搜档网
当前位置:搜档网 › 面板数据分析方法步骤全解

面板数据分析方法步骤全解

面板数据分析方法步骤全解
面板数据分析方法步骤全解

面板数据分析方法步骤全解

面板数据的分析方法或许我们已经了解许多了,但是到底有没有一个基本的步骤呢?那些步骤是必须的?这些都是我们在研究的过程中需要考虑的,而且又是很实在的问题。面板单位根检验如何进行?协整检验呢?什么情况下要进行模型的修正?面板模型回归形式的选择?如何更有效的进行回归?诸如此类的问题我们应该如何去分析并一一解决?以下是我近期对面板数据研究后做出的一个简要总结,和大家分享一下,也希望大家都进来讨论讨论。

步骤一:分析数据的平稳性(单位根检验)

按照正规程序,面板数据模型在回归前需检验数据的平稳性。李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。这种情况称为称为虚假回归或伪回归(spurious regression)。他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。

因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。而检验数据平稳性最常用的办法就是单位根检验。首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。

单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,Levin andLin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有旆讲畹拿姘迨葜?/font>,并建立了对面板单位根进行检验的早期版本。后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC 法。Levin et al. (2002) 指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250 之间,截面数介于10~250 之间) 的面板单位根检验。Im et al. (1997) 还提出了检验面板单位根的IPS 法,但Breitung(2000) 发现IPS 法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung 法。Maddala and Wu(1999)又提出了ADF-Fisher和PP-Fisher面板单位根检验方法。

由上述综述可知,可以使用LLC、IPS、Breintung、ADF-Fisher 和PP-Fisher5种方法进行面板单位根检验。

其中LLC-T 、BR-T、IPS-W 、ADF-FCS、PP-FCS 、H-Z 分别指Levin, Lin & Chu t* 统计量、Breitung t 统计量、lm Pesaran & Shin W 统计量、ADF- Fisher Chi-square统计量、PP-Fisher Chi-square 统计量、Hadri Z统计量,并且Levin, Lin & Chu t* 统计量、Breitung t统计量的原假设为存在普通的单位根过程,lm Pesaran & Shin W 统计量、ADF- Fisher Chi-square统计量、PP-Fisher Chi-square统计量的原假设为存在有效的单位根过程,Hadri Z统计量的检验原假设为不存在普通的单位根过程。

有时,为了方便,只采用两种面板数据单位根检验方法,即相同根单位根检验LLC (Levin-Lin-Chu)检验和不同根单位根检验Fisher-ADF检验(注:对普通序列(非面板序列)的单位根检验方法则常用ADF检验),如果在两种检验中均拒绝存在单位根的原假设则我们

说此序列是平稳的,反之则不平稳。

如果我们以T(trend)代表序列含趋势项,以I(intercept)代表序列含截距项,T&I代表两项都含,N(none)代表两项都不含,那么我们可以基于前面时序图得出的结论,在单位根检验中选择相应检验模式。

但基于时序图得出的结论毕竟是粗略的,严格来说,那些检验结构均需一一检验。具体操作可以参照李子奈的说法:ADF检验是通过三个模型来完成,首先从含有截距和趋势项的模型开始,再检验只含截距项的模型,最后检验二者都不含的模型。并且认为,只有三个模型的检验结果都不能拒绝原假设时,我们才认为时间序列是非平稳的,而只要其中有一个模型的检验结果拒绝了零假设,就可认为时间序列是平稳的。

此外,单位根检验一般是先从水平(level)序列开始检验起,如果存在单位根,则对该序列进行一阶差分后继续检验,若仍存在单位根,则进行二阶甚至高阶差分后检验,直至序列平稳为止。我们记I(0)为零阶单整,I(1)为一阶单整,依次类推,I(N)为N阶单整。

步骤二:协整检验或模型修正

情况一:如果基于单位根检验的结果发现变量之间是同阶单整的,那么我们可以进行协整检验。协整检验是考察变量间长期均衡关系的方法。所谓的协整是指若两个或多个非平稳的变量序列,其某个线性组合后的序列呈平稳性。此时我们称这些变量序列间有协整关系存在。因此协整的要求或前提是同阶单整。

但也有如下的宽限说法:如果变量个数多于两个,即解释变量个数多于一个,被解释变量的单整阶数不能高于任何一个解释变量的单整阶数。另当解释变量的单整阶数高于被解释变量的单整阶数时,则必须至少有两个解释变量的单整阶数高于被解释变量的单整阶数。如果只含有两个解释变量,则两个变量的单整阶数应该相同。

也就是说,单整阶数不同的两个或以上的非平稳序列如果一起进行协整检验,必然有某些低阶单整的,即波动相对高阶序列的波动甚微弱(有可能波动幅度也不同)的序列,对协整结果的影响不大,因此包不包含的重要性不大。而相对处于最高阶序列,由于其波动较大,对回归残差的平稳性带来极大的影响,所以如果协整是包含有某些高阶单整序列的话(但如果所有变量都是阶数相同的高阶,此时也被称作同阶单整,这样的话另当别论),一定不能将其纳入协整检验。

协整检验方法的文献综述:(1)Kao(1999)、Kao and Chiang(2000)利用推广的DF和ADF检验提出了检验面板协整的方法,这种方法零假设是没有协整关系,并且利用静态面板回归的残差来构建统计量。(2)Pedron(1999)在零假设是在动态多元面板回归中没有协整关系的条件下给出了七种基于残差的面板协整检验方法。和Kao的方法不同的是,Pedroni的检验方法允许异质面板的存在。(3)Larsson et al(2001)发展了基于Johansen(1995)向量自回归的似然检验的面板协整检验方法,这种检验的方法是检验变量存在共同的协整的秩。

我们主要采用的是Pedroni、Kao、Johansen的方法。

通过了协整检验,说明变量之间存在着长期稳定的均衡关系,其方程回归残差是平稳的。因此可以在此基础上直接对原方程进行回归,此时的回归结果是较精确的。

这时,我们或许还想进一步对面板数据做格兰杰因果检验(因果检验的前提是变量协整)。但如果变量之间不是协整(即非同阶单整)的话,是不能进行格兰杰因果检验的,不过此时可以先对数据进行处理。引用张晓峒的原话,“如果y和x不同阶,不能做格兰杰因果检验,但可通过差分序列或其他处理得到同阶单整序列,并且要看它们此时有无经济意义。”

下面简要介绍一下因果检验的含义:这里的因果关系是从统计角度而言的,即是通过概率或者分布函数的角度体现出来的:在所有其它事件的发生情况固定不变的条件下,如果一个事件X的发生与不发生对于另一个事件Y的发生的概率(如果通过事件定义了随机变量那么也可以说分布函数)有影响,并且这两个事件在时间上又有先后顺序(A前B后),那么我们便可以说X是Y的原因。考虑最简单的形式,Granger检验是运用F-统计量来检验X的滞后值是否显著影响Y(在统计的意义下,且已经综合考虑了Y的滞后值;如果影响不显著,那么称X不是Y的“Granger原因”(Granger cause);如果影响显著,那么称X是Y的“Granger 原因”。同样,这也可以用于检验Y是X的“原因”,检验Y的滞后值是否影响X(已经考虑了X的滞后对X自身的影响)。

Eviews好像没有在POOL窗口中提供Granger causality test,而只有unit root test和cointegration test。说明Eviews是无法对面板数据序列做格兰杰检验的,格兰杰检验只能针对序列组做。也就是说格兰杰因果检验在Eviews中是针对普通的序列对(pairwise)而言的。你如果想对面板数据中的某些合成序列做因果检验的话,不妨先导出相关序列到一个组中(POOL窗口中的Proc/Make Group),再来试试。

情况二:如果如果基于单位根检验的结果发现变量之间是非同阶单整的,即面板数据中有些序列平稳而有些序列不平稳,此时不能进行协整检验与直接对原序列进行回归。但此时也不要着急,我们可以在保持变量经济意义的前提下,对我们前面提出的模型进行修正,以消除数据不平稳对回归造成的不利影响。如差分某些序列,将基于时间频度的绝对数据变成时间频度下的变动数据或增长率数据。此时的研究转向新的模型,但要保证模型具有经济意义。因此一般不要对原序列进行二阶差分,因为对变动数据或增长率数据再进行差分,我们不好对其冠以经济解释。难道你称其为变动率的变动率?

步骤三:面板模型的选择与回归

面板数据模型的选择通常有三种形式:

一种是混合估计模型(Pooled Regression Model)。如果从时间上看,不同个体之间不存在显著性差异;从截面上看,不同截面之间也不存在显著性差异,那么就可以直接把面板数据混合在一起用普通最小二乘法(OLS)估计参数。一种是固定效应模型(Fixed Effects Regression Model)。如果对于不同的截面或不同的时间序列,模型的截距不同,则可以采用在模型中添加虚拟变量的方法估计回归参数。一种是随机效应模型(Random Effects Regression Model)。如果固定效应模型中的截距项包括了截面随机误差项和时间随机误差项的平均效应,并且这两个随机误差项都服从正态分布,则固定效应模型就变成了随机效应模型。

在面板数据模型形式的选择方法上,我们经常采用F检验决定选用混合模型还是固定效应模型,然后用Hausman检验确定应该建立随机效应模型还是固定效应模型。

检验完毕后,我们也就知道该选用哪种模型了,然后我们就开始回归:

在回归的时候,权数可以选择按截面加权(cross-section weights)的方式,对于横截面个数大于时序个数的情况更应如此,表示允许不同的截面存在异方差现象。估计方法采用PCSE (Panel Corrected Standard Errors,面板校正标准误)方法。Beck和Katz(1995)引入的PCSE 估计方法是面板数据模型估计方法的一个创新,可以有效的处理复杂的面板误差结构,如同步相关,异方差,序列相关等,在样本量不够大时尤为有用。

面板数据分析简要步骤与注意事项(面板单位根—面板协整—回归分析)

面板数据分析简要步骤与注意事项(面板单位根检验—面板协整—回归分析) 面板数据分析方法: 面板单位根检验—若为同阶—面板协整—回归分析 —若为不同阶—序列变化—同阶建模随机效应模型与固定效应模型的区别不体现为R2的大小,固定效应模型为误差项和解释变量是相关,而随机效应模型表现为误差项和解释变量不相关。先用hausman检验是fixed 还是random,面板数据R-squared值对于一般标准而言,超过0.3为非常优秀的模型。不是时间序列那种接近0.8为优秀。另外,建议回归前先做stationary。很想知道随机效应应该看哪个R方?很多资料说固定看within,随机看overall,我得出的overall非常小0.03,然后within是53%。fe和re输出差不多,不过hausman检验不能拒绝,所以只能是re。该如何选择呢? 步骤一:分析数据的平稳性(单位根检验) 按照正规程序,面板数据模型在回归前需检验数据的平稳性。李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。这种情况称为称为虚假回归或伪回归(spurious regression)。他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。 因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。而检验数据平稳性最常用的办法就是单位根检验。首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,Levin andLin(1993)很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。后来经过Levin et al.(2002)的改进,提出了检验面板单位根的LLC法。Levin et al.(2002)指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250之间,截面数介于10~250之间)的面板单位根检验。Im et al.(1997)还提出了检验面板单位根的IPS法,但Breitung(2000)发现IPS法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung法。Maddala and Wu(1999)又提出了ADF-Fisher和PP-Fisher面板单位根检验方法。 由上述综述可知,可以使用LLC、IPS、Breintung、ADF-Fisher和PP-Fisher5种方法进行面板单位根检验。 其中LLC-T、BR-T、IPS-W、ADF-FCS、PP-FCS、H-Z分别指Levin,Lin&Chu t*

数据分析的思维技巧

数据分析的思维技巧 在我对数据分析有限的认识上(因为无知到没有认知),往往会看到一些秀技性的数据分析图表,以及好看的词云等等。年少无知的我,只想啪啪啪鼓掌伴随一声“卧槽,真牛逼”,然后在被秀了一脸后,并没有明白对方想说什么,空有一副好皮囊而没有灵魂。分析是为了给出偏好的,也是洗脑的一种重要手段,洗不洗的成功就要靠本事了。于是问题产生了,你的分析是为了干啥,通过哪几个角度达到哪几方面的目的。以下为我对几个技巧的认识想法: 一、象限法 就是划定几个坐标轴,让每一个数据在象限中找到自己的角色,比如打工这个事吧,就是要让你忙,就是要给你一堆事,于是重点出来了,这么多事孰重孰轻,孰急孰缓,跟打工皇帝学时间管理,事情要按照紧急程度和重要程度进行划分,以此给自己做事排序。 二、多维法 从个人理解来看,多维法和象限法联系紧密,无非就是象限法之间的界限清晰明显,多维法之间的维度不是严格意义的隔开,比如高度、富有、颜值,这到底算象限分类还是维度分类,或者说当象限多了,采用多维来理解效果更好,比如富有的家庭一般孩纸整体相对更高一些,维度与维度之间是有相对联系的,虽然不是那么绝对,但是也不是完全不相关。

但是多维法呢,正是由于维度与维度之间的关系,会导致整体维度情况和细分维度情况来看起来会有失真,最典型的例子是田忌赛马,上中下三个维度的马均是齐王更厉害,那么跑马结果田忌胜了。性别歧视在工作学习中经常会碰到,但是通过男女入取率判断性别歧视合适么,每个学院的女生录取率都高,但是整体入取率女生低的情况也不是不能出现,那么这到底是哪种性别歧视呢,数字不会骗人,但是分析洗脑会骗人,分析思维不对容易骗自己。为了解决辛普森悖论,可以通过切方块的方式,不断缩小分析的维度,不断深入挖掘,可以有效了解真实情况。 三、假设法 数据分析对下是有一系列材料做支撑,对上是为决策或了解情况提供支撑,只有下面有素材,才能为上面提供科学合理研判。那么问题出来了,如果没有材料做支撑,那怎么办。简单,没有条件那就为它创建条件嘛,我先假设一个基础,然后根据这个基础大肆分析,水平体现出来了,偏好结论也体现出来了,其实很多现实问题是没有那么多切实完整的基础资料的,有的就是一个感觉,有的就是一个偏好。这也是咨询圈常见的套路,虽然不是严格意义的1+1=2,但是可以严谨告诉别人1+1>1,而且面对那么多的未知,不将几个未知进行假设,如何区解决更多的未知。 四、指数法 一直觉得,指数法是一个装逼指数最高的方法,首先指数就已经狠专业了,在专业的基础上进行专业的分析,还有什么更专业的事情么。但是

面板数据分析简要步骤与注意事项面板单位根面板协整回归分析

面板数据分析简要步骤与注意事项 面板单位根—面板协整—回归分析) 步骤一:分析数据的平稳性(单位根检验) 按照正规程序,面板数据模型在回归前需检验数据的平稳性。李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实 际意义的。这种情况称为称为虚假回归或伪回归( spurious regression )。他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。 因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。而检验数据平稳性最常用的办法就是单位根检验。首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。单位根检验方法的文献综述:在非平稳的面板数据渐进过程中 ,Levin andLin(1993) 很早就发现这些估计量的极限分布是高斯分布 , 这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。后来经过Levin et al. (2002) 的改进, 提出了检验面板单位根的LLC法。Levin et al. (2002)指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25?250之间,截面数介于10?250之间)的面板单位根检验。Im et al. (1997) 还提出了检验面板单位根的 IPS 法, 但 Breitung(2000) 发现 IPS 法对限定性趋势的设定极为敏感 , 并提出了面板单位根检验的 Breitung 法。Maddala and Wu(1999)又提出了 ADF-Fisher 和 PP-Fisher 面板单位根检验方法。 由上述综述可知,可以使用 LLC、IPS、Breintung 、ADF-Fisher 和 PP-Fisher5 种方法进行面板单位根检验。其中LLC-T 、BR-T、IPS-W 、ADF-FCS、PP-FCS、H-Z 分 别指 Levin, Lin & Chu t* 统计量、 Breitung t 统计量、 lm Pesaran & Shin W 统 量、计 ADF- Fisher Chi-square 统计量、PP-Fisher Chi-square 统计量、Hadri Z 统计 量,并且 Levin, Lin & Chu t* 统计量、 Breitung t 统计量的原假设为存在普通的单位根过程, lm Pesaran & Shin W 统计量、 ADF- Fisher Chi-square 统计量、 PP-Fisher Chi-square 统计量的原假设为存在有效的单位根过程, Hadri Z 统计量的检验原假设为不存在普通的单位根过程。 有时,为了方便,只采用两种面板数据单位根检验方法,即相同根单位根检验 LLC(Levin-Lin-Chu )检验和不同根单位根检验 Fisher-ADF 检验(注:对普通序列(非面板序列)的单位根检验方法则常用 ADF检验),如果在两种检验中均拒绝存在单位根的原假设则我 们说此序列是平稳的,反之则不平稳。 如果我们以 T(trend )代表序列含趋势项,以 I (intercept )代表序列含截距项, T&I 代表两项都含,N (none)代表两项都不含,那么我们可以基于前面时序图得出的结论,在单位根检验中选择相应检验模式。 但基于时序图得出的结论毕竟是粗略的,严格来说,那些检验结构均需一一检验。具体操作可以参照李子奈的说法:ADF检验是通过三个模型来完成,首先从含有截距和趋势项的模型开始,再检验只含截距项的模型,最后检验二者都不含的模型。并且认

人教版初中数学数据分析技巧及练习题附答案

人教版初中数学数据分析技巧及练习题附答案 一、选择题 1.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和众数分别是() A.中位数31,众数是22 B.中位数是22,众数是31 C.中位数是26,众数是22 D.中位数是22,众数是26 【答案】C 【解析】 【分析】 根据中位数,众数的定义即可判断. 【详解】 七个整点时数据为:22,22,23,26,28,30,31 所以中位数为26,众数为22 故选:C. 【点睛】 此题考查中位数,众数的定义,解题关键在于看懂图中数据 2.某校组织“国学经典”诵读比赛,参赛10名选手的得分情况如表所示: 分数/分80859095 人数/人3421 那么,这10名选手得分的中位数和众数分别是() A.85.5和80 B.85.5和85 C.85和82.5 D.85和85 【答案】D 【解析】 【分析】 众数是一组数据中出现次数最多的数据,注意众数可以不只一个; 找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数. 【详解】 数据85出现了4次,最多,故为众数;

按大小排列第5和第6个数均是85,所以中位数是85. 故选:D. 【点睛】 本题主要考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数. 3.一组数据2,x,6,3,3,5的众数是3和5,则这组数据的中位数是() A.3 B.4 C.5 D.6 【答案】B 【解析】 【分析】 由众数的定义求出x=5,再根据中位数的定义即可解答. 【详解】 解:∵数据2,x,3,3,5的众数是3和5, ∴x=5, 则数据为2、3、3、5、5、6,这组数据为35 2 =4. 故答案为B. 【点睛】 本题主要考查众数和中位数,根据题意确定x的值以及求中位数的方法是解答本题的关键. 4.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是() A.极差是47 B.众数是42 C.中位数是58 D.每月阅读数量超过40的有4个月 【答案】C 【解析】 【分析】 根据统计图可得出最大值和最小值,即可求得极差;出现次数最多的数据是众数;将这8

面板数据分析步骤

转载:面板数据分析的思路和Eviews操作: 面板数据一般有三种:混合估计模型;随机效应模型和固定效应模型。首先,第一步是作固定效应和随机效应模型的选择,一般是用Hausman检验。 如果你选用的是所有的企业,反映的是总体的效应,则选择固定效应模型,如果你选用的是抽样估计,则要作Hausman检验。这个可以在Eviews 5.1里头做。 H0:应该建立随机效应模型。 H1:应该建立固定效应模型。 先使用随机效应回归,然后做Hausman检验,如果是小概率事件,拒绝原假设则应建立固定效应模型,反之,则应该采用随机效应模型进行估计。 第二步,固定效应模型分为三种:个体固定效应模型、时刻固定效应模型和个体时刻固定效应模型(这三个模型的含义我就不讲了,大家可以参考我列的参考书)。如果我们是对个体固定,则应选择个体固定效用模型。但是,我们还需作个体固定效应模型和混合估计模型的选择。所以,就要作F值检验。相对于混合估计模型来说,是否有必要建立个体固定效应模型可以通过F检验来完成。 H0:对于不同横截面模型截距项相同(建立混合估计模型)。SSEr H1:对于不同横截面模型的截距项不同(建立时刻固定效应模型)。SSEu

F统计量定义为:F=[( SSEr - SSEu)/(T+k-2)]/[ SSEu/(NT-T-k)] 其中,SSEr,SSEu分别表示约束模型(混合估计模型的)和非约束模型(个体固定效应模型的)的残差平方和(Sum squared resid)。非约束模型比约束模型多了T–1个被估参数。需要指出的是:当模型中含有k 个解释变量时,F统计量的分母自由度是NT-T- k。通过对F统计量我们将可选择准确、最佳的估计模型。 在作回归是也是四步:第一步,先作混合效应模型:在cross-section 一栏选择None ,Period也是None;Weights是cross-section Weights,然后把回归结果的Sum squared resid值复制出来,就是SSEr 第二步:作个体固定效用模型:在cross-section 一栏选择Fixed ,Period也是None;Weights是cross-section Weights,然后把回归结果的Sum squared resid值复制出来,就是SSEu 第三步:根据公式F=[( SSEr - SSEu)/(T+k-2)]/[ SSEu/(NT-T-k)]。计算出结果。其中,T为年数,不管我们的数据是unbalance还是balance 看observations就行了,也即Total pool (balanced) observations:的值,但是如果是balance我们也可以计算,也即是每一年的企业数的总和。比如说我们研究10年,每一年又500加企业,则NT=10×500=5000。K为解释变量,不含被解释变量。 第四步,根据计算出来的结果查F值分布表。看是否通过检验。检验准则:当F> Fα(T-1, NT-T-k) , α=0.01,0.05或0.1时,拒绝原假设,则结论是应该建立个体固定效应模型,反之,接受原假设,则不能建立个体固定效应模型。

eviews面板数据实例分析

1、已知1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均消费(cp,不变价格)与人均收入(ip,不变价格)居民,利用数据(1)建立面板数据(panel data)工作文件;(2)定义序列名并输入数据;(3)估计选择面板模型;(4)面板单位根检验。 年人均消费(consume)与人均收入(income)数据以及消费者价格指数(p)分别见表9、1,9、2与9、3。 表9、1 1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均消费(元)数据人均消费1996 1997 1998 1999 2000 2001 2002 CONSUMEAH 3607、43 3693、55 3777、41 3901、81 4232、98 4517、65 4736、52 CONSUMEBJ 5729、52 6531、81 6970、83 7498、48 8493、49 8922、72 10284、6 CONSUMEFJ 4248、47 4935、95 5181、45 5266、69 5638、74 6015、11 6631、68 CONSUMEHB 3424、35 4003、71 3834、43 4026、3 4348、47 4479、75 5069、28 CONSUMEHLJ 3110、92 3213、42 3303、15 3481、74 3824、44 4192、36 4462、08 CONSUMEJL 3037、32 3408、03 3449、74 3661、68 4020、87 4337、22 4973、88 CONSUMEJS 4057、5 4533、57 4889、43 5010、91 5323、18 5532、74 6042、6 CONSUMEJX 2942、11 3199、61 3266、81 3482、33 3623、56 3894、51 4549、32 CONSUMELN 3493、02 3719、91 3890、74 3989、93 4356、06 4654、42 5342、64 CONSUMENMG 2767、84 3032、3 3105、74 3468、99 3927、75 4195、62 4859、88 CONSUMESD 3770、99 4040、63 4143、96 4515、05 5022 5252、41 5596、32 CONSUMESH 6763、12 6819、94 6866、41 8247、69 8868、19 9336、1 10464 CONSUMESX 3035、59 3228、71 3267、7 3492、98 3941、87 4123、01 4710、96 CONSUMETJ 4679、61 5204、15 5471、01 5851、53 6121、04 6987、22 7191、96 CONSUMEZJ 5764、27 6170、14 6217、93 6521、54 7020、22 7952、39 8713、08 表9、2 1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均收入(元)数据人均收入1996 1997 1998 1999 2000 2001 2002 INCOMEAH 4512、77 4599、27 4770、47 5064、6 5293、55 5668、8 6032、4 INCOMEBJ 7332、01 7813、16 8471、98 9182、76 10349、69 11577、78 12463、92 INCOMEFJ 5172、93 6143、64 6485、63 6859、81 7432、26 8313、08 9189、36 INCOMEHB 4442、81 4958、67 5084、64 5365、03 5661、16 5984、82 6679、68 INCOMEHLJ 3768、31 4090、72 4268、5 4595、14 4912、88 5425、87 6100、56 INCOMEJL 3805、53 4190、58 4206、64 4480、01 4810 5340、46 6260、16 INCOMEJS 5185、79 5765、2 6017、85 6538、2 6800、23 7375、1 8177、64 INCOMEJX 3780、2 4071、32 4251、42 4720、58 5103、58 5506、02 6335、64 INCOMELN 4207、23 4518、1 4617、24 4898、61 5357、79 5797、01 6524、52 INCOMENMG 3431、81 3944、67 4353、02 4770、53 5129、05 5535、89 6051 INCOMESD 4890、28 5190、79 5380、08 5808、96 6489、97 7101、08 7614、36 INCOMESH 8178、48 8438、89 8773、1 10931、64 11718、01 12883、46 13249、8 INCOMESX 3702、69 3989、92 4098、73 4342、61 4724、11 5391、05 6234、36 INCOMETJ 5967、71 6608、39 7110、54 7649、83 8140、5 8958、7 9337、56 INCOMEZJ 6955、79 7358、72 7836、76 8427、95 9279、16 10464、67 11715、6 表9、3 1996—2002年中国东北、华北、华东15个省级地区的消费者物价指数物价指数1996 1997 1998 1999 2000 2001 2002 PAH 109、9 101、3 100 97、8 100、7 100、5 99

如何自学数据分析方法介绍

如何自学数据分析方法介绍 如何自学数据分析方法介绍 想要成为数据分析师,最快需要七周?七周信不信? 这是一份数据分析师的入门指南,它包含七周的内容,Excel、 数据可视化、数据分析思维、数据库、统计学、业务、以及Python。 每一周的内容,都有两到三篇文章细致讲解,帮助新人们快速掌握。这七周的内容刚好涵盖了一位数据分析师需要掌握的基础体系,也是一位新人从零迈入数据大门的知识手册。 第一周:Excel 每一位数据分析师都脱离不开Excel。 Excel的学习分为两个部分。 掌握各类功能强大的函数,函数是一种负责输入和输出的神秘盒子。把各类数据输入,经过计算和转换输出我们想要的结果。 在SQL,Python以及R中,函数依旧是主角。掌握Excel的函数有助于后续的学习,因为你几乎在编程中能找到名字一样或者相近 的函数。 在「数据分析:常见的Excel函数全部涵盖在这里了」中,介绍了常用的Excel函数。 清洗处理类:trim、concatenate、replace、substitute、 left/right/mid、len/lenb、find、search、text 关联匹配类:lookup、vlookup、index、match、row、column、offset 逻辑运算类:if、and、or、is系列

计算统计类:sum/sumif/sumifs、sumproduct、 count/countif/countifs、max、min、rank、rand/randbetween、averagea、quartile、stdev、substotal、int/round 时间序列类:year、month、weekday、weeknum、day、date、now、today、datedif 搜索能力是掌握Excel的不二窍门,工作中的任何问题都是可以找到答案。 第二部分是Excel中的工具。 在「数据分析:Excel技巧大揭秘」教程,介绍了Excel最具性 价比的几个技巧。包括数据透视表、格式转换、数组、条件格式、 自定义下拉菜单等。正是这些工具,才让Excel在分析领域经久不衰。 在大数据量的处理上,微软提供了Power系列,它和Excel嵌套,能应付百万级别的数据处理,弥补了Excel的不足。 Excel需要反复练习,实战教程「数据分析:手把手教你Excel 实战」,它通过网络上抓取的数据分析师薪资数据作为练习,总结 各类函数的使用。 除了上述要点,下面是附加的知识点,铺平数据分析师以后的道路。 了解单元格格式,数据分析师会和各种数据类型打交道,包括各类timestamp,date,string,int,bigint,char,factor, float等。 了解数组,以及相关应用(excel的数组挺难用),Python和R也会涉及到list,是核心概念之一。 了解函数,深入理解各种参数的作用。它会在学习Python中帮 助到你。 了解中文编码,UTF8、GBK、ASCII,这是数据分析师的坑点之一。

面板数据的分析步骤

面板数据的分析步骤 面板数据的分析方法或许我们已经了解许多了,但是到底有没有一个基本的步骤呢?那些步骤是必须的?这些都是我们在研究的过程中需要考虑的,而且又是很实在的问题。面板单位根检验如何进行?协整检验呢?什么情况下要进行模型的修正?面板模型回归形式的选择?如何更有效的进行回归?诸如此类的问题我们应该如何去分析并一一解决?以下是我近期对面板数据研究后做出的一个简要总结,和大家分享一下,也希望大家都进来讨论讨论。 步骤一:分析数据的平稳性(单位根检验) 按照正规程序,面板数据模型在回归前需检验数据的平稳性。李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。这种情况称为称为虚假回归或伪回归(spurious regression)。他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。 因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。而检验数据平稳性最常用的办法就是单位根检验。首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。 单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,Levin andLin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC 法。Levin et al. (2002) 指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250 之间,截面数介于10~250 之间) 的面板单位根检验。Im et al. (1997) 还提出了检验面板单位根的IPS 法,但Breitung(2000) 发现IPS 法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung 法。Maddala and Wu(1999)又提出了ADF-Fisher和PP-Fisher面板单位根检验方法。 由上述综述可知,可以使用LLC、IPS、Breintung、ADF-Fisher 和PP-Fisher5种方法进行面板单位根检验。 其中LLC-T 、BR-T、IPS-W 、ADF-FCS、PP-FCS 、H-Z 分别指Levin, Lin & Chu t* 统计量、Breitung t 统计量、lm Pesaran & Shin W 统计量、ADF- Fisher Chi-square统计量、PP-Fisher Chi-square 统计量、Hadri Z统计量,并且Levin, Lin & Chu t* 统计量、Breitung t统计量的原假设为存在普通的单位根过程,lm Pesaran & Shin W 统计量、ADF- Fisher Chi-square统计量、PP-Fisher Chi-square统计量的原假设为存在有效的单位根过程,Hadri Z统计量的检验原假设为不存在普通的单位根过程。 有时,为了方便,只采用两种面板数据单位根检验方法,即相同根单位根检验LLC (Levin-Lin-Chu)检验和不同根单位根检验Fisher-ADF检验(注:对普通序列(非面板序列)的单位根检验方法则常用ADF检验),如果在两种检验中均拒绝存在单位根的原假设则我们

基于面板数据模型及其固定效应的模型分析

基于面板数据模型及其固定效应的模型分析 在20世纪80年代及以前,还只有很少的研究面板数据模型及其应用的文献,而20世纪80年代之后一直到现在,已经有大量的文献使用同时具有横截面和时间序列信息的面板数据来进行经验研究(Hsiao,20XX)。同时,大量的面板数据计量经济学方法和技巧已经被开发了出来,并成为现在中级以上的计量经济学教科书的必备内容,面板数据计量经济学的理论研究也是现在理论计量经济学最热的领域之一。 面板数据同时包含了许多横截面在时间序列上的样本信息,不同于只有一个维度的纯粹横截面数据和时间序列数据,面板数据是同时有横截面和时序二维的。使用二维的面板数据相对于只使用横截面数据或时序数据,在理论上被认为有一些优点,其中一个重要的优点是面板数据被认为能够控制个体的异质性。在面板数据中,人们认为不同的横截面很可能具有异质性,这个异质性被认为是无法用已知的回归元观测的,同时异质性被假定为依横截面不同而不同,但在不同时点却是稳定的,因此可以用横截面虚拟变量来控制横截面的异质性,如果异质性是发生在不同时期的,那么则用时期虚拟变量来控制。而这些工作在只有横截面数据或时序数据时是无法完成的。 然而,实际上绝大多数时候我们并不关心这个异质性究竟是多少,我们关心的仍然是回归元参数的估计结果。使用面板数据做过实际研究的人可能会发现,使用的效应①不同,对回归元的估计结果经常有十分巨大的影响,在某个固定效应设定下回归系数为正显着,而另外一个效应则变为负显着,这种事情经常可以碰到,让人十分困惑。大多数的研究文献都将这种影响解释为控制了固定效应后的结果,因为不可观测的异质性(固定效应)很可能和回归元是相关的,在控制了这个效应后,由于变量之间的相关性,自然会对回归元的估计结果产生影响,因而使用的效应不同,估计的结果一般也就会有显着变化。 然而,这个被广泛接受的理论假说,本质上来讲是有问题的。我们认为,估计的效应不同,对应的自变量估计系数的含义也不同,而导致估计结果有显着变化的可能重要原因是由于面板数据是二维的数据,而在这两个不同维度上,以及将两个维度的信息放到一起时,样本信息所显现出来的自变量和因变量之间的相关关系可能是不同的。因此,我们这里提出另外一种异质性,即样本在不同维度上的相关关系是不同的,是异质的,这个异质性是发生在回归元的回归系数上,而

数据整理分析方法

数据梳理主要是指对数据的结构、内容和关系进行分析 大多数公司都存在数据问题。主要表现在数据难于管理,对于数据对象、关系、流程等难于控制。其次是数据的不一致性,数据异常、丢失、重复等,以及存在不符合业务规则的数据、孤立的数据等。 1数据结构分析 1元数据检验 元数据用于描述表格或者表格栏中的数据。数据梳理方法是对数据进行扫描并推断出相同的信息类型。 2模式匹配 一般情况下,模式匹配可确定字段中的数据值是否有预期的格式。 3基本统计 元数据分析、模式分析和基本统计是数据结构分析的主要方法,用来指示数据文件中潜在的结构问题。 2 数据分析 数据分析用于指示业务规则和数据的完整性。在分析了整个的数据表或数据栏之后,需要仔细地查看每个单独的数据元素。结构分析可以在公司数据中进行大范围扫描,并指出需要进一步研究的问题区域;数据分析可以更深入地确定哪些数据不精确、不完整和不清楚。 1标准化分析 2频率分布和外延分析 频率分布技术可以减少数据分析的工作量。这项技巧重点关注所要进一步调查的数据,辨别出不正确的数据值,还可以通过钻取技术做出更深层次的判断。 外延分析也可以帮助你查明问题数据。频率统计方法根据数据表现形式寻找数据的关联关系,而外延分析则是为检查出那些明显的不同于其它数据值的少量数据。外延分析可指示出一组数据的最高和最低的值。这一方法对于数值和字符数据都是非常实用的。 3业务规则的确认 3 数据关联分析 专业的流程模板和海量共享的流程图:[1] - 价值链图(EVC) - 常规流程图(Flowchart) - 事件过程链图(EPC) - 标准建模语言(UML) - BPMN2.0图 数据挖掘 数据挖掘又称数据库中的知识发现,是目前人工智能和数据库领域研究的热点问题, 所谓数据挖掘是指从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的非平凡过程 利用数据挖掘进行数据分析常用的方法主要有分类、回归分析、聚类、关联规则、特征、变化和偏差分析、Web页挖掘等,它们分别从不同的角度对数据进行挖掘。 ①分类。分类是找出数据库中一组数据对象的共同特点并按照分类模式将其划分为

面板数据分析方法步骤

1.面板数据分析方法步骤 面板数据的分析方法或许我们已经了解许多了,但是到底有没有一个基本的步骤呢?那些步骤是必须的?这些都是我们在研究的过程中需要考虑的,而且又是很实在的问题。面板单位根检验如何进行?协整检验呢?什么情况下要进行模型的修正?面板模型回归形式的选择?如何更有效的进行回归?诸如此类的问题我们应该如何去分析并一一解决?以下是我近期对面板数据研究后做出的一个简要总结,和大家分享一下,也希望大家都进来讨论讨论。 步骤一:分析数据的平稳性(单位根检验) 按照正规程序,面板数据模型在回归前需检验数据的平稳性。李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。这种情况称为虚假回归或伪回归(spurious regression)。他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。 因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。而检验数据平稳性最常用的办法就是单位根检验。首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。 单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,Levin andLin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC 法。Levin et al. (2002) 指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250 之间,截面数介于10~250 之间) 的面板单位根检验。Im et al. (1997) 还提出了检验面板单位根的IPS 法,但Breitung(2000) 发现IPS 法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung 法。Maddala and Wu(1999)又提出了ADF-Fisher和PP-Fisher面板单位根检验方法。 由上述综述可知,可以使用LLC、IPS、Breintung、ADF-Fisher 和PP-Fisher5种方法进行面板单位根检验。 其中LLC-T 、BR-T、IPS-W 、ADF-FCS、PP-FCS 、H-Z 分别指Levin, Lin & Chu t* 统计量、Breitung t 统计量、lm Pesaran & Shin W 统计量、

面板数据分析方法步骤全解

面板数据分析方法步骤全解 面板数据的分析方法或许我们已经了解许多了,但是到底有没有一个基本的步骤呢?那些步骤是必须的?这些都是我们在研究的过程中需要考虑的,而且又是很实在的问题。面板单位根检验如何进行?协整检验呢?什么情况下要进行模型的修正?面板模型回归形式的选择?如何更有效的进行回归?诸如此类的问题我们应该如何去分析并一一解决?以下是我近期对面板数据研究后做出的一个简要总结, 和大家分享一下,也希望大家都进来讨论讨论。 步骤一:分析数据的平稳性(单位根检验) 按照正规程序,面板数据模型在回归前需检验数据的平稳性。李子奈 曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归, 尽管有较高的R 平方,但其结果是没有任何实际意义的。这种情况称为称为虚假回归或伪回归(spurious regression)。他认为平稳的真正 含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势 以后,剩余的序列为零均值,同方差,即白噪声。因此单位根检验时 有三种检验模式:既有趋势又有截距、只有截距、以上都无。 因此为了避免伪回归,确保估计结果的有效性, 我们必须对各面板序 列的平稳性进行检验。而检验数据平稳性最常用的办法就是单位根检验。首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项, 从而为进一步的单位根检验的检验模式做准备。 单位根检验方法的文献综述:在非平稳的面板数据渐进过程中丄evin

an dLi n(1993)很早就发现这些估计量的极限分布是高斯分布,这些结 果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。后来经过Levin et al. (2002的改进,提出了检验面板单 位根的LLC法。Levin et al. (2002)指出,该方法允许不同截距和时间趋 势,异方差和高阶序列相关,适合于中等维度(时间序列介于25?250 之间,截面数介于10?250之间)的面板单位根检验。Im et al. (1997) 还提出了检验面板单位根的IPS法,但Breitung(2000)发现IPS法对 限定性趋势的设定极为敏感,并提出了面板单位根检验的Breit ung 法。Maddala and Wu(1999)又提出了ADF-Fisher和PP-Fisher面板单位 根检验方法。 由上述综述可知,可以使用LLC IPS Breintung、ADF-Fisher和 PP-Fisher5种方法进行面板单位根检验。 其中LLC-T、BR-T IPS-W、ADF-FCS PP-FCS H-Z 分别指Levin, Lin & Chu t* 统计量、Breitung t 统计量、Im Pesaran & Shin W 统计量、 ADF- Fisher Chi-square统计量、PP-FisherChi-square统计量、Hadri Z 统计量,并且Levin, Lin & Chu t*统计量、Breitung t统计量的原假设 为存在普通的单位根过程,Im Pesaran & Shin W统计量、ADF- Fisher Chi-square统计量、PP -Fisher Chi-square统计量的原假设为存在有效 的单位根过程,Hadri Z统计量的检验原假设为不存在普通的单位根 过程。

面板数据模型入门讲解

第十四章 面板数据模型 在第五章,当我们分析城镇居民的消费特征时,我们使用的是城镇居民的时间序列数据;而当分析农村居民的消费特征时,我们使用农村居民的时间序列数据。如果我们想要分析全体中国居民的消费特征呢?我们有两种选择:一是使用中国居民的时间序列数据进行分析,二是把城镇居民和农村居民的样本合并,实际上就是两个时间序列的样本合并为一个样本。 多个观测对象的时间序列数据所组成的样本数据,被称为面板数据(Panel Data )。通常也被称为综列数据,意即综合了多个时间序列的数据。当然,面板数据也可以看成多个横截面数据的综合。在面板数据中,每一个观测对象,我们称之为一个个体(Individual )。例如城镇居民是一个观测个体,农村居民是另一个观测个体。 如果面板数据中各观测个体的观测区间是相同的,我们称其为平衡的面板数据,反之,则为非平衡的面板数据。基于面板数据所建立的计量经济学模型则被称为面板数据模型。例如,表5.3.1中城镇居民和农村居民的样本数据具有相同的采样区间,所以,它是一个平衡的面板数据。 §14.1 面板数据模型 一、两个例子 1. 居民消费行为的面板数据分析 让我们重新回到居民消费的例子。在表5.1.1中,如果我们将城镇居民和农村居民的时间序列数据作为一个样本,以分析中国居民的消费特征。那么,此时模型(5.1.1)的凯恩斯消费函数就可以表述为: it it it Y C εββ++=10 (14.1.1) it t i it u ++=λμε (14.1.2) 其中:it C 和it Y 分别表示第i 个观测个体在第t 期的消费和收入。i =1、2分别表示城镇居民和农村居民两个观测个体,t =1980、…、2008表示不同年度。it u 为经典误差项。 在(14.1.2)中,i μ随观测个体的变化,而不随时间变化,它反映个体之间不随时间变化的差异性,被称为个体效应。t λ反映不随个体变化的时间上的差异性,被称为时间效应。在本例中,城镇居民和农村居民的消费差异一部分来自收入差异和随机扰动,还有一部分差

面板数据模型理论知识

1.Panel Data 模型简介 Panel Data 即面板数据,是截面数据与时间序列数据综合起来的一种数据类型,是截面上个体在不同时点的重复观测数据。 相对于一维的截面数据和时间序列数据进行经济分析而言,面板数据有很多优点。(1)由于观测值的增多,可以增加自由度并减少了解释变量间的共线性,提高了估计量的抽样精度。(2)面板数据建模比单截面数据建模可以获得更多的动态信息,可以构建并检验更复杂的行为模型。(3)面板数据可以识别、衡量单使用一维数据模型所不能观测和估计的影响,可以从多方面对同一经济现象进行更加全面解释。 Panel Data 模型的一般形式为it K k kit kit it it x y μβα++=∑ =1 其中it y 为被解释变量,it x 为解释变量, i =1,2,3……N ,表示N 个个体;t =1,2,3……T ,表示已知T 个时点。参数it α表示模型的截距项,k 是解释变量的个数,kit β是相对应解释变量的待估计系数。随机误差项it μ相互独立,且满足零 均值,等方差为2δ的假设。 面板数据模型可以构建三种形式(以截面估计为例): 形式一: 不变参数模型 i K k ki k i x y μβα++=∑ =1,又叫混合回归模型,是指无论 从时间上还是截面上观察数据均不存在显著差异,故可以将面板数据混合在一起,采用普通最小二乘估计法(OLS )估计参数即可。 形式二:变截距模型i K k ki k i i x y μβαα+++=∑ =1*,*α为每个个体方程共同的截距 项,i α是不同个体之间的异质性差异。对于不同个体或时期而言,截距项不同而解释变量的斜率相同,说明存在不可观测个体异质影响但基本结构是相同的,可以通过截距项的不同而体现出来个体之间的差异。当i α与i x 相关时,那就说明模型为固定效应模型,当i α与i x 不相关时,说明模型为随机效应模型。 形式三:变参数模型 i K k ki ki i i x y μβαα+++=∑ =1* ,对于不同个体或时期而 言,截距项(i αα+*)和每个解释变量的斜率ki β都是不相同的,表明不同个体之间既存在个体异质影响也存在不同的结构影响,即每个个体或时期都对应一个互不相同的方程。同样分为固定效应模型和随机效应模型两种。 注意:这里没有截距项相同而解释变量的系数不相同的模型。 2.Panel Data 模型分析步骤 2.1 单位根检验 无论利用Panel Data 模型进行截面估计还是时间估计分析的时候,我们先要进行单位根检验,只有Panel Data 模型中的数据是平稳的才可以进行回归分析,否则容易产生“虚假回归”。李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的2R ,但其结果是没有任何实际意义的。这种情况称为称为虚假回归或伪回归。面板单位根检验方法有5种:LLC 检验、IPS 检验、Breintung 检验、ADF-Fisher 检验和PP-Fisher 检验,前两种是相同根情况下的单位根检验方法, 后三

相关主题