搜档网
当前位置:搜档网 › 浅谈以太网帧格式

浅谈以太网帧格式

浅谈以太网帧格式
浅谈以太网帧格式

浅谈以太网帧格式

一、Ethernet帧格式的发展

1980 DEC,Intel,Xerox制订了Ethernet I的标准

1982 DEC,Intel,Xerox又制订了Ehternet II的标准

1982 IEEE开始研究Ethernet的国际标准802.3

1983 迫不及待的Novell基于IEEE的802.3的原始版开发了专用的Ethernet帧格式

1985 IEEE推出IEEE 802.3规范,后来为解决EthernetII与802.3帧格式的兼容问题,

推出折衷的Ethernet SNAP格式

(其中早期的Ethernet I已经完全被其他帧格式取代了,所以现在Ethernet只能见到后面几种Ethernet的帧格式,

现在大部分的网络设备都支持这几种Ethernet的帧格式,

如:cisco的路由器再设定Ethernet接口时可以指定不同的以太网的帧格

式:arpa,sap,snap,novell-ether)

二.各种不同的帧格式

下面介绍一下各个帧格式

1.Ethernet II

就是DIX以太网联盟推出的。。。。它由6个字节的目的MAC地址,6个字节的源MAC 地址,

2个字节的类型域(用于标示封装在这个Frame、里面数据的类型)以上为Frame Header, 接下来是46--1500字节的数据,和4字节的帧校验

2.Novell Ethernet

它的帧头与Ethernet有所不同其中EthernetII帧头中的类型域变成了长度域,

后面接着的两个字节为0xFFFF,用于标示这个帧是Novell Ether类型的Frame,

由于前面的0xFFFF站掉了两个字节所以数据域缩小为44-1498个字节,帧校验不变。

3.IEEE 802.3/802.2

802.3的Frame Header和Ethernet II的帧头有所不同,EthernetII类型域变成了长度域。其中又引入802.2协议(LLC)在802.3帧头后面添加了一个LLC首部,

由DSAP(Destination Service Access Point)1 byte,SSAP(Source SAP),一个控制域--1 byte! SAP用于标示帧的上层协议。

4.Ethernet SNAP

SNAP Frame与802.3/802.2 Frame的最大区别是增加了一个5 Bytes的SNAP ID

其中前面3个byte通常与源mac地址的前三个bytes相同为厂商代码!

有时也可设为0,后2 bytes与Ethernet II的类型域相同。。。

三.如何区分不同的帧格式

Ethernet中存在这四种Frame那些网络设备又是如何识别的呢? 如何区分EthernetII与其他三种格式的Frame

如果帧头跟随source mac地址的2 bytes的值大于1500,则此Frame为EthernetII格式的

接着比较紧接着的两bytes如果为0xFFFF则为Novell Ether类型的Frame,

如果为0xAAAA则为Ethernet SNAP格式的Frame ,如果都不是则为Ethernet 802.3/802.2格式的帧

几种以太网帧格式

相当长的一段时间里我都没搞明白一个很基础的问题---以太网的封装格式;最近查了查相关文档,总结如下;

首先说明一下,Ethernet和802.3并不是一回事,虽然我们经常混用这两个术语;

历史上以太网帧格式有五种:

1.Ethernet V1:这是最原始的一种格式,是由Xerox PARC提出的3Mbps CSMA/CD以太网标准的封装格式,

后来在1980年由DEC,Intel和Xerox标准化形成Ethernet V1标准;

2.Ethernet V2(ARPA):这是最常见的一种以太网帧格式,也是今天以太网的事实标准,由DEC,Intel和Xerox在1982年公布其标准,主要更改了Ethernet V1的电气特性和物理接口,

在帧格式上并无变化;Ethernet V2出现后迅速取代Ethernet V1成为以太网事实标准;Ethernet V2帧头结构为6bytes的源地址+6bytes的目标地址+2Bytes的协议类型字段+数据。

常见协议类型如下:

0800 IP

0806 ARP

8137 Novell IPX

809b Apple Talk

如果协议类型字段取值为0000-05dc(十进制的0-1500),则该帧就不是Ethernet V2(ARPA)类型了,而是下面讲到的三种802.3帧类型之一;

Ethernet可以支持TCP/IP,Novell IPX/SPX,Apple Talk Phase I等协议;RFC 894定义了IP报文在Ethernet V2上的封装格式;

3.RAW 802.3:这是1983年Novell发布其划时代的Netware/86网络套件时采用的私有以太网帧格式,

该格式以当时尚未正式发布的802.3标准为基础;

但是当两年以后IEEE正式发布802.3标准时情况发生了变化—IEEE在802.3帧头中又加入了802.2 LLC(Logical Link Control)头,

这使得Novell的RAW 802.3格式跟正式的IEEE 802.3标准互不兼容;可以看到在Novell 的RAW 802.3帧结构中并没有标志协议类型的字段,

而只有Length字段(2bytes,取值为0000-05dc,即十进制的0-1500),因为RAW 802.3帧只支持IPX/SPX一种协议;

4.802.3/802.2 LLC:这是IEEE 正式的802.3标准,它由Ethernet V2发展而来。

它将Ethernet V2帧头的协议类型字段替换为帧长度字段(取值为0000-05dc;十进制的1500);

并加入802.2 LLC头用以标志上层协议,LLC头中包含DSAP,SSAP以及Crontrol字段;常见SAP值:

0 Null LSAP [IEEE]

4 SNA Path Control [IEEE]

6 DOD IP [79,JBP]

AA SNAP [IEEE]

FE Global DSAP [IEEE]

SAP值用以标志上层应用,但是每个SAP字段只有8bits长,

而且其中仅保留了6比特用于标识上层协议,因此所能标识的协议数有限(不超过32种);并且IEEE拒绝为某些重要的协议比如ARP协议定义SAP值(奇怪的是同时他们却定义了IP的SAP值);

因此802.3/802.2 LLC的使用有很大局限性;

5.802.3/802.2 SNAP:这是IEEE为保证在802.2 LLC上支持更多的上层协议同时更好的支持IP协议而发布的标准,

与802.3/802.2 LLC一样802.3/802.2 SNAP也带有LLC头,但是扩展了LLC属性,

新添加了一个2Bytes的协议类型域(同时将SAP的值置为AA),

从而使其可以标识更多的上层协议类型;

另外添加了一个3Bytes的OUI字段用于代表不同的组织,RFC 1042定义了IP报文在802.2网络中的封装方法和ARP协议在802.2 SANP中的实现;

今天的实际环境中大多数TCP/IP设备都使用Ethernet V2格式的帧。

这是因为第一种大规模使用的TCP/IP系统(4.2/3 BSD UNIX)的出现时间介于RFC 894和RFC 1042之间,

它为了避免不能和别的主机互操作的风险而采用了RFC 894的实现;

也由于大家都抱着这种想法,所以802.3标准并没有如预期那样得到普及;

CISCO设备的Ethernet Interface默认封装格式是ARPA(Ethernet V2)

不同厂商对这几种帧格式通常有不同的叫法,比如:

Frame Type Novel Cisco

Ethernet Version 2 Ethernet_II arpa

802.3 Raw Ethernet_802.3 novell_ether

IEEE 802.3/802.2 Ethernet_802.2 sap

IEEE 802.3/802.2 SNAP ETHERNET_SNAP snap

***************************************************************************************************** *********************************

一、以太网数据帧的格式分析

大家都知道我们目前的局域网大多数是以太网,但以太网有多种标准,其数据帧有多种格式,恐怕有许多人不是太清楚,本文的目的就是通过帧格式和Sniffer捕捉的数据包解码来区别它们。

以太网这个术语一般是指数字设备公司(Digital Equipment)、英特尔公司(Intel)和施乐公司(Xerox)在1982年联合公布的一个标准(实际上它是第二版本,第一版本早在1972年就在施乐公司帕洛阿尔托研究中心PARC里产生了)。它是目前TCP/IP网络采用的主要的局域网技术。它采用一种称作CSMA/CD的媒体接入方法,其意思是带冲突检测的载波侦听多路接入(Carrier Sense, Multiple Access with Collision Detection)。它的速率为10 Mb/s,地址为48 bit。

1985年,IEEE(电子电气工程师协会)802委员会公布了一个稍有不同的标准集,其中802.3针对整个CSMA/CD网络,802.4针对令牌总线网络,802.5针对令牌环网络。这三者的共同特性由802.2标准来定义,那就是802网络共有的逻辑链路控制(LLC)。不幸的是,802.2和802.3定义了一个与以太网不同的帧格式,加上1983年Novell为其Netware 开发的私有帧,这些给以太网造成了一定的混乱,也给我们学习以太网带来了一定的影响。

1、通用基础

数据链路层头(Header)是数据链路层的控制信息的长度不是固定的,根据以太网数据帧的格式的不同而不同,那么判断IEEE802.3、IEEE802.3 SNAP、Ethernet Version2、Netware 802.3 “Raw”这些数据帧的最主要依据也源于Header的变化。

从Sniffer捕捉数据包中也可以看出,Sniffer捕捉数据包的时候是掐头去尾的,不要前面的前导码,也丢弃后面的CRC校验(注意它只是不在Decode里显示该区域,但并不代表它不去做数据包CRC校验),这就是很多人困惑为什么Sniffer捕捉到的数据包长度跟实际长度不相符的原因。那么,Sniffer是如何来判断这些不同类型的以太网格式呢?

Sniffer可以判断出不同的以太网格式,这里需要注意的是,Sniffer在数据包解码时有自己的格式,所以有Offset之说,offset ?E是指在Sniffer Hex解码窗口中从左向右第15位的数值。大家如果有点发懵的话,没有关系,看完后面的格式分析后再来分析前面提到的,相信一定能够明白?

下面我们通过一些具体的数据包来说明各种以太网格式的具体区别。

2、Ethernet Version2

以太网版本2是先于IEEE标准的以太网版本。

从数据包中可以看出,Ethernet V2通过在DLC头中2个字节的类型(Type)字段来辨别接收处理。类型字段是用来指定上层协议的(如0800指示IP、0806指示ARP等),它的

值一定是大于05FF的,它提供无连接服务的,本身不控制数据(DATA)的长度,它要求网络层来确保数据字段的最小包长度(46字节)。

Sniffer捕获的Ethernet V2帧的解码,可以看到在DLC层,源DLC地址后紧跟着就是以太网类型(Etehertype)值0800,代表上层封装的是IP报文,0800大于05FF,因而我们可以断定它是Ethernet V2的帧。

3、IEEE802.3

IEEE802.3把DLC层分隔成明显的两个子层:MAC层和LLC层,其中MAC层主要是指示硬件目的地址和源地址。LLC层用来提供一些服务:

–通过SAP地址来辨别接收和发送方法

–兼容无连接和面向连接服务

–提供子网访问协议(Sub-network Access Protocol,SNAP),类型字段即由它的首部给出。

MAC层要保证最小帧长度不小于64字节,如果数据不满足64字节长度就必须进行填充。是Sniffer捕获的IEEE802.3帧的解码,可以看到在DLC层源地址后紧跟着就是802.3的长度(Length)字段0026,它小于05FF,可以肯定它不是Ethernet V2的帧,而接下来的Offset 0E处的值“4242”(代表DSAP和SSAP),既不是Nove ll 802.3 “Raw”的特征值“FFFF”,也不是IEEE 802.3 SNAP的特征值“AAAA”,因此它肯定是一个IEEE802.3的帧。

4、IEEE802.3 SNAP

SNAP (Sub-Network Access Protocol)子网访问协议,是逻辑链路控制(Logical Link Control)的一个子集,它允许协议不用通过服务访问点(SAP)即可实现IEEE兼容的MAC 层功能,因此它在DSAP和SSAP域里的值是固定的(AAAA)。也正源于此,它需要额外提供5个字节的头来指定接收方法,3个字节标识厂商代码,2个字节标识上层协议。

其MAC层保证数据帧长度不小于64字节,不足的话需要进行数据填充。

是Sniffer捕获的IEEE802.3 SNAP帧的解码,可以看到在DLC层源地址后紧跟着就是802.3的长度(Length)字段0175,它小于05FF,可以肯定它不是Ethernet V2的帧,而接下来的Offset 0E处的值“AAAA”(代表DSAP和SSAP),这是IEEE 802.3 SNAP的特征值“AAAA”,因此可以断定它是一个IEEE802.3 SNAP的帧。

5、Novell Netware 802.3 “Raw”

虽然它的产生先于IEEE802.3规范,但已成为IEEE802.3规范的一部分。它仅使用DLC

层的下半部,而不使用LLC。

802.3 “Raw”帧通过在DLC头中2个字节的长度(Length)字段来标记数据帧长度,而在长度字段后紧跟着就是两个字节的十六进制值FFFF,它是用来标识IPX协议头的开始。为了确保最小数据帧长度为64字节,MAC层会进行填充数据区域来确保最小长度。

在所有工作站都使用同一种数据帧类型情况下不会有什么问题,但如果是在混合以太网帧类型环境中,Novell的这种以太网帧会造成负面影响:当Novell发出广播帧时,其FF字段

正好是IEEE802.3帧中的服务访问点(SAP)域,它的“FF”值代表着广播SAP,因此所有的工作站(不管是不是Netware工作站)都会拷贝,这会造成不必要的广播影响。

Sniffer捕获的Netware 802.3 “RAW”帧的解码,可以看到在DLC层源地址后紧跟着就是802.3的长度(Length)字段0120,它小于05FF,可以肯定它不是Ethernet V2的帧,而接下来的Offset 0E处的值“FFFF”(代表IPX协议的开始),这是Netware 802.3 “Raw”的特征值“FFFF”,因此可以断定它是一个Novell 802.3 “Raw”的帧。

二、Ethernet V2帧与IEEE 802.3帧的比较

因为这两种帧是我们在现在的局域网里最常见的两种帧,因此,我们对它们进行一些比较。Ethernet V2可以装载的最大数据长度是1500字节,而IEEE 802.3可以装载的最大数据是1492字节(SNAP)或是1497字节; Ethernet V2不提供MAC层的数据填充功能,而IEEE 802.3不仅提供该功能,还具备服务访问点(SAP)和SNAP层,能够提供更有效的数据链路层控制和更好的传输保证。那么我们可以得出这样的结论:Ethernet V2比IEEE802.3更适合于传输大量的数据,但Ethernet V2缺乏数据链路层的控制,不利于传输需要严格传输控制的数据,这也正是IEEE802.3的优势所在,越需要严格传输控制的应用,越需要用IEEE802.3或SNAP来封装,但IEEE802.3也不可避免的带来数据装载量的损失,因此该格式的封装往往用在较少数据量承载但又需要严格控制传输的应用中。

在实际应用中,我们会发现,大多数应用的以太网数据包是Ethernet V2的帧(如HTTP、FTP、SMTP、POP3等应用),而交换机之间的BPDU(桥协议数据单元)数据包则是IEEE802.3的帧,VLAN Trunk协议如802.1Q和Cisco的CDP(思科发现协议)等则是采用IEEE802.3 SNAP的帧。大家有兴趣的话,可以利用Sniffer等协议分析工具去捕捉数据包,然后解码查看是不是这样的。

以太网帧的封装实验

实训报告以太网帧的封装实验 1.实训目的 1)观察以太网帧的封装格式 2)对比单播以太网帧和广播以太网帧的目标MAC地址 2.实训拓扑图 以太网帧实验拓扑 PC IP地址子网掩码 PC0 PC1 PC2 PC3 3.主要操作步骤及实训结果记录 (1)任务一:观察单播以太网帧的封装 步骤1:准备工作 打开对应文件,完成初始化,删除练习文件中预设场景 步骤2:捕获数据包 进入Simulation模式。添加数据包,单击auto capture/play捕获数据包,再次单击停止捕获 步骤3:观察以太网帧的封装格式 步骤4:观察该广播包的以太网封装

DEST MAC: MAC: 步骤4:观察交换机是否会修改以太网帧各字段取值 DEST MAC:MAC:

(2)任务二:观察广播以太网帧的封装 步骤1:捕获数据包 Pc0数据帧被交换机转发给pc1、pc2、pc3(所有节点),pc1、pc2、pc3(所有节点)接收该广播帧。 步骤2:观察该广播包的以太网封装 DEST MAC:字段的取值: MAC字段取值的含义:广播地址。

4.实训结果分析及心得体会 (1)任务一中,观察到以太网帧封装格式中前导字段的取值是什么阐述其在数据帧传输过程中的作用。 答:任务一中,前导码字段取值为···1010;以太网使用曼彻斯特编码传输数据,其特征是每个码元中间有一次电压的跳变,用于接收方提取同步信号,以太网帧中的前导码有何作用前导码是为了隔离每个以太网帧的,也是定位符。因为以太网是变长的,所以每个帧之间需要前导来区分。 (2)任务一中,Switch0转发数据帧时是否修改其源MAC地址和目标MAC地址 答:switch0转发给pc2地数据帧中源MAC地址和目标MAC地址并未进行修改。 (3)交换机接收数据帧后,依据什么判断该数据帧是单播还是广播或依据什么判断向哪个目标节点转发 答:交换机工作在数据链路层,依据数据帧中的目标MAC地址的取值判断数据帧是单播还是广播,依据目标MAC地址判断向哪个目标节点转发。

实验五 IEEE 802.3协议分析和以太网

郑州轻工业学院本科 实验报告 题目:IEEE 802.3协议分析和以太网学生姓名:王冲 系别:计算机与通信工程学院 专业:网络运维 班级:网络运维11-01 学号:541107110123 指导教师:熊坤 2014 年10 月28 日

实验五IEEE 802.3协议分析和以太网 一、实验目的 1、分析802.3协议 2、熟悉以太网帧的格式 二、实验环境 与因特网连接的计算机网络系统;主机操作系统为windows;Ethereal、IE等软件。 三、实验步骤 1.俘获并分析以太网帧 (1)清空浏览器缓存(在IE窗口中,选择“工具/Internet选项/删除文件”命令)。

(2)启动Ethereal,开始分组俘获。 (3)在浏览器的地址栏中输入: https://www.sodocs.net/doc/ef7104096.html,/ethereal-labs/HTTP-ethereal-lab-file3.html,浏览器将显示冗长的美国权力法案。

(4)停止分组俘获。首先,找到你的主机向服务器https://www.sodocs.net/doc/ef7104096.html,发送的HTTP GET报文的分组序号,以及服务器发送到你主机上的HTTP 响应报文的序号。其中,窗口大体如下。 选择“Analyze->Enabled Protocols”,取消对IP复选框的选择,单击OK。窗口如下

(5)选择包含HTTP GET 报文的以太网帧,在分组详细信息窗口中,展开EthernetII 信息部分。根据操作,回答1-5 题 (6)选择包含HTTP 响应报文第一个字节的以太网帧,根据操作,回答6-10 题2.ARP (1)利用MS-DOS命令:arp 或c:\windows\system32\arp查看主机上ARP缓存的内容。根据操作,回答11题。 (2)利用MS-DOS命令:arp -d * 清除主机上ARP缓存的内容。 (3)清除浏览器缓存。 (4)启动Ethereal,开始分组俘获。 (5)在浏览器的地址栏中输入: https://www.sodocs.net/doc/ef7104096.html,/ethereal-labs/HTTP-ethereal-lab-file3.html,浏览器将显示冗长的美国权力法案。 (6)停止分组俘获。选择“Analyze->Enabled Protocols”,取消对IP复选框的选择,单击OK。窗口如下。根据操作,回答12-15题。 四、实验报告内容

以太网帧格式

以太网帧格式 百科名片 现在的以太网帧格式 以太网帧格式,即在以太网帧头、帧尾中用于实现以太网功能的域。目录

编辑本段 编辑本段历史分类 1.Ethernet V1 这是最原始的一种格式,是由Xerox PARC提出的3Mbps CSMA/CD以太网标准的封装格式,后来在1980年由DEC,Intel和Xerox标准化形成Ethernet V1标准. 2.Ethernet V2(ARPA) 由DEC,Intel和Xerox在1982年公布其标准,主要更改了Ethernet V1的电气特性和物理接口,在帧格式上并无变化;Ethernet V2出现后迅速取

代Ethernet V1成为以太网事实标准;Ethernet V2帧头结构为6bytes的源地址+6bytes的目标地址+2Bytes的协议类型字段+数据。 以太网帧格式 3.RAW 802.3 这是1983年Novell发布其划时代的Netware/86网络套件时采用的私有以太网帧格式,该格式以当时尚未正式发布的802.3标准为基础;但是当两年以后IEEE正式发布802.3标准时情况发生了变化—IEEE在802.3帧头中又加入了802.2 LLC(Logical Link Control)头,这使得Novell的RAW 802.3格式跟正式的IEEE 802.3标准互不兼容. 4.802.3/802.2 LLC 这是IEEE 正式的802.3标准,它由Ethernet V2发展而来。它将Ethernet V2帧头的协议类型字段替换为帧长度字段(取值为0000-05dc;十进制的1500);并加入802.2 LLC头用以标志上层协议,LLC头中包含DSAP,SSAP以及Crontrol字段. 5.802.3/802.2 SNAP 这是IEEE为保证在802.2 LLC上支持更多的上层协议同时更好的支持IP协议而发布的标准,与802.3/802.2 LLC一样802.3/802.2 SNAP也带有LLC头,但是扩展了LLC属性,新添加了一个2Bytes的协议类型域(同时将SAP的值置为AA),从而使其可以标识更多的上层协议类型;另外添加了一个3Bytes的OUI字段用于代表不同的组织,RFC 1042定义了IP报文在802.2网络中的封装方法和ARP协议在802.2 SANP中的实现. 802.3以太网帧格式备注: 前导码(7字节)、帧起始定界符(1字节)、目的MAC地址(6字节)、源MAC地址(6字节)、类型/长度(2字节)、数据(46~1500字节)、帧校验序列(4字节)[MAC地址可以用2-6字节来表示,原则上是这样,实际都是6字节] 图2 IEEE802.3以太帧头

以太网的帧结构

以太网的帧结构 要讲帧结构,就要说一说OSI七层参考模型。 一个是访问服务点,每一层都对上层提供访问服务点(SAP),或者我们可以说,每一层的头里面都有一个字段来区分上层协议。 比如说传输层对应上层的访问服务点就是端口号,比如说23端口是telnet,80端口是http。IP层的SAP是什么? 其实就是protocol字段,17表示上层是UDP,6是TCP,89是OSPF,88是EGIRP,1是ICMP 等等。 以太网对应上层的SAP是什么呢?就是这个type或length。比如 0800表示上层是IP,0806表示上层是ARP。我 第二个要了解的就是对等层通讯,对等层通讯比较好理解,发送端某一层的封装,接收端要同一层才能解封装。 我们再来看看帧结构,以太网发送方式是一个帧一个帧发送的,帧与帧之间需要间隙。这个叫帧间隙IFG—InterFrame Gap IFG长度是96bit。当然还可能有Idle时间。 以太网的帧是从目的MAC地址到FCS,事实上以太网帧的前面还有preamble,我们把它叫做先导字段。作用是用来同步的,当接受端收到 preamble,就知道以太网帧就要来了。preamble 有8个字节前面7个字节是10101010也就是16进制的AA,最后一个字节是 10101011,也就是AB,当接受端接受到连续的两个高电平,就知道接着来的就是D_mac。所以最后一个字节AB我们也叫他SFD(帧开始标示符)。 所以在以太网传输过程中,即使没有idle,也就是连续传输,也有20个字节的间隔。对于

大量64字节数据来说,效率也就显得不 1s = 1,000ms=1,000,000us 以太网帧最小为64byte(512bit) 10M以太网的slot time =512×0.1 = 51.2us 100M以太网的slot time = 512×0.01 = 5.12us 以太网的理论帧速率: Packet/second=1second/(IFG+PreambleTime+FrameTime) 10M以太网:IFG time=96x0.1=9.6us 100M以太网:IFG time=96x0.01=0.96us 以太网发送方式是一个帧一个帧发送的,帧与帧之间需要间隙。这个叫帧间隙IFG—InterFrame Gap 10M以太网:Preamble time= 64bit×0.1=6.4us 100M以太网:Preamble time= 64bit×0.01=0.64us Preamble 先导字段。作用是用来同步的,当接受端收到preamble,就知道以太网帧就要来了 10M以太网:FrameTime=512bit×0.1=51.2us 100M以太网:FrameTime=512bit×0.01=5.12us 因此,10M以太网64byte包最大转发速度=1,000,000 sec÷(9.6+6.4+51.2)= 0.014880952Mpps 100M以太网64byte包最大转发速度=1,000,000 sec÷(0.96+0.64+5.12)= 0.14880952Mpps

以太网帧格式

以太网帧格式详解: Etherne II 报头8 目标地址6 源地址6 以太类型2 有效负载46-1500 帧检验序列4 报头:8个字节,前7个0,1交替的字节(10101010)用来同步接收站,一个1010101011字节指出帧的开始位置。报头提供接收器同步和帧定界服务。 目标地址:6个字节,单播、多播或者广播。单播地址也叫个人、物理、硬件或MAC地址。广播地址全为1,0xFF FF FF FF。 源地址:6个字节。指出发送节点的单点广播地址。 以太网类型:2个字节,用来指出以太网帧内所含的上层协议。即帧格式的协议标识符。对于IP报文来说,该字段值是0x0800。对于ARP信息来说,以太类型字段的值是0x0806。 有效负载:由一个上层协议的协议数据单元PDU构成。可以发送的最大有效负载是1500字节。由于以太网的冲突检测特性,有效负载至少是46个字节。如果上层协议数据单元长度少于46个字节,必须增补到46个字节。 帧检验序列:4个字节。验证比特完整性。 IEEE 802.3 根据IEEE802.2 和802.3标准创建的,由一个IEEE802.3报头和报尾以及一个802.2LLC报头组成。 报头7 起始限定符1 目标地址6(2)源地址6(2)长度2 DSAP1 SSAP1 控件2 有效负载3 帧检验序列4 -----------802.3报头--------------§- --802.2报头----§ §-802.3报尾-§

IEEE802.3报头和报尾 报头:7个字节,同步接收站。位序列10101010 起始限定符:1个字节,帧开始位置的位序列10101011。 报头+起始限定符=Ethernet II的报头 目标地址:同Ethernet II。也可以为2个字节,很少用。 源地址:同Ethernet II。也可以为2个字节,很少用。 长度:2个字节。 帧检验序列:4个字节。 IEEE802.2 LLC报头 DSAP:1个字节,指出帧的目标节点的上层协议。Destination Service Access Point SSAP:1个字节,指出帧的源节点的上层协议。Source Service Access Point DSAP和SSAP相当于IEEE802.3帧格式的协议标识符。为IP定义的DSAP和SSAP 字段值是0x06。但一般使用SNAP报头。 控件:1-2个字节。取决于封装的是LLC数据报(Type1 LLC)还是LLC通话的一部分(Type2 LLC)。 Type1 LLC:1个字节的控件字段,是一种无连接,不可靠的LLC数据报。无编号信息,UI帧,0x03。 Type2 LLC:2个字节的控件字段,是一种面向连接,可靠的LLC对话。 对IP和ARP,从不使用可靠的LLC服务。所以,都只用Type1 LLC,控件字段设为0x03。 区分两种帧 根据源地址段后的前两个字节的类型不同。 如果值大于1500(0x05DC),说明是以太网类型字段,EthernetII帧格式。值小于等于1500,说明是长度字段,IEEE802.3帧格式。因为类型字段值最小的是0x0600。而长度最大为1500。 IEEE802.3 SNAP 虽然为IP定义的SAP是0x06,但业内并不使用该值。RFC1042规定在IEEE802.3, 802.4, 802.5网络上发送的IP数据报和ARP帧必须使用SNAP(Sub Network Access Prototol)封装格式。 报头7 起始限定符1 目标地址6 源地址6 长度2 DSAP1 SSAP1 控件1 组织代码3 以太类型2 IP数据报帧检验序列 ----IEEE802.3报头-----------§IEEE8023 LLC报头---§--SNAP报头----§ §802.3报尾§ 0x0A 0x0A 0x03 0x00-00-00 0x08-00 (38-1492字节) Ethernet地址 为了标识以太网上的每台主机,需要给每台主机上的网络适配器(网络接口卡)分配一个唯一的通信地址,即Ethernet地址或称为网卡的物理地址、MAC 地址。 IEEE负责为网络适配器制造厂商分配Ethernet地址块,各厂商为自己生产的每块网络适配器分配一个唯一的Ethernet地址。因为在每块网络适配器出厂时,其Ethernet地址就已被烧录到网络适配器中。所以,有时我们也将此地址称为烧录地址(Burned-In-Address,BIA)。

实验二使用Wireshark分析以太网帧与ARP协议

实验二使用Wireshark分析以太网帧与ARP协议 一、实验目的 分析以太网帧,MAC地址和ARP协议 二、实验环境 与因特网连接的计算机网络系统;主机操作系统为windows;使用Wireshark、IE等软件。 三、实验步骤: IP地址用于标识因特网上每台主机,而端口号则用于区别在同一台主机上运行的不同网络应用程序。在链路层,有介质访问控制(Media Access Control,MAC)地址。在局域网中,每个网络设备必须有唯一的MAC地址。设备监听共享通信介质以获取目标MAC地址与自己相匹配的分组。 Wireshark 能把MAC地址的组织标识转化为代表生产商的字符串,例如,00:06:5b:e3:4d:1a也能以Dell:e3:4d:1a显示,因为组织唯一标识符00:06:5b属于Dell。地址ff:ff:ff:ff:ff:ff是一个特殊的MAC地址,意味着数据应该广播到局域网的所有设备。 在因特网上,IP地址用于主机间通信,无论它们是否属于同一局域网。同一局域网间主机间数据传输前,发送方首先要把目的IP地址转换成对应的MAC 地址。这通过地址解析协议ARP实现。每台主机以ARP高速缓存形式维护一张已知IP分组就放在链路层帧的数据部分,而帧的目的地址将被设置为ARP高速缓存中找到的MAC地址。如果没有发现IP地址的转换项,那么本机将广播一个报文,要求具有此IP地址的主机用它的MAC地址作出响应。具有该IP地址的主机直接应答请求方,并且把新的映射项填入ARP高速缓存。 发送分组到本地网外的主机,需要跨越一组独立的本地网,这些本地网通过称为网关或路由器的中间机器连接。网关有多个网络接口卡,用它们同时连接多个本地网。最初的发送者或源主机直接通过本地网发送数据到本地网关,网关转发数据报到其它网关,直到最后到达目的主机所在的本地网的网关。 1、俘获和分析以太网帧 (1)选择工具->Internet 选项->删除文件

(整理)以太网帧格式EthernetⅡ和ETHERNET8023IEEE8022SAP和SNAP的区别

EthernetⅡ/ETHERNET 802.3 IEEE802.2.SAP/SNAP的区别 1.Ethernet V1:这是最原始的一种格式,是由Xerox PARC提出的3Mbps CSMA/CD 以太网标准的封装格式,后来在1980年由DEC,Intel和Xerox标准化形成Ethernet V1标准; 2.Ethernet V2(ARPA): 这是最常见的一种以太网帧格式,也是今天以太网的事实标准,由DEC,Intel 和Xerox在1982年公布其标准,主要更改了Ethernet V1的电气特性和物理接口,在帧格式上并无变化;Ethernet V2出现后迅速取代Ethernet V1成为以太网事实标准;Ethernet V2帧头结构为6bytes的源地址+6bytes的目标地址 +2Bytes的协议类型字段+数据。 常见协议类型如下: 0800 IP 0806 ARP 8137 Novell IPX 809b Apple Talk 如果协议类型字段取值为0000-05dc(十进制的0-1500),则该帧就不是Ethernet V2(ARPA)类型了,而是下面讲到的三种802.3帧类型之一;Ethernet可以支持TCP/IP,Novell IPX/SPX,Apple Talk Phase I等协议;RFC 894定义了IP报文在Ethernet V2上的封装格式; Ethernet_II中所包含的字段:

在每种格式的以太网帧的开始处都有64比特(8字节)的前导字符,如图所示。其中,前7个字节称为前同步码(Preamble),内容是16进制数0xAA,最后1字节为帧起始标志符0xAB,它标识着以太网帧的开始。前导字符的作用是使接收节点进行同步并做好接收数据帧的准备。 ——PR:同步位,用于收发双方的时钟同步,同时也指明了传输的速率(10M和100M的时钟频率不一样,所以100M网卡可以兼容10M网卡),是56位的二进制数101010101010..... ——SD: 分隔位,表示下面跟着的是真正的数据,而不是同步时钟,为8位的10101011,跟同步位不同的是最后2位是11而不是10. ——DA:目的地址,以太网的地址为48位(6个字节)二进制地址,表明该帧传输给哪个网卡.如果为FFFFFFFFFFFF,则是广播地址,广播地址的数据可以被任何网 卡接收到. ——SA:源地址,48位,表明该帧的数据是哪个网卡发的,即发送端的网卡地址, 同样是6个字节. ----TYPE:类型字段,表明该帧的数据是什么类型的数据,不同的协议的类型字段不同。如:0800H 表示数据为IP包,0806H 表示数据为ARP包,814CH是SNMP 包,8137H为IPX/SPX包,(小于0600H的值是用于IEEE802的,表示数据包的长度。) ----DATA:数据段,该段数据不能超过1500字节。因为以太网规定整个传输包的最大长度不能超过1514字节。(14字节为DA,SA,TYPE) ----PAD:填充位。由于以太网帧传输的数据包最小不能小于60字节, 除去(DA,SA,TYPE 14字节),还必须传输46字节的数据,当数据段的数据不足46字节时,后面补000000.....(当然也可以补其它值) ----FCS:32位数据校验位.为32位的CRC校验,该校验由网卡自动计算,自动生成,自动校验,自动在数据段后面填入.对于数据的校验算法,我们无需了解.

以太网帧的封装与成帧设计

******************* 实践教学 ******************* 兰州理工大学 计算机与通信学院 2015年秋季学期 计算机通信课程设计 题目:以太网帧的封装与成帧设计 专业班级: 姓名: 学号: 指导教师:王慧琴 成绩:

摘要 从二十世纪八十年代开始,以太网就成为最普遍采用的网络技术,它统治着世界各地的局域网和企业骨干网,并且正在向局域网发起攻击。随着万兆以太网标准的提出,以太网为征服广域网、存储和宽带领域中的新领地做好了准备。以太网帧的封装和成帧是以太网快速迅猛发展的基础。本课题根据帧的具体结构,将帧结构中目的地址源地址等与数据一起进行封装并解析,构造一个具体的Ethernet帧,通过实现帧的封装和成帧,来了解网络通信协议的基本工作原理,掌握基本思路和方法。 关键词:以太网帧;封装;成帧;库函数

目录 前言 (1) 一、基本原理 (2) 1、以太网的工作原理 (2) 2、以太网帧格式的发展 (3) 3、 IEEE802.3帧结构 (4) 4、错检测 (5) 二、需求分析 (7) 三、系统设计与分析 (8) 1、系统分析 (8) 2、系统设计 (11) 以太网帧的封装 (12) 以太网帧的解析 (13) 四、系统结果 (15) 五、心得体会 (16) 六、参考文献 (17) 七、附录 (18)

前言 以太网这个术语通常是指由DEC、Intel和Xerox公司在1982年联合公布的一个标准,它是当今TCP/IP采用的主要的局域网技术,它采用一种称作CSMA/CD 的媒体接入方法。在TCP/IP世界中,以太网IP数据报文的封装在RFC 894中定义。 1976年,梅特卡夫和他的助手David Boggs发表了一篇名为《以太网:局域计算机网络的分布式包交换技术》的文章。1977年底,梅特卡夫和他的合作者获得了“具有冲突检测的多点数据通信系统”的专利。多点传输系统被称为CSMA/CD(带冲突检测的载波侦听多路访问),从此标志以太网的诞生。

以太网协议

以太网协议 历史上以太网帧格式有五种: 1 E thernet V1:这是最原始的一种格式,是由Xerox P ARC提出的3Mbps CSMA/CD以太网标准的封装格式,后来在 1980年由DEC,Intel和Xerox标准化形成E thernet V1标准; 2 E thernet II即DIX 2.0:Xerox与DEC、Intel在1982年制定的以太网标准帧格式。Cisco名称为:ARP A。 这是最常见的一种以太网帧格式,也是今天以太网的事实标准,由DE C,Intel和Xerox在1982年公布其标准,主要更改了E thernet V1的电气特性和物理接口,在帧格式上并无变化;E thernet V2出现后迅速取代E thernet V1成为以太网事实标准;E thernet V2帧头结构为6bytes的源地址+6bytes的目标地址+2Bytes的协议类型字段+数据。 常见协议类型如下: 0800 IP 0806 ARP 0835 RARP 8137 Novell IPX 809b Apple Talk 如果协议类型字段取值为0000-05dc(十进制的0-1500),则该帧就不是E thernet V2(ARP A)类型了,而是下面讲到的三种802.3帧类型之一;E thernet可以支持TCP/IP,Novell IP X/SP X,Apple Talk P hase I等协议;RFC 894定义了IP 报文在E thernet V2上的封装格式; 在每种格式的以太网帧的开始处都有64比特(8字节)的前导字符,如图所示。其中,前7个字节称为前同步码(P reamble),内容是16进制数0xAA,最后1字节为帧起始标志符0xAB,它标识着以太网帧的开始。前导字符的 作用是使接收节点进行同步并做好接收数据帧的准备。 ——P R:同步位,用于收发双方的时钟同步,同时也指明了传输的速率(10M和100M的时钟频率不一样,所以100M网卡可以兼容10M网卡),是56位的二进制数101010101010..... ——SD: 分隔位,表示下面跟着的是真正的数据,而不是同步时钟,为8位的10101011,跟同步位不同的是最后2位 是11而不是10. ——DA:目的地址,以太网的地址为48位(6个字节)二进制地址,表明该帧传输给哪个网卡.如果为FFFFFFFFFFFF, 则是广播地址,广播地址的数据可以被任何网卡接收到. ——SA:源地址,48位,表明该帧的数据是哪个网卡发的,即发送端的网卡地址,同样是6个字节. ----TYP E:类型字段,表明该帧的数据是什么类型的数据,不同的协议的类型字段不同。如:0800H 表示数据为IP包,0806H 表示数据为ARP包,814CH是SNMP包,8137H为IP X/SP X包,(小于0600H的值是用于IEEE802 的,表示数据包的长度。) ----DATA:数据段,该段数据不能超过1500字节。因为以太网规定整个传输包的最大长度不能超过1514字节。 (14字节为DA,SA,TYP E)

以太网用什么协议-

竭诚为您提供优质文档/双击可除 以太网用什么协议? 篇一:以太网协议报文格式 tcp/ip协议族 ip/tcp telnet和Rlogin、Ftp以及smtpip/udp dns、tFtp、bootp、snmp icmp是ip协议的附属协议、igmp是internet组管理协议 aRp(地址解析协议)和RaRp(逆地址解析协议)是某些网络接口(如以太网和令牌环网)使用的特殊协议,用来转换ip层和网络接口层使用的地址。 1、 以太帧类型 以太帧有很多种类型。不同类型的帧具有不同的格式和mtu值。但在同种物理媒体上都可同时存在。 标签协议识别符(tagprotocalidentifier,tpid):一组16位元的域其数值被设定在0x8100以用来辨别某个 ieee802.1q的帧为已被标签的,而这个域所被标定位置与乙

太形式/ 长度在未标签帧的域相同,这是为了用来区别未标签的帧。优先权代码点(prioritycodepoint,pcp):以一组3位元的域当作优先权的参考,从0(最低)到7(最高),用来对资料流(音讯、影像、档案等等)作传输的优先级。 标准格式指示(canonicalFormatindicator,cFi):1位 元的域。若是这个域的值 为1,则mac地指则为非标准格式;若为0,则为标准格式;在乙太交换器中他通常默认为0。在乙太和令牌环中,cFi用来做为两者的相容。若帧在乙太端中接收资料则cFi 的值须设为1,且这个端口不能与未标签的其他端口桥接。虚拟局域网识别符(Vlanidentifier,Vid):12位元的域,用来具体指出帧是属于 哪个特定Vlan。值为0时,表示帧不属于任何一个Vlan;此时,802.1q标签代表优先权。16位元的值0x000和0xFFF 为保留值,其他的值都可用来做为共4094个Vlan的识别符。在桥接器上,Vlan1在管理上做为保留值。这个12位元的域可分为两个6位元的域以延伸目的(destination)与源(source)之48位元地址,18位元的(triple-tagging)可和原本的48位元相加成为66位元的地址。 0、以太网的封装格式(RFc894)

计算机网络实验报告(以太网帧格式分析)

计算机网络实验报告 学院计算机与通信工程学院专业网络工程班级1401班 学号20姓名实验时间:2016.5.13 一、实验名称: FTP协议分析实验 二、实验目的: 分析FTP 报文格式和FTP 协议的工作过程,同时学习 Serv-U FTP Server服务软件的基本配置和FTP 客户端命令的使用。 三、实验环境: 实验室局域网中任意两台主机PC1,PC2。 四、实验步骤及结果: 步骤1:查看实验室PC1和PC2的IP地址,并记录,假设PC1的IP 地址为10.64.44.34,PC2的IP地址为10.64.44.35。 步骤2:在PC1上安装Serv-U FTP Server,启动后出现图1-20所示界面。 点击新建域,打开添加新建域向导,完成如下操作。 添加域名:https://www.sodocs.net/doc/ef7104096.html,;设置域端口号:21(默认);添加域IP地址:10.28.23.141;设置密码加密模式:无加密,完成后界面如图1-21所示。 完成上述操作后,还需要创建用于实验的用户帐号。点击图1.20中

浮动窗口中的“是”按钮,打开添加新建用户向导:添加用户名:test1;添加密码:123;设置用户根目录(登陆文件夹);设置是否将用户锁定于根目录:是(默认);访问权限:只读访问,完成后界面如图1-22所示。 新建的用户只有文件读取和目录列表权限,为完成实验内容,还需要为新建的用户设置目录访问权限,方法为点击导航——〉目录——〉目录访问界面,然后点击添加按钮, 按照图1-23所示进行配置。 步骤3:在PC1 和PC2 上运行Wireshark,开始捕获报文。 步骤4:在PC2 命令行窗口中登录FTP 服务器,根据步骤2中的配置信息输入用户名和口令,参考命令如下: C:\ >ftp ftp> open To 10.28.23.141 //登录ftp 服务器 Connected to 10.28.23.141 220 Serv-U FTP Server v6.2 for WinSock ready... User(none): test1 //输入用户名 331 User name okay, need password. Password:123 //输入用户密码 230 User logged in, proceed. //通过认证,登录成功

以太网协议的规则

以太网协议 2007-08-25 16:45:54| 分类:默认分类|字号订阅 历史上以太网帧格式有五种: 1 Ethernet V1:这是最原始的一种格式,是由Xerox PARC提出的3Mbps CSMA/CD以太网标准的封装格式,后来在1980年由DEC,Intel和Xerox标准化形成Ethernet V1标准; 2 Ethernet II即DIX 2.0:Xerox与DEC、Intel在1982年制定的以太网标准帧格式。Cisco 名称为:ARPA。 这是最常见的一种以太网帧格式,也是今天以太网的事实标准,由DEC,Intel和Xerox 在1982年公布其标准,主要更改了Ethernet V1的电气特性和物理接口,在帧格式上并无变化;Ethernet V2出现后迅速取代Ethernet V1成为以太网事实标准;Ethernet V2帧头结构为6bytes的源地址+6bytes的目标地址+2Bytes的协议类型字段+数据。 常见协议类型如下: 0800 IP 0806 ARP 0835 RARP 8137 Novell IPX 809b Apple Talk 如果协议类型字段取值为0000-05dc(十进制的0-1500),则该帧就不是Ethernet V2(ARPA)类型了,而是下面讲到的三种802.3帧类型之一;Ethernet可以支持TCP/IP,Novell IPX/SPX, 在每种格式的以太网帧的开始处都有64比特(8字节)的前导字符,如图所示。其中,前7个字节称为前同步码(Preamble),内容是16进制数0xAA,最后1字节为帧起始标志符0xAB,它标识着以太网帧的开始。前导字符的作用是使接收节点进行同步并做好接收数据帧的准备。 ——PR:同步位,用于收发双方的时钟同步,同时也指明了传输的速率(10M和100M 的时钟频率不一样,所以100M网卡可以兼容10M网卡),是56位的二进制数101010101010..... ——SD: 分隔位,表示下面跟着的是真正的数据,而不是同步时钟,为8位的10101011,跟同步位不同的是最后2位是11而不是10.

计算机网络课程设计帧封装

课程设计 题目帧封装 学院计算机科学与技术学院专业软件工程专业 班级软件0902班 姓名 指导教师 2012 年 6 月20 日

课程设计任务书 学生:专业班级:软件0902班 指导教师:工作单位:计算机学院 题目一: 帧封装 初始条件: (1)学习相关知识 (2)C/C++/VC/VB/JAVA语言 (3)PC机一台 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 编写程序,根据给出的原始数据,组装一个IEEE802.3格式的帧(题目默认的输入文件为二进制原始数据(文件名为input1和input2))。 1)要求程序为命令行程序。比如,可执行文件名为framer.exe,则命令行形式如下: framer inputfile outputfile 其中,inputfile为原始数据文件,outputfile为输出结果。使用操作系统、语言、编程环境不限,但在报告中必须注明。 2)输出:对应input1和input2的结果分别为output1和output2。 时间安排: 第一、二天:查阅资料,学习算法 第三、四天:编程调试 第五天:书写报告 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 1.引言 (4) 2.以太网帧格式的发展 (4) 3.IEEE802.3帧结构 (5) 4.错检测 (6) 5.实现步骤 (7) 5.1前导符 (7) 5.2目的地址及源地址 (7) 5.3长度及数据字段 (8) 5.4帧检验序列 (8) 6.源代码 (10) 7.运行结果示例 (17) 8.心得体会 (18) 9.参考文献 (19)

计算机网络课程设计报告 帧封装

课程设计报告 课程名称:计算机网络课程设计 设计题目:帧封装 姓名: 专业:计算机科学与技术 班级:计算机13-3班 学号:

计算机科学与技术学院 2016年1 月1 日 设计项目:帧封装 一、选题背景 以太网这个术语通常是指由DEC、Intel和Xerox公司在1982年联合公布的一个标准,它是当今TCP/IP采用的主要的局域网技术,它采用一种称作CSMA/CD的媒体接入方法。在TCP/IP世界中,以太网IP数据报文的封装在RFC894中定义。 以太网采用广播机制,所有与网络连接的工作站都可以看到网络上传递的数据。通过查看包含在帧中的目标地址,确定是否进行接收或放弃。如果证明数据确实是发给自己的,工作站将会接收数据并传递给高层协议进行处理。 以太网采用CSMA/CD(Carrier Sense Multiple Access/Collision Detection)媒体访问机制,任何工作站都可以在任何时间访问网络。在以太网中,所有的节点共享传输介质。如何保证传输介质有序、高效地为许多节点提供传输服务,就是以太网的介质访问控制协议要解决的问题。 帧是在数据链路层数据进行传输与交换的基本单位。构造帧对于理解网络协议的概念、协议执行过程以及网络问题处理的一般方法具有重要的意义。本次课程设计的目的是应用数据链路层与介质访问控制层的知识,根据数据链路层的基本原理,通过构造一个具体的Ethernet帧,从而深入理解网络协议的基本概念与网络问题处理的一般方法。

二.设计思路 数据在网络上是以很小的称为帧(Frame)的单位传输的,帧由几部分组成,不同的部分执行不同的功能。帧通过特定的称为网络驱动程序的软件进行成型,然后通过网卡发送到网线上,通过网线到达它们的目的机器,在目的机器的一端执行相反的过程。接收端机器的以太网卡捕获到这些帧,并告诉操作系统帧已到达,然后对其进行存储。 “帧”数据大致由两部分组成:帧头和帧数据。帧头包括接收方主机物理地址的定位以及其它网络信息。帧数据区含有一个数据体。为确保计算机能够解释数据帧中的数据,这两台计算机使用一种公用的通讯协议。互联网使用的通讯协议简称IP,即互联网协议。IP 数据体由两部分组成:数据体头部和数据体的数据区。数据体头部包括IP源地址和IP目标地址,以及其它信息。数据体的数据区包括用户数据协议(UDP),传输控制协议(TCP),还有数据包的其他信息。这些数据包都含有附加的进程信息以及实际数据 以802.3的帧结构由六部分组成: 常用的以太网MAC帧格式用两种标准,一种是DIX Ethernet V2标准(即以太网V2标准),另一种是IEEE的802.3标准。这里只介绍符合IEEE802.3标准的帧,其格式如上图所示。

实验一 以太网数据帧的构成

【实验一以太网数据帧的构成】 【实验目的】 1、掌握以太网帧的构成,了解各个字段的含义; 2、能够识别不同的MAC地址并理解MAC地址的作用; 3、掌握网络协议分析器的基本使用方法; 4、掌握协议仿真编辑器的基本使用方法; 【实验学时】 4学时; 【实验类型】 验证型; 【实验内容】 1、学习协议仿真编辑器的五个组成部分及其功能; 2、学习网络协议分析器的各组成部分及其功能; 3、学会使用协议仿真编辑器编辑以太网帧,包括单帧和多帧; 4、学会分析以太网帧的MAC首部; 5、理解MAC地址的作用; 6、理解MAC首部中的LLC-PDU长度/类型字段的功能; 7、学会观察并分析地址本中的MAC地址; 8、了解LLC-PDU的内容; 【实验原理】 局域网(LAN)是在一个小的范围内,将分散的独立计算机系统互联起来,实现资源的共享和数据通信。局域网的技术要素包括了体系结构和标准、传输媒体、拓扑结构、数据编码、媒体访问控制和逻辑链路控制等,其中主要的技术是传输媒体、拓扑结构和媒体访问控制方法。局域网的主要的特点是:地理分布范围小、数据传输速率高、误码率低和协议简单等。 1、三个主要技术 ⑴传输媒体:双绞线、同轴电缆、光缆、无线。 ⑵拓扑结构:总线型拓扑、星型拓扑和环型拓扑。 ⑶媒体访问控制方法:载波监听多路访问/冲突检测(CSMA/CD)技术。 2、IEEE 802标准的局域网参考模型 IEEE 802参考模型包括了OSI/RM最低两层(物理层和数据链路层)的功能。OSI/RM的数据链路层功能,在局域网参考模型中被分成媒体访问控制MAC(Medium Access Control)和逻辑链路控制LLC(Logical Link Control)两个子层。由于局域网采用的媒体有多种,对应的媒体访问控制方法也有多种,为了使数据帧的传送独立于所采用的物理媒体和媒体访问控制方法,IEEE 802 标准特意把LLC 独立出来形成单独子层,使LLC子层与媒体无关,仅让MAC子层依赖于物理媒体和媒

以太网协议报文格式

T C P/I P协议族

IP/TCP Telnet和R login、FTP以及SMTP IP/UDP DNS 、TFTP、BOOTP、SNMP ICMP是IP协议的附属协议、IGMP是Internet组管理协议 ARP(地址解析协议)和RARP(逆地址解析协议)是某些网络接口(如以太网和令牌环网)使用的特殊协议,用来转换I P层和网络接口层使用的地址。 1、以太帧类型 以太帧有很多种类型。不同类型的帧具有不同的格式和MTU值。但在同种物理媒体上都可同时存在。

?标签协议识别符(Tag Protocal Identifier, TPID): 一组16位元的域其数值被设定在0x8100以用来辨别某个IEEE 802.1Q的帧为已被标签的,而这个域所被标定位置与乙太形式/长度在未标签帧的域相同,这是为了用来区别未标签的帧。 ?优先权代码点(Priority Code Point, PCP): 以一组3位元的域当作IEEE 802.1p 优先权的参考,从0(最低)到7(最高),用来对资料流(音讯、影像、档案等等)作传输的优先级。 ?标准格式指示(Canonical Format Indicator, CFI): 1位元的域。若是这个域的值为1,则MAC地指则为非标准格式;若为0,则为标准格式;在乙太交换器中他通常默认为0。在乙太和令牌环中,CFI用来做为两者的相容。若帧在乙太端中接收资料则CFI的值须设为1,且这个端口不能与未标签的其他端口桥接。?虚拟局域网识别符(VLAN Identifier, VID): 12位元的域,用来具体指出帧是属于哪个特定VLAN。值为0时,表示帧不属于任何一个VLAN;此时,802.1Q标签代表优先权。16位元的值0x000和0xFFF为保留值,其他的值都可用来做为共4094个VLAN的识别符。在桥接器上,VLAN1在管理上做为保留值。这个12位元的域可分为两个6位元的域以延伸目的(Destination)与源(Source)之48位元地址,18位元的三重标记(Triple-Tagging)可和原本的48位元相加成为66位元的地址。 0、以太网的封装格式(RFC 894) IEEE 802.2/802.3(RFC 1042)

以太网帧格式分析

实验报告 实验名称以太网帧格式分析 姓名学号实验日期 实验报告要求:1.实验目的 2.实验要求 3.实验环境 4.实验作业 5.问题及解决 6.思考问题 7.实验体会 【实验目的】 1.复习Wireshark抓包工具的使用及数据包分析方法。 2.通过分析以太网帧了解以太网数据包传输原理。 【实验要求】 用Wireshark1.4.9截包,分析数据包。 观察以太网帧,Ping同学的IP地址,得到自己和同学的mac地址。 观察以太网广播地址,观察ARP请求的帧中目标mac地址的格式。 用ping-l指定数据包长度,观察最小帧长和最大帧长。 观察封装IP和ARP的帧中的类型字段。 【实验环境】 用以太网交换机连接起来的windows 7操作系统的计算机,通过802.1x方式接入Internet。 【实验中出现问题及解决方法】 1.在使用命令行“ping -l 0 IP”观察最小帧长时抓到了长度为42字节的帧,与理论上最小帧长64字节相差甚远。通过询问教员和简单的分析,知道了缺少字节的原因是当Wireshark抓到这个ping请求包时,物理层还没有将填充(Trailer)字符加到数据段后面,也没有算出最后4字节的校验和序列,导致出现最小42字节的“半成品”帧。可以通过网卡的设置将这个过程提前。 2.在做ping同学主机的实验中,发现抓到的所有ping请求帧中IP数据部分的头校验和都是错误的。原本以为错误的原因与上一个问题有关,即校验和错误是因为物理层还没有将填充字符加到数据段后面。但是这个想法很快被证明是错误的,因为在观察最大帧长时,不需要填充字符的帧也有同样的错误。一个有趣的现象是,封装在更里层的ICMP数据包的校验和都是正确的。这就表明IP层的头校验和错误并没有影响正常通信。进一步观察发现,这些出错的头校验和的值都是0x0000,这显然不是偶然的错误。虽然目前还没有得到权威的答案,但是可以推测,可能是这一项校验实际上并没有被启用。作为中间层的IP头的意义是承上启下,而校验的工作在更需要的上层的IMCP包和下层MAC头中都有,因此没有必要多此一举。 【思考问题】 1.为什么可以ping到同宿舍(连接在同一个交换机上)的主机而ping不到隔壁宿舍的主机? 通常情况下,如果配置正确,设备都连接着同一个网络(互联网),而且没有防火墙等阻拦,就可以正常ping到同一网络中的任何主机。在第一次实验中,我们曾成功地ping到了https://www.sodocs.net/doc/ef7104096.html,的IP。 在ping其他宿舍的IP时需要通过宿舍的交换机将ping请求先转发给楼层交换机,再由楼层交换机转发给目标IP所在的宿舍交换机。分析无法ping到隔壁宿舍主机的原因,很可能是楼层交换机设置了禁止内部ping的防火墙,阻止了本楼层交换机地址段内的主机相互ping对方。而同宿舍之所以可以相互ping 到,是因为ping请求没有经过楼层交换机,直接由宿舍交换机转发给了目标IP主机。 2.什么是ARP攻击? 让我们继续分析4.1 ARP原理,A得到ARP应答后,将B的MAC地址放入本机缓存。但是本机MAC 缓存是有生存期的,生存期结束后,将再次重复上面的过程。(类似与我们所学的学习网桥)。 然而,ARP协议并不只在发送了ARP请求才接收ARP应答。当计算机接收到ARP应答数据包的时候,就会对本地的ARP缓存进行更新,将应答中的IP和MAC地址存储在ARP缓存中。 这时,我们假设局域网中的某台机器C冒充B向A发送一个自己伪造的ARP应答,即IP地址为B

相关主题