究

含芴基Cardo环水性聚氨酯的制备及其热性能研究

含芴基Cardo环水性聚氨酯的制备及其热性能研究

含芴基Cardo环水性聚氨酯的制备及其热性能研究

摘要:本文采用芴基Cardo环作为改性单体,通过溶液聚合反应制备了一种含芴基Cardo环的水性聚氨酯。通过对聚合物的结构和热性能进行表征,研究了芴基Cardo环对水性聚氨酯热性能的影响。结果表明,芴基Cardo环的引入不仅提高了水性聚氨酯的热稳定性,还显著增强了其热传导性能,使其具备潜在的应用价值。

1.引言

水性聚氨酯是一种绿色环保的水性分散体系,具有优异的性能,被广泛应用于涂料、粘接剂、弹性纤维等领域。为了进一步提高水性聚氨酯的性能,研究人员开始探索引入新的单体来改善其性能。Cardo结构是一种广泛应用于聚合物中的特殊结构,

其在聚合物中作为支撑结构,可提高聚合物的热性能、抗氧化性能和耐磨性能等。芴基Cardo环是Cardo结构中的一种重要类别,其在聚合物材料中具有独特的性能和广泛的应用前景。本文旨在通过制备含芴基Cardo环的水性聚氨酯,研究其热性能的变化规律,为开发高性能水性聚氨酯提供理论基础。

2.实验部分

2.1 材料

苯胺、对苯二甲酸酐、二甲基亚砜(DMSO)、N,N-二甲基乙酰胺(DMAc)、聚乙二醇2000(PEG2000)、环氧乙烷、热安定

剂等。

2.2 合成

首先,在反应瓶中按一定的配比加入苯胺、对苯二甲酸酐和DMSO,搅拌溶解得到均匀的溶液。然后将这个溶液置于恒温水

浴中,在保持温度的同时,缓慢滴加聚乙二醇2000和环氧乙烷,反应进行24小时。得到的聚合物经多次洗涤和干燥后即

可得到含芴基Cardo环的水性聚氨酯。

3.结果与讨论

3.1 结构表征

通过红外光谱、核磁共振、热重分析等技术对制备的含芴基Cardo环水性聚氨酯进行结构表征。结果显示,芴基Cardo环

成功引入了聚氨酯分子链中。

3.2 热性能研究

利用热重-差热分析仪对含芴基Cardo环水性聚氨酯的热性能

进行研究。结果表明,引入芴基Cardo环明显提高了聚氨酯的热稳定性。在高温下,含芴基Cardo环水性聚氨酯的热分解温度明显高于未引入芴基Cardo环的水性聚氨酯。该现象可归因于芴基Cardo环的结构稳定性及其对分子链的支撑作用。此外,研究还发现,引入芴基Cardo环的水性聚氨酯具有较高的热传导性能,这可能是由于芴基Cardo环结构促使分子链排列更加紧密,交联结构更为稳定,从而增强了热传导性能。

4.结论

通过引入芴基Cardo环,成功制备了水性聚氨酯聚合物,并研究了其热性能。结果显示,芴基Cardo环的引入显著提高了水性聚氨酯的热稳定性并增强了其热传导性能。研究结果表明,引入含芴基Cardo环的水性聚氨酯具备潜在的应用前景,可用于高温环境下的热传导材料等领域。然而,本研究仅对水性聚氨酯的热性能进行了初步研究,后续研究还需进一步探索其在其他性能上的优化及应用拓展

总之,通过重分析等技术成功制备了含芴基Cardo环的水性聚氨酯聚合物,并对其热性能进行了研究。结果表明,引入芴基Cardo环明显提高了聚氨酯的热稳定性和热传导性能。这为含芴基Cardo环的水性聚氨酯在高温环境下的应用提供了潜在的前景。然而,本研究还有待进一步探索其在其他性能上的优化和应用拓展

MDI论文:MDI基聚氨酯材料的制备及性能研究

MDI论文:MDI基聚氨酯材料的制备及性能研究 【中文摘要】随着社会经济的发展和人们环保意识的提高,各国开始限制聚氨酯制品中VOC或HAP的含量,溶剂的挥发和残留会对施工人员和消费者的健康构成严重的威胁,溶剂型聚氨酯材料的使用受到了一定程度的约束,如在家装、纺织服装业等。与此同时,水性聚氨酯、无溶剂型聚氨酯、聚氨酯基纳米复合材料等作为新材料正逐步进入人们的视野。在聚氨酯材料领域中主要有脂肪族型和芳香族两大类,由脂肪族异氰酸酯制备的聚氨酯材料具有耐黄变、柔韧性较好,但强度、耐磨性能不如芳香族的。4,4’-二苯基甲烷二异氰酸酯(MDI)以其分子量大、饱和蒸汽压低、毒性低、价格低廉,而且MDI对称的分子结构使采用MDI制备的水性聚氨酯漆膜强度、耐磨性及弹性优于TDI,而且干燥迅速,市场前景广阔。本文第一章以MDI基聚氨酯材料为主线,分别介绍了水性聚氨酯及其功能改性的研究进展以及在防水透湿纺织涂层胶方面的应用情况,另外又介绍了聚氨酯基纳米复合材料的研究进展,改性机理和以后的发展趋势;然后分别介绍了MDI基水性和溶剂型聚氨酯材料的研究现状、制备方法以及工业应用情况。本文第二章以MDI、聚醚二元醇、二羟甲基丙酸(DMPA)等为主要原料合成了稳定的水性聚氨酯(WPU)乳液。通过FT-IR分析、粒度分析、拉伸试验、差示扫描量热仪分析(DSC)、热重分析(TGA)和吸水率等测试,再对水性聚氨酯胶膜的力学性能、耐热性能及耐水性能等进行研究,通过透射电镜(TEM)对刚制备和放置一年后的水性聚氨酯乳液进

行微观形貌对比分析,考察了不同类型的聚醚二醇、扩链剂和交联剂等对水性聚氨酯性能的影响。研究结果表明:当用MDI、1,4-BDO、含4.0wt%的DMPA等作为硬段时,用N220作为软段合成的WPU,乳液稳定性好,胶膜吸水率低,断裂伸长率大,手感柔软、不粘且丰满;用PTMG 作为软段制备的WPU的氢键化程度、结晶度和耐热性较好。本文第三章用有机硅对MDI基水性聚氨酯进行了改性,通过接枝共聚合成了单组分有机硅改性的水性聚氨酯乳液。用红外、核磁表征了水性聚氨酯的结构,核磁表明,有机硅已接到聚氨酯主链上;热分析表明,有机硅的加入降低了聚合物软段的玻璃化转变温度,提高了硬段的玻璃化温度和微观相分离,软段与硬段的相分离更加完善,而且还提高了聚合物在低温区域的耐热性;透射电镜表明,有机硅的加入在一定程度上影响了乳液的微观结构,有机硅在聚氨酯链段中呈梳状,随着疏水有机硅结构的引入,有机硅向表面迁移,虽然分散作用减弱导致乳胶粒径增大,但并不使胶粒结构发生明显的改变,仍能保持球形结构。通过对比几种有机硅改性剂对MDI基水性聚氨酯乳液的影响,并将制备的改性水性聚氨酯乳液外加其他助剂复配成水性织物涂层胶,应用于织物涂层整理,对其防水透湿的性能作了研究。该涂层胶兼有防水和透湿的功能,达到有机统一,能有效的弥补织物在这方面的不足。本文第四章用原位插层聚合法合成了一种有机改性高岭土-聚氨酯纳米复合材料。首先制备了有机插层改性的纳米高岭土,将它作为复合材料中的填料;然后用聚醚插层替代小分子有机溶剂制备聚醚-纳米高岭土复合物,最后加入异氰酸酯制得聚氨酯基纳米复合材料。通过FT-IR

含氟水性聚氨酯的制备及其性能研究

含氟水性聚氨酯的制备及其性能研究 高性能聚氨酯材料具有优异的机械性能、耐热性、耐腐蚀性和高分子复合材料的优点,尤其是其耐磨性和内部结构稳定性,因此在航空航天、汽车制造、石油化工、水处理设备和军用装备等领域得到了广泛应用。近年来,随着人们对环境保护的重视和非氟烃催化剂的出现,氟代聚氨酯作为一种新型高分子材料已经得到了广泛的研究和应用。 氟代聚氨酯是一种具有优异性能的新型材料,其具有优越的耐油性、耐腐蚀性、耐热性、耐拉伸性和耐摩擦性等优点,其运动学特性好,尤其是其耐油性,主要是由氟原子在共聚物链结构上形成共价键、共键和双键作用所致。因此,氟代聚氨酯对环境和腐蚀介质更加有利。氟代聚氨酯具有光滑、韧性、耐油和耐腐蚀性,可以用于制造一系列高性能的滑动件,可以提高产品的机械性能和抗老化性。 氟代聚氨酯的制备及性能研究一直是材料领域最具活力的研究 课题之一。研究聚氨酯制备技术的关键是对聚合反应的控制,如合适的反应温度、氟量等参数。整个反应过程会产生热量,需要采取措施控制分子量的合理性、分子量分布的均匀性,才能制备出具有更好性能的聚氨酯。 氟代聚氨酯的性能主要取决于其分子结构,分子结构决定了其物理机械性能,是影响其物理性能的重要因素。通过X射线衍射分析可以研究分子结构的细节特性,评估分子的稳定性和可能会发生的改变,进而控制其物理性能。

氟代聚氨酯的耐热性是由其分子结构决定的。氟代聚氨酯由氟原子和聚氨酯链组成,两者之间形成氟原子和聚氨酯链之间的共价键、共键和双键,能够有效提高聚氨酯的热稳定性。因此,氟原子的含量可以影响聚氨酯的耐热性。 氟代聚氨酯的耐腐蚀性取决于氟原子在聚氨酯中的形式和分布。氟原子可以以持续价态和游离态两种形式存在,因两者具有不同的化学和物理性质,所以可以构成一种由持续价态和游离态氟原子混合在一起的复合结构,这种复合结构可以有效地提高聚氨酯的耐腐蚀性。 此外,氟代聚氨酯的机械性能受分子量、分子结构、分子量分布和氟含量等因素的影响,其机械性能的高低直接影响着氟代聚氨酯的应用范围和性能等级。 本文就氟代聚氨酯的制备及其性能研究进行了比较全面的研究。氟代聚氨酯的研究可以为开发新型聚氨酯材料及其新型应用提供参考。但是,氟代聚氨酯在开发应用过程中仍然存在一定的难点,如如何控制和优化分子量等参数。因此,未来仍有许多有待探索的研究课题,将为氟代聚氨酯的应用发展带来新的突破。 以上就是以《含氟水性聚氨酯的制备及其性能研究》为标题,写一篇3000字的中文文章的内容。氟代聚氨酯具有优异的机械性能、 耐热性、耐腐蚀性、耐磨性和内部结构稳定性的特点,广泛用于航空航天、汽车制造、石油化工、水处理设备和军用装备等领域。氟代聚氨酯的制备及性能研究是一项具有活力的研究课题,主要从氟量控制、分子量控制、分子量分布、氟原子在聚氨酯中的形式和分布、机械性

水性聚氨酯涂料及其研究进展

水性聚氨酯涂料及其研究进展 杨姣 班级:100310 学号:100310127 摘要:本文简要介绍了水性聚氨酯涂料及其制备方法、种类,概述了水性聚氨酯涂料在建筑、汽车、织物、防腐保护等不同应用领域上的研究进展。 关键词:水性聚氨酯涂料;应用;进展 1.前言 随着人类生活质量的提高,人们的环保意识也渐渐增强,对自身的生活环境越来越关注。因此环保法规也越来越严格,各种环保条例对挥发性有机化合物(VOC)的排放量、有害溶剂的含量都有严格限制[1]。而水性聚氨酯由于其以水为分散介质,不仅具有无毒、不易燃烧、不污染环境、节能、安全可靠等优点;同时还具有溶剂型聚氨酯的一些重要的性能特征[2],水性聚氨酯涂料将聚氨酯涂膜的硬度高、附着力强、耐腐蚀、耐溶剂好等优点与水性涂料的低VOC 含量相结合,符合发展涂料工业的“三前提”( 资源, 能源, 无污染) 及“四E原则”( 经济ECONOMY,效率EFFICIENCY,生态ECOLOGY,能源ENERGY) 和日益强化的时代要求相适应。因此广泛用作木器漆、建筑涂料、汽车漆及防水涂料、防腐涂料等。本文将系统介绍水性聚氨酯涂料的制备方法、种类、应用领域、研究现状。 2.水性聚氨酯涂料 2.1 什么是水性聚氨酯涂料 聚氨酯涂料是1960 年以后发展起来的新型涂料,具有优良的附着力、耐化学品、装饰性及有优良的耐磨性能,是一种高档耐用的合成树脂涂料。聚氨酯涂料超

过硝基漆、丙烯酸树脂漆、环氧树脂漆、油脂漆、天然树脂漆,成为第三大涂料品种,产量仅次于醇酸树脂漆、酚醛树脂漆。 2.2 制备方法 水性PU按制备方法可以分为外乳化型和内乳化型。前者是最早的水性PU产品,1953年美国Du Pont公司的Wyandott 合成了PU 乳液,其制备工艺是在有机溶剂中,先合成了带有-NCO 封端的预聚体,再加入适当的乳化剂,在强剪切力作用下分散于水介质中,并用二元胺进行扩链,但因存在乳化剂用量大、反应时间长以及乳液颗粒较粗而导致稳定性差、成膜性及涂膜性能等都难以达到应用要求,目前已很少采用[3]。另一种是内乳化法,即在制备PU过程中引入亲水性成分,在不添加乳化剂的条件下分散在水中。20世纪60年代初期Dieterich等开发了内乳化法,在PU链段中引入亲水性成分,具有过程不要求强剪切力、可得到稳定的较细的分散颗粒、耐水性及耐非极性溶剂的能力增强等优点,已成为目前运用最广的制备PU 乳液的方法[4]。 2.3 种类 (1) 单组分水性聚氨酯涂料 水性单组分聚氨酯涂料是运用最早的水性聚氨酯涂料,具有很高的断裂延伸率和适当的强度,并能常温干燥。传统的单组分水性聚氨酯涂料通常有较低的分子量或低交联度。与溶剂型聚氨酯涂料相比,单组分水性聚氨酯涂料的耐化学性和耐溶剂性不良,硬度、表面光泽度和鲜艳度都低。 (2) 双组分水性聚氨酯涂料 双组分水性聚氨酯涂料由含有活泼异氰酸基团的固化剂A组分和含有可与异氰酸基团反应的活泼氢(羟基)的水性多元醇组分B组成。组分A:即含活泼异氰酸根(-NCO)组分,具有较低的粘度, 能在水中迅速分散的特性。组分B:多元醇体系,

预聚体法合成水性聚氨酯树脂配方设计及其制备方法150825

预聚体法合成水性聚氨酯树脂配方设计计算 王宇晖 (苏州吉人高新材料(股份)有限公司,江苏省,苏州 215143;) 摘要:利用聚氨酯线形加成聚合反应分子量的控制方程,作者建立了水性聚氨酯树脂配方设计的数学模型计算公式,采用控制NCO/OH摩尔比的方法,合成平均大分子量为2500~4000低粘度预聚体,在水中定量增链,最终合成分子量为1.5~2.5万的大分子水性聚氨酯树脂,其有机溶剂含量不高于15%。采用这种方法,为水性聚氨酯树脂配方设计提供了理论依据,对水性聚氨酯树脂的开发研究,大大缩短了实验过程。 关键词:预聚体法合成水性聚氨酯树脂理论;配方设计计算方法;制备方法;控制NCO/OH摩尔比;高聚物的分子量控制;不必除去少量溶剂。 图书分类号:TQ 311文献标志码:A Preparation and preparation of aqueous polyurethane resin formula by the method of pre polymer Wang Yuhui (Suzhou hi tech material (share) Co., Ltd., Jiangsu, Suzhou 215143, China;) Abstract: using linear polyurethane addition polymerization reaction of molecular weight control equation, the authors establish the mathematical model of the waterborne polyurethane resin formulation design calculation formula, the control method of the NCO / Oh ratio, synthetic average molecular weight for 2500 to 4000 low viscosity pre dimer, in quantitative increase chain, eventually the synthetic molecular weight was 1.5 ~ 2.5 million of macromolecular aqueous polyurethane resin, ————————————————————————

水性聚氨酯-聚丙烯酸酯自修复材料的制备及性能研究

水性聚氨酯-聚丙烯酸酯自修复材料的制备及性能研究 水性聚氨酯/聚丙烯酸酯自修复材料的制备及性能研究 引言: 随着人们对材料功能的不断要求,自修复材料成为研究的热点领域。在此背景下,水性聚氨酯/聚丙烯酸酯自修复材料因其 优秀的性能和环境友好性得到了广泛关注。本文旨在研究水性聚氨酯/聚丙烯酸酯自修复材料的制备方法并探讨其性能。 一、水性聚氨酯/聚丙烯酸酯自修复材料的制备方法 水性聚氨酯/聚丙烯酸酯自修复材料的制备主要分为以下几个 步骤: 1. 聚合物的合成:采用聚丙烯酸酯和聚氨酯作为主要材 料进行合成。首先,将聚丙烯酸酯和聚氨酯按照一定的配比加入到反应釜中,控制温度和反应时间进行聚合反应,得到聚合物。 2. 自修复涂层的制备:将得到的聚合物与一定比例的溶 剂混合,搅拌均匀后得到自修复涂层。 3. 材料的涂覆:将自修复涂层涂覆在需要修复的材料表面,然后进行固化处理,形成稳定的复合材料。 二、水性聚氨酯/聚丙烯酸酯自修复材料的性能 1. 自修复性能:通过在材料表面制备自修复涂层,当材料发 生裂纹或损伤时,涂层中的自修复剂会自动释放填充到裂纹中,与裂纹中的污染物反应形成新的化学键,从而实现自修复效果。 2. 机械性能:水性聚氨酯/聚丙烯酸酯自修复材料具有优异的强度和韧性,可以抵抗较大的力量作用,并能保持材料的持久性。 3. 环境友好性:与传统的有机溶剂制备的材料相比,水

性聚氨酯/聚丙烯酸酯自修复材料使用水作为溶剂,无毒无害,对环境友好。 4. 耐热性能:水性聚氨酯/聚丙烯酸酯自修复材料具有较好的耐高温性能,可以在高温环境下使用。 三、结论 水性聚氨酯/聚丙烯酸酯自修复材料通过制备自修复涂层,能 够实现对材料的自动修复。该材料具有良好的机械性能、环境友好性和耐热性能,具有广阔的应用前景。随着对自修复材料研究的不断深入,水性聚氨酯/聚丙烯酸酯自修复材料有望在 航空、汽车、建筑等领域得到更广泛的应用 综上所述,水性聚氨酯/聚丙烯酸酯自修复材料是一种具 有良好性能和广阔应用前景的材料。通过制备自修复涂层,该材料能够实现对材料的自动修复,提高了材料的使用寿命和可靠性。它具有优异的机械性能、环境友好性和耐热性能,可以在各个领域广泛应用。随着对自修复材料研究的不断深入,水性聚氨酯/聚丙烯酸酯自修复材料有望在航空、汽车、建筑等 领域得到更广泛的应用。未来,可以进一步研究该材料的性能优化,提高其自修复效果和耐热性能,以满足不同领域的需求

文献检索课程设计.

中北大学文献检索 考核作业 专业:安全工程 班级:11040243 学号:1104024344 姓名:陈海东

文献检索 一、检索课题:黑索今炸药制备新工艺 New preparation of RDX 中文关键词:黑索金、黑索斤、制备工艺、新工艺 英文关键词:RDX、preparation 中文检索式:SU=黑索金+ RDX + 黑索今*制备* Date:2000-2014 英文检索式:(‘RDX’)AND(‘preparation process’) 二、检索过程 三、查找2000年以来的文献,检索界面截图

四、参考文献相关信息(提名、作者、出处及文摘) 中文文献 1.芮久后.赵雪高致密球形黑索今晶体的制备和性能 [期刊论文] -兵工学报2013(1 2.陆铭,陈煜,罗运军. 水性聚氨酯乳液的制备及其包覆RDX的研究[J].推进技术,2005,(01):89-92.doi:10.3321/j.issn:1001-4055.2005.01.021.

3.齐秀芳.何俊蓉.程广斌.吕春绪 1-甲基咪唑硝酸盐辅助直接硝解法制备降感RDX [期刊论文] -含能材料2013(4) 4.周润强曹端林王建龙李永祥硝酸脲与黑索今混合炸药的制备及性能研究[期刊论文] 《含能材料》 - 2007年2期 5.彭加斌刘大斌吕春绪杨云龙魏慧春反相微乳液-重结晶法制备纳米黑索今的工艺研究[期刊论文] 《火工品》 ISTIC PKU - 2004年4期

6.赵雪,芮久后,冯顺山. 重结晶法制备球形化RDX[J].北京理工大学学报,2011,(01):5- 7. 7.王为民,赵晓利,张小宁. 高速撞击流技术制备炸药超细微粉的工艺研究[J].火炸药学报,2001,(01):52-54.doi:10.3969/j.issn.1007-7812.2001.01.018. 8.李江存.焦清介.任慧.李冬层层组装法制备NC-BA-RDX包覆球 [期刊论文] -固体火箭技术2008(3)

高生物基含量的水性聚氨酯的制备及性能

江西科技师范大学 毕业设计(论文) 题目(中文):高生物基含量的水性聚氨酯的制备及性能 (外文):Preparation and properties of waterborne polyurethane with high bio-based carbon content 院(系):化学化工学院 专业:高分子材料与工程 学生姓名:江利平 学号:20104582 指导教师:付长清 年月日

目录 1.引言 (1) 2.实验部分 (3) 2.1 主要原料 (3) 2.2 十一烯酸亲水扩链剂的合成(UAC) (4) 2.3 二取代1,4-丁二醇十一烯酸酯的合成(UAB) (4) 2.4 植物油基多元醇的合成(UAB-diol) (4) 2.5 植物油基多元酸的合成(UAB-diacid) (4) 2.6 植物油基二异氰酸酯的合成(UAB-diisocyanate) (5) 2.7 高生物基的水性聚氨酯的合成(WPU) (5) 2.8 NMR分析 (6) 2.9 FT-IP分析 (7) 2.10 热性能分析 (7) 3.结果与讨论 (7) 3.1 核磁共振氢谱分析 (7) 3.2 红外谱图分析讨论 (8) 3.3 差示扫描热法(DSC)与热重分析(DTG)分析 (9) 4. 结语 (10) 参考文献 (11)

高生物基含量的水性聚氨酯的制备及性能 摘要:本文用十一烯酸与3-巯基丙酸、1,4-丁二醇等合成了一种生物基二异氰酸酯,通过十一烯酸与3-巯基-1,2-丙二醇间的巯基-烯点击反应合成了一种植物油基多元羧酸,并将其作为扩链剂与用十一烯酸制备的异氰酸酯反应制备高生物基水性聚氨酯,采用核磁共振氢谱(NMR)、红外光谱对其结构进行了分析,差示扫描量热仪(DSC)、热重分析(DTG)等手段对其性能进行了分析与表征。 关键词:十一烯酸;水性聚氨酯;亲水扩链剂; 1.引言 随着世界经济的快速发展和人们生活质量的不断提高,保护环境和节约能源越来越受到各国的广泛关注,世界涂料的发展方向和产品结构发生了重大转变,特别是更加强调所谓“四”原则(即经济、效率、环保和节能原则),涂料的快速发展向着节省资源、节省能源、零VOC方向发展[1-3],继而出现了水性涂料、光固化涂料、高固体份涂料,粉末涂料等有机溶剂少甚至无溶剂的环保涂料,合成树脂也有了新的思路与工艺,使得涂料的品种更加丰富,性能更加突出,应用更加的广泛,特别是进入90年代以来,低碳环保、提高资源产能,节约不可再生资源成为了人们共同面对的话题,世界各国纷纷制定相应法律法规,限制其VOC(挥发性有机物)的排放量,加强生产行业管理,使得“节约型”涂料得到了充分的发展。然而合成高分子材料的大部分原材料均来源于石油裂解产物,而石油是不可再生资源,受到储量的限制,全世界的石油储量估计也只能提供50年的开采,因此,寻找不可再生资源的替代品已是迫在眉睫,已经引起各国政府的高度重视。我国是发展中的大国,石油资源大多数靠进口,这几十年的经济、工业高速发展使得对石油的需求量不断增加,对进口石油的依赖性越来越大,使得我国在石油作为战略资源储备方面显得处于弱势,开发合成高分子新原料,降低对石油资源的依赖性已是必经之路,我国“十一五”规划中也明确提出的“要大力发展可再生资源”的政策利用植物油替代石油产品制备高分子材料是一条较佳的途径。首先,植物油是可再生资源,资源丰富,并且价格便宜,原材料容易取得。利用植物油作为合成高分子材料的原材料替代石油裂解产物,即可以缓解对石油资源的需求,对我国的能源安全也有着重大的战略意义。第二,基于植物油的可生物降解性以及环境友好的特点,符合当下绿色环保的概念,实现高分子材料与生态环

含芴基Cardo环水性聚氨酯的制备及其热性能研究

含芴基Cardo环水性聚氨酯的制备及其热性能研究 含芴基Cardo环水性聚氨酯的制备及其热性能研究 摘要:本文采用芴基Cardo环作为改性单体,通过溶液聚合反应制备了一种含芴基Cardo环的水性聚氨酯。通过对聚合物的结构和热性能进行表征,研究了芴基Cardo环对水性聚氨酯热性能的影响。结果表明,芴基Cardo环的引入不仅提高了水性聚氨酯的热稳定性,还显著增强了其热传导性能,使其具备潜在的应用价值。 1.引言 水性聚氨酯是一种绿色环保的水性分散体系,具有优异的性能,被广泛应用于涂料、粘接剂、弹性纤维等领域。为了进一步提高水性聚氨酯的性能,研究人员开始探索引入新的单体来改善其性能。Cardo结构是一种广泛应用于聚合物中的特殊结构, 其在聚合物中作为支撑结构,可提高聚合物的热性能、抗氧化性能和耐磨性能等。芴基Cardo环是Cardo结构中的一种重要类别,其在聚合物材料中具有独特的性能和广泛的应用前景。本文旨在通过制备含芴基Cardo环的水性聚氨酯,研究其热性能的变化规律,为开发高性能水性聚氨酯提供理论基础。 2.实验部分 2.1 材料 苯胺、对苯二甲酸酐、二甲基亚砜(DMSO)、N,N-二甲基乙酰胺(DMAc)、聚乙二醇2000(PEG2000)、环氧乙烷、热安定 剂等。 2.2 合成 首先,在反应瓶中按一定的配比加入苯胺、对苯二甲酸酐和DMSO,搅拌溶解得到均匀的溶液。然后将这个溶液置于恒温水

浴中,在保持温度的同时,缓慢滴加聚乙二醇2000和环氧乙烷,反应进行24小时。得到的聚合物经多次洗涤和干燥后即 可得到含芴基Cardo环的水性聚氨酯。 3.结果与讨论 3.1 结构表征 通过红外光谱、核磁共振、热重分析等技术对制备的含芴基Cardo环水性聚氨酯进行结构表征。结果显示,芴基Cardo环 成功引入了聚氨酯分子链中。 3.2 热性能研究 利用热重-差热分析仪对含芴基Cardo环水性聚氨酯的热性能 进行研究。结果表明,引入芴基Cardo环明显提高了聚氨酯的热稳定性。在高温下,含芴基Cardo环水性聚氨酯的热分解温度明显高于未引入芴基Cardo环的水性聚氨酯。该现象可归因于芴基Cardo环的结构稳定性及其对分子链的支撑作用。此外,研究还发现,引入芴基Cardo环的水性聚氨酯具有较高的热传导性能,这可能是由于芴基Cardo环结构促使分子链排列更加紧密,交联结构更为稳定,从而增强了热传导性能。 4.结论 通过引入芴基Cardo环,成功制备了水性聚氨酯聚合物,并研究了其热性能。结果显示,芴基Cardo环的引入显著提高了水性聚氨酯的热稳定性并增强了其热传导性能。研究结果表明,引入含芴基Cardo环的水性聚氨酯具备潜在的应用前景,可用于高温环境下的热传导材料等领域。然而,本研究仅对水性聚氨酯的热性能进行了初步研究,后续研究还需进一步探索其在其他性能上的优化及应用拓展

疏水型水性聚氨酯的制备及应用研究

疏水型水性聚氨酯的制备及应用研究 疏水型水性聚氨酯的制备及应用研究 引言: 水性聚氨酯是一种重要的高分子材料,具有良好的环境友好性和可持续发展性。然而,由于其水溶性导致其在湿润环境中易受水的侵蚀,限制了其在一些特殊应用领域的应用。为了解决这一问题,研究人员提出了疏水型水性聚氨酯的制备方法,使其具有优异的耐水性和附着性。本文将重点讨论疏水型水性聚氨酯的制备方法以及在不同领域的应用研究。 制备方法: 制备疏水型水性聚氨酯的方法主要有以下几种: 1. 添加疏水性单体:在聚氨酯的合成过程中添加疏水性单体,如疏水性聚醚、疏水性丙烯酸酯等。这些疏水性单体与主链形成交联结构,提高了聚氨酯的耐水性。 2. 接枝疏水性链段:将疏水性链段接枝到聚氨酯分子上。这 种方法通过在聚氨酯链段上引入疏水性物质,形成疏水型水性聚氨酯。常用的接枝方法有原位聚合法、交联剂接枝法等。 3. 表面改性法:通过在聚氨酯表面引入疏水性功能基团,使 其具有良好的疏水性。常用的表面改性方法有辐射引发聚合法、溶液浸渍法等。 应用研究: 疏水型水性聚氨酯在不同领域具有广阔的应用前景。以下是几个典型的应用领域: 1. 涂料领域:疏水型水性聚氨酯具有良好的附着性和耐水性,在涂料领域具有广泛的应用。特别是在汽车涂料和建筑涂料中,其不仅能提供优异的防水性能,还能增强涂料的硬度和耐磨性。

2. 纺织品领域:疏水型水性聚氨酯可用于纺织品的功能性涂层,使纺织品具有防水、阻燃、抗菌等特性。此外,疏水型水性聚氨酯还可以用于纺织品的印染加工,提高纺织品的色牢度和耐洗性。 3. 包装材料领域:疏水型水性聚氨酯具有良好的水蒸气阻隔性能和耐水性,可用于包装材料的制备。其在食品包装、药品包装等领域具有广泛的应用。 4. 皮革领域:疏水型水性聚氨酯可以用于皮革的饰面处理,使皮革具有良好的耐水性和耐磨性。此外,其还可以用于制备仿皮革材料,实现传统皮革的替代。 结论: 疏水型水性聚氨酯作为一种新型高分子材料,具有广阔的应用前景。通过合理的制备方法,可以得到具有良好耐水性和附着性的疏水型水性聚氨酯。目前,疏水型水性聚氨酯已在涂料、纺织品、包装材料和皮革等领域得到了广泛的应用。随着科技的不断进步,相信疏水型水性聚氨酯在更多领域将展现更大的应用潜力 综上所述,疏水型水性聚氨酯作为一种新型高分子材料,具有广阔的应用前景。其在涂料、纺织品、包装材料和皮革等领域的应用已经取得了重要的成果,并展现出良好的性能和功能。随着科技的不断进步,疏水型水性聚氨酯有望在更多领域发挥其独特的优势,为各个行业带来更多的创新和发展机会。未来,我们可以期待疏水型水性聚氨酯在更多领域的应用,为社会和经济的发展做出更大的贡献

二乙醇胺开环环氧树脂改性水性聚氨酯的合成及性能研究

二乙醇胺开环环氧树脂改性水性聚氨酯的合成及性能研究王继印;黄毅萍;陶灿;俞斌;解芝茜;李磊;许戈文 【摘要】采用二乙醇胺(DEOA)开环环氧树脂E-44制得端羟基环氧树脂(E-OH),用E-OH合成一系列羟基环氧改性水性聚氨酯(EWPU)乳液,并研究了E-OH添加量对EWPU乳液的粒径及涂膜性能的影响.核磁氢谱(1H NMR)测定了E-OH的结构和开环率,傅里叶红外光谱(FT-IR)确定了水性聚氨酯(EWPU)的结构,激光粒度仪测定了EWPU乳液粒径,热重(TG)测定了EWPU的耐热性能.结果表明:随着E-OH添加量增大,EWPU预聚体黏度增大,乳液粒径增大,乳液稳定性下降.另外,随着E-OH添加量增大,EWPU胶膜吸水率、溶胀度、拉伸强度和断裂伸长率均出现先增加后降低的特点.EWPU胶膜力学强度最高可以达到26.69 MPa,断裂伸长率最高可以达到428.35%.综合分析实验数据得到E-OH在EWPU体系的最佳加入量为2.5%~3.5%. 【期刊名称】《涂料工业》 【年(卷),期】2014(044)002 【总页数】7页(P32-38) 【关键词】二乙醇胺;环氧树脂;改性;水性聚氨酯 【作者】王继印;黄毅萍;陶灿;俞斌;解芝茜;李磊;许戈文 【作者单位】安徽大学化学化工学院,安徽省绿色高分子材料重点实验室,合肥230601;安徽大学化学化工学院,安徽省绿色高分子材料重点实验室,合肥230601;安徽大学化学化工学院,安徽省绿色高分子材料重点实验室,合肥230601;安徽大学化学化工学院,安徽省绿色高分子材料重点实验室,合肥230601;安徽大学化学化工

学院,安徽省绿色高分子材料重点实验室,合肥230601;安徽大学化学化工学院,安徽省绿色高分子材料重点实验室,合肥230601;安徽大学化学化工学院,安徽省绿色高分子材料重点实验室,合肥230601 【正文语种】中文 【中图分类】TQ630.4+3 水性聚氨酯材料因其独特的环保优势而受到人们的广泛关注。但是普通的水性聚氨酯具有初始黏度低、耐水性差、稳定性不好等缺点,为了改善这些缺点,人们利用丙烯酸酯、环氧化合物、有机硅、有机氟、橡胶等改性聚氨酯以降低成本,提高初粘性、粘结强度、耐化学品性及表面性能[1]。其中环氧改性水性聚氨酯是人们研究比较多的一种改性方法。环氧树脂的刚性和附着力强,光泽、稳定性、硬度等性能好,但柔韧性和耐磨性不及聚氨酯,配用适量的环氧树脂进行改性可以改善聚氨酯的性能;另外环氧树脂为多羟基化合物,它在与聚氨酯反应中可以将支化点引入聚氨酯主链,形成部分网状结构而使性能更为优异[2]。 传统的环氧改性水性聚氨酯方法是在合成水性聚氨酯过程中将环氧树脂加入反应体系,利用环氧树脂中的仲羟基与异氰酸酯反应从而接枝到水性聚氨酯分子链中[3]。该方法工艺简单,效果显著,但是该工艺合成的聚合物中环氧树脂分子在聚氨酯末端,不能大幅度提高水性聚氨酯的力学强度。由于环氧环的反应活性比较高,容易被带活泼氢的物质开环,故人们又研究了乳酸开环环氧树脂改性水性聚氨酯的合成及性能[4]及硅烷偶联剂KH550开环环氧树脂改性水性聚氨酯涂料的合成及性能[5]。但是由二乙醇胺开环环氧树脂,同时控制其开环率,并将所制得的端羟基环氧树脂用来合成水性聚氨酯还鲜有报导。 二乙醇胺含有1个仲氨基和2个羟基,而且仲氨基反应活性比较高。仲氨基可以

无溶剂聚氨酯胶粘剂的研究报告

无溶剂聚氨酯胶粘剂的研究报告 张彪,纪学顺,李俊梅,许戈文 (安徽大学化学化工学院,安徽省绿色高分子材料重点实验室,合肥230039) 环保型聚氨酯胶粘剂主要包括水性聚氨酯胶粘剂、无溶剂聚氨酯胶粘剂、醇溶性聚氨酯胶粘剂等。 1 水性聚氨酯胶粘剂 水性聚氨酯胶粘剂是指聚氨酯溶于水或分散于水中而形成的胶粘剂,也称为水系聚氨酯或水基聚氨酯。依其外观和粒径可将水性聚氨酯分为三类,见表1。 习惯上后两类在有关文献资料中又统称为聚氨酯乳液或聚氨酯分散体,区分并不严格。实际应用中,水性聚氨酯以聚氨酯乳液或分散体居多,水溶液少。水性聚氨酯以水为基本介质,具有不燃、气味小、不污染环境、节能、操作加工方便等优点,已受到人们的重视,对水性聚氨酯的研究非常活跃。近年来,科研人员对水性聚氨酯胶粘剂干燥速度慢、拉力机测试得出其初粘性低、对非极性基材湿润性差、耐水性不佳、耐热性不高等问题进行大量的研究,提出了一系列改进措施,如:水性聚氨酯本身含有亲水性基团,要使其耐水性得到提高,就应在保证乳液稳定性的前提下,尽可能降低亲水性基团的含量。对于提高水性聚氨酯性能的研究主要集中在改性上,有交联改性、共混改性、共聚改性和纳米改性等。 (1) 交联改性 交联是提高水性聚氨酯性能的有效方法,可提高胶膜的耐水性、耐热性和粘接强度。交联分为内交联和外交联。内交联是指在合成时引入交联剂。如采用部分三官能团的多元醇或异氰酸酯、引入胺基或环氧基团、封闭型异氰酸酯乳液、多官能团交联剂等都可制得内交联水性聚氨酯。内交联方法的缺点是预聚体黏度很大,难以乳化。外交联法即是在胶水使用前添加交联剂,在成膜过程或成膜之后,加热产生化学反应,形成交联的胶膜。与内交联相比,所得乳液性能好,其缺点是为双组分体系,没有单组分使用方便。外交联可用甲醛、三聚氰胺-甲醛树脂、环氧化合物作交联剂,一般在120~180℃的高温下进行交联反应。也可以氮丙啶、碳化二亚胺、多异氰酸酯、金属盐类化合物为交联剂,在常温下就可以反应,羧基可以使氮丙啶开环发生交联反应,但是氮丙啶挥发性较强,刺激性强,对呼吸系统有一定的毒性,不利于工人的职业健康。 (2) 共混改性

水性聚氨酯的制备及改性方法

聚氨基甲酸酯(polyurethane),简称聚氨酯(PU),是分子结构中含有重复氨基甲酸酯(-NHCOO-)结构的高分子材料的总称。聚氨酯一般由二异氰酸酯和二元醇或多元醇为基本原料经加聚反应而成,根据原料的官能团数不同,可制成线形或体形结构的聚合物,其性能也有差异。聚氨酯具有良好的力学性能、粘结性能及耐磨性等,在各领域得到了广发应用。 由于溶剂型聚氨酯的溶剂为有机物,具有挥发性,不仅污染环境,而且对人体有害。在人们日益重视环境保护的今天以及环保法规的确立,溶剂型涂料中的有机化合物的排放量受到了严格的控制,因此,开发污染小的水性涂料已成为研究的主要方向。水性聚氨酯(WPU)具有优异的物理机械性能,其不含或含有少量可挥发性有机物,生产施工安全,对环境及人体基本无害,符合环保要求。其生产方法分为外乳化法和内乳化法,外乳化法又称强制乳化法,由使用这种方法得到的乳液稳定性较差,所以使用较少。目前使用较多的是内乳化法,也称自乳化法,即在聚氨酯分子链上引入一些亲水性基团,使聚氨酯分子具有一定的亲水性,然后在高速分散下,凭借这些亲水基团使其自发地分散于水中,从而得到WPU。 然而,亲水基团的引入在提高聚氨酯亲水性的同时却降低了它的耐水性和拒油性。为了改善其耐水性和拒油性,通常是将强疏水性链段引入聚氨酯结构之中。有机硅、有机氟由于其表面能低和热稳定性好受到人们的重视,已经得到了广泛应用。同时利用纳米材料来提高涂膜的光学、热学和力学性能。纳米改性WPU 完美地结合了无机物的刚性、尺寸稳定性、热稳定性及WPU的韧性、易加工性,纳米改性WPU为涂料向高性能化和多功能化提供了崭新的手段和途径,是最有前途的现代涂料研究品种之一。[1] 1.2 水性聚氨酯的基本特征及发展历史 1937年德国的Otto Bayer博士首次将异氰酸酯用于聚氨酯的合成。直到1943年德国科学家Schlack在乳化剂或保护胶体存在的情况下,将二异氰酸酯在水中乳化并在强烈搅拌下加入二胺,首次成功制备了水性聚氨酯。1975年研究者们向聚氨酯分子链中引入亲水成分,从而提高了水性聚氨酯的乳液稳定性和涂膜性能,其应用领域也随之拓广。进入21世纪以来,随着水性聚氨酯乳液应用范围的进一步拓宽,世界范围内日益高涨的环保要求,进一步加快了水性聚氨酯工业发展的步伐。[2] 相对于国外,国内的水性聚氨酯发展较晚。我国水性聚氨酯的研究开始于上世纪七十年代,1976年沈阳皮革研究所最早研制出用于皮革涂饰用的水性聚氨

水性聚氨酯基锂离子电池粘结剂的制备与性能

水性聚氨酯基锂离子电池粘结剂的制备与性能 XIE Gong-shan;WANG Zhi-cheng;YUAN Ai-ning;BAO Jun-jie;HUANG Yi-ping;XU Ge-wen 【摘要】以聚氧化丙烯二醇、异佛尔酮二异氰酸酯、三羟甲基丙烷聚乙二醇为主要原料制备水性聚氨酯(WPU),再以水性聚氨酯为粘结剂与磷酸铁锂(LiFePO4)和导电炭黑(SP)混合,得到正极膜片,通过循环、倍率等测试,研究以水性聚氨酯为粘结剂与以聚偏氟乙烯为粘结剂所组装的电池的电化学性能.研究表明,以水性聚氨酯为粘结剂按质量比m(LiFePO4):m(WPU):m(SP)=90:5:5调浆制备的正极膜所组装锂离子电池电化学性能最优,在0.2,1,2,3,5 C时,放电容量分别为162,131,105,90,69 mAh/g,以0.2 C倍率循环500次,容量保持率为78.8%. 【期刊名称】《应用化工》 【年(卷),期】2019(048)006 【总页数】5页(P1317-1320,1325) 【关键词】水性聚氨酯;锂离子电池;正极;粘结剂 【作者】XIE Gong-shan;WANG Zhi-cheng;YUAN Ai-ning;BAO Jun- jie;HUANG Yi-ping;XU Ge-wen 【作者单位】 【正文语种】中文 【中图分类】TQ15

环保型锂离子电池广泛应用于便携式设备,被认为是电动汽车、混合动力电动汽车和智能电网的下一代动力源[1]。锂离子电池电极主要材料是活性材料粉末、导电 剂和聚合物粘结剂[2]。粘结剂的性能对于电池的稳定性和循环倍率有非常大的影响。 目前,聚偏氟乙烯(PVDF)粘结剂被广泛用于商业电池,但存在价格昂贵、不易回收、需要使用挥发性有机溶剂进行加工等缺点[3]。目前作为LiFePO4正极的水性粘结剂如聚丙烯酸(PAA)及其中和盐(PAALi,PAANa和PAAK)[4-5]、壳聚糖及其衍生物(CTS,CCTS和CN-CCTS)[6-7]、羧甲基纤维素锂或钠(CMCLi,CMCNa)[8]、丁苯橡胶(SBR)[9-10]和聚四氟乙烯(PTFE)[11-12]在电池性能方面 都优于常规PVDF,电极的循环稳定性和电化学性能都有一定的改善,但是也都存在着一些不足,如CMCNa和PAA存在粘结强度不足、脆性大等问题,而壳聚糖的循环稳定性未能达到标准。关于水性聚氨酯(WPU)应用于锂离子电池粘结剂的 报道却很少。 本文将水性聚氨酯用作LiFePO4正极的水性粘结剂,用N-220乳液、导电剂和LiFePO4调配出不同比例的浆料拉膜,将组装好的电池进行一系列电化学测试, 并与以PVDF作粘结剂的电池进行比较。 1 实验部分 1.1 试剂与仪器 异佛尔酮二异氰酸酯(IPDI)、聚环氧丙烷二醇(N-220,Mn=2 000)、三羟甲基丙 烷聚乙二醇单甲醚(Ymer N-120,Mn=1 000)、1,4-丁二醇(BDO)均为工业纯;丙酮(Ac)、二月桂酸二丁基锡(T-12)、辛酸亚锡(T-9)、乙二胺(EDA)、N-甲基吡咯烷酮(NMP)均为分析纯;磷酸铁锂、羧甲基纤维素(CMC)、导电炭黑均为电池级。JJ-1搅拌器;Nexus-870红外光谱测试仪;TA-50差示扫描量热仪;449F3同步

新型聚氨酯材料的制备与性能研究

新型聚氨酯材料的制备与性能研究 一、引言 近年来,随着人们对环保材料和高性能材料需求的不断增加,新型聚氨酯材料成为研究的热点。本文将介绍新型聚氨酯材料的制备方法以及其性能研究进展。 二、聚氨酯材料的制备方法 聚氨酯材料的制备方法主要包括两步:原料选取和反应制备。原料选取主要涉及聚醚或聚酯的选择,可以根据所需应用的不同来选择不同的原料。反应制备步骤包括聚醚或聚酯与异氰酸酯之间的反应。在此反应过程中,可以引入交联剂以增加材料的强度和硬度。 三、聚氨酯材料的性能研究 1.力学性能 聚氨酯材料具有良好的力学性能,具有较高的强度和硬度。通过调整反应条件和原料比例,可以实现对聚氨酯材料力学性能的调控。研究表明,引入交联剂可以显著提高材料的力学性能。 2.热性能

聚氨酯材料具有较好的热稳定性和耐热性。研究表明,材料的 耐热性能与聚氨酯的结构密切相关。通过改变原料和反应条件, 可以获得具有不同耐热性能的聚氨酯材料。 3.光学性能 聚氨酯材料在光学方面具有广泛的应用潜力。研究表明,在聚 氨酯材料中引入不同含能基团或荧光染料,可以实现对材料光学 性能的调控。通过纳米材料的引入,还可以实现对聚氨酯材料的 透明度和折射率的调节。 四、聚氨酯材料的应用 1. 塑料工业 聚氨酯材料在塑料工业中具有广泛的应用前景。其优异的力学 性能和热稳定性使得聚氨酯材料可以用于制造高强度、高硬度和 耐高温塑料制品。 2. 涂料和胶粘剂 聚氨酯材料被广泛应用于涂料和胶粘剂领域。由于其优良的粘 附性和耐化学性,聚氨酯材料可以用于制造高性能涂料和胶粘剂,满足不同应用领域的需求。 3. 医疗器械

聚氨酯材料在医疗器械领域具有重要的应用价值。其良好的生 物相容性和可塑性使得聚氨酯材料可以用于制造人工关节、心脏 瓣膜等医疗器械,为医疗领域提供了可靠的解决方案。 五、聚氨酯材料的发展趋势 1. 绿色环保 随着环境保护意识的提高,绿色环保成为新型聚氨酯材料发展 的重要方向。研究人员正在寻找可替代传统原料的绿色原料,并 探索低能耗、低排放的制备方法。 2. 高性能 新型聚氨酯材料的研究主要致力于提升其力学性能、耐热性能 和光学性能。研究人员正在寻找能够提高材料性能的新型添加剂,并通过调控反应条件和原料比例来实现对材料性能的精确调控。 六、结论 新型聚氨酯材料的制备与性能研究是当前材料领域的热点之一。通过选择适当的原料和反应条件,可以制备出具有优异性能的聚 氨酯材料。聚氨酯材料具有广泛的应用前景,特别是在塑料工业、涂料和胶粘剂以及医疗器械领域。未来的研究将集中在绿色环保 和高性能方面,以满足人们对材料的不断增长的需求。

水性聚氨酯改性及工艺研究的开题报告

水性聚氨酯改性及工艺研究的开题报告 一、选题背景及研究意义 随着环境保护和健康意识的增强,水性聚氨酯作为一种环保型涂料 和粘合剂而得到了广泛应用。然而传统的水性聚氨酯在耐热性、耐水性、耐化学品性等方面存在一定的局限性,因此需要对其进行改性,以提高 其使用性能和适用范围。 本课题旨在对水性聚氨酯进行改性,探究不同改性方法对其性能的 影响,并优化制备工艺,以期提高改性水性聚氨酯的物理化学性能和应 用效果。 二、研究内容和方法 研究内容: 1. 对水性聚氨酯进行改性,探究改性对其性能的影响。 2. 优化改性水性聚氨酯的制备工艺 研究方法: 1. 通过引入具有特殊性能的官能团或添加剂等,对水性聚氨酯进行 改性。 2. 考察改性对水性聚氨酯的表观形态、流变性能、耐热性、耐水性、耐化学品性等性能的影响。 3. 优化改性水性聚氨酯制备工艺,包括改变反应条件,调整前驱体 配比,探究加入新型表面活性剂的可行性等。 三、预期研究结果 1. 分析不同改性方法对水性聚氨酯性能的影响,找到适合工业生产 的改性方法。 2. 优化改性水性聚氨酯的制备工艺,提高其加工性能和应用效果。

3. 探究加入新型表面活性剂的可行性,为进一步改进水性聚氨酯的性能奠定基础。 四、研究难点和解决方法 难点: 1. 水性聚氨酯的改性存在多种方法和途径,如何确定最适合的改性方法是本课题的难点之一。 2. 水性聚氨酯的制备工艺相对复杂,如何找到适合改性的工艺是一个困难的问题。 解决方法: 1. 对不同改性方法进行综合比较,从中找到最适合的改性方法。 2. 借助实验室设备优化工艺,并从工业应用的角度出发进行优化。 五、研究进度安排 第一年: 1. 进行水性聚氨酯改性方法的调研和初步实验。 2. 对改性水性聚氨酯的物理化学性能进行初步测试和分析。 第二年: 1. 确定最佳的改性方案和优化工艺。 2. 对优化后的改性水性聚氨酯进行进一步的物理化学性能测试。 第三年: 1. 探究新型表面活性剂的可行性,并进行实验验证。 2. 完成论文及相关学术交流。 六、参考文献

环氧树脂用KH550开环改性水性聚氨酯涂料的合成及性能研究

环氧树脂用KH550开环改性水性聚氨酯涂料的合成及性能研 究 黎兵;王焕;许戈文 【摘要】由于环氧树脂中环氧基团的存在,在合成环氧树脂改性水性聚氨酯预聚体和后扩链过程中,会消耗部分-NCO、胺类扩链剂,对整个合成的配方设计造成影响,重现性也差.通过KH550中的伯胺先打开环氧基团,然后改性的水性聚氨酯作为大分子扩链剂接到水性聚氨酯预聚体中,成功制备了稳定的水性聚氨酯乳液.通过傅里叶变换红外光谱和接触角测量仪对树脂的结构进行了表征.研究结果表明:KH550成功打开了环氧基团,并且树脂接上了有机硅类功能性材料,使得合成的树脂接触角大大提高. 【期刊名称】《涂料工业》 【年(卷),期】2010(040)003 【总页数】5页(P1-5) 【关键词】环氧树脂;KH550;改性;水性聚氨酯;性能 【作者】黎兵;王焕;许戈文 【作者单位】安徽大学化学化工学院,安徽省绿色高分子材料重点实验室,合 肥,230039;安徽大学化学化工学院,安徽省绿色高分子材料重点实验室,合 肥,230039;安徽大学化学化工学院,安徽省绿色高分子材料重点实验室,合 肥,230039 【正文语种】中文

【中图分类】TQ630.4 随着环保法规的逐渐加强,低VOC(甚至零VOC)、无毒、无污染的新材料水性聚氨酯越来越受人们的重视。水性聚氨酯广泛应用于粘接剂、涂料、纺织、印染、制革等工业领域。但未经改性的水性聚氨酯乳液存在耐水性差、机械强度不够等缺点,较大程度上限制了其应用领域。有机硅化合物是一种特殊高分子化合物,它们兼有无机化合物和有机化合物的特性,具有耐低温、耐老化、憎水、耐有机溶剂,耐辐射等许多优异性能,而且有机硅化合物还能赋予涂层杰出柔软性和爽滑性,有丝绸手感或蜡感。环氧树酯(EP)具有许多优良的性能、机械强度高,粘附力强,成型收缩率低,化学性能稳定。 目前,含有氨基的有机硅氧烷改性水性聚氨酯主要有两种方法,一种是在合成过程中将氨基硅油引入聚氨酯链段中,但由于氨基硅油突出的反应活性以及与聚氨酯溶解度的差异,所以聚合反应都需要在溶剂的存在下进行,存在环境污染问题,使它们的应用受到限制;另一种是在预聚体乳化的过程中扩链引入氨基硅油[1]。氨基硅油改性的水性聚氨酯能形成稳定的乳液,有利于实际的应用,所得涂膜耐水性、表面疏水性等性能都有明显提高,而材料的力学性能并没有太大改变。 由于环氧树脂中含有环氧基团,环氧基团活性较高,通过引入其他分子开环接入水性聚氨酯中,可以得到功能性三元体系的水性聚氨酯材料。本文中环氧树脂用伯胺开环,接入水性聚氨酯分子中,制备了不同系列稳定的水性聚氨酯乳液,讨论了环氧开环的机理,论述环氧用伯胺开环时温度的影响、亲水基团加入量的影响,并对胶膜接触角进行了研究。 1.1 实验原料及试剂 异佛尔酮二异氰酸酯(IPD I):工业级,德国Bayer公司;聚醚(N210):工业级,Mn=1 000,山东东大化学品公司;一缩二乙二醇(DEG):工业级,上海高桥化工厂;环氧树脂(E-51):工业级,合肥工业大学化工厂;硅烷偶联剂 KH550:工业级,南京裕德恒精细化

相关主题