搜档网
当前位置:搜档网 › 晶体结块的原因及防结块措施

晶体结块的原因及防结块措施

晶体结块的原因及防结块措施
晶体结块的原因及防结块措施

结晶结块的原因及防结块措施

结晶物质常常有一个十分麻烦的特性就是结块,相互粘结形成团块,尤其是湿热季节、长期存放、堆包挤压的时候更为明显,一般用户对于结晶的外观、流动性、颗粒是很重视的,直接影响到商品的信誉。如化肥在施肥时,打开包装形成巨块,需要把它敲碎,重新分散成小粒。结块的化肥若用飞机施肥时不能均匀分散、粘叶片上不易于落在地面,叶片易受到腐蚀灼伤。颗粒太小又会引起局部干燥天气。风速较大时,化肥易于集中到一处,使局部化肥过剩,大部分面积上又得不到肥料。

造成结块的原因主要是结晶的吸湿以及结晶的粒径分布,在一定的温度下,把结晶物质的纯化学产品作为标准,配成饱和溶液,测定溶液的水蒸汽分压,如果大气中水蒸汽分压在同一温度下超过上述分压就必然要潮结吸湿,当大气湿度较低时,已吸潮的水分就会部分蒸发,于是晶粒就相互粘结形成结块。

一些常见物质的相对湿度,但只有15℃的数据,远远不能满足需要,对于一个特定的气温,对于某一产品需要作系列的补测工作。

如果大气湿度超过上述相对湿度值很多,就会连续吸收水分,直至淌出水来,甚至全部溶解。再进一步吸湿就是溶液的吸湿,直至溶液因吸湿而浓度逐步降低,其水蒸汽分压与大气中水蒸汽分压相平衡才停止继续吸收水分。

减少晶体之间的接触点可以减轻结块现象,因此工业上为了这个目的,尽量使粒度加大,这是有限度的,否则设备能力过低(生长时间长,容器体积过大);另外一个更主要的方法是制成均匀的球形。大颗粒均匀球形的优点是:同样重量的结晶表面积最小、接触点最少,这都有利于减少吸湿和粘结的可能性。

结晶附着的机械水份以及易于吸湿的杂质都是造成严重结块的原因。因此,晶体虽经过离心分离机使水份降的很低(1~2%)仍然不能防止结块;微量吸湿性杂质附着,往往也造成严重的吸湿和结块。纯

就会使NaCl在15℃吸湿平衡相对湿度为78%,但仅有千分之几的CaCl

2

平衡湿度降到10~20%。干燥处理对此有效。

上述防结块的措施都满足后,有时仍然不能满足完全防止结块,最有效的改善办法是把微细而均匀的惰性固体或者其它表面活性物质包在结晶颗粒表面,形成一个保护层。这一措施十分有效,得到工业

上广泛采用。饮食用食盐以碳酸镁或硅酸铝钙作微量防结块剂已为人们熟知;以0.5%的磷酸三钙作为冰糖的抗潮、抗结块剂就足够了。其它的防结块剂(或者称为流动性调节剂)还有:

铝粉

氢氧化镁酸性染料

磷矿石硅酸钙

石英粉纤维素胶

水化二氧化硅大白粉

铝酸硅钠硅藻土

石蜡漂白土

表面活性剂和十二烷基磺酸钠硅酸铝镁

合成树脂磷酸钙

山东凯翔生物化工有限公司崔光水

Shandong Kaison Biochemical Co.,Ltd Ltd,Rizhao ,Rizhao 262300CUI G uang-uang-shui shui

复合肥防结块剂的使用方案

复合肥防结块剂的使用方案 一、肥料结块的内在/外在因素 1、化学组成:肥料的组成不同,其结块趋势不一样。一般来说,存在着下列几种情况: 吸湿性:①NPK(尿基)>NPK(硝基)>NPK(硫基),NPK(氯基)②NPK(高含氮)>NPK(低含氮) 结块性:①NPK(尿基),NPK(硝基)>NPK(硫基),NPK(氯基) ②NPK(高含氮)>NPK(低含氮) 2、颗粒状况:肥料的结块与肥料颗粒的大小和形状密切相关。 (a)颗粒大小:颗粒增大,比表面积减小,邻近颗粒间的吸引力和接触点减小,因而结块趋势降低。 (b)颗粒形状:如果颗粒表面光滑、成型好,则颗粒间的接触点减少,从而延缓结块。 3、湿度:此处湿度包括产品的含水量和产品存放环境的相对湿度。 (a)产品含水量:产品含水量的微小变化对肥料的结块有明显影响。产品含水量高,则容易吸收水分而发生重结晶。当初含水量低于0.5%时,在通常储存条件下,产品不太有结块问题产生。因此,在肥料生产过程中要严格控制产品的含水量。 (b)空气相对湿度:肥料的结块与空气相对湿度密切相关。每种盐或盐的混合物都有一定的临界相对湿度。空气的相对湿度高于肥

料的临界相对湿度,肥料就会吸收空气中湿气;相反,空气的相对湿度低于肥料的临界相对湿度,则肥料内部的湿气向空气中蒸发。相对湿度的反复变化通常比持续的高湿度更有害,会令结块、粉化问题更加突出。 4、温度:温度也是影响肥料结块的一个重要因素。高温包装时可能发生下列物理化学反应: (a)水分的蒸发与重结晶。这种情况在高温储存时尤为严重。由于温度较高,居中部分肥料的内部水分向外蒸发,遇到外部已冷却下来的肥料,冷凝成水进而发生重结晶。 (b)促进内部反应(加倍复分解反应/后反应)。 K2SO4+NH4NO3——(NH4)2 SO4+K NO3 NH4NO3+KCl——NH4Cl+KNO3 (NH4)2 SO4+ KCl——K2SO4+ NH4Cl (c)晶态变化。如硝铵在32.3℃时会发生晶态变化,硝铵晶体出现膨胀和收缩,导致产品粉化、结块。 5、压力加压使颗粒接触面增加,导致储存物质结块。 6、储存时间储存时间对结块影响很大,前15天结块很快,6-8周内变慢,最后趋于稳定。 二、复合肥结块的主要原因及对策 生产的复合肥,由于各种原材料已充分混合,在造粒前各种复分解反应基本完成,在存放期间的后反应基本停止,因为后反应导致的结块可能性降低。复合肥在配方固定的情况下,如果造粒喷头及喷头运行工艺固定,产品粒度分布及外观状况也就基本稳定。引起结块的

肥料结块机理及解决

【求助】化肥防结块剂 Q:大家有没有做化肥防结块剂的,防结块剂大体都有那些类?价位怎样?请多多指教?A:我做过,防结块剂大体可以分为粉体,膏体和液体类的。粉体主要是滑石粉,高岭土,膨润土以及其他改性无机粉末复配而成,价格大概在4000左右;膏体的主要是使用牛脂伯胺类与油复配而得,原料不同,价格也不一样,一般在8000~15000左右;液体的主要有乳化油类,表活类,高分子与表活复配类,他们的价格一般也在8000~15000左右。 回答 1复合肥防结块剂分类 由于肥料容易吸湿,使得其在使用和贮存过程中,很容易结块,难以破碎,不便于运输,施用。因而,人们采取了很多方法措施来避免其结块,影响使用。如根据不同产品采用不同的干燥工艺降低产品的水分;采用不同的冷却工艺降低产品下线时温度;采用不同的造粒工艺得到均匀的、尺寸大、强度高的肥料颗粒;改善包装条件,改进包装方法;控制产品贮存时的温度、相对湿度、堆积的高度以及贮存的时间等。然而,在正常生产情况下,防结块的最有效措施是使用防结块剂。 根据添加的方法,防结块剂可以分为两类:内部防结块剂和外部防结块剂。 1.1 内部防结块 内部防结块剂主要是应用在肥料的生产过程中,可改善吸湿性(提高临界相对湿度,或减缓吸湿速率);增加肥料颗粒的强度、圆度或改变晶体形态。研究表明,某些无机物如硫酸铝(镁)、硝酸钾(镁、铝)、多磷酸铵(钾)、硼酸、氧化铜(铁、铝、镁)等,以及某些有机物如甲苯胺、偶氮苯等,对于防止化肥结块都有一定的作用。 1)无机盐 某些少量添加剂可以很好地改善由溶液结晶物质的结晶习性(结晶习性改良剂)。如硝酸镁、连二硫酸盐、镉盐等,它们各自用于不同的肥料,可使肥料盐形成长的、纤维状的、柔韧的晶体,在干燥时非常脆,因而有减轻结块的倾向。如加入0.3%硝酸镁,还可使硝酸铵的相变温度从32℃降至22℃,硝酸镁具有水合性(能部分或完全水合的无机盐,抑制因水分而引起的化肥溶解和毛细吸附,特别适合结晶化肥硝酸铵和硫酸铵等),它起着晶体(相)稳定剂和干燥剂的作用。 向肥料中添加某些无机盐促其在内部形成复盐,可以改善吸湿性。如30℃时,纯硝铵的吸湿点为59.4%,但加入硫酸铵后,形成NH4NO3?(NH4)2SO4复盐,其吸湿点提高62.3%。 还可以添加少量水溶性铁盐物质。仿效应用湿法磷酸制造磷酸铵系肥料,磷酸本身含有的铁、铝磷酸盐杂质,形成了非水溶性结晶,这些结晶的网状结构,如同无定型凝胶,使产品硬化,

复混肥配方技术

复混肥配方技术 一、配方中物料的粘性是造粒的基础 把粉状物料造成颗粒,就必须考虑物料的粘性,只有物料中具备了足够的粘性,才能把分散的物料团聚成粒。 首先把现有的化肥品种进行分类,哪些粘性好,哪些粘性差,我们把粘性好的材料称为粘性材料,粘性差的材料称为沙性材料。下表作参考。 下面我们把物料的粘性和沙性进行分类、量化,达到可操作性。粘性的材料有以下品种:普通过磷酸钙、磷酸二铵、磷酸一铵、重钙。 沙性的材料有以下品种:氯化钾、硫酸钾、氯化铵、硫酸铵。 碳铵与普钙相配,会降低普钙粘性,碳铵与一铵相配,反而可提高一铵的粘性。虽然碳铵在配方中用量一般较少,碳铵的这种双重性也应得到重视。 尿素界于粘性和沙性两者之间。 物料造粒必须达到粘性标准:

A.以普钙为磷源时,普钙加粘性的调理剂≥50%. B.以磷铵为磷源时,磷铵加粘性的调理剂≥40%. C.含有尿素的配方要根据尿素的用量多少而定,高氮配方尿素 用量多,一般粘性材料的比例可适当降低,在35%左右即可。 高浓度复合肥的成球主要靠磷铵的粘性,磷铵的粘性好差直接影响到复合肥的成球率,所以选择粘性好的磷铵是提高成球率的前提,在采购磷铵时,即要考虑养分含量、价格,还需考虑它的粘性。从实际生产经验来比较,二铵的粘性比一铵好。我国二铵的粘性为安徽铜陵磷铵厂出品的最好,有少数厂家生产的磷铵粘性较差,它直接影响复合肥的成球率,在采购磷铵时最好对磷铵的粘性作一下鉴定,土法为:磷铵加少许水,然后用手捏,把几个工厂的产品进行对比,最容易区分粘性好差。 怎样来提高材料的粘性: 1.把原材料进行粉碎: 材料目数越高,它的粘性就越好。为了提高物料的粘性,我们把磷铵、尿素、氯化钾等原料粉碎到60目以上,这样不仅能提高物料的粘性,还能提高复合肥颗粒的强度和表面光洁度。 2.适宜的温度是提高物料粘性的重要步骤 根据试验表明,物料的粘性是随温度的变化而变化,上述 原料通过配比综合比较后,在60~70℃之间粘度最好,一

复合肥知识及防结块学习资料

培训学习资料 第一章肥料的基础知识 什么是肥料? 我们把凡是施入土壤或通过其他途径,能够直接或间接为植物提供营养成分,改良土壤理化性质,为植物提供良好生活环境的物质统称为肥料。 直接供给作物必需营养的那些肥料称为直接肥料,如氮肥、磷肥、钾肥、微量元素和复合肥料都属于这一类。而另一些主要是为了改善土壤物理性质、化学性质和生物性质,从而改善作物的生长条件的肥料称为间接肥料,如石灰、石膏和细菌肥料等就属于这一类。 肥料是作物的粮食,是增产的物质基础,据联合国粮农组织统计,化肥在粮食增产中的作用,包括当季肥效和后效,平均增产效果为50%,我国近年来的土壤肥力监测结果表明,肥料对农产品产量的贡献率,全国平均为57.8%。中国以占世界7%的耕地养活占世界22%的人口,应该说一半归功于肥料的作用。 一、作物生长必须的营养元素 1、作物必需营养元素的确定: A、作物缺乏这种元素时,就不能正常生长、结出果实。 B、当作物缺乏这种元素时,其他元素不能代替,只能依靠补充这种元素来解决。 C、这种元素在植物体内起着固定的、特定的生理作用。 简称:必要性,不可代替性,具有一定的生理功能。 2、作物必需的16种营养元素: 大量元素:碳、氢、氧、氮、磷、钾 中量元素:钙、镁、硫 微量元素:铁、氯、铜、锌、锰、钼、硼。 在16种元素之中,C、H、O占植物干物质的90%以上,可以从空气和水中获得,N占植物体干物质总量的1.5%左右,除了豆科植物借根瘤菌可以从空气中固定一定数量的氮外,一般植物从土壤中吸收,其他几种元素占植物体干物质总量5%左右。 3、有益元素:有些元素对植物有刺激作用,但不是必须的,或对某些植物类型在特定条件下是必须的,因此,人们将这些矿质元素称有益元素。主要有硅、钠、钴、硒、镍、铝等。 二、肥料的分类 按化学成分分:无机肥料、有机肥料、有机无机肥料; 按养分分:单质肥料、复混(合)肥料(多养分肥料); 按肥效作用方式分:速效肥料、缓效肥料; 按肥料物理状况分:固体肥料、液体肥料、 按作物对营养元素的需求量分:大量元素肥、中量元素肥、微量元素肥 1、按化学成分 A、有机肥料:指主要来源于植物和动物,施于土壤以提高植物养分为主要功能的含氮物料。 有机肥料最早是农村利用各种来源于动植物残体或人畜排泄物等有机物料,就地积制或直接耕埋施用的

复合肥防结块剂项目可行性研究报告申请报告

复合肥防结块剂项目可行性研究报告 报告模版

目录 第一章总论 (9) 1.1项目概要 (9) 1.1.1项目名称 (9) 1.1.2项目建设单位 (9) 1.1.3项目建设性质 (9) 1.1.4项目建设地点 (9) 1.1.5项目负责人 (9) 1.1.6项目投资规模 (10) 1.1.7项目建设规模 (10) 1.1.8项目资金来源 (12) 1.1.9项目建设期限 (12) 1.2项目建设单位介绍 (12) 1.3编制依据 (12) 1.4编制原则 (13) 1.5研究范围 (14) 1.6主要经济技术指标 (14) 1.7综合评价 (16) 第二章项目背景及必要性可行性分析 (17) 2.1项目提出背景 (17) 2.2本次建设项目发起缘由 (19) 2.3项目建设必要性分析 (19) 2.3.1促进我国复合肥防结块剂产业快速发展的需要 (20) 2.3.2加快当地高新技术产业发展的重要举措 (20) 2.3.3满足我国的工业发展需求的需要 (21) 2.3.4符合现行产业政策及清洁生产要求 (21) 2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (21) 2.3.6增加就业带动相关产业链发展的需要 (22) 2.3.7促进项目建设地经济发展进程的的需要 (22) 2.4项目可行性分析 (23) 2.4.1政策可行性 (23) 2.4.2市场可行性 (23) 2.4.3技术可行性 (23) 2.4.4管理可行性 (24) 2.4.5财务可行性 (24) 2.5复合肥防结块剂项目发展概况 (24) 2.5.1已进行的调查研究项目及其成果 (25) 2.5.2试验试制工作情况 (25) 2.5.3厂址初勘和初步测量工作情况 (25)

复合肥防结块剂的现状及前景

复合肥防结块剂的现状及前景 刘继森 张宗森 (山东省鲁南化学工业集团公司化工研究所,滕州,277527) 摘 要 本文阐述了复合肥防结块剂的国内外现状、防结块剂的分类,分析了复合肥防结块剂的市场前景。 关键词:复合肥 防结块剂 表面活性剂 我国复合肥工业起步较晚,但发展很快。从1985年开始提倡用复合肥和专用肥到现在,已在全国普及。但是目前国内复合肥在价格、质量方面很难同国外产品竞争,国外产品粒度均匀、光滑、粉尘少、不结块,其中一个主要原因是复合肥防结块剂的应用。 一、复合肥防结块剂的分类 复合肥防结块剂主要有各种类型表面活性剂、高分子共聚物、高分子均聚物(PVA C 、 PVA 、PPG 、PEG 等)、 高分子聚合物2表面活性剂(PVA C 与AB S 、SD S 、NB S )的混合物等。归纳起来可分为下列几种类型: 11表面活性剂 表面活性剂又分为阴离子型(如烷基硫酸盐、烷基苯磺酸盐、Α 2烯烃磺酸盐等)、阳离子型(主要为季铵盐表面活性剂)、非离子型(主要包括聚氧乙烯脂肪醇、聚氧乙烯烷基酚、聚氧乙烯脂肪酰胺、PO 2EO 嵌段共聚物、聚氧乙烯聚氧丙烯丙三醇、聚氧乙烯脂肪酸、聚氧乙烯烷基胺、聚氧乙烯山梨糖醇酐脂肪酸酯)、两性表面活性剂,如 N +R R 2 R 1CH 2COO - 21高分子均聚物 如仲烷基硫酸铵、烷基磺酰氯、尿醛树脂 及其衍生物(如聚丙二醇、聚乙二醇、聚丙二醇乙酸酯)等。 31高分子2表面活性剂混和体系该类化合物是相当优良的复合肥防结块剂,高分子物质一般采用聚醋酸乙烯酯,表面活性剂一般采用十二烷基硫酸钠(SD S )、丁基萘磺酸钠(BN S ),十二烷基磺酸钠(AB S )、油酸等。 二、复合肥防结块剂的生产现状 目前复合肥防结块剂国内生产企业不 多,主要有河北化工研究院化工助剂研究所、江苏省锡山市中远化工有限公司、秦皇岛市海港华兴防结剂厂等。河北化工研究院化工助剂研究所生产的FJK 复合肥防结块剂,能在肥料颗粒表面形成均匀的憎水薄膜,抵制水分的侵入和肥料“晶桥”的形成,有效地防止肥料结块,同时具有提高颗粒强度、抵制粉尘等功效;江苏省锡山市中远化工有限公司生产的中亚二号新型复合肥防结块剂,防结块性能近于进口防结块剂,已成功地应用于我国最大复合肥生产企业——中阿化肥公司生产的“撒可富”牌复合肥中。秦皇岛市海港华兴防结剂厂的HX 防结块剂系列在防脱落 05四川化工与腐蚀控制 第2卷 1999年第5期

水溶性肥结块胀气沉淀如何解决

水溶性肥结块胀气沉淀如何解决? 水溶性肥在生产和使用过程中,时常会出现结块,胀气,沉淀等问题,怎样解决这些问题?如何避免这些问题? 1、结块问题 肥料的结块问题一般出现在肥料的加工,储运,运输过程中,主要因为微观的肥料晶粒发生的吸湿,表面溶解(潮解)蒸发,再结晶而导致的,在这个过程中形成晶桥,导致小颗粒变成大颗粒而结块。结块问题主要跟物料(生产肥料的原材料),湿度温度,外界压力和存放时间有关。 第一,我们生产肥料通常所用的物料如:铵盐,磷酸盐,微量元素盐,钾盐等,大部分都含结晶水,易吸潮结块。硫酸铵易结块,磷酸盐与微量元素相遇易结块且变为不易溶于水的物质,尿素遇到微量元素类盐易析出水分而结块,主要是尿素置换出微量元素盐中的结晶水而成为浆糊,然后再结块。 第二,肥料生产一般为非密闭生产,在生产过程中,空气湿度越大,肥料越易吸潮结块,天气干燥或烘干原材料,肥料就不易结块。 第三,室温越高,利于溶解,一般原料溶解在自身的结晶水中而导致结块。氮温度更高时,水分蒸发,又不易结块了,这个温度一般都在50℃以上,我们通常要加热才能达到这个温度。 第四,对肥料外加的压力越大,越易于晶体与晶体之间的接触,越易结块;外加压力越小,越不易结块。

第五,生产出的肥料放置时间越长越易于结块,放置时间越短,越不易结块。 为了防止结块,在生产过程中应注意以下几个方面的问题: 1、合理的选择原料,即选择不易结块的原料作为生产的原材料。如微量元素叶面肥,以铁、铜、锰、鋅、硫酸盐和硼酸、钼酸铵为原料,添加剂以硫酸镁为主,主选料较干,空气不太潮湿时,生产的肥料就不太结块,以腐殖酸为原料为主要原料的肥料和以氨基酸为主要原料的肥料不易结块。另外选择物料水含量一定要低。 2、选择合适的生产时间。由于中国大部分地区属于北温带,雨季多集中在6,7,8,月份,温度较高的时间也集中在这个时间,所以春季,晚秋,冬季生产肥料,这时空气湿度小,温度不高,结块的几率也就低一些。 3、添加一些防结块剂,如滑石粉,腐殖酸等等不易结块的粉末,起到断桥作用。最好加一些表面活性剂,防止结块效果好。 4、要采取合理的包装,防止挤压,包装材料以防止吸潮透气为主,在运输过程和储存中防止过高挤压,也可以有效防止结块问题。 5、造粒技术可以防止结块,由于圆粒的粒与粒之间的接触面积小,不易结晶结块。所以有条件的话,造粒是最好的防止结快的方法。 2、胀气问题: 胀气问题是两种或两种以上物料反应,放出气体而导致的,在生产肥料过程中,能够产生胀气物资有以下几类:硼砂,铵盐,填料和杂质,

防结块剂

冲施肥防结块剂 防结块剂复合肥防结块剂硝酸钠防结块剂氯化铵防结块剂氧化钙防结块剂内加型防结块剂外加型防结块剂喷洒型防结块剂 一产品用途: 冲施肥防结块剂是以无机矿物质为主要原料、辅以有机表面活性剂、采用纳米技术加工而成的新型防结块产品。适用于尿基、硫基、氯基等各种类型、各种浓度的冲施肥防结块处理。 二性能特点 1、使用方便能耗小、不需加热、经简单计量直接添加即可; 2、具有高强吸附、固化、隔膜功能,南北气候均宜; 3、绿色环保:化学性质稳定,无毒、无味、无腐蚀、不易燃易爆,对环境不造成任何污染; 4、内含农作物所需的可溶性中微量营养元素(S、Ca、Mg、B、Zn、Fe),弥补高浓度复合肥中缺少微量元素的缺憾。 5、独特科学的吸附方式:以科学的吸附方法,使粉状防结块剂牢固的吸附于颗粒肥料表面,车间生产无污染。 三理化指标 1、有效减低肥料粒子间的吸附粘连。 2、控制颗粒晶形,保持冲施肥中颗粒具有良好的稳定晶形。 3、有效固定肥料表面自由水,从而降低化学反应及重结晶所需要的介质。 4、超细粉体堵塞肥料表面毛细孔,阻止肥料颗粒内部水分向表面的迁移。 5、超细粉体较强的吸附于肥料颗粒表面,有效的阻隔肥料粒子之间的接触。

6、控制后反应产物或重结晶晶体形状,降低晶体间结合力,使由此原因造成的肥料结块强度降低,从而使肥料松散。 五使用方法: 包裹后直接包装工艺:在现有包裹筒进料端按设定量直接均匀加入本防结块剂,扑粉后直接进入包装系统。 六用量: 根据肥料品种的不同,本防结块剂使用量为3、5公斤/吨肥料。 七包装及贮存: 本产品塑料编制袋包装(内衬塑料袋),规格为10公斤/袋。 储存条件:地面干燥、防潮防雨。储存时间:6个月 八特别推荐: 液体氯化铵喷洒型防结块剂、复合肥、硝酸钡防结块剂、芒硝类防结块剂、尿基高氮复合肥防结块剂、二氧化硅防结块剂、扑粉状高氮复合肥防结块剂等 二氧化硅防结块剂 防结块剂复合肥防结块剂硝酸钠防结块剂氯化铵防结块剂氧化钙防结块剂内加型防结块剂外加型防结块剂喷洒型防结块剂 一产品用途: 二氧化硅防结块剂主要用于气相二氧化硅粉体的防结块。 二性能特点 1、使用方便,不需加热溶解、喷雾等工艺。水溶性好,无需溶剂溶解,环境友好。优异的抗再结晶能力和防结效果。 2、比表面积大,用量少,效果好,成膜性好,防结性能出众; 3、对复合肥颗粒具有润圆、润滑、增白功能,具有高强吸附、固化隔膜功能; 4、环保性好,为白色粉末,对土壤、农作物无毒、无害、无腐蚀; 5、具有很强的防潮性能,适用范围广,南北气候均宜;

国内外硝酸铵防结块剂的开发研究

1 概述 硝酸铵是我国最早生产的氮肥之一,是一种常用的化肥,其高含量的氨态氮和硝态氨均易被作物吸收,为我国早期农业的发展起到了重要作用。但是由于其自身的物化特性和易受外界环境化的影响,硝酸铵很容易发生结块板结;又由于潜在的爆炸险,对结块的硝酸铵不易处理,使储运和使用极为不便。因此解决硝酸铵的结块问题,已成为科技人员、生产企业和用 户普遍关注的问题。 2 硝酸铵结块的主要原因 我国的硝酸铵大多采用中和法生产,即硝酸和氨气中和,经过一段、二段或三段蒸发,然后结晶或造粒生产出合格的产品。各流程的差别主要在于原料硝酸的浓度、中和反应热的利用程度、反应器的结构型式以及造粒方式等。工艺操作不同、产品要求不同、企业所处地理位置不同、管理方式不同等许多原因,使硝酸铵结块的原因和结块程度略有差异,但主要的影 响因素可归纳为以下几点。 2.1 产品含水量 由于各生产企业对中和反应热利用程度不尽一致,有的进行一段、二段蒸发,有的进行三段蒸发,使蒸发阶段后形成的硝酸铵熔融料浆的含水量不同,所生产的产品含水量差异较大,一般为0.6%~1.5%,甚至更高。这些水分溶有的一部分硝酸铵在储存过程中,受温度变化的影响,会析出新的结晶,新结晶与原产品颗粒粘接在一起, 造成结块。 2.2 包装温度 硝酸铵融浆在175~180℃的高温下进行造粒,造粒后的温度仍高达60~90℃,在此温度下包装,并逐渐冷却到室温时,会发生晶型转变,由Ⅱ型变成Ⅲ型,由Ⅲ型变成Ⅳ型。晶型变化引起内部晶体连接,从而引起结块板结。—16.9~169.6℃范围内存在的5种晶型见表l。 2.3 颗粒大小及强度 粉状和小颗粒容易结块,大颗粒由于表面积小,以点的形式相接触,相互挤压小,不易结块,特别是均匀的大颗粒,比粉状和小颗粒的防结块性要好得多。如果颗粒强度能大于14.7N/ 粒,是最理想的。 2.4 储存条件 在仓库堆放,一般为节省空间,堆码较多,下层受上层的挤压,极易板结,加上自身具有较强的吸湿性。因此,库存温度、湿度对硝酸铵结块影响较大。库存温度一般要求30℃,湿度50%~60%,但绝大多数企业没有条件做到恒温恒湿。四川、云南的湿度常处于80%,

水汽团粒法复混肥板结分析及对策

关于水汽造粒装置防结问题分析 近年来国内复混肥市场疲软,一家复合肥厂能不能有利润,单从产销上来说,就是如何生产颗粒外观好、成本最低和出厂价格最好的成品。为了更好地为客户创造价值,公司技术支持人员涂晖、田楠于2014年12月14-17日,与该公司相关领导就转鼓装置产品结块问题进行了技术交流和防结分析。现将可能影响产品结块的因素和改进建议,报告如下: 一、装置工艺基本情况: 该公司现有两条10万吨/年传统水汽团粒法生产线,采用一烘一冷,装置始建于2008年。由于东北肥料市场产品储存时间长等特殊情况,投产后产品结块问题一直未能得到彻底解决。水汽团粒法为典型的团粒造粒工艺,该工艺主要依赖于水和蒸汽提供造粒液相,靠固体粘结剂提供成粒条件,大多应用于中、低浓度的复混肥生产,所生产的产品一般水分高、强度低、外观差、结块严重,故已逐步被氨酸法生产工艺所取代。 二、产品结块的因素分析: 1、水分:水分是肥料结块的最大因素,目前该公司装置为一烘一冷,对于高浓度复混肥生产,水分控制相对难度较大,特别是尿素配比在15%以上的复混肥生产,过高的烘干温度会使尿素发生融溶,但烘干温度低,又会导致产品水分超标,使产品结块。 2、温差:东北肥料生产线刚生产出来的产品温度在35度左右,在寒冷的气候条件下,产品内部水分在降温的过程中,由于肥料表面和肥料内部之间温度差过大,导致水分向外迁移的推动力很大,迁移出来的水分,会很快冷凝到包装袋内部和颗粒的表面,从而导致产品中表层尿素潮解,使得颗粒间形成晶桥,引起产品结块。 3、颗粒:从烘干机出口看,许多尿素颗粒没有参与造粒,或者参与造粒不完全,仅仅被油、粉包裹后误认为是溶化成粒了。成品颗粒里有尿素裸露在颗粒外,尿素极易吸潮,与其他肥料颗粒接触,导致形成晶桥的机会增大。 三、现场肥料情况分析

粉末涂料如何防止结块

粉末涂料如何防止结块 粉末涂料具有在一定温度下结块的倾向,这主要是组成粉末涂料中的树脂、流平剂等材料遇热软化所致。我公司生产的粉末涂料都是热固性粉末涂料,即作为主要成膜物的树脂是分子量较低的有机高分子聚合物。这些树脂具有一种物理性能,在较低温度下,它表现为硬而脆的玻璃状态,当温度上升到一定程度时,树脂开始转变成具有一定的弹性并产生粘连的状态,低于这一温度,树脂又返回到非粘连的玻璃状态,树脂的玻璃态与粘弹态相互转变的温度就叫做树脂的玻璃化温度。不同的树脂具有不同的玻璃化温度,如环氧树脂和聚酯树脂的玻璃化温度大约在50℃左右,增光剂(701)的玻璃化温度大约在30℃多,而液体流平剂的玻璃化温度则在零下摄氏度。粉末涂料配方中低玻璃化温度的材料加量越大,则体系的玻璃化温度就越低。测定玻璃化温度需要有专门的大型仪器,一般的粉末涂料生产厂家不具备这种较昂贵的仪器设备,我们在生产过程当中并不能及时掌握粉末体系的玻璃化温度,因而,我们在生产是将粉末体系的玻璃化温度定位大约为40℃,我们将这一温度定为粉末涂料结块的安全温度。那么我们在生产磨粉(以及产品储运过程中)以次为标准,接近和高于这一温度时相关人员要加强产品结块的抽检。目前已进入夏季生产阶段,气温的升高将更易于粉末涂料产品结块问题的发生,那么我们在工作中如何防止粉末涂料的结块呢? 首先我们要确立一个观念:粉末涂料在一定温度下结块是个自然规律。要想防止粉末涂料结块必须在粉末涂料生产的磨粉、包装、存储、运输等全过程中,粉末涂料产品处于其玻璃化温度以下。依据这一观点则有如下解决方法:1).在聚酯树脂生产时,选用一些能提高其玻璃化温度的醇或酸,或减少使用能降低树脂玻璃化温度的醇的用量来提高聚酯树脂的玻璃化温度;通过配方等工艺手段使树脂(包括环氧树脂)的分子量增大一些以提高树脂的玻璃化温度。2).在粉末涂料配方设计上减少低玻璃化温度聚合物的使用量,如流平剂和增光剂,以保证粉末涂料体系的玻璃化温度不会降低。3).生产方面,钢带上下来的破碎片料应进行充分冷却后再进入磨粉工序,磨粉时应适当降低进料速度、增大引风风量、进风口加装冷气空调以控制磨粉温度。然而,若磨粉前破碎片料冷却不下来,则后面的手段就不会起到很好的作用,可考虑对破碎片料进行强制冷却的方法进行低温处理,这比加装空调更为有效。 再有,可加入抗结块助剂,如气相二氧化硅(白炭黑)或氧化铝微粉以防止粉末粒子间粘连,抗结块剂一般和破碎片料同时磨粉效果最好。 使用任何单一方法都不能有效的防止粉末涂料的结块,过度使用一种方法则会给粉末涂料带来其它的弊病。使用多种方法进行科学的配合才能够有效的防止粉末涂料的结块。 技术部 2007-5-30

结块理论及解决方案

结块形成原因及解决方案 1.结块形成的理论原因 晶桥理论 由于晶体自身原因(晶体的性质、化学组成、粒度等)和环境因素(温湿度、压力和杂质等),使晶体表面溶解并发生重结晶,从而在晶粒之间的相互接触点上形成晶桥,出现结块等现象。 毛细吸附理论 由于微细晶粒间毛细吸附的存在,使水蒸气向晶粒间扩散,受潮,导致结块。 1.3塑性形变理论 未经彻底冷却的产品残余热从颗粒中心向外转移,此时若堆积压力过大,会导致颗粒间接触面积增大,分子之间引力增加,表面再溶,形成晶桥,很易发生结块。 2.影响结块的因素 粒度与颗粒大小的影响 粒度越小,颗粒的抗压能力越差,越容易结块。因此生产上应在不影响产品销售感官条件下,生产粒度较大,较均匀的晶体颗粒。 吸湿性和水溶性的影响 晶粒间存在毛细吸附,若有水分子存在,则较易结块,温度低,晶体不易吸湿,温度高则反之,当高温晶体温度下降时,会析出结晶形成晶桥,从而结块,所以晶体不宜在湿热环境下储存。 2.3压力和时间的影响

晶体成品包装堆放时,随着压力增大,促使颗粒间紧密接触,导致颗粒塑性形变,使晶体较易结块。因此在储存及运输过程中,应尽量避免堆积及长时间的贮存。 3.解决方案 优化工艺参数 总结结晶过程经验,控制产品颗粒均匀度,避免出现片晶、粉晶、针晶;尽可能的减少成品中的杂质及水分含量;烘干过程逐步冷却避免温度骤降;包装前必须确认成品可以得到充分冷却。 减少环境因素影响 在生产过程中应考虑季节变换、天气因素等造成的外部环境条件改变,例如温度、湿度等对烘干、包装工段的影响,避免成品包装温度过高,或料温骤变。尽量保障烘干、成品包装工段及存贮仓库环境因素的恒定及干燥。 改善包装方式 目前公司包装袋采用主流的0.5mm内膜,考虑到运输过程当中的磨损等因素易造成内膜破裂,从而导致产品吸潮、结块,同时鉴于氨基酸产品更易吸潮的特性,建议可以尝试考虑采用0.8mm包装内膜。但此前公司曾因0.8mm内膜热合温度过低,不易粘连造成包装破损,或热合温度过高导致内膜及外膜烫损断裂的情况出现,选用了较易热合的0.5mm内膜,有鉴于此,建议可以考虑从热合温度及热合时间上寻找突破口,找到更易于0.8mm内膜的热合条件,从而保证包装内膜的抗磨损能力及抗压能力。

复合肥防结块剂技术的研究开发现状_王春梅

复合肥防结块剂技术的研究开发现状 王春梅1,3,赵天波1,李凤艳2,李建勇1,单素灵1 (1.北京理工大学,北京100081;2.北京石油化工学院,北京102617;3.唐山学院,河北唐山063000) [摘 要]介绍国内外复合肥防结块剂的研究开发现状和防结块的机理、影响结块的因素及防结块剂的种类。 分析目前防结块剂存在的问题和防结块剂研究的发展方向。 [关键词]复合肥;结块;防结块剂;综述[中图分类号]TQ444 [文献标识码]A [文章编号]1007-6220(2008)01-0060-04 [收稿日期]2007-03-16;[修回日期]2007-09-17 [作者简介]王春梅(1972-),女,河北丰润人,硕士研究生,主要研究方向:防结块剂的设计研究。E-mail:wangcmei@sina.com 2005年市场调查发现,防结块产品种类较多,但真正能使复合肥4~6个月不结块的防结块剂产 品很少 [1] 。结块与否已成为人们评价肥料质量的一项重要指标。 本文就国内外复合肥防结块技术的开发情况、肥料结块机理、影响结块的因素及防结块的措施、防结块剂的种类和发展趋势进行综述。 1国内外复合肥防结块技术的开发情况1.1传统防结块技术 从20世纪70年代开始,出现了一系列复合肥 外包裹技术,主要有扑粉、包膜等。最早是喷施滑石粉等润滑材料于复合肥表面。前苏联Вовкотруб[2] 用高分散的二氧化硅和碳酸铵的混合粉末包覆颗 粒,但效果不良;法国纳瓦斯库斯[3] 发明采用油、 蜡类的熔融物处理复合肥,但该物质热塑性范围 小,使产品颗粒强度低,易粉化。 日本岩崎衍治[4] 使用醛类化合物作为防结块剂,但低沸点醛和机油稀释剂挥发产生刺激性异味,有毒性;80年代末德国Blouin、Gullett [5] 等研究了木 质素磺酸钙及同类物处理肥料提高其防结块性和抗破碎性,克服了使用醛类的缺点,但使肥料变成褐色,导致农民难以接受。 芬兰阿尔纳斯 [3] 将溶入醚中的阳离子胺类和溶 入甲醇中的阴离子羧酸生成的氨基二羧酸盐,溶 入矿物油中包裹复合肥,虽然防结块效果较好,但是成本高,生产使用不方便,采用大量溶剂又不安全,故难以实际应用;日本仓田笃三[3] 则直 接使用酰胺类化合物作为防结剂主成分,但价格 昂贵。 1.2新型防结块剂 1.2.1高聚物表面活性剂复配型 英国专利[6] 在浓缩的阴离子表面活性剂溶液中,溶解水溶性乙烯基高聚物,用该复配溶液处理肥料,与传统的阴离子及阳离子表面活性剂相比,防结块效果更好。其中水溶性乙烯基高聚物是聚醋酸乙烯酯、脲醛树脂、聚乙烯醇等。 红日集团 [7]用传统包裹法(油、惰性包裹剂涂布 产品),使高氮复合肥的结块时间延长,由原来不包裹时的7~10d延长为20d左右。经过技术改进,在20%的磷酸溶液中加入表面活性剂十二烷基磺酸钠,再配入一种高分子活性有机物,在搅拌机中加入包裹颗粒,俗称“蛋壳化”,在南方存放3个月未结块。 1.2.2环保型防结剂 目前传统防结块剂在施用后会造成农田、渔业 水利的污染,出口肥料时外商明确要求添加无毒无 ◆综述◆ Researchstatusonanti-cakingagentsforcompoundfertilizer WANGChun-mei1,3,ZHAOTian-bo1, LIFeng-yan2,LIJian-yong1,SHANSu-ling1 (1.BeijingInstituteofTechnology,Beijing100081,China;2.BeijingInstituteofPetrochemicalTechnology, Beijing102617,China;3.TangshanCollege,Tangshan,Hebei063000,China) Abstract:Theresearchanddevelopmentofanti-cakingagentsforcompoundfertilizer,cakingmechanismanditsmainfactors,thevarietiesoftheagentsarereviewed.Extantproblemsarediscussedandfutureresearchispreviewed. Keywords:compoundfertilizer;caking;anti-cakingagents;review60 2008年1月第23卷第1期 磷肥与复肥 Phosphate&CompoundFertilizer

粉体考点

粒径分布函数:能够反映出具有相同或相似粒径分布特性的共性规律的数学函数。 粒径:粉体中颗粒的大小,用其在空间范围所占据的线性尺寸来表示 粒径分布:不同粒径范围内所含粒子的个数或质量,称为粒径分布 形状因子:形状因子是一种粒子间相互作用矩阵元中含有的洛伦兹标量函数因子。按照相对论协变性的普遍要求,可以得到相互作用矩阵元的一般表达式,其中含有一些标量函数因子。这些因子是相互作用过程中始态和末态粒子之间动量转移的函数,它们反映了相互作用振幅随动量转移的变化关系,称做形状因子。 频率分布:表示各个粒径范围内对应的颗粒百分比量。 累计分布:表示大于或小于某粒径的颗粒占全部颗粒的百分比量与该粒径的关系。 形状指数:表示颗粒外形的几何量各种无因次组合。 容积密度:指在一定填充状态下,包括颗粒的全部空隙在内的整个填空层单位体积中颗粒的量。 理论密度:指颗粒的质量处以不包括开孔或闭孔在内的颗粒真体积。 表观密度:颗粒的质量除以包含闭孔在内的颗粒体积。 安息角:又称休止角,通常是指粉体堆积层的自由斜面与水平面所形成的最大角。 内摩擦角:土体中颗粒间相互移动和胶合作用形成的摩擦特性。其数值为强度包线与水平线的夹角。 壁摩擦角:粉体层与体壁面之间的摩擦特性,用表示,表示单一粒子与壁面的摩擦。粉碎化:物料与粉碎前的平均粒径D与粉碎后的平均粒径d之比称为平均粉碎化 公称粉碎化:粉碎设备所允许的最大进料口尺寸与最大出料口尺寸之比 粉碎级数:串联的粉碎机太俗称为粉碎级数 升流粉碎流程:不带检查筛分或选粉设备的粉碎流程称为开路(升流)粉碎流程 闭流粉碎流程:凡带检查筛分或选粉设备的粉碎流程称为闭路(圈流)粉碎流程 循环负荷率:粗颗粒回料质量与闭路粉碎流程粉碎产品质量之比称为循环负荷率 固体比表观能:使固体物料表面增加单位面积所需要的能量 固体的比断裂表面能:产生新表面,裂纹到附近的塑形变形之和为比断裂表面能 固定床:当流体速度很小时,粉体层静止不动,流体从彼此相互接触的颗粒间的空隙通过此时床层为固定床 流化床:当空气自下而上地穿过固体颗粒随意填充状态的料层,而气流速度达到或超过颗粒的临界流化速度时,料层中颗粒呈上下翻腾,并有部分颗粒被气流夹带出料层的状态。 气力输送:用压力气流作载体,以一定速度运送[容器盛装的]散料的输送方式。

奶茶中粉包结块的预防和处理

奶茶中粉包结块的预防和处理 摘要 奶茶粉是一种广受欢迎的健康速溶粉体食品。该产品由于其组分的特殊性,在一定条件下容易变粘结块。这不仅严重影响其加工和贮藏,而且破坏了口感和品质。而粉体物料的结块问题是一个粉体力学至今尚未完全解决的难题。传统的液桥和晶桥理论都无法准确解释非晶态粉体的一个结块特征,即露点温度以上,这些粉体结块倾向也随着随着温度的升高而增强。奶茶粉作为一种含有非晶态组分的食品粉体,其结块现象必须通过基于非晶态高聚物玻璃化转变的结块机理来解释。 关键词:非晶态粉体;奶茶粉;玻玻化转变;流动性

Abstract Milk powder is a kind of healthy instant powder food popular. The product due to the particularity of the group, easy to change the caking under certain conditions. It not only affects the processing and storage, but also the taste and quality. The agglomeration of powder materials is a difficult problem that has not been solved yet. Traditional liquid bridge and bridge theory are unable to explain accurately the amorphous powders of a caking characteristics, namely temperature above the dew point, the powder caking tendency with increased with the increase of temperature. Milk powder as a component of food containing amorphous powder, the caking phenomenon must be explained by the caking mechanism transformation of amorphous polymer glass based. Key words: amorphous powder; milk powder; glass glass transition; liquidity 1.食品粉体的结块机理和研究方法 1.1食品粉体的结块机理 关于粉体物料的时效固结及结块,是一个粉体力学至今尚未完全解决的难题。粉体结块的机理,目前有晶桥和液桥两种说法。粉体表面的溶解,由于温度降低,溶解度下降,饱和析出形成晶桥:或当温度降至露点以下时,冷凝蒸汽在粉体表面形成溶液,在毛细管作用下,溶液不断“稠化”和固化,最后形成固桥。然而,用这些说法都无法解释的一个事实是,对于有些粉体,在高于露点温度时,温度越高却越容易形成结块。曾经对一些食品高分子种蛋白质和5种多糖)物理化学性能功能进行了实验研究,得出类似结论,即随着环境温度的升高,结块倾向增大,而且含水量似乎对结块具有“特殊增速”作用。这说明在传统的两种结块机理之外,还一定存在其他机理解释。 粉体分为晶态和非晶态两大类,两者的结块机理是不同的。前者使用现有的晶桥和液桥的“硬结块”机理,就可以得到很好的描述;而后者必须应用玻璃化转变理论来作进一步研究。晶态粉体的结块与粉体的表面过程(吸附、固化)有关,因而强烈地依靠于表面状态(表面稽核及表面物理、化学性能等);而非品态粉体的结块主要与粉体的二级热力学转变有关,因而更主要地取决于粉体的热性能(微观表现为分子的热运动),会更主要地于取决粉体的整体性能,而不完全是表面性能,即不会过分地依赖粉体的形状与粒径。当非晶态粉体的系统温度高于

复合肥结块原因及解决方法 2

复合肥结块原因及解决方法 傅少伟,高举全 (山东临朐富源精细化工有限公司邮编262600) 【摘要】阐述复合肥结块的机理;讨论影响复合肥结块的内在因素和外部因素;提出防结块的7项措施。认为今后防结块的研究应该从保证防结块剂的环保性、成膜的坚固性以及多功能性并保证复合肥颗粒的稳定性入手。 【关键词】复合肥结块机理结块原因防结块措施 复合肥是国内发展较快的肥料品种,其在生产堆放、储存、运输等过程中易结块,影响肥料生产企业的正常生产经营活动,中间商的销售及用户的使用,进而影响复合肥的推广应用。肥料结块已成为各环节必须面对而不能回避的问题。目前对于复合肥结块的原因,山东临朐富源精细化工有限公司从不同的角度,提出了一些理论解释,主要有以下几种: 1.1 毛细黏合理论 肥料成分大多具有较强的吸湿性,当其临界相对湿度低于空气湿度时,就会从空气中吸收水分,在肥料颗粒表面形成饱和的溶液膜。由于表面张力的作用在一面相接触的颗粒间形成凹液面,使得它和溶液中的离子向颗粒接触处移动,导致相邻颗粒间形成交联和黏结成团块。设粒子大小和颗粒间的接触面积。增大颗粒的尺寸,减小颗粒间的接触面积有利于降低粒子间的黏附力。

1.2 晶桥理论 当复合肥颗粒吸收空气中的水分,或颗粒内部的水分扩散到表面,就会在颗粒表面形成溶液膜,这种溶液的浓度取决于温度。温度的波动会导致溶解和结晶过程交替进行。有些肥料成分的溶解度随温度的升高而增大,当环境温度降低时,颗粒间的溶液膜将变成过饱和溶液而析出晶体。或者当颗粒吸收的水分被蒸发或被其它干颗粒吸收时,这种溶液膜也会变成饱和溶液而有新的晶体产生。随着时间的推移这些晶体之间彼此结合形成晶桥,将肥料颗粒黏合在一起,逐渐形成大的团块。晶桥的强度取决于新生成的晶体的形状、厚度和等轴程度。 1.3 化学反应理论 当空气湿度较大,或复合肥在造粒过程中不同组分间的化学反应未来得及完成,在贮存过程中会发生复分解反应或生成复盐。这些反应发生在颗粒表面组分之间以及不同颗粒表面之间,伴随着放热与释放水分,可能引起颗粒表面之间的重结晶,形成晶桥而导致复合肥结块。此外,随着热效应的产生,复盐组分可能发生变化,导致颗粒产品膨胀和收缩,从而使产品出现崩裂粉化和结块现象。 在复合肥中有些肥料组分如硝酸铵,存在5种晶型。当温度变化时,晶型也随之发生变化,导致颗粒中各个晶粒密度和体积的变化,引起颗粒内部机械应力,造成颗粒破碎,进而导致结块程度的増大。 1.4 塑性变形理论 该理论认为,结块伴随着形变,形变又会因受压而加剧;未经彻底冷却

常用灭火剂知识问答题及答案

常用灭火剂知识问答题及答案 什么叫干粉灭火剂?干粉灭火剂的灭火原理是什么? 干粉是一种干燥的、易流动的并具有很好防潮、防结块性能的固体粉末,又称为粉末灭火剂。目前分为两类: ⑴普通干粉灭火剂(又称BC干粉灭火剂),是由碳酸氢钠(92%)、活性白土(4%)、云母粉和防结块添加剂(4%)组成。 (2)多用途干粉灭火剂(又称ABC干粉灭火剂),是由磷酸二氢钠(75%)和硫酸铵(20%)以及催化剂、防结块剂(3%),活性白土(1.85%) ,氧化铁黄(0.15%) 组成。 干粉灭火剂平时贮存于干粉灭火器或灭火设备中。灭火时依靠加压气体( 二氧化碳或氮气) 将干粉从喷嘴喷出,形成一股雾状粉流,射向燃烧区。当干粉灭火剂与火焰接触时,发生一系列的物理化学反应,将火扑灭。 干粉灭火剂的适用范围是什么? 干粉灭火剂主要用于扑救各种非水溶性及水溶性可燃、易燃液体的火灾,以及天然气和石油气等可燃气体火灾和一般带电设备的火灾。在扑救非水溶性可燃、易燃液体火灾时,可与氟蛋白泡沫联用以取得更好的灭火效果,并有效地防止复燃。 化学泡沫的种类有哪些?化学泡沫灭火剂的灭火原理是什么? 目前有YP型和YBP型,它们的组分主要是硫酸铝和碳酸氢钠两种药剂作为发泡剂,并添加了氟碳表面活性剂、碳氢表面活性剂为增效剂。 使用时设法使碳酸氢钠和硫酸铝溶液混合,发生化学反应。反应中生成的二氧化碳, 方面在溶液中形成大量细小的泡沫; 同时使灭火器中的压力上升,将生成的泡沫从喷嘴喷出。反应生成的胶状氢氧化铝分布在泡沫上,使泡沫具有一定的粘性,且易于粘附在物体上。

什么叫泡沫灭火剂? 凡能与水混合,用机械或化学反应的方法产生灭火泡沫的灭火剂,称为泡沫灭火剂。 泡沫是一种体积小,表面被液体围成的小泡泡群,它的密度是0.001?0.5。由于它的密度 远远小于一般的可燃、易燃液体,因此可以飘浮在液体的表面,形成保护层。使燃烧物与空气隔断,达到窒息灭火的目的。它主要用于扑灭一般可燃、易燃的火灾; 同时泡沫还有一定的粘性,能粘附在固体上,所以对扑灭固体火灾也有一定效果。 泡沫灭火剂分为化学泡沫和空气泡沫两大类。 什么叫蛋白泡沫灭火剂?其灭火原理是什么? 蛋白泡沫灭火剂是以动物性蛋白或植物性蛋白的水解浓缩液为基料,加入适量的稳定、防腐、防冻剂等添加剂而制成的。目前,蛋白泡沫灭火剂是我国石油化工消防中应用 最广泛的灭火剂之一。 它所产生的空气泡沫密度轻(一般在0.1 ?0.5 之间),流动性能好,抗烧性强,又不易被冲散,能迅速在非水溶性液体表面形成覆盖层迅速将火扑灭。由于蛋白泡沫能粘附在垂直的表面上,因而也可以扑救一般固体物质的火灾。目前,蛋白泡沫灭火剂主要用于扑灭油类火灾。但是,使用蛋白泡沫灭火剂扑灭原油、重油贮罐火灾时,要注意可能引起的油沫沸溢或喷溅。 什么叫空气泡沫? 它能够与水混合,通过机械方法产生泡沫,故也称机械泡沫灭火剂。它分为低倍数、中倍数、高倍数三种。低倍数泡沫灭火剂的发泡倍数在20 倍以下,中倍数泡沫灭火剂的发泡倍数在20?500之间。高倍数泡沫灭火剂的发泡倍数在500?1000倍之间。其中低倍数泡沫灭火剂又分为蛋白泡沫、氟蛋白泡沫、水成膜泡沫(又称轻水泡沫或氟化学泡沫)、合成泡沫和抗溶性泡沫灭火剂等几种类型。

相关主题