搜档网
当前位置:搜档网 › 手机基带电路原理

手机基带电路原理

手机基带双处理器概念:数位讯号处理器+应用处理器

-.背景说明 早期手机的功能较为阳春,主要提供语音通话及文字短讯的传送,当时的基频零组件也较为单纯,主要含括有类比基频(Analog Baseband)、数位基频(Digital Baseband)、记忆体(Memory)、功率管理(Power Management)四大部分。但随着手机应用不断的扩充下,基频零组件数目也越来越多,多媒体处理器(Multimedia Coprocessor)提供和弦铃声、CMOS/CCD感光元件(CMOS/CCD Sensor)及影像处理器(Image Processor)提供照相功能等,手机基频零组件元件数随着手机应用功能扩充也不断的增加。 手机基频零组件数目,随着应用的扩充而不断增加,应用处理器的出现,形成手机基频双处理器的概念,此概念让数位讯号处理器负责语音讯号的处理,应用处理器负责影音应用的处理。 二、基频新架构:应用处理器概念 由于手机上影音功能不断的扩充,在影像方面,彩色萤幕的色阶越来越高,由早期的4096色阶到现在的262k色阶(实际为262,144色阶);在相机模组上,由早期搭载11万画素的CMOS/CCD相机模组,到现在百万画素以上的CMOS/CCD相机模组。而音乐方面,手机铃声的发展上,由16和弦、32和弦到64和弦,还能将录音的内容当作铃声,再来则是转为音乐的播放,支援MIDI、MP3形式的播放,还有强调立体声的喇叭。除了上述的影音功能,还有许多无线传输与应用,如:蓝芽传输、Wi-Fi、GPS及FM收音机纷纷加在手机上。 表一手机多媒体功能规格的演进 资料来源:工研院IEK(2005.02) 这些影音加在手机上,大量资料讯号的处理势必增加在基频上,在这样的趋势下,手机基频不但要处理既有的语音讯号,还要加入大量的资料讯号,对于原先的数位讯号处理器来说,无疑是一大负担。在影音发展的初期,简单的影音传送,资料的处理还是落在数位讯号处理器上,但随着影音规格不断提升,处理和弦铃声相关,必须多一颗和弦铃声IC(Melody IC),处理照相功能相关,必须再多一颗影像处理器(Image Processor),基频的零组件越加越多,所占的面积也越来越大。 为了整合这些影音元件,应用处理器(Application Processor;AP)的概念因应而生,让手机基本的语音讯号处理由原先的数位讯号处理器负责,而影音方面的资料处理就交由应用处理器负责。

手机电路原理,通俗易懂

第二部分原理篇 第一章手机的功能电路 ETACS、GSM蜂窝手机是一个工作在双工状态下的收发信机。一部移动电话包括无线接收机(Receiver)、发射机(Transmitter)、控制模块(Controller)及人机界面部分(Interface)和电源(Power Supply)。 数字手机从电路可分为,射频与逻辑音频电路两大部分。其中射频电路包含从天线到接收机的解调输出,与发射的I/Q调制到功率放大器输出的电路;逻辑音频包含从接收解调到,接收音频输出、发射话音拾取(送话器电路)到发射I/Q调制器及逻辑电路部分的中央处理单元、数字语音处理及各种存储器电路等。见图1-1所示 从印刷电路板的结构一般分为:逻辑系统、射频系统、电源系统,3个部分。在手机中,这3个部分相互配合,在逻辑控制系统统一指挥下,完成手机的各项功能。 图1-1手机的结构框图 注:双频手机的电路通常是增加一些DCS1800的电路,但其中相当一部分电路是DCS 与GSM通道公用的。 第二章射频系统 射频系统由射频接收和射频发射两部分组成。射频接收电路完成接收信号的滤波、信号放大、解调等功能;射频发射电路主要完成语音基带信号的调制、变频、功率放大等功能。手机要得到GSM系统的服务,首先必须有信号强度指示,能够进入GSM网络。手机电路中不管是射频接收系统还是射频发射系统出现故障,都能导致手机不能进入GSM网络。 对于目前市场上爱立信、三星系列的手机,当射频接收系统没有故障但射频发射系统有故障时,手机有信号强度值指示但不能入网;对于摩托罗拉、诺基亚等其他系列的手机,不管哪一部分有故障均不能入网,也没有信号强度值指示。当用手动搜索网络的方式搜索网络时,如能搜索到网络,说明射频接收部分是正常的;如果不能搜索到网络,首先可以确定射频接收部分有故障。 而射频电路则包含接收机射频处理、发射机射频处理和频率合成单元。 第一节接收机的电路结构 移动通信设备常采用超外差变频接收机,这是因为天线感应接收到的信号十分微弱,而鉴频器要求的输人信号电平较高,且需稳定。放大器的总增益一般需在120dB以上,这么大的放大量,要用多级调谐放大器且要稳定,实际上是很难办得到的,另外高频选频放大器的通带宽度太宽,当频率改变时,多级放大器的所有调谐回路必须跟着改变,而且要做到统一调谐,

手机基带设计小结2017

BB设计小结 一.基带芯片: 基带芯片可以分为数字和模拟两部分。 1.数字部分的设计要点概括如下: 1)注意所连接信号的电平电压值,这个电压值与芯片上其对应模块的供电电压相同,可以根据SPEC查出工作电压要求。当两个器件之间连接出现信号电平不匹配的问题时(比如一个芯片为2.8V,另一个为1.8V),可考虑在其间添加电平转换芯片。 2)知道常用的总线通信种类和连接方法,比如IIC、USB、SPI、UART、并口等,这些总线的连接方法和时序关系在所用芯片的SPEC中都会有详细的讲述。设计时需要特别注意。 3)BB电路数字部分使用最多的就是GPIO,设计前需要特别关注下GPIO的特性,比如是否带有内部上下拉电阻,输入输出口的状态等等。GPIO口常用作芯片的使能信号,如果使能信号为低电平有效,则一般选用内部带下拉的GPIO。 2.模拟部分的设计要点: 基带中常见的模拟信号有音频、ADC采样等。与数字电路用高低电平表征信号不同,模拟信号是连续的变化的,其对噪声很敏感,特别是在模拟信号本身较弱的情况下,轻微的噪声都会改变其信号的特征,所以在电子学中有信噪比这一指标,就是针对模拟信号而言的。在手机设计中要特别注意模拟信号的保护。 二.电源: 手机上电源部分一般有如下几个部分:CHARGER IC、LDO、DC-DC、CHARGE PUMP,其工作原理这里就不讲解了。设计时需要注意的一些事项: 1.当输入电压和输出电压值相差较大,且工作电流很大时,LDO的效率很低,选用LDO 不是一个很好的选择,这是可以考虑选用降压的DC-DC. 2.DC-DC需要外接电感,电感的充放电容易引入电磁干扰,一般选用带有磁屏蔽的电感。 3.保证电源输出电压“干净”,在电源输出网络上增加滤波电容 4.注意在芯片的电压引脚添加去耦电容,这个值一般为0.1uF、1uF,在一些供电电流比较大的电压接口,还需要添加2.2uF以上的大电容,作为电量的暂时储备。 5.慎用PWM控制方式,LCD背光驱动芯片的控制偏向使用数字脉冲调光方式。 三.各模块设计: 1.LCD接口: 常见的LCD接口有如下几种: 并口:8080并口(有WR,RD);事例D2000 6800并口(有RW,E);这种不太常见 串口:SPI; I2C;这两种方式的通信速率比较低,一般用于低端LCD上,事例D900。 RGB接口:SPI用于指令传输,RGB用于数据传输,VSYNC,HSYNC,DOTCLK,ENABLE为数据传输的同步信号。事例NEO。 LCD有两个电源接口,模拟电源VCC和接口/数字电源IOVCC, VCC用于LCD显示电路供电,电压值一般比较固定(否则显示不正常,升压电路工作异常),IOVCC为数字部分供电电压,其值需要根据所选平台的LCD接口电压来定。 LCD设计时需要根据其内部背光LED的连接方式选用合适的背光驱动, LED为串联方式,

手机供电电路与工作原理

手机供电电路结构和工作原理 一、电池脚的结构和功能。 目前手机电池脚有四脚和三脚两种:(如下图) 正温类负正温负 极度型极极度极 脚脚脚 (图一)(图二) 1、电池正极(VBATT)负责供电。 2、TEMP:电池温度检测该脚检测电池温度;有些机还参与开机,当用电池能开机,夹正负极不能开机时,应把该脚与负极相接。 3、电池类型检测脚(BSI)该脚检测电池是氢电或锂电,有些手机只 认一种电池就是因为该电路,但目前手机电池多为锂电,因此,该脚省去便为三脚。 4、电池负极(GND)即手机公共地。 二、开关机键: 开机触发电压约为2.8-3V(如下图)。 内圆接电池正极外圆接地;电压为0V。 电压为2.8-3V。 触发方式 ①高电平触发:开机键一端接VBAT,另一端接电源触发 脚。 (常用于:展讯、英飞凌、科胜讯芯片平台) ①低电平触发:开机键一端接地,另一端接电源触发脚。 (除以上三种芯片平台以外,基本上都采用低电平触发。如:MTK、AD、TI、飞利浦、杰尔等。) 三星、诺基亚、moto、索爱等都采用低电平触发。

三、手机由电池直接供电的电路。 电池电压一般直接供到电源集成块、充电集成块、功放、背光灯、振铃、振动等电路。在电池线上会并接有滤波电容、电感等元件。该电路常引起发射关机和漏电故障。 四、手机电源供电结构和工作原理。 目前市场上手机电源供电电路结构模式有三种; 1、 使用电源集成块(电源管理器)供电;(目前大部分手机都使用该电路供电) 2、 使用电源集成块(电源管理器)供电电路结构和工作原理:(如下图) 电池电压 逻辑电压(VDD) 复位信号(RST) 射频电压(VREF) VTCXO 26M 13M ON/OFF AFC 开机维持 关机检测 (电源管理器供电开机方框图) 1)该电路特点: 低电平触发电源集成块工作; 把若干个稳压器集为一个整体,使电路更加简单; 把音频集成块和电源集成块为一体。 2)该电路掌握重点: 电 源 管 理 器 CPU 26M 中频 分频 字库 暂存

基带电路原理图

FLASH电路 FLASH信号作用描述 数据总线:ED0-ED15,共16根数据线,用于传输数据。 地址总线:EA00-EA23,共24根地址线,用于存储单元寻址。控制总线: ERD:写控制信号; EWR:读控制信号; /WATCHODG:复位信号,用于FLASH的软件复位; /CE_F1、/CE_F2:FLASH存储区域选择信号; /ECS1_PSRAM:PSRAM片选信号; /ELB、/EUB:PSRAM存取区域选择信号; 电源供电信号:VMEM。

照相电路

主屏LCD显示电路 SIM卡电路

马达电路 PWM2_VIB_EN经过PMIC转换后变成马达的驱动信号VIB_DRV,R409为限流电阻,马达可以和键盘灯通过调整限流电阻R或者调整

占空比调整背光亮度一样调整马达的震感。马达电路上的二极管 D403是由于马达为线圈,运作时会产生反向电动势,若无二极管反 向电动势无法消耗,会影响马达的寿命,二极管可以在马达停震后 把反向电动势消耗掉而保护线圈。 MIC电路 MICBIASP和MICBIASN为MIC电路的正负两路偏置电压,一般为2.4V-2.7V左右的电压。C204,C205主要为滤除射 频信号的干扰。如果有GSM900MHZ的干扰则使用33PF的 电容,如果有DCS1800MHZ的干扰可以使用12PF的电容,如果有WIFI 2.4GHZ的干扰则使用8.2PF的电容。C206主 要是抑制共模信号。C201,C202为100NF电容,主要作用 为隔直通交,防止直流电使PA饱和,产生信号偏移,主要 滤除100HZ一下的电流。B201,B202为磁珠,主要滤除 高频部分的干扰。MIC偏置电流流向为从MICBIASP----

射频电路的设计原理及应用

射频电路的设计原理及应用 普通手机射频电路由接收通路、发射通路、本振电路三大电路组成。其主要负责接收信号解调;发射信息调制。早期手机通过超外差变频(手机有一级、二级混频和一 本、二本振电路),后才解调出接收基带信息;新型手机则直接解调出接收基带信息(零中频)。更有些手机则把频合、接收压控振荡器(RX—VCO)也都集成 在中频内部。 射频电路方框图 一、接收电路的结构和工作原理 接收时,天线把基站发送来电磁波转为微弱交流电流信号经滤波,高频放大后,送入中频内进行解调,得到接收基带信息(RXI-P、RXI-N、RXQ-P、RXQ-N);送到逻辑音频电路进一步处理。 1、该电路掌握重点 (1)、接收电路结构。 (2)、各元件的功能与作用。 (3)、接收信号流程。 2、电路分析 (1)、电路结构。 接收电路由天线、天线开关、滤波器、高放管(低噪声放大器)、中频集成块(接收解调器)等电路组成。早期手机有一级、二级混频电路,其目的把接收频率降低后再解调(如下图)。 接收电路方框图

(2)、各元件的功能与作用。 1)、手机天线: 结构:(如下图)由手机天线分外置和内置天线两种;由天线座、螺线管、塑料封套组成。 作用: a)、接收时把基站发送来电磁波转为微弱交流电流信号。 b)、发射时把功放放大后的交流电流转化为电磁波信号。 2)、天线开关: 结构:(如下图)手机天线开关(合路器、双工滤波器)由四个电子开关构成。 图一、图二 作用:其主要作用有两个: a)、完成接收和发射切换; b)、 完成900M/1800M信号接收切换。 逻辑电路根据手机工作状态分别送出控制信号(GSM-RX-EN;DCS- RX-EN;GSM-TX-EN;DCS- TX-EN),令各自通路导通,使接收和发射信号各走其道,互不干扰。 由于手机工作时接收和发射不能同时在一个时隙工作(即接收时不发射,发射时不接收)。因此后期新型手机把接收通路的两开关去掉,只留两个发射转换开关;接收切换任务交由高放管完成。 3)、滤波器: 结构:手机中有高频滤波器、中频滤波器。 作用:其主要作用:滤除其他无用信号,得到纯正接收信号。后期新型手机都为零中频手机;因此,手机中再没有中频滤波器。 4)、高放管(高频放大管、低噪声放大器): 结构:手机中高放管有两个:900M高放管、1800M高放管。都是三极管共发射极放大电路;后期新型手机把高放管集成在中频内部。

手机基本电路工作原理

第一章 第一节T18机型逻辑电路原理 T18是一款支持双卡单待,实现G网双号转换待机,可以自由选用号码拨打电话,电路采用MTK 6226方案平台。(图1) (图1) 由于T18是采用MTK方案,在电路上原理有很多是与前期MTK电路相似,在这里不再一一讲解,具体介绍一下双卡待机电路的原理。 1、双卡电路工作原理电路 T18的双卡待机是指由用户选择性进行手动进行切换两张不同的SIM卡,其与前期A280双卡双待不同的,T18只有一个射频一个基带电路,其双卡转换主要是由软件和SIM转换控制器来完成,具体电路见图2

(图2) 其工作原理: 当手动切换时,控制中心会发出一个SIM-SWITCH的转换开关指令给到U505转换芯片,经内部的电子开关把VSIM与VSIM1、VSIM2,IO-SIM与SIMDA1、SIMDA2,CLK-SIM与SIMCLK1、SIMCLK2,RST-SIM与SIMRST1、SIMRST2进行转换连接,实现控制SIM卡的数据总线来控制SIM卡的正常工作。 2、充电电路 当外部充电器接到DC 插孔时,CHANGE电源分三路提供,第一路经R12、R14分压取得ADC3-VCH充电检测信号,第二路提供给U400的第1脚,第三路提供给U401经R413到电池正极。 其工作原理:当CPU检测到连接充电模式时候,CPU会输送CHG-CNTL控制信号给电源管理模块U400,电源管理模块从2# GATEDRV输出控制信号,控制充电控制管的导通,充电电压将通过R413限流给电池正极充电,同时CPU通过提供的ADC0-、ADC1+电量反馈信号,经电源管理模块U400(4#)ISENSE检测实现对充电过程进行监控,经U400(6#)CHRDET送到CPU,当检测充电完成后,CPU 将撤销U400(5#)CHG-CNT的控制信号,从而导致充电管U401截止,停止充电。关机充电和开机充电原理相同,只是在关机状态下,CPU未执行其它程序,使手 机仍处于关机状态。如图3

手机基带坏了有什么现象-换一个手机基带多少钱

手机基带坏了有什么现象?换一个手机基带多少钱 手机基带坏了有什么现象手机基带损坏或导致手机无法接收信号,无法上网也无法接打电话。基带损坏后会影响您的正常使用。如果出现这种情况,建议携带相关产品前往售后服务中心进行刷入。 提示关机是因为基带问题,就相当于没插卡偶尔出现这个问题的话有可能是基带芯片出问题,也有可能是系统基带文件损坏。 刷机不能解决,那就是芯片的问题。 苹果基带坏了怎么办iPhone的信号是和基带直接相关连的。通常情况下,升级固件,基带也会跟着升级,而且基带升级是不可逆的,所以有锁设备在执行恢复、更新、平刷固件操作时需谨慎、以免升级后基带不能解锁。那么iphone基带坏了怎么办呢?接下来就让我们一起来了解下吧。 1、基带就是iPhone的通讯系统,是用来控制手机通讯的程序,控制电话通讯,WiFi无线通讯,还有蓝牙通讯。iPhone有相关的通讯硬件,是需要靠基带这个通讯系统来驱动的,有了正常工作的基带,才能打电话、收发短信、使用3G功能。 2、当然WIFI除外。基带版本可以从iphone中设置关于本机的调制解调器使用的版本号中查询到。iOS和基带相对独立,协同工作。基带升级后,很多软解就会失效,有锁版的iPhone便无法使用。而最严重的是,基带几乎无法降级。所以对于有锁版的手机来说,基带升级一定要慎重,一定要等破解后再升级。当然无锁版也要慎重对待基带升级。 3、触摸屏损坏是iphone的常见现象,因为表面是钢化玻璃材质的,比较脆,稍有不慎摔在地上,就会导致屏幕破损有裂痕。一般表面玻璃屏摔碎了,触摸还是能用。是因为表面的屏幕,俗称玻璃屏、触摸屏,是由一层玻璃屏和一个触摸屏组成的,它们两个是整体的不可拆分的,一般外部损坏碎裂的都是表面的玻璃,里面的触摸屏没有伤害到,触感就能正常使用,有的时候表面玻璃屏没有问题,里面触摸屏有裂痕,那么触感就会失灵。

智能手机基带处理器电路原理

智能手机基带处理器电路原理 在普通手机中,通常将MCU(Micro Control Unit,微控制电路)、DSP( (Digital Signal Processing,数字信号处理)、ASIC(Application Specific Integrated Circuit,专用集成电路)电路集成在一起,得到数字基带信号处理器;将射频接口电路、音频编译码电路及一些ADC(模拟至数字转换器)、DAC(数字至模拟转换器)电路集成在一起,得到模拟基带信号处理器。 在智能手机中,一般是将数字基带信号处理器和模拟基带信号处理器集成在一起,称为基带处理器。不论移动电话的基带电路如何变化,它都包MCU 电路(也称CPU 电路)、DSP电路、ASIC 电路、音频编译码电路、射频逻辑接口电路等最基本的电路。 我们可以这样理解智能手机的无线部分,我们将智能手机无线部分电路再分为两部分,一部分是射频电路,完成了信号从天线到基带信号的接收和发射处理;一部分是基带电路,完成了信号从基带信号到音频终端(听筒或送话器)的处理。这样看来,基带处理器的主要工作内容和认为就比较容易理解了。 以基带处理器电路PMB8875 为例,框图如图1所示。 图1 基带处理器电路PMB8875 框图 1、模拟基带电路

模拟基带信号处理器(ABB)又被称为话音基带信号转换器,包含手机中所有的ADC与DAC 变换器电路。 模拟基带信号处理器包含基带信号处理电路、话音基带信号处理电路(也称音频处理电路)、辅助变换器单元(也被称为辅助控制电路)。 (1)基带信号处理电路 基带信号处理电路将接收射频电路输出的接收机基带信号RXIQ 转换成数字接收基带信号,送到数字基带信号处理器DBB。 在发射方面,该电路将DBB 电路输出的数字发射基带信号转换成模拟的发射基带信号TXIQ,送到发射射频部分的IQ 调制器电路。 基带信号处理电路是用来处理接收、发射基带信号的,连接数字基带与射频电路——射频逻辑接口电路,在基带方面,通过基带串行接口连接到数字基带信号处理器;在射频方面,它通过分离或复合的IQ 信号接口连接到接收I/Q 解调与发射I/Q 调制电路。 接收基带信号处理框图如图2所示。 图2接收基带信号处理框图 发射基带信号处理框图如图3所示。 图3发射基带信号处理框图

数字基带传输系统的设计

数字基带传输系统的设计 题目:数字基带传输系统的设计 专业班级: 10级通信(2)班 姓名:邹策 学号: JC104128 指导教师:蒋芳 安徽大学江淮学院 二零一四年二月十一日

1.引言 1.1问题的提出和研究意义 1.2基带传输的理论 1.3数字基带传输的现状 2. 数字基带传输系统的简介 2.1数字基带信号 2.2数字基带传输 2.3数字基带传输系统 2.4数字基带传输系统的码型 3. MATLAB在基带传输系统中的应用 3.1 MATLAB简介 3.2 MATLAB在通信系统中的仿真 4. 数字基带传输系统的深入研究 4.1数字基带信号的传输和码间串扰 4.2无码间串扰的基带传输系统的 4.3部分影响和时域均衡 4.4扰码和解扰 4.5无码间串扰的基带传输系统的抗造性能 4.6眼图 5. 数字基带传输系统的设计和仿真 5.1信源的设计 5.2 发送滤波器和接收滤波器的设计

5.3 信道的设计 5.4 抽样判决器的设计 5.5 码间干扰及解决方案 5.6 基于MATLAB的基带传输系统的总模型的设计和仿真

1 引言 1.1问题的提出 20世纪60年代出现了数字传输技术,它是用数字信号来传递信息的,从此通信进入了数字的化时代。目前,通信网已实现数字化,在我国公众通信网中传输的信号主要是数字信号。数字通信技术的应用越来越广泛,例如数字移动通信、数字卫星通信、数字电视广播、数字光纤通信、数字微波通信、数字视频通信、多媒体通信等等。数字通信系统主要的两种通信模式,数字频带传输通信系统,数字基带传输通信系统。 1.2 研究的意义 实际中,基带传输的应用不像频带传输那么广泛,但对基带传输的研究也很重要。因为:一,数字基带系统的许多问题也是频带传输系统要注意的问题;二,利用对称电缆构成的近程数据通信系统广泛使用这种传输方式:三,任何一种采用线性调制的频带传输系统科等效为基带传输系统来研究。 1.3 国内外研究现状 目前,数字通信在卫星通信、光纤通信、移动通信等方面发展很快。由于基带传输系统在数字传输系统中有不可替代的作用,其应用范围也随着技术的发展渗入网络通信、卫星通信、手机通信、数字电视、数字电话等生活、科技的各方面,日益成为数字通信传输系统中的关键技术。

GSM手机设计

手机的硬件结构和软件体系 本文首先介绍了2.5代(2.5G)GSM(GPRS)手机的硬件结构和软件体系,重点讨论了其技术总体方案和实施方案,最后对其整机系统集成、FTA型号认证、工程化和产业化的步骤与措施进行了较深入地分析,旨在与我国同行一道,对如何尽快开发出具有完全知识自主产权的国产手机做一有益探讨。 【关键词】2.5G手机;整机设计 1 引言 自90年代初以来,移动通信技术和市场应用取得飞速发展和成功。截至1999年底,我国已有移动用户4300多万,预计每年以2000万左右的速度递增。面对如此大的市场商机,而真正具有芯片级、协议级知识自主产权的国产手机,还未出现,所有国产手机总和,其市场占有率也不足10%,且其手机定位也一般为中、低档产品。鉴于巨大的市场潜力,同时面对中国加入WTD的临近,我国政府加大了对国产手机市场扶持的力度,包括信息产业部在内的国家有关部门,对国产手机的关爱已达成共识,总政策方向为大力扶持、一路绿灯。 本论文旨在通过论述GSM手机整机设计方案,与国内同行相互交流、学习,尽快实现具有知识自主产权的国产手机的产业化。 2 2.5G GSM手机硬件结构 本项目集整机系统设计、基带芯片设计、软件开发于一体,是一项复杂的系统工程。同时移动通信技术本身发展非常迅速,作为一个以产业化为最终目标的项目,在总体方案的设计上要兼顾技术的先进性、生产的可行性以及最终产品的生产成本,使其达到一个最佳的组合。在遵循以上的原则下,我们提出了如下总体设计方案。 2.1 整机特征 ? GSM900MHz/DCS1800MHz Phase2+ ? GPRS Class12 ? 支持WAP1.2 ? 9.6/14.4K Data/Fax ? FR/EFR语音编码 ? 短消息服务 ? 支持STK(SIM Toolkit) ? 3.6V电池,锂离子或锂集合物电池 ? 功率级别:4 ? 待机时间:120小时(900mAh) ? 平均无故障率时间:>50000小时 ? 重量:<120克 ? 体积:<110CC ? 温度:-20-+55℃ ? 振动要求:10-20Hz ASD:0.05g2/Hz 20-150Hi ASD:0.005g2/Hz(20Hz)其它:-3dB/倍频程 2.2 GSM手机电路原理

手机各电路原理_射频电路_内容详细,不看后悔

本次培训内容:
手机各级电路原理及故障检修
1,基带电路
发话电路、受话电路、蜂鸣电路、耳机电路、 背光电路、马达电路、按键电路、充电电路、开 关机电路、摄像电路、蓝牙电路、FM电路、显示 电路、SIM卡电路、TF卡电路
2,射频电路
接收电路、发射电路

一、手机通用的接收与发射流程
天线:ANT 声表面滤波器:SAWfilter 低噪声放大器:LNA 功放:PA

手机通用的接收与发射流程
1、信号接收流程: 天线接收——天线匹配电路——双工器——滤波(声 表面滤波器SAWfilter)——放大(低噪声放大器 LNA)——RX_VCO混频(混频器Mixer)——放大 (可编程增益放大器PGA)——滤波——IQ解调(IQ 调制器)——(进入基带部分)GMSK解调——信道均 衡——解密——去交织——语音解码——滤波—— DAC——放大——话音输出。

手机通用的接收与发射流程
2、信号发射流程: 话音采集——放大——ADC——滤波——语音编
码——交织——加密——信道均衡——GMSK调制—— (进入射频部分)IQ调制(IQ调制器)——滤波—— 鉴相鉴频(鉴相鉴频器)——滤波——TX_VCO混频 (混频器Mixer)——功率放大(PA)——双工器—— 天线匹配电路——天线发射。

手机通用的接收与发射流程
3、射频电路原理框图:

二、射频电路的主要元件及工作原理
天线:ANT 声表面滤波器:SAWfilter 低噪声放大器:LNA 功放:PA

数字基带信号传输码型发生器的设计

数字基带信号发生器的设计 摘要 设计一个基于FPGA的数字基带信号发生器,首先简要介绍了单极性非归零码、双极性非归零码、单极性归零码、双极性归零码、差分码、交替极性码、分相码、传号反转码等基带码的基本特点,然后根据码型转换原理设计发生器模块。由于EDA技术可以简化电路,集成多块芯片,减小电路体积,所以程序采用VHDL进行描述,并用quartusII软件仿真实现所有功能,最后将功能集成到FPGA上,并设计电路、制作实物,产生的基带码稳定、可靠,可满足不同数字基带系统传输需要。 关键词:数字基带码;EDA;VHDL;PCB;FPGA

Abstract FPGA-based design a letter-number generator with,first of all we briefly introduce unipolar NRZ code,bipolar NRZ,Unipolar zero yards code,bipolar zero yards code,differential code, alternating polarity code,phase code,code-reversal,and third-order high-density bipolar codes etc.Then we design generator module under the code-conversion design principles.As EDA technology can make circuit simple,integrate multiple chips,reduce the size of circuits,so we take advantage of VHDL to describe it and use quartusII software to simulate.Finally we integrate all the fetures into the FPGA,and design circuit to generate stable and reliable base-band code to meet the different base-band digital transmission system needs. Key words:digital base-band code;EDA;VHDL;PCB;FPGA

Android手机系统中基带NV数据保存方案

Android手机系统中基带NV数据保存方案 摘要: 设计了一种Android手机系统框架下的基带NV数据保存方案。主要包括方案的总体框架、AP侧数据接收和保存流程、CP侧NV数据发送流程、扩展的IIC通信机制的设计,以及方案验证与结果分析等。在由Cortex A9核心的四核AP芯片和ARM9核心的单核CP芯片组成的手机硬件系统上实现和测试了该方案。验证结果表明,该基带NV数据导出方案具有良好的可靠性和可行性,可以应用于实际的商业产品中。关键词: Android系统;基带NV数据;IIC通信;内部处理器通信;数据包 当前的Android手机设计中通常将应用子系统(AP)和通信子系统(CP)分离。比较典型的情况是应用子系统运行Android操作系统,通信子系统运行Nucleus操作系统,两者相对独立,通过一定的接口进行通信[1]。在手机运行过程中,通信子系统(即基带子系统(CP))会产生一些需要动态更新的数据,譬如手机系统数据、TD参数、GSM参数、音频校准数据等[2-3]。每台手机的这些数据都不尽相同。一般这些数据通过非失忆性介质(即NV(NonVolatile)模块)来进行保存和管理。因此,需要设计一种机制将CP侧的NV数据保存下来,以供基带子系统启动或运行时使用。本文设计了一种双硬件处理器环境下将基带NV数据保存到手机文件系统(Flash)中的方案。其中,基带系统运行在ARM9核心的单核CP 芯片上,应用系统运行在Cortex A9核心的四核AP芯片上。两者通过IIC机制进行通信和数据共享。本文的设计主要包括AP侧软件模块设计、CP侧NV数据发送流程设计以及IIC通信机制设计。在实际的手机产品中应用本文的设计,进行大数据量、长时间基带NV数据保存测试,并进行可靠性分析,得到了良好的实验结果,证明了本设计的可靠性和可行性。1 系统方案设计1.1 系统总体框架设计基带NV数据保存方案包括AP侧软件模块、CP侧数据发送流程以及IIC通信机制三个方面,。 其中,CP侧主要由NV数据产生模块(NVM Process)和CP侧IIC驱动组成;AP侧主要由数据接收模块(NVM Driver)、NV数据守护进程(NVM Daemon)和AP侧IIC驱动组成。在CP侧,Nucleus操作系统的NV数据进程(NVM Process)负责产生基带的NV数据,经过设备抽象层(DAI)转发后,基带NV数据被CP侧IIC驱动写入IIC缓存Buffer中。在AP侧,对应的IIC驱动将从IIC缓存Buffer中读取到的NV数据上报给AP侧数据接收进程(NVM Driver)。最后,AP侧NVM守护进程收到数据接收进程上报的数据,进行数据包的解析,并将其保存在Flash设备中。 IIC通信机制包括物理上的IIC连接(IIC TX、RX、CTS、RTS)和公共的函数接口(API),AP侧和CP侧IIC驱动通过调用这些API即可完成相互通信和数据传输,从而达到两个系统命令和数据交互的目的。1.2 AP侧软件模块设计 1.2.1 AP侧数据接收流程NV数据采用包的形式,数据包的解析由守护进程NVM Daemon来完成。因此底层的驱动程序NVM Driver和IIC Driver不关心数据的具体格式,只关注数据的接收和传送过程[4]。,AP 侧数据接收流程如下: (1)NVM Daemon程序启动成功之后,首先打开NVM驱动设备,若打开成功,则返回设备号,否则打印错误信息并退出。 (2)NVM Daemon通过read系统调用从NVM Driver获取更新后的NV数据。NVM Driver从IIC通道读取基带更新数据时,会首先判断通道中是否有可读数据,如果没有,则进程进入睡眠,等待唤醒条件到来,唤醒条件为通道中有可读数据;如通道中有可读数据,则直接读取,并将数据送往NVM Daemon。CP侧不定时更新数据,并将数据送往IIC通道。 (3)从内核空间得到的基带数据是以包的形式封装的,所以接下来NVM Daemon要做的工作就是解析包头,从包中取出有效数据,并且进行NV数据的保存工作,这一步很重要,将在下节详细介绍。 (4)NVM Daemon将NV数据完整地保存到文件系统后,

Wi-Fi基带芯片和Wi-Fi无线网卡设计方案

Wi-Fi基带芯片和Wi-Fi无线网卡设计方案 作者:苏州灵芯集成有限公司肖宛昂,张正浪,方治,鄂松昙,石寅 1999年工业界成立了Wi-Fi联盟,致力解决符合802.11标准的产品的生产和设备兼容性问题。 Wi-Fi不仅应用于目前销售的几乎每一部智能手机中,而且几乎应用于所有的掌上游戏机、 Wi-Fi芯片组。因此,市场研究公司In-Stat预测2012年Wi-Fi芯片组的年出货量将超过10亿套。 目前Wi-Fi芯片的发展趋势除了最高速率54Mbps的IEEE802.11b/g基带芯片外,有下面几种发展趋势: 趋势一:高速率方向发展。这类芯片支持最低支持1x1的802.11n标准,最高速率可达150Mbps。采用MIMO技术的802.11n芯片最高速率达300Mbps或以上,主要用于高清图像的传输;值得关注的是,高速率芯片的支持标准将从IEEE802.11n过渡到IEEE 802.11ac(6GHz以下频段,最大速率可达1Gbps)和IEEE802.11ad(60GHz工作频段,最大速率可达7Gbps)。 趋势二:低功耗、低速率方向发展。这类芯片强调低功耗,对速率要求低,最大速率可以为 2Mbps,只需支持IEEE802.11b 趋势三:和其他网络的融合,如和3G以及未来4G网络的融合。 Wi-Fi基带芯片的架构根据是否采用处理器来区分的话,一般有以下几种: 第一种为全硬件型,不采用处理器,整个芯片的MAC(Medium Access Control,媒体访问控制)层和Phy(Physical layer,物理层)全部由硬件逻辑实现。 第二种为半软半硬型,在MAC层采用处理器,一般为MIPS内核,也有少部分采用 内核;物理层采用硬件逻辑实现。 MAC和Phy全部由软件实现。 这几种类型各有优缺点,市面上都有。一般来说,第一种全硬件型设计难度相对大些,处理速度相对快些。而且因为没有处理器,成本会相对低些。第三种全软件型,可以灵活配置和升级,随着DSP的高速、小面积和低功耗发展,全软件型设计的比重会逐渐增加。 SCI基带芯片介绍

射频电路结构和工作原理

射频电路结构和工作原理 一、射频电路组成和特点: 普通手机射频电路由接收通路、发射通路、本振电路三大电路组成。其主要负责接收信号解调;发射信息调制。早期手机通过超外差变频(手机有一级、二级混频和一本、二本振电路),后才解调出接收基带信息;新型手机则直接解调出接收基带信息(零中频)。更有些手机则把频合、接收压控振荡器(RX —VCO )也都集成在中频内部。 RXI-P RXI-N 900M RXQ-P RXQ-N 1800M VCC 频率取样 13M CLK 功 DAT 率 RST 样 取 发射频率取样 信 号 TXI-P TXI-N 射频电压 TXQ-P TXQ-N 等级 (射频电路方框图) 1、接收电路的结构和工作原理: 接收时,天线把基站发送来电磁波转为微弱交流电流信号经滤波,高频放大后,送入中频内进行解调,得到接收基带信息(RXI-P 、RXI-N 、RXQ-P 、RXQ-N );送到逻辑音频电路进一步处理。 1、 该电路掌握重点: (1)、接收电路结构。 (2)、各元件的功能与作用。 (3)、接收信号流程。 电路分析: 天 线 开 关 接收解调 频 率 合 成 R X VCO 鉴相 调制 功 率 放大器 TX VCO 功控 分频 发射互感器

(1)、电路结构。 接收电路由天线、天线开关、滤波器、高放管(低噪声放大器)、中频集成块(接收解调器)等电路组成。早期手机有一级、二级混频电路,其目的把接收频率降低后再解调(如下图)。 900M 1800M SYN-VCC 频率取样 13M SYN-CLK SYN- DAT SYN- RST (接收电路方框图) (2)、各元件的功能与作用。 1)、手机天线: 结构:(如下图) 由手机天线分外置和内置天线两种;由天线座、螺线管、塑料封套组成。 塑料封套 螺线管 天线座 微带电感 (外置天线) (内置天线) 作用: a)、接收时把基站发送来电磁波转为微弱交流电流信号。 b)、发射时把功放放大后的交流电流转化为电磁波信号。 2)、天线开关: 结构:(如下图) 手机天线开关(合路器、双工滤波器)由四个电子开关构成。 900M 收 1800M 收 GSM 收 PCS 收 天 线 开 关 接收解调 频 率 合 成 R X VCO O CPU (音频) 分频 数字 处理 音频放大

基频(基带)(BB)

基频/基带 基频(Radical frequency) 基音是每个乐音中频率最低的纯音,其强度最大,基音的频率即为基频,决定整个音的音高。 基频 〖fundamentalfrequency〗 自由振荡系统的最低振荡频率 复合波中的最低频率 〖fundamental〗∶复合振动或波形(如声波)的谐波成分,它具有最低频率,且通常具有最大振幅——亦称“基谐波” 电机中的基频 电机在额定扭矩时的频率。 基频(Baseband),又叫基带。 在大部分手机中,基频都是最昂贵的半导体元件,随着TFT-LCD显示屏价格的下降,基频正在成为手机中占成本比例最高的元件。不仅如此,基频还决定了手机平台的选择,很大程度上决定了手机的功能和性能。毫无疑问,基频是手机的心脏。 基频市场的格局正在变化。2G市场,尤其是中国市场,联发科的出现导致基频市场发生了大幅度的变化。以低价、高集成度、丰富的功能、强大的性能、完善的服务,联发科席卷大陆手机市场。这家神秘低调的台湾企业成为所有人关注的焦点。2 005年中国手机销量大约为1.1亿部,包括走私水货和黑手机。进口品牌(含走私手机)市场占有率为65%。联发科2005年出货量大约为3000万片,其中大陆市场占95%,达2850万片,在国产手机基频市场上市场占有率高达70%。其余比较大的有飞利浦。 联发科从2004年的13%增长4倍多,达到70%,出货量从340万片增长到30 00万片,堪称奇迹。而2006年如果不出现意外,这个格局基本保持不变,联发科还将维持这么高的市场占有率。联发科2006年推出的MT6228和MT6229 将延续MT 6218和MT6219的神话。 受联发科影响最大的有ADI、展讯。ADI对亚洲市场全力以赴,但是由于软件合作依靠TTPCOM,开发周期长,技术难度高且成本高,受冲击最大。连ADI忠实客户LG都投靠联发科旗下。展讯则主打国产手机厂家,和联发科竞争激烈,不得已被迫降价。飞利浦的衰退则是因为采用飞利浦平台的手机设计公司中电赛龙出货量大幅度下降导致,而原因和中电赛龙内部有关。同时飞利浦集团本身对半导体事业部重视程度不高。德州仪器基本不受冲击,因为德州仪器定位高端产品,特别是智能手机。SKYWORKS得到中国最大的手机设计公司德信无线的支持,市场占有率比较稳定。中国3G方面则扑朔迷离,有4-5家公司专注于TD-SCDMA基频的开发。尽管TD-SCDMA吸引了越来越多公司的兴趣,但是它的风险仍然很高。TD-SCDMA的成熟程度,运营商的支持力度这些都蕴含巨大的变数。相信任何一家运营商都渴望建设成

手机供电电路与工作原理

手机供电电路与工作原 理

手机供电电路结构和工作原理 一、电池脚的结构和功能。 目前手机电池脚有四脚和三脚两种:(如下图) 正温类负正温负 极度型极极度极 脚脚脚 (图一)(图二) 1、电池正极(VBATT)负责供电。 2、电池温度检测脚(BTEMP)该脚检测电池温度;有些机还参与开 机,当用电池能开机,夹正负极不能开机时,应把该脚与负极相接。 3、电池类型检测脚(BSI)该脚检测电池是氢电或锂电,有些手机只 认一种电池就是因为该电路,但目前手机电池多为锂电,因此,该脚省去便为三脚。 4、电池负极(GND)即手机公共地。 二、开关机键: 主要用于触发电源电路工作。电源电路触发方式有二种:高电平触发和低电平触发。一般说,开机键两端中有一端与地相通的为低电平触发,(大部分手机都使用该触发方式)另为高电平触发。开机触发电压约为2.8-3V(如下图)。 外圆接地;电压为0V。 电压为2.8-3V。 三、手机由电池直接供电的电路。

电池电压一般直接供到电源集成块、充电集成块、功放、背光灯、振铃、振动等电路。在电池线上会并接有滤波电容、电感等元件。该电路常引起发射关机和漏电故障。 四、手机电源供电结构和工作原理。 目前市场上手机电源供电电路结构模式有三种; 1、使用电源集成块(电源管理器)供电;(目前大部分手机都使用该 电路供电) 2、(选学) 使用分立供电管供电;(如:三星T508等等) 3、(选学)摩托罗拉专用供电电路。(用电源集成块提供逻辑供电, 用中频集成块和外围供电管提供射频供电) 无论采用何种供电模式,只是产生电压方式不同,其工作原理都一样的。 1、使用电源集成块(电源管理器)供电电路结构和工作原理:(如下图) (电源管理器供电开机方框图)

MTK平台发展及手机基带芯片功能介绍

MTK平台发展及手机基带芯片功能介绍: MT6205、MT6217、MT6218、MT6219、MT6223、MT6225、MT6226、MT6227、MT6228、MT6229、MT6230、MT6235、MT6238、MT6239均为基带芯片,所以芯片均采用ARM7的核。 MT6205为最早的方案,只有GSM的基本功能,不支持GPRS、WAP、MP3等功能。(2003年MP) MT6218为在MT6205基础上增加GPRS、WAP、MP3功能。MT6217为MT6218的cost down方案,与MT6128 PIN TO PIN,只是软件不同而已,另外MT6217支持16bit数据。(2004年MP) MT6219为MT6218上增加内置AIT的1.3M camera处理IC,增加MP4功能。8bit数据。 MT6223为MTK的低端处理器,其中的C版本可以软件支持10万像素的sensor,D版本则没有camera接口。 MT6225内置0.3M camera处理IC。 MT6226为MT6219 cost down产品,内置0.3M camera处理IC,支持GPRS、WAP、MP3、MP4等,内部配置比MT6219优化及改善,比如配蓝牙是可用很便宜的芯片CSR的BC03模块USD3即可支持数据传输(如听立体声MP3等)功能。MT6226M为MT6226高配置设计,内置的是1.3M camera处理IC。(2006年MP) MT6227: 与MT6226基本一样,PIN TO PIN,只是内置的是2.0M camera处理IC。 MT6228: 比MT6227增加TV OUT功能,内置3.0M camera处理IC,支持QVGA显示屏。6228的性能主要体现在104mhz 上,它的处理速度很快,另外他的mp4编解码已经达到了专业水平cif/vga MT6229: 在6228的基础上多了个EDGE GPRS功能,其他的一样。(EDGE, VoIP) 3M ARM 7 + DSP ( 104 Mhz) + EDGE GPRS + ALL Features of MT6228 MT6230: 是6229的CostDown版本,与MT6229基本一样,只是内置了1.3M Camera。(EDGE, VoIP) 1.3M ARM 7 + DSP ( 104 Mhz) + EDGE GPRS + ALL Features of MT6228 MT6235: ARM9内核,MT6225的升级平台,和MT6223一样集成了PMU,且对GPS有很好的支持,208M system clock,TVout,EDGE,mp3硬解码,mp4软解码,但是效果很好,200M sensor。 MT6238内置3.0M camera处理IC。 MT6239内置5.0M camera处理IC。 从MT6226后软件均可支持网络摄像头功能,也就是说你的机子可以用于QQ视频。 手机摄像头常用蕊片有OV, SET , 格科威, 比亚迪, 格科威常用型号;0307 0.3M 0317 0.3M, OV系列:常用OV7670,OV7680,OV9650 OV6650 Color 0.1M Digital .1/6 数码信号 OV6630 Color 0.1M Digital .1/3 数码 OV6620 BW 0.1M Digital .1/3 数码 OV7610B Color 0.3M Digital .1/3 数码 OV7620B Color 0.3M Digital .1/3 数码 OV7120B BW 0.3M Digital .1/3 数码 OV7121B BW 0.3M Digital .1/3 数码 OV7640A Color 0.3M Digital .1/4 数码 OV7141B BW 0.3M Digital .1/4 数码 OV5116 BW 0.1M Analog .1/3 模拟信号 OV7910N Color 0.3M Analog .1/3 模拟 OV7910P Color 0.3M Analog .1/3 模拟 OV7930P Color 0.3M Analog .1/3 模拟 OV7930N Color 0.3M Analog .1/3 模拟

相关主题