搜档网
当前位置:搜档网 › 从智慧工厂到智能制造

从智慧工厂到智能制造

数字制造VS智能制造

数字制造VS智能制造 2014年2月,美国国防部牵头成立了“数字制造与设计创新机构”(下简称“数字制造”,Digital Manufacturing)。2014年12月,美国能源部也宣布牵头筹建“清洁能源制造创新机构之智能制造”(下简称“智能制造”,Smart Manufacturing)。数字制造和智能制造两个机构将不可避免地研究各类智能制造技术,那么两个机构如何分工,各自研究领域的主要区别在哪里?美国先进制造国家项目办公室(AMNPO)从几个方面给出了答案。 一、机构的目标 数字制造机构:在整个供应链中利用增强的、可互操作的信息技术系统,全面改进产品的设计和制造过程。专注:将来自于设计、生产和产品使用中的数据进行综合并加以运用,减少制造周期和成本;将制造过程全数字化,加强产品全寿命周期的建模与先进分析工具,提升产品性能、工艺效率和企业绩效。各个工业部门实现全方位成本降低。 智能制造机构:从实时能量管理、能源生产率和过程能量效率的角度,降低制造成本。机构将建立一个由互联数据驱动的工艺平台,平台将使用创新的建模与仿真手段和先进的传感与控制技术。专注:在整个生产运行中将效率信息实时集成,重点是将能量和材料使用降到最低;特别面向能量密集型的制造部门。

美国提出的“智能制造”概念 二、机构开发的核心技术 数字制造机构:通过基于计算机的集成系统(由仿真、三维可视化、分析学和各类协同工具组成),将设计、制造、保障和报废系统的要求进行连接,完善成熟整条“数字线”。在实施设计时,综合利用智能传感器、控制器和软件来提升保障性,同时考虑系统的安全性。对于传感器来说,机构主要研究使用现有传感器来优化产品和工艺操作,并为未来传感器的开发提供需求输入。

什么是智能制造,什么是智慧工厂

智能制造 什么是智能制造 智能制造,源于人工能的研究。一般认为能是知识和力的总和,前者是智能的基础,后者是 指获取和运用知识求解的能力。智能制造应当包含能制造技术和,能制造系统不仅能够在实 践中不断地充实知识库,而且还具有自学习功能,还有搜集与理解环境信息和自身的信息, 并进行分析判断和规划自身行为的能力。 一、智能制造的制造原理 从智能制造系统的本质特征出发,在分布式制造网络环境中,根据分布式集成的基本思想, 应用分布式人工智能中多Agent系统的理论与方法,实现制造单元的柔性智能化与基于网络 的制造系统柔性智能化集成。根据分布系统的同构特征,在智能制造系统的一种局域实现形 式基础上,实际也反映了基于Internet的全球制造网络环境下智能制造系统的实现模式。 关注微信公众号“找方案”,即可阅读并下载各行业IT解决方案。 二、智能制造系统 智能制造系统是一种由智能机器和人类专家共同组成的人机一体化系统,它突出了在制造诸 环节中,以一种高度柔性与集成的方式,借助计算机模拟的人类专家的智能活动,进行分析、判断、推理、构思和决策,取代或延伸制造环境中人的部分脑力劳动,同时,收集、存储、 完善、共享、继承和发展人类专家的制造智能。由于这种制造模式,突出了知识在制造活动 中的价值地位,而知识经济又是继工业经济后的主体经济形式,所以智能制造就成为影响未 来经济发展过程的制造业的重要生产模式。智能制造系统是智能技术集成应用的环境,也是 智能制造模式展现的载体。 一般而言,在概念上认为是一个复杂的相互关联的子系统的整体集成,从制造系统的功能角度,可将智能制造系统细分为设计、计划、生产和系统活动四个子系统。在设计子系统中, 智能制定突出了产品的概念设计过程中消费需求的影响;功能设计关注了产品可制造性、可 装配性和可维护及保障性。另外,模拟测试也广泛应用智能技术。在计划子系统中,数据库 构造将从简单信息型发展到知识密集型。在排序和管理中,模糊推理等多类的将集成应用; 智能制造的生产系统将是自治或半自治系统。在监测生产过程、生产状态获取和故障诊断、 检验装配中,将广泛应用智能技术;从系统活动角度,神经网络技术在系统控制中已开始应

联宝从传统工厂到智能制造的探索

联宝从传统工厂到智能制造的探索 在信息化和制造融合大潮下,联想在IT信息建设,包括品牌建设、异地协同研发建设,以及制造上自动化和信息化结合的建设方面有不少突破性建树。联想曾连续15年占据全球PC市场第一位,市场份额从第一年的13.1%一路攀升到占据全球市场22.4%的份额,而这个份额中有50%的出货量是由坐落于合肥的联宝基地进行研发生产,可以说世界上每销售8台笔记本电脑就有一台是在联宝基地研发和生产出来的。 从2011年联宝成立开始,一直在积极进行IT布局,2013年开始量产,2015年启用私有云,现在信息化程度跟联想协同研发,在工厂端的制造和信息化上已经做到和联想在研发上的资料交互,自动化程度达到90%左右。另外,联宝在基地产业布局上,出口加工区内457亩是制造基地,出口加工区外153亩是配套产业园,同时在合肥新建了研发中心。目前产业基地共有员工7000多名,现在在生产基地有17万平米的单机厂房,10万平方米的仓库。未来,在自动化、信息化方面也将朝向混合云发展,并希望能够透过云端化以及移动化方式让整个管理工作获得生产效率的提升。 自我定位工业3.0

目前联宝在智能制造上的进展,按照德国工业4.0的标准,大概处于工业3.0左右的阶段,设备的信息化和自动化 程度达到90%,基本完成但还没有达到百分百完成。、这个 成果已经可以将整个研发制程时效缩短2~3个星期,这是 一个非常大的突破。 具体来说,在生产设备自动化方面,联宝智能化程度达到90%以上;在SMT前段制程方面,智能化程度达到90%以上,从材料调配和发送一直到SMT主板和零件的组装,一直到组装完毕之后的测试,大概每一块板子从仓库抠料一直到最后测试完成整个制程只需半天;在柔性制造方面,从2016年开始有小规模尝试产品的定制,但仍以制式化的大单为主。 联宝公司资讯本部应用服务部高级经理王拜文表示,从IT角度来讲,可以帮公司节省人力和成本的地方,就是要智能化的地方。例如可能做仓库的立体化,从原本平面式做立体化,透过BI物流配合,从备料开始更高效率的智能备料,这样生产周期的等待时间会缩短。 另外是机器人,比如美的、格力的产品可以由机器人组装,各大汽车厂商的产品也可以由机器人组装。目前,联宝的产品不是单一型号,未来会有越来越多不同的定制化产品,所以产线会多变。公司也在思考如何在制造端使用机器人来减少人力,但目前也只是研究阶段。毕竟一个笔记本电脑要上千个元件组成,和冰箱、洗衣机不太一样。未来,生产过

2021年注册咨询工程师继续教育考试 -智能制造数字工厂规划设计

一、单选题【本题型共4道题】 1.PLM是指从人们对产品的需求开始,到产品淘汰报废的的()管理,包括从产品战略、产品市场、产品需求、产品规划、产品研发、产品生产、产品上市、产品服务到报废整个生命周期的管理。 A.设计研发阶段 B.生产制造阶段 C.运行维护阶段 D.全部生命周期 用户答案:[D] 得分:10.00 2.ERP的基本功能不包括:()。 A.生产控制 B.产品结构管理 C.财务管理 D.人力资源 用户答案:[B] 得分:10.00 3.MBD(Model Based Definition)是指将产品的所有相关设计定义、工艺描述、属性和管理等信息都附着在产品()模型中的数字化定义方法。 A.二维 B.三维 C.数学 D.物理 用户答案:[C] 得分:0.00 4.为了满足车间对在制品透明化管理的需要,可对零部件进行统一(),选择条码、RFID、DPM等可行的技术对零部件进行标识,进而对在制品实时跟踪,实时掌握在制品状态和位置信息。

A.标记 B.标设 C.刻录 D.编码 用户答案:[D] 得分:10.00 二、多选题【本题型共2道题】 1.数字工厂包括以下内容()。 A.数字化产品设计 B.智能工厂制造运行管理 C.智能装备 D.智能运维 E.数字化工厂设计 用户答案:[BCD] 得分:0.00 2.智能产品在线运维云平台具体功能包括:()。 A.智能产品故障监测 B.智能产品故障诊断 C.智能产品维修决策 D.智能产品故障预测及保养 E.智能产品销售 用户答案:[ABCD] 得分:20.00 三、判断题【本题型共2道题】

1.数字工厂是现代制造技术与计算仿真技术相结合的产物,其本质是实现信息的集成。() Y.对 N.错 用户答案:[Y] 得分:10.00 2.MES制造执行系统是面向车间的计算机集成生产过程管理与实时信息系统。它主要解决车间生产任务的执行问题,填补了企业上层生产计划与车间底层工业控制之间的鸿沟。() Y.对 N.错 用户答案:[Y] 得分:10.00

智能制造数字工厂规划设计咨询答案

智能制造数字工厂规划设计咨询答案 一、单选题【本题型共4道题】 1.MOM系统通过对设备运行状态的监控,可及时发现设备异常并第一时间做出(),必要情况下MOM 系统的消息平台还会将()信息传递给设备维护人员的操作终端,及时通知相关人员进行维修。 A.提示 B.预测 C.报警 D.警告 用户答案:[C] 得分:10.00 2.全生命周期的智能运维服务要求智能工厂在设计过程中系统考虑未来工厂的实际情况,从安全、能效、()、效率等方面对智能工厂进行设计,以满足智能工厂本身在全生命周期中优化运行目标的实现。 A.优质 B.绿色 C.节地 D.经济 用户答案:[B] 得分:10.00 3.ERP的基本功能不包括:()。 A.生产控制 B.产品结构管理 C.财务管理 D.人力资源 用户答案:[B] 得分:10.00

4.生产工艺仿真设计要求在三维虚拟环境中真实再现具体的工艺过程,允许用户通过改变相关参数对生产的工艺过程进行()和评估,从而检验并优化生产工艺设计。 A.仿真 B.模拟 C.测试 D.优化 用户答案:[B] 得分:10.00 二、多选题【本题型共2道题】 1.数字工厂包括以下内容()。 A.数字化产品设计 B.智能工厂制造运行管理 C.智能装备 D.智能运维 E.数字化工厂设计 用户答案:[ACDE] 得分:0.00 2.PLM的主要内容包括()。 A.产品发展战略管理 B.产品结构管理 C.项目管理 D.变更管理 E.协同设计 用户答案:[ABCDE] 得分:20.00

三、判断题【本题型共2道题】 1.物流仿真设计要求在二维虚拟环境中模拟工厂物流的全过程,验证物流方案的合理性。() Y.对 N.错 用户答案:[N] 得分:10.00 2.ERP系统是指建立在信息技术基础上,通过一些先进管理思想和方法,对企业内部资源进行整合,把企业的人、财、物、产、供、销及相应的物流、信息流、资金流进行紧密集成,最终实现资源优化配置和业务流程优化的目的。() Y.对 N.错 用户答案:[Y] 得分:0.00

关于公司实现智能工厂的规划报告

关于公司实现智能工厂的规划报告

关于公司实现智能工厂的规划报告 德国“汉诺威工业博览会”上发布了最终报告,开始实施“工业 4.0”的国家战略。在未来制造业中的各个环节应用互联网技术,将数字信息与现实社会之间的联系可视化,将生产工艺与管理流程全面融合。由此实现智能工厂,生产出智能产品。 10月中国总理李克强访问德国,“工业4.0”、“智能制造”的战略地位迅速提升。国家工信部早在三四年前就开始规划一项未来制造业发展的“中国制造2025”。 结合国家的战略方针,为了提升我公司智能制造水平,推动制造业数字化、智能化、网络化发展,促进产业高端转型,增强发展后劲,对公司实现智能化工厂作初步规划。 一、智能工厂含义 智能工厂(车间)是指将机器人、智能设备和信息技术三者在制造过程中完美融合,涵盖了对工厂(车间)制造的全流程,主要解决工厂(车间)从产品的设计到制造、应用的智能化。 二、目标 1、二年内建立三条“数字化生产线”:“数字化生产线”是指由工件传送系统和控制系统,将自动化装备和辅助设备按照工艺顺序进行结合,在无人(或少人)干预的情况下,按规定的程序或指令进行操作或控制,自动完成产品全部或部分制造过程,从而提高产品的生产效率及良品率。

2、二年内提升产品研发设计水平:车间产品采用智能化设计手段或先进的信息化设计系统;建立产品数据管理系统(PDM),形成基于三维设计模型的数字化产品库。 3、五年内优化生产制造控制流程: 1)提升数控加工中心、工业机器人、自动化生产线,自动化生产设备应用比例; 2)关键设备(数控加工中心、工业机器人、铸造生产线)与产品、工艺设计实现互联; 3)工位计算机随时根据订单、图纸的变化调整工艺技术,实现无图纸化生产管理; 4)生产/制造全过程实现智能监控与调度; 5)广泛采用条形码、电子标签、扫码枪等自动识别设施,配备到工位; 6)生产设备状态(运行状态、生产数量、生产效率等)实现实时监控。 4、五年内提升生产管理水平:实现经过制造执行系统(MES)优化企业生产制造管理模式,制造过程实现智能化的软硬件技术、控制系统及信息化系统的集成应用,建立统一的信息管理平台和生产系统的实时监控,在ERP生产计划指导下完善车间生产制造执行系统或调度系统、经营管理系统的集成应用;物料需求计划编制、物流配送管理实现智能化、自动化。 5、五年内完善质量管理体系:基于互联网技术实时在线检测和控

用友智能工厂解决方案

1用友智能工厂解决方案 在工业和中国制造2025的大背景下,用友致力于向制造业客户提供智能制造的整体解决方案,解决方案全景如下: 整体解决方案由智能化生产、智能化管理和产业链互联三个层面构成,前两个层面立足 于企业自身,以智能工厂为建设目标,实习企业机体自身的智能化,而产业链互联则是以互 联网技术为基础,将企业融入到产业链的整体生态环境中,逐步实现制造资源的服务化和云 化,并与生态系统中的所有要素协同互动,实现企业的智慧化。 智能制造是一个比较宽泛的概念,本方案以智能工厂为建设目标,特指以物联网、互联 网、大数据等技术为基础,集成各类制造资源,通过对生产制造及物流系统的升级改造,逐步实现制造过程、物流驱动、控制模式、决策方式等方面的智能化,构建起体系化的智能化 的制造系统,打造数字化、透明化的智能工厂。智能工厂解决方案的整体架构如下: 1.1智能数据采集平台 智能数据采集平台是智能制造系统的基础平台,是衔接生产物流现场与智能制造系统的 接口平台,主要功能是利用物联网技术连接产品、设备及控制系统,建立智能制造系统与生 产现场之间的通路,向智能制造系统提供生产现场实时数据并接收智能制造系统发出的指令。同时,通过统一的集成化数据采集平台,可以将不同的现场设备及控制系统的数据信息 整合在一起,从而为生产现场的协同、柔性、高效提供可能。

物料标识 智能数据采集平台依赖于生产现场的智能化, 主要表现在现场生产设备及检测设备的智 能化改造,具体可以采取的手段包括: 用数字化智能化可编程控制设备替换传统设备, CNC 设备及机器人的使用逐步普 及,一方面使生产线更加柔化,另一方面也可以提供更多的运行状态数据; 传统设备的智能化改造, 通过加装位置、温度、压力、计数等各类传感器改造现有 设备,使现有设备达到一定程度的智能化,满足读取及监控的需求; 在设备及产线旁加装终端电脑(工业平板电脑) ,部署终端应用以方便人工采集设 备运行及加工数据。 让加工检测运输等设备及软件系统能够认识物料是实现智能数据采集的另一项基础工 作,因此,需要用一定的技术手段标识物料,标识的载体可以是一维条码、二维条码、 RFID 芯片、IC/ID 卡等,其中,以 RFID 为代表的非接触主动采集技术日益成熟并广泛应用。标 识物料的方式也可以是单品身份证或批次流转卡, 对于课题研制产品、技术验证产品及主体 单位需求的定型量产产品,要实现单品身份证管理,并且达到产品的全生命周期管理。 对于 量产民品,可根据需要选择采用单品身份证或批次流转卡管理。 基础网络构建要求能够覆盖整个生产及物流现场, 采用无线网络及有线网络,物理隔离 涉密网及非涉密网,通过网络总线接入及分布式部署的方式, 将各类设备集成到统一的网络 之中,具体的网络建设规划可参考本规划的专门章节。 设备集成可通过访问设备实时数据库、 PLC 嵌入式系统等方式,通过开放的输出端口 读取所需的设备运行数据。智能设备一般都有开放的对外接口,可通过串口、 USB 端口直接 访问硬件系统,或者通过开放的服务接口访问设备的控制系统, 但这类接口的访问和集成目 前没有统一的标准,需要分别与设备供应商合作完成。 通过数据采集平台采集的各类数据信息需要存储在服务器上以备其他应用使用, 而数据 采集平台获取数据往往具有大数据量及高并发的特点, 因此,在数据库服务器及数据库系统 选择时要充分考虑到这些因素, 充分利用目前互联网应用中数据存储的实现技术, 更好的支 撑应用需求。 智能数据采集平台是智能制造系统的基础平台,所有智能制造的应用都依赖于数据采 集,只有对现场情况的充分掌握才能确保各类智能化应用有准确的数据输入和及时准确的信 息反馈,从而实现业务管理的闭环。 1.2智能运营管理平台 智能运营管理平台构建在智能数据采集平台之上, 所有管理都必须以数据为基础, 由数 据来支持管理决策。而智能运营管理的范围涉及企业自身运营管理的各个方面, 而且呈现出 设备的智能化改造 基础网络构建 设备集成及 取数接口开发 数据存储

从数字化到智能制造

设计文件 名称 编号 版本 版权专有违者必究 中车株洲电力机车研究所有限公司

编制工艺 校核标准化 审核批准 版本号更改人更改日期更改说明变更编号

目次 1 目的及意义 (1) 2 从数字化工厂到智能工厂再到智能制造 (1) 2.1 数字化工厂 (1) 2.2 智能工厂 (2) 2.3 智能制造 (2) 3 从数字数字化开发到智能制造的关键技术途径 (3) 3.1 从数字制造到智能制造的发展模式 (3) 3.2 从数字制造到智能制造的具体途径 (4) 4 典型行业智能制造发展技术路线图 (5)

1 目的及意义 随着城市配电网的不断发展, 配电网的结构越来越复杂, 网络供电方式和手拉手供电方式成为城市配电网的主要供电方式。与此同时, 随着电力供需矛盾的缓和, 广大电力用户对电力供应的需求不断提高, 电力系统配电生产管理人员的工作量与日俱增, 配电网的重要性日益突出。原有的人工粗放型的管理方式和工作流程已不能适应新的要求, 亟待建立新型的技术管理模式。 作为“中国制造2025”国家战略计划的重要组成部分,从数字制造到智能制造的转型升级,已成 为各行各业以及高端装备制造业发展的必然趋势,也是促进我国从制造大国向制造强国转变的必然之路。近年来,我国在数字制造技术研究与应用方面取得了重要的进展与突破,数字制造技术得到广泛应用,并成为解决高、精、尖复杂装备制造难题的核心技术之一;智能制造技术研究与应用也初现端倪,部分制造企业集团积极采用智能制造技术提升产品的智能化水平,智能化生产线、智能化车间、智能化工厂不断涌现。但就我国从数字制造到智能制造的发展水平而言,与工业发达国家相比仍存在很大差距。 德勤有限公司与中国机械工业联合会2015 年对上百家制造业企业智能制造与信息化情况开展调研,报告显示中国智能制造尚处于初级发展阶段,仅23% 的企业进入智能制造广泛应用阶段;除在汽车及零 部件行业智能设备应用程度超过90% 外,其他行业尤其是机械加工制造行业的智能设备应用程度均较低(如图所示)。造成上述差距的根源,主要是缺乏从数字制造到智能制造发展的具体技术途径指引,导致我国智能制造应用推广进展缓慢。 为此我们提出利用数字化技术、智能化技术, 通过图形与数据相结合, 实现配电网的生产运行管理与辅助决策管理, 实现配网调度、生产、运行、检修、管理的科学性和数字化, 进一步改善服务质量, 提高供电可靠性, 提高供电企业的综合经济效益。 为了建成上述的一体化 2 从数字化工厂到智能工厂再到智能制造 2.1 数字化工厂 对于数字化工厂,德国工程师协会的定义是:数字化工厂(DF)是由数字化模型、方法和工具构成的综合网络,包含仿真和3D/虚拟现实可视化,通过连续的没有中断的数据管理集成在一起。数字化工厂集成了产品、过程和工厂模型数据库,通过先进的可视化、仿真和文档管理,以提高产品的质量和生产过程所涉及的质量和动态性能。 在国内,对于数字化工厂接受度最高的定义是:数字化工厂是在计算机虚拟环境中,对整个生产过程

智能制造数字工厂的规划设计

智能制造数字工厂的规划设计网络课堂 主讲老师:胡建林 课程目录 第一章概述 ?第01讲概述00:14:4100:00:00 第二章数字化产品设计系统 ?第01讲数字化产品设计系统00:18:2600:00:00 第三章数字化工厂设计系统 ?第01讲数字化工厂设计系统00:18:2300:00:00 第四章ERP系统 ?第01讲ERP系统00:12:0900:00:00 第五章智能工厂制造运行管理系统 ?第01讲智能工厂制造运行管理系统00:39:4000:00:00 第六章智能运维 第01讲智能运维00:09:0800:00:00 1.1 信息物理系统CPS 信息物理系统CPS定义:通过集成先进的感知、计算、通信、控制等信息技术和自动控制技术,构建了物理空间与信息空间中人、机、物、环境、信息等要素相互映射、适时交互、高效协同的复杂系统,实现系统内资源配置和运行的按需响应、快速迭代、动态优化。 信息物理系统CPS的本质:就是构建一套信息空间与物理空间之间基于数据自动流动的状态感知、实时分析、科学决策、精准执行的闭环赋能体系,解决生产制造、应用服务过程中的复杂性和不确定性问题,提高资源配置效率,实现资源优化。 CPS的四大核心技术要素:“一硬、一软、一网、一平台” 感知和自动控制(硬):智能感知技术、虚实融合控制技术; 工业软件(软):嵌入式软件技术、MBD技术、CAX/MES/ERP软件技术; 工业网络(网):现场总线技术、工业以太网技术、无线技术、SDN; 工业云和智能服务平台(平台):边缘计算、雾计算、大数据分析。 CPS的层次:单元级、系统级、SoS级(System of Systems,系统之系统级) 单元级CPS:单元级CPS能够通过物理硬件、自身嵌入式软件系统及通信模块,构成含有“感知-分析-决策-执行”数据自动流动基本的闭环,实现在设备工作能力范围内的资源优化配置,如智能轴承、关节机器人等。 系统级CPS:由多个最小单元CPS(单元级)通过工业网络实现更大范围、更宽领域的数据自动流动,实现了多个单元级CPS的互联、互通和互操作。如智能生产线、智能车间、智能工厂。 SoS级CPS:通过大数据平台,实现了跨系统、跨平台的互联、互通和互操作,促成了多源异构数据的集成、交换和共享的闭环自动流动,在全局范围内实现信息全面感知、深度分析、科学决策和精准执行。 1.2 智能工厂

关于公司实现智能工厂的规划报告

关于公司实现智能工厂的规划报告 2013年德国“汉诺威工业博览会” 上发布了最终报告,开始实施“工业4.0 ”的国家战略。在未来制造业中的各个环节应用互联网技术,将数字信息与现实社会之间的联系可视化,将生产工艺与管理流程全面融合。由此实现智能工厂,生产出智能产品。 2014年10月我国总理李克强访问德国,“工业4.0 ”“智能制造”的战略地位迅速提升。国家工信部早在三四年前就开始规划一项未来10年制造业发展的“中国制造2025”。 结合国家的战略方针,为了提升我公司智能制造水平,推动制造业数字化、智能化、网络化发展,促进产业高端转型,增强发展后劲,对公司实现智能化工厂作初步规划。 一、智能工厂含义 智能工厂(车间)是指将机器人、智能设备和信息技术三者在制造过程中完美融合,涵盖了对工厂(车间)制造的全流程,主要解决工厂(车间)从产品的设计到制造、应用的智能化。 二、目标 1、二年内建立三条“数字化生产线”:“数字化生产线” 是指由工件传送系统和控制系统,将自动化装备和辅助设备按照工艺顺序进行结合,在无人(或少人)干预的情况下,

按规定的程序或指令进行操作或控制,自动完成产品全部或部分制造过程,从而提高产品的生产效率及良品率。 2、二年内提升产品研发设计水平:车间产品采用智能化设 计手段或先进的信息化设计系统;建立产品数据管理系统(PDM,形成基于三维设计模型的数字化产品库。 3、五年内优化生产制造控制流程: 1)提升数控加工中心、工业机器人、自动化生产线,自动 化生产设备应用比例; 2)关键设备(数控加工中心、工业机器人、铸造生产线) 与产品、工艺设计实现互联; 3)工位计算机随时根据订单、图纸的变化调整工艺技术, 实现无图纸化生产管理; 4)生产/制造全过程实现智能监控与调度; 5)广泛采用条形码、电子标签、扫码枪等自动识别设施, 配备到工位; 6)生产设备状态(运行状态、生产数量、生产效率等)实 现实时监控。 4、五年内提升生产管理水平:实现通过制造执行系统(MES 优化企业生产制造管理模式,制造过程实现智能化的软硬件 技术、控制系统及信息化系统的集成应用,建立统一的信息管理平台和生产系统的实时监控,在ERP生产计划指导下完

智能制造智能工厂

智能制造智能工厂 1、智能制造概念 “智能制造”可以从制造和智能两方面进行解读。首先,制造是指对原材料进行加工或再加工,以及对零部件进行装配的过程。通常,按照生产方式的连续性不同,制造分为流程制造与离散制造(也有离散和流程混合的生产方式)。根据我国现行标准GB/T4754-2002,我国制造业包括31个行业,又进一步划分约175个中类、530个小类,涉及了国民经济的方方面面。 智能是由“智慧”和“能力”两个词语构成。从感觉到记忆到思维这一过程,称为“智慧”,智慧的结果产生了行为和语言,将行为和语言的表达过程称为“能力”,两者合称为“智能”。因此,将感觉、记忆、回忆、思维、语言、行为的整个过程称为智能过程,它是智慧和能力的表现。 目前,国际和国内尚且没有关于智能制造的准确定义,但工信部组织专家给出了一个比较全面的描述性定义:智能制造是基于新一代信息技术,贯穿设计、生产、管理、服务等制造活动各个环节,具有信息深度自感知、智慧优化自决策、精准控制自执行等功能的先进制造过程、系统与模式的

总称。具有以智能工厂为载体,以关键制造环节智能化为核心,以端到端数据流为基础、以网络互联为支撑等特征,可有效缩短产品研制周期、降低运营成本、提高生产效率、提升产品质量、降低资源能源消耗。这实际上指出了智能制造的核心技术、管理要求、主要功能和经济目标,体现了智能制造对于我国工业转型升级和国民经济持续发展的重要作用。 然而,由于我国技术基础薄弱发展不平衡,企业在智能制造实施和升级改造过程中往往茫然不知从何做起。因此,以下将根据智能制造的描述性定义,提出关于智能工厂、制造环节及装备智能化、网络互联互通、端到端数据流等四个方面的初步认识,以期说明智能制造的主要内容。 2、什么是智能工厂 智能工厂是实现智能制造的载体。在智能工厂中通过生产管理系统、计算机辅助工具和智能装备的集成与互操作来实现智能化、网络化分布式管理,进而实现企业业务流程、工艺流程及资金流程的协同,以及生产资源(材料、能源等)在企业内部及企业之间的动态配置。

4.0专题:面向工业4.0的智能工厂要重点关注四化:模块化、数字化、自动化和智能化

4.0专题:面向工业4.0的智能工厂要重点关注四化:模块化、数字化、自动化和智能化 1.面向工业4.0的智能工厂 智能工厂是构成工业4.0的核心元素。在智能工厂内不仅要求单体设备是智能的,而且要求工厂内的所有设施、设备与资源(机器、物流器具、原材料、产品等)实现互通互联,以满足智能生产和智能物流的要求。通过互联网等通信网络,使工厂内外的万物互联,形成全新的业务模式。 从某种意义上说,工业4.0是用CPS系统对生产设备进行智能升级,使其可以智能地根据实时信息进行分析、判断、自我调整、自动驱动生产,构成一个具有自律分散型系统(ADS)的智能工厂,最终实现制造业的大规模、低成本定制化生产。 在建设智能工厂时,要重点关注模块化、数字化、自动化和智能化四大技术课题。模块化是实现智能工厂规模化生产和客户需求个性化定制的前提条件,这需要主要零部件供应商向模块供应商转型,全程参与产品设计、供应模式选择以及单元化物流的规划。 数字化,纵向看是实现工厂内各个层面,乃至每台设备数字化建模与互联互通;横向看,是打造从客户需求,到产品设计、供应商集成、制造以及物流服务的全流程供应链集成体系。 智能化,制造企业应搭建一个虚实融合系统,根据客户个性化定制需求,实现虚拟的设计、制造与装配,再通过智能工厂完成生产制造过程,有效解决定制产品周期长、效率低、成本高的问题。由此,在智能工厂里企业可与客户实现零距离对话,客户也可通过多种方式参与到产品“智造”全过程中来。 2.面向工业4.0的智能生产 工业4.0时代,随着信息技术向制造业全面渗入,可实现对生产要素的高灵活配置和大规模定制化生产,由此打破传统的生产流程、生产模式及管理方式。 未来是智能联网式生产的时代,不仅是单一工厂、而是企业多个工厂之间将通过联网构建起虚拟制造体系,为企业生产提供全面智能支持。而标准化、模块化和数字化的产品设计,是实现智能生产的前提。

详述钣金数字化智能制造工厂规划

内容来源网络,由深圳机械展(11万㎡,1100多家展商)收集整理! 更多激光钣金及冲压自动化工艺展示,就在深圳机械展.金属板材加工展区/激光精密加工应用展区。 一、钣金数字化智能工厂的机遇与挑战 《中国制造2025》提出,“基于信息物理系统(CPS)的智能装备、智能工厂等智能制造正在引领制造方式变革”,要围绕控制系统、工业软件、工业网络、工业云服务和工业大数据平台等,加强信息物理系统的研发与应用,《国务院关于深化制造业与互联网融合发展的指导意见》明确提出,“构建信息物理系统参考模型和综合技术标准体系,建设测试验证平台和综合验证试验床,支持开展兼容适配、互联互通和互操作测试验证。”当前,《中国制造2025》正处于全面部署、加快实施、深入推进的新阶段,面对信息化和工业化深度融合进程中不断涌现的新技术、新理念、新模式,迫切需要研究信息物理系统的背景起源、概念内涵、技术要素、应用场景、发展趋势,以凝聚共识、统一认识更好的服务于制造强国建设。在未来一定时期内,钣金工厂的数字化发展目标是什么?为了实现数字化战略目标,企业所需要的核心能力和资源是什么?在减少产品上市时间,减少设计修改,降低生产费用以及库存,实现精细化管理提升产品质量,企业应该做什么,如何做? 当前,钣金数字化智能制造处于萌芽状态,现在越来越多的企业老板意识到自动化设备带来的红利,在人工成本越来越高,利润越来越薄的前提下,自动化设备能够有效的降低成本和提升效率,但是,企业在生产管理过程中常常遇到一些困惑。 1-无法实时跟踪订单的生产进度,现场异常问题发现处理滞后,造成交货延期;2-订单排产的过程复杂、由人工手动排产,调整困难,造成效率低下; 3-生产过程缺乏可追溯性,难以满足客户对产品质量管理的需求;

智能制造下数字化工厂所具备的优势

智能制造下数字化工厂所具备的优势 随着智能制造的浪潮来袭,通过工业物联网实现的数字化工厂也被越来越多的工厂所认知,但很多人并不清楚传统工厂的弊端到底有哪些。 1.传统工厂:人工统计,效率低且不准确 在中国很多传统的中小型工厂中,对于设备生产数据的采集,几乎完全依靠人工完成。流动的人员、散落的数据,导致数据的保存成了一个巨大的问题。同时人工统计的效率也非常的低,往往都是每天下班或者每周进行一次统计,完全不能进行实时生产数据更新。 此外,数据对于设备而言有着时效性和历史数据参考性的关键作用,据羿戓技术文件编制所了解,从底层操作工的数据记录-数据分析-数据反馈-管理者的决策,中间的环节让数据的时效性大大降低,同时人工的记录统计也会造成数据不准确等问题,而且庞大的数据计算分析,对于人力是一个非常大的耗损。 其次,历史数据对于设备的维护具有参考性的意义,但是传统工厂的数据,靠着一张张的记录纸或者大量的Excel表无疑是给未来的工作又增添了难度,而且工厂不能控制人员的流动,每一次的交接都可能导致数据的流失。 2.数字化工厂:设备联网,数据自动上传反馈 而在数字化工厂中,物联网的概念就被运用到每一台设备上。设备与设备之间,早也不是信息孤岛,而是将人、设备,通过数据建立紧密联系。一个工厂管理者可以在手机或者PC终端观测到每一台设备的实时数据,而且可以随时收到设备的状态提醒。 比如你设置了:轴承的温度超过80度,提醒温度过高。当设备高于80摄氏度时,就会立即收到提醒,实现了收集、分析、反馈的同步进行,大大缩短了时间,提高了决策的效率。 除了收集、计算、反馈等“去工人化”的功能,设备联网之后,还有一大好处就是数据的存储。大量历史数据,包括设备损失数据,也给后期工厂设备的很多操作都提供了参考意义。之后,再遇到工厂的人员流动,这些数据依然可以随时调用并完善保存。 3.传统工厂:设备意外停机频发,造成大量损失 除了数据的管理问题,传统工厂还有一大痛点,那就是经常遭遇意外停机。意外停机不仅造成了生产的停滞,而且对于设备造成的隐性破坏不可估

合肥智能工厂和数字化车间认定管理办法

合肥市智能工厂和数字化车间认定管理办法 (修订) 第一章总则 第一条为全面推进信息技术在产品研发、生产过程控制、经营管理、营销流通等各个环节应用、渗透和融合,加快全市智能制造发展,提升产业核心竞争力,依据《中国制造2025》(国发〔2015〕28号)和《国务院深化“互联网+先进制造业”发展工业互联网的指导意见》和《关于深入推进信息化和工业化融合管理体系的指导意见》(工信部联信软〔2017〕155号)、《安徽省人民政府关于深化制造业与互联网融合发展的实施意见》(皖政〔2017〕3号)等文件,以促进制造业创新发展为主题,以提质增效为中心,以加快新一代信息技术与制造业深度融合为主线,以推进智能制造为主攻方向,以推动互联网与制造业融合为契机,积极推动全市智能化改造“万千百”创新工程(即:万条“数字化生产线”、千个“数字化车间”、百个“智能工厂”),决定组织开展智能工厂和数字化车间认定工作,特制定本办法。 第二条以智能工厂、数字化车间为代表的智能制造,作为两化深度融合的主攻方向,在全市工业企业范围内助推两化深度融合,发挥信息技术在工业企业转型升级中支撑作用,引领我市制造方式的变革,促进产业转型升级。 — 1 —

第三条合肥市智能工厂和数字化车间的认定工作遵循企业自愿、择优确定和公开、公平、公正的原则,每年认定一次。 第四条合肥市智能工厂和数字化车间的认定、考核和撤销等管理工作由市经信委负责;各县(市)区经信委(经促局)、开发区经贸局负责组织所辖区域的推荐申报、指导和相关管理工作。 第二章认定条件 第五条智能工厂是信息化和智能制造技术在工业企业应用的高级阶段,在这一阶段,企业内外部通过对数字化工作流、信息流、物流和资金流的有效管理,实现资源共享和工作高度协同,构建一个全新的数字化规划、决策、执行智能制造体系,从而实现企业全部业务流程一体化运作。 数字化车间是以产品全生命周期数据为基础,通过实时获取制造装备状态、生产过程控制数据以及质量控制数据等信息,并与信息系统有效集成,从而实现产品制造全过程透明化管理。 数字化生产线通过将数字化、自动化生产设备按照要求进行结合,按规定的程序或指令对生产过程进行操作或控制,自动完成产品全部或部分制造过程。 第六条申报合肥市智能工厂的基本条件: (一)在我市依法注册,具有2年以上独立法人资格,企业— 2 —

工业4.0——从智慧工厂到智能工厂

中国版工业4.0的基本思路是什么?与德国工业4.0相比,有哪些差别?中国版工业4.0在资本市场上又将带来哪些投资机会?今天我们就此问题进行探讨。 2015年3月5日李克强在两会政府工作报告中首次提到“中国制造2025”,该报告中指出,要实施“中国制造2025”,坚持创新驱动、智能转型、强化基础、绿色发展,加快从制造大国转向制造强国。 据媒体报道,全国政协财经委员会副主任李毅中3月4日在政协分组讨论中表示,由工信部牵头制定的《中国制造业发展纲要(2015~2025)》规划即将上报国务院。该规划被称为中国版工业4.0规划,重点实施领域为新一代信息技术产业、生物医药与生物制造产业、高端装备制造产业、新能源产业。 工业4.0的理念最早是由德国在《德国高技术战略2020》中提出来的国家发展战略,据了解,该战略为德国当时定的十大未来项目之一,由德国联邦教研部与联邦经济技术部联手资助,在德国工程院、费劳恩霍夫协会、西门子公司等建议和推动下形成,并已上升至国家级战略。

那么,中国版工业4.0的基本思路是什么?与德国工业4.0相比,有哪些差别?中国版工业4.0在资本市场上又将带来哪些投资机会?本期视点我们就此问题进行探讨。 1什么是中国版工业4.0 关于中国版工业4.0,工业和信息化部部长苗圩在接受采访时表示,中国工程院1 50多名专家花了一年半时间进行战略论证的基础上,又花了一年多时间制定了“中国制造2025”规划纲要。这个规划大体需要用三个十年左右的时间,完成中国从制造业大国向制造业强国的转变。“我们也提出了分三步走的战略,‘中国制造2025’也就是三步走第一个十年的行动纲领,有路线图也有时间表。” 苗圩说,待国务院审批通过发布后,工信部还要组织工业行业认真宣贯这个纲要。这个纲要的主要内容大致是几个方面:第一是强调创新驱动,第二是质量为先,第三是绿色发展,第四是结构优化,第五是人才为本。通过实施规划纲要,为后两步走奠定好的基础。通过这十年的功力,使中国能进入全球制造业的第二方阵。 “工业4.0”战略的核心是CPS(Cyber-Physical-System)网络物理系统,CPS通过人机交换接口实现和物理进行的交互,使用网络化空间以远程的、可靠的、实时的、安全的、协作的方式操控一个物理实体。 通过CPS系统实现人、设备与产品的实时连通、相互识别和有效交流。从而构建一个高度灵活的个性化和数字化的智能制造模式。工业4.0是个社会系统工程,不是某个孤立的点,而是一个封闭的环。如下图所示:

数字化工厂与智能制造的关系

“工业4.0”的研究项目由德国联邦政府首先提出,在德国学术界和产业界的推动下形成。2013年的汉诺威工博会上,德国政府正式提出“工业4.0”战略,并推出《德国工业4.0战略计划实施建议》(下称《实施建议》);2015年的工博会上,在德国联邦经济和能源部、联邦教研部支持下,多家行业协会联合发起的德国“工业4.0平台”正式成立,该平台已成为德国政府在联邦层面促进工业4.0发展最直接的渠道。 工业4.0的称法主要相对于前三次工业革命而言:工业1.0指的是18世纪开始的第一次工业革命,实现了机械生产代替手工劳动;第二次工业革命始于20世纪初,依靠生产线实现批量生产;工业3.0则为现代人所熟悉,指的是20世纪70年代后,依靠电子系统和信息技术实现生产自动化。 而工业4.0则指的是通过实现“物联网”系统完成大生产,最大程度实现生产全自动化、个性化、弹性化、自我优化和提高生产资源效率、降低生产成本的全新生产方式。 根据《实施建议》描述:在未来智能工厂中,人类、机器和资源能够互相通信。智能产品“知道”它们如何被制造出来的细节,也知道它们的用途。它们将主动地对制造流程,回答诸如“我什么时候被制造的”、“对我进行处理应该使用哪种参数”、“我应该被传送到何处”等问题。 随着工业4.0进程的发展,开放的标准也被提上了议程,太多的专有系统会阻碍工业4.0的进展。今年的工博会开幕前夕,德国标准化学会与5家行业协会共同发起成立“工业4.0标准化理事会”,显示德国的工业4.0发展已瞄向标准制定的新阶段。德国标准化学会4月20日公开发布了首个德国工业4.0参考模型的标准。 “工业4.0平台”领导小组成员、西门子公司首席技术官鲁思沃认为,该参考模型是德国发展工业4.0的重要一步,首次搭建出一个完整的框架,包含横向与纵向的信息技术融合,涵盖工业4.0关键的技术要素,还包括产品的生命周期以及生产周期,能使不同行业的企业朝着统一的方向发展工业4.0. 位于德国巴伐利亚州东部、透着上世纪八九十年代工业风格的红砖厂房内正进行着一场向着工业4.0方向的自我进化。这是德国工业巨头西门子旗下的安贝格工厂,是欧洲乃至全球最先进的数字化工厂。 安贝格工厂创建于1989年,如今该工厂每年可生产约1500万件Simatic产品,按每年生产230天计算,即平均每秒就能生产出一台控制设备。这里的产品合格率高达99.9988%,“世界上还没有哪家同类工厂具备如此之低的缺陷率。”安贝格工厂负责人Karl-HeinzBüttner称。 记者在现场看到,安贝格工厂自身生产过程也利用Simatic设备进行控制,生产过程实现了高度的自动化。西门子安贝格工厂生产工程师ChristophRaum告诉记者,这里的生产设备和计算机可以自主处理75%的流程工作,由人力完成的部分,只有生产过程的开头部分,即员工将初始组件(裸电路板)放置到生产线上的环节,此后所有的工作均由机器自动控制完成。 依靠Simatic设备的高度自动化,在24小时内西门子安贝格工厂就可将面向全球约6万名用户的产品做好交付准备。 工业4.0意味着网络进入工厂大生产,是一个崭新的工业制造逻辑和方式。过去是以中心控

「智能车间、智能工厂、智能制造」三大层级!

「智能车间、智能工厂、智能制造」三大层级! 用精益管理思想看智能制造三层级! 智能车间,智能工厂,智能制造,三个层级,各有不同。 其中智能车间和智能工厂属于术的层级,智能制造才属于道的层级。术无穷,道亦无尽;道尽,术亦可无穷,但较难有质的突破。道未尽,术无穷,一直持续下去,终究会有质的突破。 1、智能车间 以产品生产整体水平提高为核心。关注于生产管理能力提高,产品质量提高,客户需求导向的及时交付能力提高,产品检验设备能力提高,安全生产能力提高,生产设备能力提高,车间信息化建设提高,车间物流能力提高,车间能源管理能力提高,等方面入手;

通过网络及软件管理系统把数控自动化设备(含生产设备,检测设备,运输设备,机器人等所有设备)实现互联互通,达到感知状态(客户需求,生产状况,原材料,人员,设备,生产工艺,环境安全等信息),实时数据分析,从而实现自动决策和精确执行命令的自组织生产的精益管理境界的车间。 2、智能工厂 以工厂运营管理整体水平提高为核心,关注于产品及行业生命周期研究,从客户开始到自身工厂和上游供应商的整个供应链的精益管理通过自动化和信息化的实现,从满足到挖掘,乃至开拓和引领客户需求开始的销

售与市场管理能力提高;提高环境,安全,健康管理水平;提高产品研发水平; 提高整个工厂生产水平,提高内外物流管理水平,提高售后服务管理水平,提高能源(电,水,气)利用管理水平,等方面入手,通过自动化,信息化来实现精益工厂建设和完成工厂大数据系统建立和发展完善,通过自动化和信息化实现从客户开始到自身工厂和上游供应商的整个供应链的精益管理,这是智能工厂。 3、智能制造 以提高国家竞争力为核心,关注整个制造业在全球产业和领域以及对应农业,服务业等国民经济组成部分的产业级管理水平的提高,结合智能工厂,智能服务,大数据系统(含软硬件建设)几个方面来实现精益管理

相关主题