搜档网
当前位置:搜档网 › 生物医学测量的基本特点

生物医学测量的基本特点

第1章 生物医学测量的基本特点
第1章 生物医学测量的基本特点
1.1 生物医学测量仪器的组成 1.2 人体测量的特点 1.3 人体系统的控制模式 1.4 人体生理信息测量条件 1.5 电流的生理效应和损伤防护 1.6 生物医学测量方法和测量模型
返回 上页 下页

第1章 生物医学测量的基本特点
本章重点 1. 测量仪器的组成 2. 人体测量的特点 3. 测量系统的控制模式 4. 生理信息测量条件 5. 生理效应和损伤防护
返回 上页 下页

第1章 生物医学测量的基本特点
1.1 生物医学测量仪器的组成
生物医学测量的目的是为了获得生物医学有 用信息,生物医学测量是各种生物医学仪器的基 础。采用工程技术方法获取生物医学信息通常采 用适合的生物医学测量的传感技术和检测技术来 实现。
一.生物医学测量仪器的组成
生物医学测量仪器一般可以分解为三个主要部 分:传感器(包括电极)、放大器和测量电路、数 据处理和显示装置。示意图如下:
返回 上页 下页

第1章 生物医学测量的基本特点 返回 上页 下页

第1章 生物医学测量的基本特点
1.传感器: 在生物医学测量仪器的组成中,传感器的
功能是把各种生理信息转换成可供测量的电信 号或其他可用信号,而电极的功能主要是把各 种生物电信号转换成可供测量的电信号。
传感器可以根据生理参数进行分类,生理 参数一般有:力、位移、速度、加速度、压 力、流量、温度、时间、声、光、电、离子浓 度等物理或化学量。传感器能否准确地转换这 些量,对于测量来说是十分重要的。
返回 上页 下页

第1章 生物医学测量的基本特点
2.放大器和测量电路: 放大器和测量电路的功能是把传感器所获
得的微弱信号加以放大、转换、去伪存真,从 而得到数据处理和显示装置可以处理的信号。 3.数据处理和显示装置:
数据处理和显示装置对于现代化的仪器来 讲,一般用计算机完成数据的记录、储存、计 算或显示。
返回 上页 下页

第1章 生物医学测量的基本特点
生物医学测量中应用较多的是电子技术, 把人体的各种信号转换成电信号进行测量,然 后把测量结果作为信息,应用信号处理的方法 ,根据不同目的进行适当的处理。
从测量技术来讲,生物医学测量属于强噪 声背景下的低频微弱信号的测量,被测信号是 由复杂的生命体发出的不稳定的自然信号。
返回 上页 下页

第1章 生物医学测量的基本特点
二. 生物医学测量信号的主要特点 ? 1.信号弱 ? 2.噪声强 ? 3.频率范围一般较低 ? 4.随机性强
返回 上页 下页

第1章 生物医学测量的基本特点
? 1.信号弱:直接从人体中检测到的生理电信号其 幅值一般比较小。如从母体腹部取到的胎儿心电 信号仅为10~50μV,脑干听觉诱发响应信号小 于1μV,自发脑电信号约5~150μV,体表心电 信号相对较大,最大可达5mV。 因此,在处理各种生理信号之前要配置各种 高性能的放大器。
返回 上页 下页

第1章 生物医学测量的基本特点
? 2.噪声强:噪声是指其它信号对所研究对象 信号的干扰。如电生理信号总是伴随着由于肢 体动作、精神紧张等带来的干扰,而且常混有 较强的工频干扰;诱发脑电信号中总是伴随着 较强的自发脑电;从母腹取到的胎儿心电信号 常被较强的母亲心电所淹没。这给信号的检测 与处理带来了困难。 因此要求采用一系列的有效的去除噪声的 算法。
返回 上页 下页

第1章 生物医学测量的基本特点
? 3.频率范围一般较低:经频谱分析可知,除声 音信号(如心音)频谱成分较高外,其它电生 理信号的频谱一般较低。如心电的频谱为0.01 ~35Hz,脑电的频谱分布在l~30Hz之间。 因此在信号的获取、放大、处理时要充分 考虑对信号的频率响应特性。
返回 上页 下页

第1章 生物医学测量的基本特点
1.2 人体测量的特点
人体测量是以医学、生理学为基础的。生
物医学测量的生理参数有心电、脑电、肌电等各
种生物电的电量参数,还有体温、血压、呼吸、
血流量、脉搏、心音等非电量参数,这些非电量
参数的测量实质上就是温度、压力、流量、频率
、力、位移、速度、加速度等非电量参数的测量
。生物医学测量与工程上的物体测量有本质上的
不同。
返回 上页 下页

医学生物学重点

细胞学说的建立: “一切生物,包括单细胞生物、高等动物和植物都是由细胞组成的,细胞是生物形态结构和功能活动的基本单位”。这就是著名的细胞学说(ce11theory)。细胞学说的基本内容 一切生物都是由细胞组成的 所有细胞都具有共同的基本结构 生物体通过细胞活动反映其生命特征 细胞来自原有细胞的分裂 细胞的基本定义 细胞是构成生物有机体的基本结构单位 细胞是代谢与功能的基本单位 细胞是生物有机体生长发育的基本单位 细胞是遗传的基本单位,具有遗传的全能性 细胞的主要共性 所有细胞都具有选择透性的膜结构 细胞都具有遗传物质 细胞都具有核糖体 细胞膜又称细胞质膜(plasma membrane)是指包围在细胞表面的一层极薄的膜,主要由膜脂和膜蛋白所组成。质膜的基本作用是维护细胞内微环境的相对稳定,并参与同外界环境进行物质交换、能量和信息传递。另外,在细胞的生存、生长、分裂、分化中起重要作用 膜功能 界膜和细胞区域化;调节运输;功能定位与组织化;信号转导;参与细胞间的相互作用;能量转换 细胞核(nucleus) 细胞核由核膜、核仁、染色质(染色体)和核基质组成,是细胞内遗传信息贮

存、复制和转录的场所,也是细胞功能及代谢、生长、增殖、分化、衰老的控制中心。 核基质 在核液中存在着一个主要由非组蛋白纤维组成的网络状结构,被命名为核基质。由于它的形态与胞质骨架很相似,相互之间又有一定的联系,也被称为核骨架。 染色质与染色体 染色质是由DNA、组蛋白、非组蛋白和少量RNA组成的线性复合结构,是遗传物质在间期细胞的存在形式,常呈网状不规则的结构。染色体是指细胞在有丝分裂或减数分裂过程中,由染色质聚缩而成的棒状结构。 核糖体(ribosome) 核糖体普遍存在于真核细胞和原核细胞中,是专门用来合成蛋白质的细胞器,这种颗粒小体由rRNA和蛋白质组成。 内质网(endoplasmic reticulum,ER) 内质网是由一层单位膜形成的囊状、泡状和管状结构,并形成一个连续的网膜系统,广泛存在于真核细胞中,是细胞内生物大分子合成基地。光滑内质网是脂类合成的重要场所 。粗糙内质网主要功能是合成分泌蛋白、多种膜蛋白和酶蛋白。 能量转换细胞器 线粒体是普遍存在于真核细胞中的一种重要细胞器。由于线粒体是细胞进行氧化磷酸化并产生ATP的主要场所,细胞生命活动所需能量的80%是由线粒体提供的,因此被称为细胞的“动力工厂”。 生殖是生命的特征之一,通过生殖,生命才得以延续、繁衍并完成进化过程。无性生殖 无性生殖(asexual reproduction)是不经过生殖细胞的结合,由母体直接产生新个体的生殖方式。 有性生殖 有性生殖(sexual reproduction)是高等动、植物普遍存在的生殖方式,是经过两性生殖细胞(卵细胞和精子)的结合,形成合子的方式。 第一次减数分裂 前期Ⅰ:细线期(染色线(chromonema)染色粒(chromomere));偶线期(联会(synapsis),联会复合体(synaptonemal complex)二价体(bivalent));粗线期(四分体(tetrad)非姐妹染色单体(non-sister chromatid)交叉(chiasma)和交

医学细胞生物学

线粒体与细胞的能量转换 名词解释: 1.基粒:线粒体内膜的内表面上突起的圆球形颗粒. 2.细胞呼吸:在细胞内特定的细胞器内,在氧气的参与下,分解各种大分子物质,产生二氧化碳; 与此同时,分解代谢所释放出的能量储存于ATP中. 3.转位接触点:在线粒体的内外膜上存在一些内外膜相互接触的地方,此处膜间隙变狭窄. 4.ATP合酶复合体:这种物质就是基粒,是线粒体内膜内表面上突起的圆球形颗粒. 5.热休克蛋白70:与大多数前体蛋白结合,使前体蛋白打开折叠,防止已松弛的前体蛋白聚集. 6.基质导入序列(MTS):一种N端具有一段富含有精氨酸,赖氨酸,丝氨酸,苏氨酸的氨基酸序列,介导在细胞质中合成的前体蛋白输入到线粒体基质的信号. 问答: 1.线粒体的标志酶? 内膜标志酶为细胞色素氧化酶,外膜标志酶为单胺氧化酶,基质的标志酶为苹果酸脱氢酶, 膜间腔的标志酶为腺苷酸激酶. 2.线粒体基质蛋白的转运条件及过程? (1)需要条件:基质导入序列和分子伴侣NAC和Hsp70 (2)转运过程: a.前体蛋白与受体结合 b.mthsp70可与进入线粒体腔的前导肽链交联,防止了前导肽链退回细胞质. c.定位于线粒体内膜上,切除大多数蛋白的基质导入序列. d.多肽链需在线粒体基质内在分子伴侣的帮助下,重新折叠并成熟形成其天然构象,以行 使其功能,形成有活性的蛋白质. e.跨膜运输是单向的,需水解ATP提供能量. 3.细胞内葡萄糖彻底氧化转变为能量的反应部位和主要过程? a.葡萄糖在细胞质中进行糖酵解产生丙酮酸和NADH,丙酮酸在线粒体基质中氧化脱羧生 成乙酰CoA. b. 乙酰CoA在线粒体基质中进行三羧酸循环产生NADH和FADH2. c.在线粒体内膜进行的氧化磷酸化偶联是能量转换的关键. 4.基粒的结构和功能? 结构有头部,柄部和基片;功能有催化ADP磷酸化生成ATP,控制质子流和基粒是氧化磷酸化作用的关键装置. 5.试述线粒体的超微结构基础? 外膜:外膜是一层包围在线粒体表面的单位膜,厚约6nm,仅含少量酶蛋白. 内膜:约4.5nm,折叠形成嵴,富含各种酶蛋白,内膜上有电子传递链和基粒,有转运蛋白和各种转运系统. 膜间腔:内外膜之间空隙组成的空间,宽约6~8nm,富含可溶性酶,底物和辅助因子. 基质:含有线粒体DNA,RNA,各种酶蛋白和核糖体. 基粒:每个线粒体大约有10000~100000个,在基粒的头部具有酶活性. 6.简述线粒体的化学组成特点? a.蛋白质:线粒体的主要成分,多分布于内膜和基质,又分为可溶性和不溶性,又有很多酶系. b.脂类:占线粒体干重较多,大部分为磷脂. c. DNA和完整的遗传系统. d.多种辅酶. e.含有维生素和各类无机离子.

关于大学医学生物学(第六版)试题.doc

大学医学生物学考试试题(闭卷) 课程名称:医学生物学 学号:姓名: 一、选择题(每题选一正确答案,写于答卷纸上。每题一分,共40分): 1.下列哪一种细胞内没有高尔基复合体 A、淋巴细胞 B、肝细胞 C、癌细胞 D、胚胎细胞 E、红细胞 2.在电镜下观察生物膜结构可见 C.两层深色致密层和中间一层浅色疏松层 D.两层浅色疏松层和中间一层深色致密层 E.上面两层浅色疏松层和下面一层深色致密层 3.属于动态微管的是 A.中心粒 B. 纺锤体 C. 鞭毛 D. 纤毛 E. 胞质收缩环 4.小肠上皮细胞吸收氨基酸的过程为 A.通道扩散 B. 帮助扩散 C. 主动运输 D. 伴随运输 E. 膜泡运输 5.关于细菌,下列哪项叙述有误 A、为典型的原核细胞 B、细胞壁的成分为蛋白多糖类 C、仅有一条 DNA分子 D、 具有 80S 核糖体 E、有些鞭毛作为运动器 6.关于真核细胞,下列哪项叙述有误 A、有真正的细胞核 B、有多条DNA分子并与组蛋白构成染色质 C、基因表达的转录和翻译过程同时进行 D、膜性细胞器发达 E. 有核膜 7.氚(3H)标记的尿嘧啶核苷可用于检测细胞中的 A、蛋白质合成 B、 DNA复制 C、 RNA转录 D、糖原合成 E、细胞分化 8.β 折叠属于蛋白质分子的哪级结构 A. 基本结构 B. 一级结构 C. 二级结构 D. 三级结构 E. 四级结构 9.在奶牛的乳腺细胞中,与酪蛋白的合成与分泌有密切关系的细胞结构是 A、核糖体,线粒体,中心体,染色体 B、线粒体,内质网,高尔基体,纺锤体 C、核糖体,线粒体,高尔基体,中心体 D、核糖体,内质网,高尔基体,分泌小泡 E、核糖体,分泌小泡,高尔基体,中心体 10.膜脂不具有的分子运动是 A、侧向运动 B、扭曲运动 C、翻转运动 D、旋转运动 E、振荡运动 11.微管和微丝大量存在于 A、细胞质基质 B、细胞外被 C、细胞膜 D、胞质溶胶 E、细胞连接 12.能封闭上皮细胞间隙的连接方式称为 A、紧密连接 B、粘着连接 C、桥粒连接 D、间隙连接 E、锚定连接 13.细胞表面的特化结构是 A、紧密连接 B、桥粒 C、微绒毛 D、胶原 E、绒毛 14.真核细胞的核外遗传物质存在于

生物医学测量与仪器课程教学大纲.

《生物医学测量与仪器》课程教学大纲 课程组人员:杨玉星、骆清铭、刘谦 一、课程名称:生物医学测量与仪器 二、课程编码: 三、学时与学分:32/2 四、先修课程:电子技术基础 五、课程教学目标 1.帮助学生了解国内外最新的生物医学测量方法及仪器; 2.引导学生接受生物医学测量与仪器知识熏陶,提高生物医学工程基本素养。 六、适用学科专业 生物医学工程、生物信息技术 七、基本教学内容与学时安排 ●概论 (2学时 生物医学测量及其仪器的发展简史和趋势 生物医学测量系统的基本组成 生物医学测量仪器的种类 生物医学测量仪器的主要技术指标 生物医学测量及其仪器的发展与现状 生物医学测量及其仪器的发展趋势

生物医学传感器的分类 生物医学传感器的发展 ●生物电测量及仪器—心电测量及仪器 (2学时心电的产生和心电图 体表心电图导联 心电图描记———心电图机 心电图的自动诊断 心电向量图 希氏束电图及其测量 心室晚电位测量 高频心电图分析仪 运动心电图测量 心电地形图仪———体表心电标测系统 心电图逆问题 ●生物电测量及仪器—脑电测量及仪器 (2学时脑电的产生和脑电图 脑电图机 脑电信号分析 诱发脑电技术

脑电技术的延伸 ●生物电测量及仪器—肌电测量及仪器 (2学时 肌细胞中的生物电位 肌电的引导与记录 典型肌电图仪的结构与指标 肌电图检查 ●生物电测量及仪器—其他生物电测量及仪器 (2学时视网膜电图、眼电图及眼震电图 胃电图 多道电生理记录仪 生物磁测量 :心磁图和脑磁图 ●生理参数测量及仪器—生物传感器的基本原理 (2学时位移传感器 压力传感器 流量传感器 振动传感器 温度传感器 光传感器 ●生理参数测量及仪器—血压及心输出量测量技术 (2学时有创血压监测 无创血压监测

医学生物物理学最终版

1、一级结构(Primary Structure):多聚体中组成单位的顺序排列。含义主要包括 1、链的数目; 2、每条链的起始和末端组分; 3、每条链中组分的数目、种类及其顺序; 4、链内或链间相互作用的性质、位置和数目。测定方法:1、生化方法:肽链的拆开、末段分析、氨基酸组成分析、多肽链降解、肽顺序分析 2、质谱技术(Mass Spectrometer)和色谱层析分析技术。 2、二级结构(Secondary Structure)是指多聚体分子主链(骨架)空间排布的规律性。测定方法:1、圆二色技术(Circular dichroism CD)、红外光谱(Infrared spectrum)和拉曼光谱(Raman spectrum )技术。 3、水化作用 (Hydration):离子或其他分子在水中将在其周围形成一个水层。 笼形结构(cage structure):疏水物质进入水后水分子将其包围同时外围水分子之间较容易互相以氢键结合而形成笼形结构。 4、能量共振转移(energy resonance transfer): 将分子视为一个正负电荷分离的偶极子,受激发后将以一定的频率振动,如果其附近有一个振动频率相同的另一分子存在,则通过这两个分子间的偶极-偶极相互作用,能量以非辐射的方式从前者转移给后者,这一现象称为~。 5、脂多形性(lipid polymorphism):不同的磷脂分子可形成不同的聚集态或不同的结构,称为“相”,同一磷脂分子在不同的条件下也可以形成不同的聚集态,这一性质称为脂多形性。 6、相分离(phase separation):由两种磷脂组成的脂质体,当温度在两种磷脂的相变温度之间时,一种磷脂已经发生相变处于液晶态,另一种磷脂仍处于凝胶态,这种两相共存的现象称为相分离。 7、相变:(phase transition):是指加热到一定稳定时脂双层结构突然发生变化,而脂双层仍然保留的现象。这一温度成为相变温度,温度以上成为液晶相,相变温度以下称为凝胶相。 8、协同运输(cotransport):细胞利用离子顺其跨膜浓度梯度运输时释放的能:量同时使另一分子逆其跨膜浓度梯度运输。 9、被动运输(passive transport):是指溶质从高浓度区域移动到一低浓度区域,最后消除两区域的浓度差,是以熵增加驱动的放能过程。这种转运方式称为被动运输。 10、主动运输(active transport):主动运输是指物质逆浓度梯度,在载体的协助下,在能量的作用下运进或运出细胞膜的过程。Na+、K+和Ca2+等离子,都不能自由地通过磷脂双分子层,它们从低浓度一侧运输到高浓度一侧,需要载体蛋白的协助,同时还需要消耗细胞内化学反应所释放的能量。 11、易化扩散(facilitated diffusion):在双层脂分子上存在一些特殊蛋白质能够大大增加融资的通透性,溶质也是从高浓度侧向低浓度侧运输,这种运输方式被称为易化扩散。这些蛋白质被称为运输蛋白。 12、离子通道(ion channel):是细胞膜的脂双层中的一些特殊大分子蛋白质,其中央形成能通过离子的亲水性孔道,允许适当大小和适当电荷的离子通过。 13、长孔效应(longpore effect):当一个离子从膜外进入孔道,要与孔道内的几个离子发生碰撞后才能通过孔道,这种现象称为长孔效应。 14、双电层(electrical double layer ):细胞表面的固定电荷与吸附层电荷的净电荷总量与扩散层电荷的性质相反,数值相等,形成一个双电层。 15、自由基( free radical FR ):能独立存在的、具有不配对电子的原子、原子团、离子或分子。 16、基团频率( group frequency ):一些化学基团(官能团)的吸收总在一个较狭窄的特定频率范围内,是红外光谱的特征性。在红外光谱中该频率表现基团频率位移,即特征吸收峰。 17、infrared spectroscopy(红外光谱):以波长或波数为横坐标,以强度或其他随波长变化的性质为纵坐标所得到的反映红外射线与物质相互作用的谱图。 18、圆二色谱(circular dichroism spectrum, CD):记录的是物质对紫外光与可见光波段左圆偏振光和右圆偏振光的吸收存在的差别与波长的关系,是分子中的吸收基团吸收电磁波能量引起物质电子能级跃迁,其波长范围包括近紫外区、远紫外区和真空紫外区。 19、圆二色性(activity of circular dichroism):手性物质对左右圆偏振光的吸收度不同,导致出射时左右圆偏振光电场矢量的振幅不同,通过样品后的左右圆偏振光再次合成的光是椭圆偏振光,而不再是线性偏振光,这种现象称为~。 20、旋光性(activity of optical ratation):左右圆偏振光在手性物中行进(旋转)速度不同,导致出射时的左右圆偏振光相对于入射光的偏振面旋转的角度不同,通过样品后的左右圆偏振光再次合成的光相对于入射光的偏振面旋转了一定的角度,称为~。 21、荧光(fluorescence):受光激发的分子从第一激发单重态的最低振动能级回到基态所发出的辐射。寿命为10-8~ 10 -11s。由于是相同多重态之间的跃迁,几率较大,速度大,速率常数kf为106~109s-1。分子产生荧光必须具备的条件(1)具有合适的结构(2)具有一定的荧光量子产率。

生物医学测量法

4组路文婷2013-10-11 生物医学测量法 一、定义 是通过使用特别的仪器设备和技术,从研究对象中测量获取的生理、生化资料,比如血压,血气分析、血样饱和度等。 二、分类 根据测量数据是否直接从机体获取,分为机体指标的测量和实验室指标的测量。 1.机体指标的测量是从机体直接测量的生理指标,例如血压,脉搏,心电图,指尖血氧饱和度测定等。机体指标测量时所需要的工具(如心电图仪)一般包括刺激源、受刺激的本体(如人或动物)感受器、信号处理器、显示器、资料收录和转化器六个部分。 2.实验室指标的测量不是从机体内直接测量结果,而是先抽取标本,后通过实验室检验测得结果,包括化学测量法,微生物测量法,组织细胞学测量法。例如血气分析指标的测定,细菌菌落计数,生物活检进行病理检查等,一般需同伙专门的检验技术人员完成。 三、特点生物医学测量是以人体的生命现象作为基本对象,在测量方法、测量 结果以及测量结果的认识上,与工业测量及其他非生物医学测量相比,具有以下显著的特点,熟悉这些特点,对构建生物医学测量系统、正确操作和使用医学仪器具有十分重要的意义。 1. 生命系统的多变量特性 生命体的生命活动是由多个生理及生化参量共同决定的,而在测量过程中,往往只针对某种效应和某些参数进行测量。生命系统的这种多变量特性,决定了测量方法和技术以及测量结果的涵义和结论都会带有明显的局限性 2. 需从大量干扰和无用信息中提取有用信息 生物医学测量工程中,由于被测参数往往十分微弱,易受外界环境的干扰(例如工频交流电干扰)和来自人体自身的其他无用信息的干扰(例如在测量体表希氏束电位时,很易受来自肌电信号的干扰)。人体活动时的体位变化、电极不良及传感器错位时也会产生伪差,必须采用抗干扰技术、排除伪差等方法提取有用信号。 3.测量结果会受被测对象的生理和心理因素的影响 在测量过程中,由于被测对象出现紧张,生理和心理都会发生变化。心理的变化会导致生理参数(心率、血压、体温等)变化。在测量过程中,被测者的不理解和不配合,尤其在进行麻醉以及经受物理和药物刺激时,受试者不能很好配合,直接影响测量过程中的伪差,从而影响测量的准确度。如剧烈运动时,机体需氧量急剧增加,心跳增快,氧耗和冠脉血流量也相应增加。 4.被测对象具有闭环特性 生命体具有精确的自动调节能力,这是由于在生命体中存在多环路、多层次、多重控制的闭环系统特性所决定的。多种原因可导致同一生理参数的变化,同一原因又可导致多种生理参数的同时变化。因此,测量单一生理参数往往不能有效地评估生理

医学细胞生物学教学网络资源应用

医学细胞生物学教学网络资源应用摘要:以新疆医科大学的课程中心网络资源配置为例,目前的基础医学课程教学中已注入多媒体技术、数字化技术和网路技术等元素,使教学手段更加多元化,使课程内容更加直观化、形象化,显著提高了教学效率和质量,以网络为基础的各种知识学习逐渐成为世界教学发展的一种趋势。 关键词:医学细胞生物学;网络资源;医学教育 随着中国特色社会主义新时代的到来,国家应用型人才需求对医学类高校基础课程教学提出了新的要求[1]。以网络为基础的各种知识学习逐渐成为世界教学发展的一种趋势,基于此,新疆医科大学建立了课程中心网站。目前就以《医学细胞生物学》基于课程中心网站的教学方法和模式应用为例做以下分析: 一、采用学导式、启发式为主的教学法 《医学细胞生物学》作为医学教学中的一门基础桥梁课程针对大学一年级的医学生开设,经过中学生物学学习后积累了一定的生物学知识,为学生启用发散性思维和进一步思维创新奠定了基础,使医学生在未来遇到复杂现实问题时,能联系多学科知识,寻求对问题全新、独特性的解决方法,进而做出临床诊断[2]。多年以来,在《医学细胞生物学》教学方法探索的道路上教师们匍匐前进、推陈出新,从更新教学理念和教学模式入手,认真研究教学方法,从传统的知识型传授走向知识传授与探索相结合,从灌输式走向启发式和互动式教学,逐渐普及翻转课堂,课前10分钟活动以及细化到PBL教学模式。以上

课生动、活跃的课堂气氛完成“精彩五十分钟讲堂”,课下能和学生沟通,能及时回答学生提问,到随时注意网络课程互动栏目动态,以便随时联系学生,及时回答学生问题,将教师对待专业的积极性传递给学生,能启发学生的积极性为教学目的。根据《医学细胞生物学》学科自身与临床疾病发病机制密切相关的特点,构建一种以实例为基础的新教学模式,如讲到溶酶体一章,联系在临床上矽肺病,它的临床运用,让学生学会思考问题并提出解决的方法,提高了学生的学习意识和理论结合实际的能力。除此之外,在医学细胞生物学教学中还持之以恒地开展校级和院级知识竞赛和绘图比赛、精讲、网络作业、网络师生交流平台、开放性实验等第二课堂也激发学生学习的积极性。 二、网络与视频资源的建立及使用 为了适应《医学细胞生物学》教学方法的不断改进及学生对网络资源的需求,为了发挥好“课程中心”网站服务教学、服务学生、提高教学质量的重要支撑作用,新疆医科大学自2012年起开始了“课程中心”网站建设以及完善工作,在这方面有了一定的成就。新疆医科大学“课程中心”建立了涉及22门医学专业,所有相关专业课程网站,所有课程网站浏览权限均是对外开放的,目前点击量近500万,自2012年起每个课程网站均在实时更新、随时完善。就本科生的《医学细胞生物学》网站而言2012年已建立,随后被评定为精品课程,目前点击量已达66944,目前“医学细胞生物学”课的网站全部已建立,网页具体内容包括以下10个方面;1.课程简介;课程总体简介和课程建设规划,这对学生深入了解这门课程十分重要,很好的回答了所

医学生物学习知识重点

医学生物学知识点 第一章生命的特征与起源 1.生命的基本特征★★★(9条p7-p9) ①生命是以核酸与蛋白质为主导的自然物质体系 ②生命是以细胞为基本单位的功能结构体系 ③生命是以新陈代谢为基本运动形式的自我更新体系 ④生命是以精密的信号转导通路网络维持的自主调节体系 ⑤生命是以生长发育为表现形式的“质”“量”转换体系 ⑥生命是通过生殖繁衍实现的物质能量守恒体系 ⑦生命是以遗传变异规律为枢纽的综合决定体系 ⑧生命是具有高度时空顺序性的物质运动演化体系 ⑨生命是与自然环境的协同共存体系 第二章生命的基本单位-细胞 1.细胞的发现(时间、人物)(P10) 1665年,英国物理科学家胡克。 2.细胞学说的基本内容(4条)p13 ①一切生物都是由细胞组成的 ②所有细胞都具有共同的基本结构 ③生物体通过细胞活动反映其生命特征 ④细胞来自原有细胞的分裂

3.细胞的基本定义(4条)p14 ①细胞是构成生物有机体的基本结构单位。一切有机体均由细胞构成(病毒为非细胞形态的生命体除外); ②细胞是代谢与功能的基本单位。在有机体的一切代谢活动与执行功能过程中,细胞呈现为一个独立的、有序的、自动控制性很强的独立代谢体系; ③细胞是生物有机体生长发育的基本单位。生物有机体的生长与发育是依靠细胞的分裂、细胞体积的增长与细胞的分化来实现的。绝大多数多细胞生物的个体最初都是由一个细胞——受精卵,经过一系列过程发育而来的; ④细胞是遗传的基本单位,具有遗传的全能性。人体内各种不同类型的细胞,所含的遗传信息都是相同的,都是由一个受精卵发育来的,他们之所以表现功能不同是有于基因选择性开放和表达的结果。4.细胞体积守恒定律(p14) 器官的大小与细胞的数量成正比,而与细胞的大小无关,这种关系有人称为“细胞体积守恒定律”。 5.细胞的主要共性(3条) ①所有细胞都具有选择透性的膜结构 ②细胞都具有遗传物质 ③细胞都具有核糖体 6.真核细胞和原核细胞的主要区别★★★(表2-1)

医学生物学知识点资料

医学生物学知识点

医学生物学知识点 第一章生命的特征与起源 1.生命的基本特征★★★(9条 p7-p9) ①生命是以核酸与蛋白质为主导的自然物质体系 ②生命是以细胞为基本单位的功能结构体系 ③生命是以新陈代谢为基本运动形式的自我更新体系 ④生命是以精密的信号转导通路网络维持的自主调节体系 ⑤生命是以生长发育为表现形式的“质”“量”转换体系 ⑥生命是通过生殖繁衍实现的物质能量守恒体系 ⑦生命是以遗传变异规律为枢纽的综合决定体系 ⑧生命是具有高度时空顺序性的物质运动演化体系 ⑨生命是与自然环境的协同共存体系 第二章生命的基本单位-细胞 1.细胞的发现(时间、人物)(P10) 1665年,英国物理科学家胡克。 2.细胞学说的基本内容(4条)p13 ①一切生物都是由细胞组成的 ②所有细胞都具有共同的基本结构 ③生物体通过细胞活动反映其生命特征 ④细胞来自原有细胞的分裂

3.细胞的基本定义(4条)p14 ①细胞是构成生物有机体的基本结构单位。一切有机体均由细胞构成(病毒为非细胞形态的生命体除外); ②细胞是代谢与功能的基本单位。在有机体的一切代谢活动与执行功能过程中,细胞呈现为一个独立的、有序的、自动控制性很强的独立代谢体系; ③细胞是生物有机体生长发育的基本单位。生物有机体的生长与发育是依靠细胞的分裂、细胞体积的增长与细胞的分化来实现的。绝大多数多细胞生物的个体最初都是由一个细胞——受精卵,经过一系列过程发育而来的; ④细胞是遗传的基本单位,具有遗传的全能性。人体内各种不同类型的细胞,所含的遗传信息都是相同的,都是由一个受精卵发育来的,他们之所以表现功能不同是有于基因选择性开放和表达的结果。 4.细胞体积守恒定律(p14) 器官的大小与细胞的数量成正比,而与细胞的大小无关,这种关系有人称为“细胞体积守恒定律”。 5.细胞的主要共性(3条) ①所有细胞都具有选择透性的膜结构 ②细胞都具有遗传物质 ③细胞都具有核糖体 6.真核细胞和原核细胞的主要区别★★★(表2-1)

(完整版)医学微生物学教学大纲

复旦大学课程教学大纲

教学内容及要求: 绪论 教学内容 1. 微生物的定义和分类 2. 原核细胞型、真核细胞型和非细胞型微生物的种类及区别 3. 微生物的发展史 4. 医学微生物学概况 教学要求 1. 熟悉微生物的主要特性,原核细胞型和真核细胞型微生物的区别 2. 了解微生物的发展史及医学微生物的概况 第一篇细菌学 第 1 章细菌的形态与结构

教学内容 6. 细菌合成代谢和分解代谢产物及其意义

3. 熟悉紫外线和滤过除菌法的原理及应用 4. 了解化学消毒剂的杀菌原理及其种类、

第 4 章噬菌体 教学内容 1. 噬菌体的生物学性状 2. 毒性噬菌体和温和噬菌体教学要求 1. 掌握毒性噬菌体、温和噬菌体、溶原性转换的概念 2. 熟悉噬菌体的形态与基本结构及复制过程第 5 章细菌的遗传与变异教学内容1.细菌遗传变异的概念 2.遗传变异的物质基础,包括细菌染色体、质粒和转位因子、整合子及噬菌体基因组等3.自发突变和诱发突变、点突变和染色体畸变、突变的后果及实际意义 4.细菌转化、转导、接合、溶原性转换所致的基因转移与重组 5.细菌遗传变异在诊断、预防、治疗等方面的应用,Ames 试验、遗传工程等教学要求 1.掌握基因转移与重组,包括转化、转导及溶原性转换的概念、转移方式及后果;掌握 F 质粒、Hfr 、R 质粒的特性、转移方式及后果 2.熟悉质粒、转位因子等遗传物质的特性及功能 3.熟悉Ames 试验的原理、方法及意义 4.了解突变的类型、突变鉴定的经典实验及突变的实际意义 5.了解细菌遗传变异的实际应用 第 6 章细菌的耐药性 1. 抗菌药物的概念及种类 2. 抗菌药物的抗菌机制 3. 细菌耐药的遗传、生化机制及预防耐药的方法

医学生物学笔记

医学生物学笔记 绪论 1.汜胜之书:公元前一世纪,总结了农业生产实践方面。 2.18世纪,林奈,二分法,统一了世界各国极其混乱的动植物命名。 3.生命科学的分科:①按生命特点划分:形态学、生理学、生态学、生物化学、遗传学、 胚胎学、分类学、进化论;②生物类群:微生物学、植物学、动物学、人类学;③结构水平:量子、分子、细胞、组织学、器官、个体、群体、生态系统生物学。 4.生命的基本特征:①生物大分子是生物的物质基础;②新陈代谢是生物的基本特征’;③ 细胞是有机体的基本结构单位和功能单位;④能生长与发育;⑤可以生殖;⑥有遗传与变异;⑦机体具有适应性与应激性, 5.进化:原核生物(古细菌、真细菌)→原生生物(变形虫、鞭毛虫、草履虫)→真核生 物(真菌、动物、植物) 第一章分子基础 6.组成细胞的物质称为原生质,C、H、O、N占90%。 7.生物体内的“工作分子”是蛋白质。 8.氨基酸分子由于含有酸性的羧基和碱性的氨基,所以是典型的两性化合物。当氨基酸 溶于水时,氨基和羧基可同时电离,如果溶液呈酸性则氨基酸带正电荷;如果溶液呈碱性则氨基酸带负电荷。 9.10个氨基酸以下称寡肽,相对分子质量6000以下,氨基酸数目少于100才称多肽。 10.蛋白质分子结构分为四级,一级为基本结构,其余都是空间结构。①氨基酸的排列顺 序就是一级结构。②二级结构有三种构象:α-螺旋(单链右手螺旋)、β-折叠(双链或单链回折形成的锯齿状构象)、π-螺旋(胶原蛋白独有结构,三链相互绞合成的右手超螺旋)。③三级结构由二级进一步盘曲折叠,形成近球形,单链三级结构已经能表现生物活性,但其余得升四。 11.只有空间结构才称构象(所以一级不算),通过蛋白质构象变化而实现调节功能的现象 称为变构,如蛋白质磷酸化和去磷酸化。 12.变性和变构都不涉及氨基酸排列顺序(蛋白质一级结构)的变化,轻微变性可逆,称 为复性。 13.蛋白质分类:①按组成:a.单纯(仅有氨基酸)蛋白质:清蛋白、球蛋白、组蛋白等, b.结合(含有辅基)蛋白质:核蛋白、色素蛋白、磷蛋白、糖蛋白和脂蛋白。②按分子 形状:a.纤维状蛋白,多为结构蛋白,难溶于水,b.球状蛋白,易溶于水,许多具有生理特性的蛋白都近球状。③按生理功能:结构蛋白、保护蛋白、酶蛋白、激素蛋白、转运蛋白、运动蛋白、凝血蛋白、膜蛋白、受体蛋白和调节蛋白等。 14.脲酶、蛋白酶、淀粉酶、酯酶均属于单纯酶;除酶蛋白外还有辅助因子(辅酶(水溶 性维生素)、辅基(无机离子))的称为结合酶,属于结合蛋白质。 15.稀有碱基约占tRNA所有碱基的10%~20%。 16.功能:DNA携带和储存遗传信息,RNA传递和调控遗传信息。 17.B-DNA双螺旋的螺旋直径是2nm,螺距3.4nm,每一转有10对碱基,所以两个相邻 碱基对的距离为0.34nm。而A-DNA每一转有11对碱基。还有Z-DNA是左手螺旋。 18.RNA :mRNA占1~5%,tRNA占5~10%,rRNA占80~90% 19.rRNA参与蛋白质合成。

医学生物学复习提纲

医学生物学复习思考题 1 生物学的概念 生物学是研究生命现象的本质,并探讨生命发生,发展规律的一种生命科学。 2 生命的基本特征 核酸、蛋白质:生命大分子——共同的物质基础; 细胞——相似的生物结构和功能的基本单位; 新陈代谢——高度一致的生命基本运动形式; 信息传递——维持机体生命活动的统一机制; 生长和发育——生物体由量变到质变的表现形式; 生殖——生命现象无限延续的根本途径; 遗传和变异——决定和影响生命现象的中枢; 进化——生命活动的全部历史; 生物与环境的统一——生命自然界的基本法则。 3 生物大分子的概念;蛋白质和核酸的基本组成单位。 生物大分子包括蛋白质和核酸等,它们分子结构复杂,分子量大,分子中载有生命活动的信息,是在生命有机体中担负各种各样生理功能的有机化合物。生命大分子是一切生命有机体形态结构和生理功能最重要的物质基础。蛋白质:由许多氨基酸脱水缩合而成的大分子多聚体。 4 核酸的种类分布和分子组成。 核酸:核酸是由许多核苷酸构成的多聚体。 核苷酸:由磷酸、戊糖和含氮碱基构成。 核酸主要包括核糖核酸和脱氧核糖核酸。核糖核酸主要分布于细胞质和少量细胞核内;脱氧核糖核酸主要分布在细胞核和线粒体。 5 DNA、RNA的结构和功能。 DNA 结构分为一级结构和二级结构: 一级结构:脱氧核苷酸由3’-5’磷酸二酯键结合成多核苷酸; 二级结构:DNA 双螺旋结构。 DNA 分子能够指导细胞中蛋白质合成,进而控制细胞中蛋白质的合成、组成和各种代谢反应的完成。DNA具有自我复制能力,从而逐代传递遗传信息。RNA:不同核糖核酸由3’-5’磷酸二酯键连接;多呈链状,某些通过单键自身回折形成假 DNA 由两条走向相反的互补核苷酸链构成,两条链均按同一中心轴呈右手螺旋,两链依靠彼此的碱基在双螺旋内侧形成氢键连接。 碱基互补配对原则:A—T(2 个氢键),G—C(3个氢键)。

医学中的系统生物学

综述 作者单位:100083北京大学基础医学院医学信息系北京大学心血管研究所 医学中的系统生物学 张其鹏 卢铭 孙冬泳 覃璞 尚彤 对生命体抽象之后就形成一个关于生命体的系统。以生命体为研究对象的生物学和医学,其实就是研究一个生命体的系统,并形成一个关于此系统的知识体系。系统的看待解决医学生物学的问题是一个更符合医学生物学本质需求的思路,而系统生物学的概念也在这样的需求下产生。医学生物学进入21世纪后,首先是医学生物学测量系统化的转变,以基因组为先导的一系列 组!(基因组、蛋白质组、代谢组等)项目的开展、特别是高通量实验技术的发展,使得医学生物学领域内的数据急剧膨胀,而既往的以单一因素为研究重点的研究方法,已经不能适应基于系统测量产生的数据增长速度。这就导致了领域内数据过多而知识和运用相对缺乏。将系统的观念贯彻到科学实践的每一个步骤???从数据测量、数据采集、数据储存、数据分析到知识发现和实际运用的开发???系统的认识生命系统,在系统模型的指导下进行科学实践,已经成为21世纪医学生物学发展的必然趋势。系统生物学也因此再一次兴起,成为21世纪医学生物学的热点和发展方向。然而在憧憬系统生物学给我们带来无限美好未来之前,我们应该了解到离真正的系统生物学的起飞还有一段距离,这包括了实验技术、仪器设备、分析方法和数据资源构建等多方面软硬件条件的成熟。 生物学的根本目标是理解生物学系统的每一个细节及原理。自中世纪人体解剖学开始,生物学进入到器官系统时代。而到A nton i van L eeu w enhoek 1665年发现细胞结构,生物学又进入了细胞系统的时代。1953年W atson 和C rick 发现了DNA 的结构,从此生物学进入了分子系统时代。随着每一次对生命体系统认识的微小化和复杂化,医学生物学都有长足的进步。特别是DNA 的发现,形成了分子生物学研究领域,并取得巨大的成功。分子生物学使我们将生物学系统理解为分子机器,使我们能够深刻的理解了遗传、进化、发育、疾病背后的基本过程。 随着基因组被完整测序,大量的基因及其转录后产物的功能的鉴定,诸如支原体、大肠杆菌、线虫、果蝇及人类的基因组测序完成,蛋白质组、转录组、代谢组工作的开展,以及对蛋白质相互作用研究方法的进展,转基因和基因敲除,RNA i 的技术发展,毫无疑问,人类对生物学系统分子水平机制的理解将加速发展。然而,这样的知识并不能提供给我们对生物学系统在系统层次上的理解。基因和蛋白质作为系统的组成成分,对其的理解系统非常必要,但并不充分。系 统生物学作为新的生物学研究领域,其目的在于从系统水平对生物学系统进行理解。系统水平的理解需要一系列的原理和方法来描述统御分子行为和系统特征、系统功能,最终达到在细胞、器官乃至人体水平得以理解,并且这种理解是一种得到物理学、化学等基本原理支撑的坚实的知识结构。 科学总是遵循螺旋上升的规律,从系统水平理解生物学系统概念产生已经有半个多世纪的历史。N orbe ttW iener 是最早提出系统层次理解的先驱,这导致控制论、生物控制论的产生[1]。奥地利理论生物学家伯塔兰费早在1928年就在其论文中写道: 生命体是各组分动态变化和各过程相互作用的系统##生物学的跟本任务就是发现这个生化系统的规律##!,其又在1968年试图建立通用的系统理论。Cannon 在1933年提出了 稳态!(homeostasis)的概念,这也是一种系统的概念。但由于早期的研究没有分子生物学的支持,大多数的尝试都是在生理水平上描述和对生物学系统的分析。系统生物学现在和过去的区别就在于现在有可能将系统水平的理解直接建立于如基因、蛋白质等分子水平上。因此,尽管这不是第一次从系统水平进行理解,却是第一次有机会从分子水平到系统水平建立知识结构进而理解生物学系统。 随着分子生物学的发展,逐渐出现了生化系统理论和代谢控制理论等更进一步的系统生物学发展[2,3]。上世纪末本世纪初,H iroaki 和John 等系统生物学家进一步发展了系统生物学的概念,并且提出了 系统生物学是基于模拟的分析,是用芯片上的实验来验证假想,并对真实生物学实验结果的预测!。并对系统生物学的工作方向提出了 四元素论!:系统结构鉴定、系统行为分析、系统控制以及系统设计[4,5]。具体内容如下。 1 系统结构的辨识:系统结构辨识就是明确系统组分的内涵和组分间的相互作用。诸如基因与信号转导、代谢通路相关的蛋白质相互作用的调控关系,有机体、细胞、细胞器、染色质以及其他组分的物理结构和组分所构成的网络的拓扑关系以及每一种关系的参数。在辨识过程中,诸如:DNA 芯片、蛋白质芯片、RT PCR 等高通量的测量方法和具有批量监测生物学过程的方式是必须的。然而,由于细胞与细胞之间通信、三维空间物理构形等的影响,多细胞有机体的基因调控网络的识别十分复杂。多细胞有机体结构的识别不仅需要辨识基因调控网络、代谢网络的结构,而且还需要在细胞层次精确的理解整个生命体的物理结构。既往的 技术难以处理如此复杂的关系,显然需要开发新的仪器系统来收集必要的数据。

医学生物学重点

医学生物学重点 ~第1章~ 1.蛋白质的基本单位(P.9):氨基酸 2.基本单位(氨基酸)和基本单位(氨基酸)之间是怎么连接形成蛋白质的(p.10)? 通过肽键依次缩和合而成多肽链。 (肽键:氨基酸分子之间的连接键,由一个氨基酸分子的羧基与另一个氨基酸分子的氨基之间脱水缩合而成。) 3.蛋白质的一、二、三、四级结构: (p.10) A:何谓蛋白质一级结构: 是蛋白质的线性平面结构,反映了组成蛋白质分子的氨基酸总类、数量、排列 顺序及链接方式。维系一级结构的化学键主要是肽键,个别是二硫键。 A:二级结构有哪些类型? α螺旋、β折叠、三股螺旋( 螺旋)。(维系二级结构的化学键主要是氢键。) 三级结构: 在二级结构基础上折迭盘曲所形成的紧密球状结构。维系三级结构的化学键除氢键外,还有疏水键、离子键、酯键及二硫键等。 四级结构: 多个亚基按一定方式聚合而成的较为复杂的空间构象。 4.蛋白质变构和变性的区别? (p.11.12)变构:功能存在,变性:功能消失。 1.变构: 一定因素使蛋白质空间构象发生改变引起其生理功能发生改变。 (通过蛋白质构象变化而实现调节功能的现象称之) 2.变性: 一定因素强烈作用使蛋白质空间结构发生破坏引起其理化性质发生改变,丧失生理活性。 (空间结构发生破坏,理化性质改变,生物活性丧失,此一过程称为蛋白质的变性) 5.(1)核酸的基本单位为何? (p.13) 核苷酸(核苷酸=磷酸+核苷(戊糖+碱基)) (2)基本单位之间通过什么键形成核酸链?(p15) 3’—5’磷酸二酯键 (多个核苷酸通过3’-5’磷酸二酯键连接而成多核苷酸长链,是核酸的基本结构) 6.(1)DNA的两条链之间通过什么键连接? (p.17) 氢键 (两条多核苷酸长链是依赖碱基对形成的H键维系的.) (2)两条链的碱基之间如何配对? (p.17) A=T,G≡C (碱基互补原则) 7.核酸的碱基有多少种? 五种: A、T、C、G、U。 8.RNA有几种类型?功能各自为何?(p.17) (1)mRNA:携带来自DNA的遗传信息到核糖体上指导蛋白质的合成。 (2)tRNA:携带特定的活化氨基酸到核糖体的相应位置上合成蛋白质。

医学生物学名词解释

医学生物学名词解释 生物大分子:组成原生质的有机化合物中蛋白质、酶和核酸分子质量巨大,结构复杂,功能多样,具有信息,称为生物大分子。 10个以下氨基酸分子形成的化合物称为寡肽。 多肽:相对分子质量低于6000,组成的氨基酸分子少于50-100个的化合物称为多肽,一般不具有稳定的空间结构。 蛋白质:比多肽更大的称为蛋白质,既有特定且相对稳定的空间结构。 在以肽键为主,二硫键为副键的多肽链中,氨基酸的排列顺 序,即为蛋白质的一级结构。 蛋白质的二级结构:肽链上相邻氨基酸残基间主要靠氢键维系的有规律,重复有 序的空间结构。三种基本构象:… 蛋白质的三级结构:蛋白质分子在二级结构的基础上,进一步折叠,盘曲形成的, 接近球形的空间结构。维系三级结构的主要有疏水键,酯键, 氢键,离子键和二硫键等。 蛋白质的四级结构:每条多肽链都有其独立的三级结构,成为亚基。亚基间再以 氢键,疏水键和离子键等相连,所以蛋白质的四级结构是亚 基集结的结构。 蛋白质的功能:催化,调节,保护,运输,收缩,防御,信息传输,免疫等。酶:生物催化剂,具有高效性,专一性,不稳定性。 :通过蛋白质构象变化而实现调节功能的现象。空间结构 正常,但蛋白质构象发生轻微变化,使其更有效的完成生理 功能。 变性(一级结构不变):蛋白质空间结构发生破坏,理化性质改变,生物活性丧 失的过程。 DNA的双螺旋结构模型:B-DNA由两条反向平行的多核苷酸链,围绕同一中心轴, 以右手螺旋的方式盘绕成双螺旋。磷酸和脱氧核糖位于 双螺旋的外侧,形成DNA的骨架,碱基位于双螺旋的内 侧。两条链的每一对碱基互补的原则以氢键相连。 非编码链:DNA双链中能够转录的一条链成为非编码链(或反编码链),方向(3’-5’)。另一条称为编码链(5’-3’)。 核酶:具有酶活性的RNA。 膜相结构:包括细胞膜、核膜、内质网、高尔基复合体、线粒体、溶酶体、过氧化物酶体、小泡等。 非膜相结构:包括染色质(体)、核糖体、中心体(粒)、微丝、微管、中间纤维核仁、细胞质基质、核基质等。 单位膜:由内外两层致密的深色带和中间一层疏松的浅色带构成的三层膜相结构(2×2+=) 生物膜:真核细胞内的膜系统与细胞膜统称生物膜。 原核细胞:结构简单,其核物质缺乏双层的核膜包裹即没有真正的细胞核(有 拟核),缺乏膜相结构的细胞器,细胞体积较小,没有完整的细胞膜。 但质膜外有一层由蛋白质和多糖组成的坚固的细胞壁。

医学免疫学与病原生物学教学分析.doc

医学免疫学与病原生物学教学分析 2020年4月

医学免疫学与病原生物学教学分析本文关键词:免疫学,病原,生物学,医学,教学 医学免疫学与病原生物学教学分析本文简介:[摘要]《医学免疫学与病原生物学》是医卫类专业重要的基础课程,掌握本门课程将为后续专业课程的学习作好铺垫。在教学中结合教学经验,对该课程教学进行探索,以提高教学质量。[关键词]高职院校;医学免疫学与病原生物学;教学方法《医学免疫学与病原生物学》是医卫类专业必修的一门专业基础课程,临床医学、预防医学、 医学免疫学与病原生物学教学分析本文内容: [摘要]《医学免疫学与病原生物学》是医卫类专业重要的基础课程,掌握本门课程将为后续专业课程的学习作好铺垫。在教学中结合教学经验,对该课程教学进行探索,以提高教学质量。 [关键词]高职院校;医学免疫学与病原生物学;教学方法 《医学免疫学与病原生物学》是医卫类专业必修的一门

专业基础课程,临床医学、预防医学、护理、药学专业都要学习该门课程,包括医学微生物学、人体寄生虫学和医学免疫学三大部分。在教学中,应根据各专业特点,因材施教,创新教学方法,改革考核制度,以提高教学质量。 一、根据专业人才培养目标,确定课程教学目标 本课程是连接基础医学与专业核心课程的重要基础课程,与临床医学联系紧密,渗透在内、外、妇、儿等各临床学科中,为后续课程的学习打下必要的基础。根据不同的专业特点,确立该课程的教学目标。通过本课程的学习,学生应掌握常见病原生物的生物学特性、致病性、免疫性及防治原则;掌握免疫的基本概念和原理,熟悉免疫在在工作中的应用,建立无菌观念,学会基本操作技能,为工作岗位的需要奠定理论和实践基础。同时,注意培养学生的职业素养以及严谨的学习态度,并提高学生分析问题和解决问题的能力,为终身学习打下基础[1]。 二、注重教学内容的选取与处理 职业教育与普通高等教育相比,侧重于实践技能和实际工作能力的培养,应贴近基层、贴近临床、贴近资格考试。

相关主题