搜档网
当前位置:搜档网 › (完整版)立体几何证明垂直专项含练习题及答案

(完整版)立体几何证明垂直专项含练习题及答案

(完整版)立体几何证明垂直专项含练习题及答案
(完整版)立体几何证明垂直专项含练习题及答案

立体几何证明------垂直

一.复习引入

1.空间两条直线的位置关系有:_________,_________,_________三种。

2.(公理4)平行于同一条直线的两条直线互相_________.

3.直线与平面的位置关系有_____________,_____________,_____________三种。

4.直线与平面平行判定定理:如果_________的一条直线和这个平面内的一条直线平行,

那么这条直线和这个平面平行

5.直线与平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这

个平面相交,那么_________________________.

6.两个平面的位置关系:_________,_________.

7.判定定理1:如果一个平面内有_____________直线都平行于另一个平面,那么这两

个平面平行.

8.线面垂直性质定理:垂直于同一条直线的两个平面________.

9.如果两个平行平面同时和第三个平面相交,那么它们的________平行.

10.如果两个平面平行,那么其中一个平面内的所有直线都_____于另一个平面. 二.知识点梳理

知识点一、直线和平面垂直的定义与判定

定义判定

语言描述如果直线l和平面α内的任意一条直

线都垂直,我们就说直线l与平面

互相垂直,记作l⊥α一条直线与一个平面内的两条相交直线都垂直,则这条直线与该平面垂直.

图形

条件b为平面α内的任一直线,而l对这

一直线总有l⊥αl⊥m,l⊥n,m∩n=B,m?α,n?α

结论l⊥αl⊥α

要点诠释:定义中“平面内的任意一条直线”就是指“平面内的所有直线”,这与“无数条直线”

不同(线线垂直线面垂直)

性质

语言描述一条直线垂直于一个平面,那么这条

直线垂直于这个平面内的所有直线

垂直于同一个平面的两条直线平行.

图形

条件

结论

知识点三、二面角

Ⅰ.二面角:从一条直线出发的两个半平面所组成的图形叫二面角(dihedral angle). 这条直线叫做二

面角的棱,这两个半平面叫做二面角的面. 记作二面角AB

αβ

--. (简记P AB Q

--)二面角的平面角的三个特征:

ⅰ.点在棱上ⅱ.线在面内ⅲ.与棱垂直

Ⅱ.二面角的平面角:在二面角αβ

-l-的棱l上任取一点O,以点O为垂足,在半平面,αβ内分别作垂直于棱l的射线OA和OB,则射线OA和OB构成的AOB

∠叫做二面角的平面角.

作用:衡量二面角的大小;范围:00

0180

θ

<<.

知识点四、平面和平面垂直的定义和判定

定义判定

文字描述两个平面相交,如果它们所成的二面

角是直二面角,就说这两个平面垂

直.

一个平面过另一个平面的垂线,则这

两个平面垂直

图形

结果α∩β=l α-l-β=90o α⊥β

三.常用证明垂直的方法

立体几何中证明线面垂直或面面垂直都可转化为线线垂直,而证明线线垂直一般有以下的一些方法:

(1)通过“平移”。

(2)利用等腰三角形底边上的中线的性质。

(3)利用勾股定理。

(1) 通过“平移”,根据若则a //b,且b⊥平面α,a⊥平面α

1.在四棱锥P-ABCD 中,△PBC 为正三角形,AB ⊥平面PBC ,AB ∥CD ,AB=2

1

DC ,中点为PD E . 求证:AE ⊥平面PDC.

2.如图,四棱锥P -ABCD 的底面是正方形,PA ⊥底面ABCD , ∠PDA=45°,点E 为棱AB 的中点.求证:平面PCE ⊥平面PCD ;

(2)利用等腰三角形底边上的中线的性质

3、在三棱锥P ABC -中,2AC BC ==,90ACB ∠=o ,AP BP AB ==,PC AC ⊥. (Ⅰ)求证:PC AB ⊥;

(第2题

P

(3)利用勾股定理

4.如图,四棱锥P ABCD

-的底面是边长为1

的正方形,,1,

PA CD PA PD

⊥==

求证:PA⊥平面ABCD;

(4)利用直径所对的圆周角是直角

5、如图,AB是圆O的直径,C是圆周上一点,P A⊥平面ABC. (1)求证:平面P AC⊥平面PBC;

_D

_C

_B

_A

_P

A P

课堂及课后练习题:

1.判断下列命题是否正确,对的打“√”,错误的打“×”。 (1)垂直于同一直线的两个平面互相平行 ( ) (2)垂直于同一平面的两条直线互相平行 ( )

(3)一条直线在平面内,另一条直线与这个平面垂直,则这两条直线垂直( )

2.已知直线

a,b

和平面α

,且,,a b a α⊥⊥则

b

与α

的位置关系是

________________________________________________.

3.如图所示,在四棱锥P ABCD -中,AB PAD ⊥平面,//AB CD ,PD AD =,E 是PB 的中点,F 是CD 上的点,且1

2

DF AB =

,PH 为PAD ?中AD 边上的高。 (1)证明:PH ABCD ⊥平面;

4.如图所示, 四棱锥P -ABCD 底面是直角梯形,,2,BA AD CD AD CD AB PA ⊥⊥=⊥底面ABCD , E 为PC 的中点, P A =AD 。 证明: BE PDC ⊥平面;

C

A

D

B

O

E

5.如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠P AC =∠PBC =90 o 证明:AB ⊥PC

6.如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,

2, 2.CA CB CD BD AB AD ====== (1)求证:AO ⊥平面BCD ; (2)求异面直线AB 与CD 所成角的大小;

7.如图,四棱锥S ABCD -中,BC AB ⊥,BC CD ⊥,侧面SAB 为等边三角形,2,1AB BC CD SD ====. (Ⅰ)证明:SD SAB ⊥平面;

8.如图,在圆锥PO 中,已知PO =2,⊙O 的直径2AB =,C 是狐AB 的中点,D 为AC 的中点.证明:平面POD ⊥平面PAC ;

课堂及课后练习题答案: 1

(1) √ (2) √ (3)√ 2.b//b αα?或者 3.

证明:因为PH 为PAD ?中AD 边上的高,所以PH AD ⊥,又因为AB PAD ⊥平面,所以AB PH ⊥,

=AB AD A I ,所以PH ABCD ⊥平面

4.分析:取PD 的中点F ,易证AF//BE, 易证A F ⊥平面PDC ,从而BE PDC ⊥平面 .

5.证明:因为PAB ?是等边三角形,90PAC PBC ∠=∠=?, 所以Rt PBC Rt PAC ???,可得AC BC =。 如图,取AB 中点D ,连结PD ,CD , 则PD AB ⊥,CD AB ⊥, 所以AB ⊥平面PDC ,

所以AB PC ⊥。 6.(1)证明:连结OC

,,.BO DO AB AD AO BD ==∴⊥Q ,,.BO DO BC CD CO BD ==∴⊥Q 在AOC ?中,由已知可得1, 3.AO CO == 而2,AC =

222,AO CO AC ∴+=90,o AOC ∴∠=即.AO OC ⊥

,BD OC O =Q I AO ∴⊥平面BCD

7.

(I )取AB 中点E ,连结DE ,则四边形BCDE 为

矩形,DE=CB=2,连结SE ,则, 3.SE AB SE ⊥=

又SD=1,故222

ED SE SD =+,

所以DSE ∠为直角。

由,,AB DE AB SE DE SE E ⊥⊥=I , 得AB ⊥平面SDE ,所以AB SD ⊥。 SD 与两条相交直线AB 、SE 都垂直。 所以SD ⊥平面SAB 。

立体几何证明垂直专项含练习题及答案

立体几何证明------垂直 一.复习引入 1.空间两条直线的位置关系有:_________,_________,_________三种。 2.(公理4)平行于同一条直线的两条直线互相_________. 3.直线与平面的位置关系有_____________,_____________,_____________三种。 4.直线与平面平行判定定理:如果_________的一条直线和这个平面内的一条直线平行, 那么这条直线和这个平面平行 5.直线与平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这 个平面相交,那么_________________________. 6.两个平面的位置关系:_________,_________. 7.判定定理1:如果一个平面内有_____________直线都平行于另一个平面,那么这两 个平面平行. 8.线面垂直性质定理:垂直于同一条直线的两个平面________. 9.如果两个平行平面同时和第三个平面相交,那么它们的________平行. 10.如果两个平面平行,那么其中一个平面内的所有直线都_____于另一个平面. 二.知识点梳理 知识点一、直线和平面垂直的定义与判定 定义判定 语言描述如果直线l和平面α内的任意一条直 线都垂直,我们就说直线l与平面 互相垂直,记作l⊥α一条直线与一个平面内的两条相交直线都垂直,则这条直线与该平面垂直. 图形 条件b为平面α内的任一直线,而l对这 一直线总有l⊥αl⊥m,l⊥n,m∩n=B,m?α,n?α 结论l⊥αl⊥α 要点诠释:定义中“平面内的任意一条直线”就是指“平面内的所有直线”,这与“无数条直线”不同(线线垂直线面垂直) 知识点二、直线和平面垂直的性质 性质 语言描述一条直线垂直于一个平面,那么这条 直线垂直于这个平面内的所有直线 垂直于同一个平面的两条直线平行.

(完整版)高中立体几何证明垂直的专题训练

高中立体几何证明垂直的专题训练 深圳龙岗区东升学校—— 罗虎胜 立体几何中证明线面垂直或面面垂直都可转化为 线线垂直,而证明线线垂直一般有以下的一些方法: (1) 通过“平移”。 (2) 利用等腰三角形底边上的中线的性质。 (3) 利用勾股定理。 (4) 利用三角形全等或三角行相似。 (5) 利用直径所对的圆周角是直角,等等。 (1) 通过“平移”,根据若αα平面则平面且⊥⊥a b b a ,,// 1.在四棱锥P-ABCD 中,△PBC 为正三角形,AB ⊥平面PBC ,AB ∥CD ,AB= 2 1 DC ,中点为PD E .求证:AE ⊥平面PDC. 分析:取PC 的中点F ,易证AE//BF ,易证 B F ⊥平面PDC 2.如图,四棱锥P -ABCD ABCD ,∠PDA=45°,点E 为棱AB 的中点. 求证:平面PCE ⊥平面PCD ; 分析:取PC 的中点G ,易证EG//AF ,又易证A F 于是E G ⊥平面PCD,则平面PCE ⊥平面PCD (第2题图)

3、如图所示,在四棱锥P ABCD -中, AB PAD ⊥平面,//AB CD ,PD AD =,E 是PB 的中点,F 是CD 上的点,且 1 2 DF AB = ,PH 为PAD ?中AD 边上的高。 (1)证明:PH ABCD ⊥平面; (2)若121PH AD FC ===,,,求三棱锥E BCF -的体积; (3)证明:EF PAB ⊥平面. 分析:要证EF PAB ⊥平面,只要把FE 平移到DG ,也即是取AP 的中点G ,易证EF//GD, 易证D G ⊥平面PAB 4.如图所示, 四棱锥P -ABCD 底面是直角梯形 ,,2,BA AD CD AD CD AB PA ⊥⊥=⊥底面ABCD , E 为PC 的中点, P A =AD 。 证明: BE PDC ⊥平面; 分析:取PD 的中点F ,易证AF//BE, 易证A F ⊥平面PDC (2)利用等腰三角形底边上的中线的性质 5、在三棱锥P ABC -中,2AC BC ==,90ACB ∠=o ,AP BP AB ==, PC AC ⊥. (Ⅰ)求证:PC AB ⊥; (Ⅱ)求二面角B AP C --的大小; A C B P

立体几何证明题定理推论汇总

立体几何公理、定理推论汇总 一、公理及其推论 公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。 符号语言:,,,A l B l A B l ααα∈∈∈∈?? 作用: ① 用来验证直线在平面内; ② 用来说明平面是无限延展的。 公理2 如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。(那么它们有且只有一条通过这个公共点的公共直线) 符号语言:P l P l α βαβ∈?=∈且 ! 作用:① 用来证明两个平面是相交关系; ② 用来证明多点共线,多线共点。 公理3 经过不在同一条直线上的三点,有且只有一个平面。 符号语言:,,,,A B C A B C ?不共线确定一个平面 推论1 经过一条直线和这条直线外的一点,有且只有一个平面。 符号语言:A a A a a αα??∈?有且只有一个平面,使, 推论2 经过两条相交直线,有且只有一个平面。 符号语言:a b P a b ααα?=???有且只有一个平面,使, ) 推论3 经过两条平行直线,有且只有一个平面。 符号语言://a b a b ααα???有且只有一个平面,使, 公理3及其推论的作用:用来证明多点共面,多线共面。 公理4 平行于同一条直线的两条直线平行(平行公理)。

符号语言://////a b a c c b ???? 图形语言: 作用:用来证明线线平行。 二、平行关系 - 公理4 平行于同一条直线的两条直线平行(平行公理)。(1) 符号语言://////a b a c c b ???? 图形语言: 1.线面平行的判定定理 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。(2) 符号语言: ////a b a a b ααα???????? 图形语言: 线面平行的性质定理 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。(3) 符号语言:////a b a a b βαβα??????=? 图形语言: 2.面面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(4) 符号语言://(/,///),a b b b O a a ββαααβ??=?????? 图形语言: ! 面面平行的判定 如果两个平面垂直于同一条直线,那么这两个平面平行。(5) 符号语言:,,//oo oo ααββ???? ⊥⊥ 图形语言:

高中数学立体几何线面垂直的证明

立体几何证明 【知识梳理】 1. 直线与平面平行 判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行?线面平行”) 性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行?线线平行”) 2..直线与平面垂直 判定定理一如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直?线面垂直”) 判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面. 性质1.如果一条直线垂直于一个平面,那么这条直线垂直于这个平面内的所有直线。 (线面垂直?线线垂直) 性质2:如果两条直线同垂直于一个平面,那么这两条直线平行. 三。平面与平面 空间两个平面的位置关系:相交、平行. 1. 平面与平面平行 判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(“线面平行?面面平行”) 2. 两个平面垂直 判定定理:如果一条直线与一个平面垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直?面面垂直”) 性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.(面面垂直?线面垂直)

知识点一 【例题精讲】 1.在棱长为2的正方体1111D C B A ABCD -中,E 、F 分别为1DD 、DB 的中点。 (1)求证:EF//平面11D ABC ;(2)求证: 平面B 11D C C B 1⊥ EF C B 1⊥; (3)求三棱锥EFC B -1的体积V. 2.如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,2,BA AD CD AD CD AB PA ⊥⊥=⊥底面ABCD , E 为PC 的 中点, PA =AD =AB =1. (1)证明: //EB PAD 平面; (2)证明: BE PDC ⊥平面; (3)求三棱锥B -PDC 的体积V . 3、如图所示,在四棱锥P ﹣ABCD 中,PA ⊥底面 ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC=60°,PA=AB=BC ,E 是PC 的中点,证明: (1)AE ⊥CD (2)PD ⊥平面ABE .

高考立体几何大题经典例题.

N M P C B A <一 >常用结论 1.证明直线与直线的平行的思考途径:(1转化为判定共面二直线无交点; (2转化为二直 线同与第三条直线平行; (3转化为线面平行; (4转化为线面垂直; (5转化为面面平行 . 2.证明直线与平面的平行的思考途径:(1转化为直线与平面无公共点; (2转化为线线平 行; (3转化为面面平行 . 3. 证明平面与平面平行的思考途径:(1 转化为判定二平面无公共点; (2 转化为线面平行; (3转化为线面垂直 . 4.证明直线与直线的垂直的思考途径:(1转化为相交垂直; (2转化为线面垂直; (3转 化为线与另一线的射影垂直; (4转化为线与形成射影的斜线垂直 . 5.证明直线与平面垂直的思考途径:(1转化为该直线与平面内任一直线垂直; (2转化为该直线

与平面内相交二直线垂直; (3转化为该直线与平面的一条垂线平行; (4转化为该直线垂直于另一个平行平面; (5转化为该直线与两个垂直平面的交线垂直 . 6.证明平面与平面的垂直的思考途径:(1转化为判断二面角是直二面角; (2转化为线面垂直 . 3、如图,在正方体 1111ABCD A B C D -中, E 是 1AA 的中点, 求证: 1//AC 平面BDE 。 5、已知正方体 1111ABCD A B C D -, O 是底 ABCD 对角线的交点 . 求证:(1 C1O ∥面 11AB D ; (21 AC ⊥面 11AB D . 9、如图 P 是ABC ?所在平面外一点, , PA PB CB =⊥平面 PAB , M 是 PC 的中点, N 是 AB 上的点, 3AN NB = A D 1 C B D C D D B A C 1

立体几何中垂直地证明

全方位教学辅导教案

5、如图,在底面为平行四边形的四棱锥P ABCD -中,,AB AC PA ABCD ⊥⊥平面,且 PA AB =,点E 是PD 的中点。 ⑴求证:AC PB ⊥; ⑵求证:PB AEC ∥平面; 6、 如图,在四棱锥P -ABCD 中, PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD , ∠ABC =60°,PA = AB =BC ,E 是PC 的中点. (1)求证:CD ⊥AE ;(2)求证:PD ⊥面ABE. 题型二、面面垂直的判定与性质 1、如图AB 是圆O 的直径,PA 垂直于圆O 所在的平面,C 是圆周上不同于A 、B 的任意一点,求证:平面PAC 垂直平面PBC 。 2、如图,棱柱 111 ABC A B C -的侧面 11 BCC B 是菱形,11B C A B ⊥ 证明:平面1AB C ⊥平面11A BC ; 3、已知:如图,将矩形ABCD 沿对角线BD 将BCD 折起,使点C 移到点1C ,且

1C ABD O AB 在平面上的射影恰好在上。 11(2). BDC ⊥⊥1 1()求证:AD BC 求证:面ADC 面 4、如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 是棱CC 1的中点 (Ⅰ)求异面直线A 1M 和C 1D 1所成的角的正切值; (Ⅱ)证明:平面ABM ⊥平面A 1B 1M 1 5、已知四面体ABCD 中,CD BD AC AB ==,,平面⊥ABC 平面BCD ,E 为棱BC 的中点。 (1)求证:⊥AE 平面BCD ; (2)求证:BC AD ⊥; 6、S 是△ABC 所在平面外一点,SA ⊥平面ABC,平面SAB ⊥平面SBC,求证AB ⊥BC. O B C 1 A D C

立体几何平行证明题复习过程

立体证明题(2) 1.如图,直二面角D﹣AB﹣E中,四边形ABCD是正方形,AE=EB,F为CE上的点,且BF⊥ 平面ACE. (1)求证:AE⊥平面BCE; (2)求二面角B﹣AC﹣E的余弦值. 2.等腰△ABC中,AC=BC=,AB=2,E、F分别为AC、BC的中点,将△EFC沿EF折起,使得C到P,得到四棱锥P﹣ABFE,且AP=BP=. (1)求证:平面EFP⊥平面ABFE; (2)求二面角B﹣AP﹣E的大小.

3.如图,在四棱锥P﹣ABCD中,底面是正方形,侧面PAD⊥底面ABCD,且 PA=PD=AD,若E、F分别为PC、BD的中点. (Ⅰ)求证:EF∥平面PAD; (Ⅱ)求证:EF⊥平面PDC. 4.如图:正△ABC与Rt△BCD所在平面互相垂直,且∠BCD=90°,∠CBD=30°. (1)求证:AB⊥CD; (2)求二面角D﹣AB﹣C的正切值. 5.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,△PAD是等边三角形,四边形ABCD 是平行四边形,∠ADC=120°,AB=2AD. (1)求证:平面PAD⊥平面PBD; (2)求二面角A﹣PB﹣C的余弦值.

6.如图,在直三棱柱ABC ﹣A 1B 1C 1中,∠ACB=90°,AC=CB=CC 1=2,E 是AB 中点. (Ⅰ)求证:AB 1⊥平面A 1CE ; (Ⅱ)求直线A 1C 1与平面A 1CE 所成角的正弦值. 7.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,∠DAB 为直角,AB ∥CD ,AD=CD=2AB=2,E ,F 分别为PC ,CD 的中点. (Ⅰ)证明:AB ⊥平面BEF ; (Ⅱ)若PA= ,求二面角E ﹣BD ﹣C . 8.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,PA=AB=AD=2,四边形ABCD 满足AB ⊥AD ,BC ∥AD 且BC=4,点M 为PC 中点. (1)求证:DM ⊥平面PBC ; (2)若点E 为BC 边上的动点,且λ=EC BE ,是否存在实数λ,使得二面角P ﹣DE ﹣B 的余弦值为 3 2 ?若存在,求出实数λ的值;若不存在,请说明理由.

立体几何平行与垂直经典证明题

N M P C B A 新课标立体几何常考证明题汇总 考点:证平行(利用三角形中位线),异面直线所成的角 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若BD=23,AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 考点:线面垂直,面面垂直的判定 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 考点:线面平行的判定 3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。 考点:线面垂直的判定 4、已知ABC ?中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 考点:线面平行的判定(利用平行四边形),线面垂直的判定 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 考点:线面平行的判定(利用平行四边形) 7、正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD . 考点:线面垂直的判定,三角形中位线,构造直角三角形 8、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且2 2 EF AC =, 90BDC ∠=,求证:BD ⊥平面ACD 考点:三垂线定理 9、如图P 是ABC ?所在平面外一点,,PA PB CB =⊥平面PAB ,M 是PC 的中点,N 是AB 上的 A E D 1 C B 1 D C B A A H G F E D C B A E D B C S D C B A A 1 A B 1 C 1 C D 1 D G E F D 1 O D B A C 1 B 1 A 1 C

立体几何垂直证明题常见模型与方法

立体几何垂直证明题常见模型及方法 证明空间线面垂直需注意以下几点: ①由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。 ②立体几何论证题的解答中,利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。 ③明确何时应用判定定理,何时应用性质定理,用定理时要先申明条件再由定理得出相应结论。 垂直转化:线线垂直 线面垂直 面面垂直; 基础篇 类型一:线线垂直证明(共面垂直、异面垂直) (1) 共面垂直:实际上是平面内的两条直线的垂直 (只需要同学们掌握以下几种模 型) ○1 等腰(等边)三角形中的中线 ○ 2 菱形(正方形)的对角线互相垂直 ○3勾股定理中的三角形 ○4 1:1:2 的直角梯形中 ○5 利用相似或全等证明直角。 例:在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1A O OE ⊥ (2) 异面垂直 (利用线面垂直来证明,高考中的意图) 例1 在正四面体ABCD 中,求证AC BD ⊥ 变式 1 如图,在四棱锥ABCD P -中,底面ABCD 是矩形,已知 60,22,2,2,3=∠====PAB PD PA AD AB . 证明:AD PB ⊥;

变式2 如图,在边长为2的正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,将△AED,△DCF 分别沿,DE DF 折起,使,A C 两点重合于' A . 求证:'A D EF ⊥; 变式3如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠P AC =∠PBC =90 o证明:AB ⊥PC 类型二:线面垂直证明 方法○1 利用线面垂直的判断定理 例2:在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心,E 为1CC ,求证: 1A O BDE ⊥平面 变式1:在正方体1111ABCD A B C D -中,,求证:1 1AC BDC ⊥平面 变式2:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90?.E 为BB 1 的中点,D 点在AB 上且DE = 3 . 求证:CD ⊥平面A 1ABB 1; B E 'A D F G

高中立体几何证明方法及例题

1. 空间角与空间距离 在高考的立体几何试题中,求角与距离是必考查的问题,其中最主要的是求线线角、线面角、面面角、点到面的距离,求角或距离的步骤是“一作、二证、三算”,即在添置必要的辅助线或辅助面后,通过推理论证某个角或线段就是所求空间角或空间距离的相关量,最后再计算。 2. 立体几体的探索性问题 立体几何的探索性问题在近年高考命题中经常出现,这种题型有利于考查学生归纳、判断等方面的能力,也有利于创新意识的培养。近几年立体几何探索题考查的类型主要有:(1)探索条件,即探索能使结论成立的条件是什么?(2)探索结论,即在给定的条件下命题的结论是什么。 对命题条件的探索常采用以下三种方法:(1)先观察,尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;(3)把几何问题转化为代数问题,探索出命题成立的条件。 对命题结论的探索,常从条件出发,再根据所学知识,探索出要求的结论是什么,另外还有探索结论是否存在,常假设结论存在,再寻找与条件相容还是矛盾。 (一)平行与垂直关系的论证 由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: ?a c //) αβ αγβγ //,// ==???? a b a b 面面平行性质 线面平行性质 a a b a b ////αβαβ?=???? ? ? 面面平行性质1 αβαβ ////a a ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化:

立体几何垂直证明(基础)

立体几何垂直的证明 类型一:线线垂直证明(共面垂直、异面垂直) (1)共面垂直:掌握几种模型 ①等腰(等边)三角形中的中线 ②菱形(正方形)的对角线互相垂直 ③勾股定理中的三角形 ④ 直角梯形 ⑤利用相似或全等证明直角。 【例1】在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心, E 为1CC 中点,求证: (1) 1A O OE ⊥ (2) 1A O BDE ⊥平面 (2)异面垂直(利用线面垂直来证明) 【例2】在正四面体ABCD 中, 求证:AC BD ⊥ 【变式1】如图,在四棱锥ABCD P -中,底面ABCD 是矩形,已知 ο60,22,2,2,3=∠====PAB PD PA AD AB . 证明:AD PB ⊥;

【变式2】如图,在边长为2的正方形ABCD中,点E是AB的中点,点F是BC的中点, 将△AED,△DCF分别沿, DE DF折起,使,A C两点重合于'A. 求证:'A D EF ⊥; 【变式3】如图,在三棱锥P ABC -中,⊿PAB是等边三角形,∠P AC=∠PBC=90 o。 证明:AB⊥PC 类型二:直线与平面垂直证明 方法○1利用线面垂直的判断定理 【例3】在正方体 1111 ABCD A B C D -中,,求证: 11 AC BDC ⊥平面 【变式1】如图:直三棱柱ABC-A1B1C1中,AC=BC=AA1=2,∠ACB=90?.E为BB1的中点,D点在AB上且DE= 3 . 求证:CD⊥平面A1ABB1; B E ' A D F G

P C B A D E 【变式2】如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的 中点,2, 2.CA CB CD BD AB AD ====== 求证:AO ⊥平面BCD ; 【变式3】如图,在底面为直角梯形的四棱锥P ABCD -中,AD BC ∥,90ABC ∠=°,PA ⊥平面ABCD .3PA =,2AD =,23AB =6BC = ()1求证:BD ⊥平面PAC ○ 2利用面面垂直的性质定理 【例4】在三棱锥P-ABC 中,PA ABC ⊥底面,PAC PBC ⊥面面,BC PAC ⊥求证:面。 【变式1】在四棱锥P ABCD -,底面ABCD 是正方形,侧面PAB 是等腰三角形,且 PAB ABCD ⊥面底面,求证:BC PAB ⊥面

立体几何中平行与垂直证明方法归纳

c c ∥∥b a b a ∥?本文档系统总结归纳了立体几何中平行与垂直证明方法,特别适合于高三总复习时对学生构建知识网络、探求解题思路、归纳梳理解题方法。是一份不可多得的好资料。 一、“平行关系”常见证明方法 (一)直线与直线平行的证明 1) 利用某些平面图形的特性:如平行四边形的对边互相平行 2) 利用三角形中位线性质 3) 利用空间平行线的传递性(即公理4): 平行于同一条直线的两条直线互相平行。 4) 利用直线与平面平行的性质定理: 如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 5) 利用平面与平面平行的性质定理: 如果两个平行平面同时和第三个平面相交,那么它们的交线平行. 6) 利用直线与平面垂直的性质定理: 垂直于同一个平面的两条直线互相平行。 a b α β a b a =?? βαβ α ∥b a ∥?b a b a //// ??? ? ?? ==γβγαβα β α ⊥⊥b a b a ∥?

7) 利用平面内直线与直线垂直的性质: 在同一个平面内,垂直于同一条直线的两条直线互相平行。 8) 利用定义:在同一个平面内且两条直线没有公共点 (二)直线与平面平行的证明 1) 利用直线与平面平行的判定定理: 平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。 2) 利用平面与平面平行的性质推论: 两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。 3) 利用定义:直线在平面外,且直线与平面没有公共点 (三)平面与平面平行的证明 常见证明方法: 1) 利用平面与平面平行的判定定理: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 α b a β α a β αα ∥?a β ∥a ?α αββ////∩??b a P b a b a =α β//?α β b a P b ∥a b a αα ??α ∥a ?

立体几何证明题练习

立体几何 1.(2014?山东)如图,四棱锥P﹣ABCD中,AP⊥平面PCD,AD⊥BC,AB=BC=AD,E,F分别为线段AD, PC的中点. (⊥)求证:AP⊥平面BEF; (⊥)求证:BE⊥平面PAC. 2.(2014?四川)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形 (⊥)若AC⊥BC,证明:直线BC⊥平面ACC1A1; (⊥)设D、E分别是线段BC、CC1的中点,在线段AB上是否存在一点M,使直线DE⊥平面A1MC?请证明你的结论. 3.(2014?江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证: (1)直线PA⊥平面DEF; (2)平面BDE⊥平面ABC. 4.(2014?黄山一模)如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2,E、F分别是AB、PD的中点. (1)求证:AF⊥平面PCE; (2)求证:平面PCE⊥平面PCD; (3)求四面体PEFC的体积.

5.(2014?南海区模拟)如图,四棱锥P﹣ABCD的底面是直角梯形,AB⊥CD,AB⊥AD,⊥PAB和⊥PAD是两个边长为2的正三角形,DC=4,O为BD的中点,E为PA的中点. (⊥)求证:PO⊥平面ABCD; (⊥)求证:OE⊥平面PDC; (⊥)求直线CB与平面PDC所成角的正弦值. 6.(2013?天津)如图,三棱柱ABC﹣A1B1C1中,侧棱A1A⊥底面ABC,且各棱长均相等.D,E,F分别为棱AB,BC,A1C1的中点. (⊥)证明:EF⊥平面A1CD; (⊥)证明:平面A1CD⊥平面A1ABB1; (⊥)求直线BC与平面A1CD所成角的正弦值. 7.(2013?浙江)如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=, ⊥ABC=120°,G为线段PC上的点. (⊥)证明:BD⊥平面PAC; (⊥)若G是PC的中点,求DG与PAC所成的角的正切值; (⊥)若G满足PC⊥面BGD,求的值.

(完整版)立体几何典型例题精选(含答案)

F E D C B A 立体几何专题复习 热点一:直线与平面所成的角 例1.(2014,广二模理 18) 如图,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形, EF ∥平面ABCD , 1EF =,,90FB FC BFC ?=∠=,3AE =. (1)求证:AB ⊥平面BCF ; (2)求直线AE 与平面BDE 所成角的正切值. 变式1:(2013湖北8校联考)如左图,四边形ABCD 中,E 是BC 的中点,2,1,5,DB DC BC === 2.AB AD ==将左图沿直线BD 折起,使得二面角A BD C --为60,?如右图. (1)求证:AE ⊥平面;BDC (2)求直线AC 与平面ABD 所成角的余弦值. 变式2:[2014·福建卷] 在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图1-5所示. (1)求证:AB ⊥CD ; (2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.

热点二:二面角 例2.[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E. (1)证明:CF⊥平面ADF;(2)求二面角D-AF-E的余弦值. 变式3:[2014·浙江卷] 如图1-5,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC= 2. (1)证明:DE⊥平面ACD;(2)求二面角B-AD-E的大小. 变式4:[2014·全国19] 如图1-1所示,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2. (1)证明:AC1⊥A1B; (2)设直线AA1与平面BCC1B1的距离为3,求二面角A1 -AB -C的大小.

立体几何垂直证明

立体几何垂直证明方法技巧授课教师:吴福炬

类型一:线线垂直证明(共面垂直、异面垂直) (1) 共面垂直:掌握几种模型 ①等腰(等边)三角形中的中线 ②菱形(正方形)的对角线互相垂直 ③勾股定理中的三角形 ④ 直角梯形 ⑤利用相似或全等证明直角。 例:在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心, E 为1CC 中点,求证: (1) 1A O OE ⊥ (2) 1A O BDE ⊥平面

(2) 异面垂直(利用线面垂直来证明) 例1 在正四面体ABCD 中, 求证:AC BD ⊥ 变式1 如图,在四棱锥ABCD P -中,底面ABCD 是矩形, 已知 60,22,2,2,3=∠====PAB PD PA AD AB . 证明:AD PB ⊥;

变式2 如图,在边长为2的正方形ABCD中,点E是AB的中 点,点F是BC的中点,将△AED,△DCF分别沿, DE DF折起, 使,A C两点重合于'A. 求证:'A D EF ⊥; 变式3如图,在三棱锥P ABC -中,⊿PAB是等边三角形, ∠P AC=∠PBC=90 o证明:AB⊥PC 类型二:直线与平面垂直证明 B E ' A D F G

方法○1利用线面垂直的判断定理 例:在正方体1111ABCD A B C D -中,,求证:1 1AC BDC ⊥平面 变式1:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90?.E 为BB 1 的中点,D 点在AB 上且DE = 3 . 求证:CD ⊥平面A 1ABB 1; 变式2:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的

立体几何垂直证明题常见模型及方法

立体几何垂直证明题常 见模型及方法 Revised as of 23 November 2020

立体几何垂直证明题常见模型及方法 证明空间线面垂直需注意以下几点: ①由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。 ②立体几何论证题的解答中,利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。 ③明确何时应用判定定理,何时应用性质定理,用定理时要先申明条件再由定理得出相应结论。 垂直转化:线线垂直 线面垂直 面面垂直; 基础篇 类型一:线线垂直证明(共面垂直、异面垂直) (1) 共面垂直:实际上是平面内的两条直线的垂直 (只需要同学们掌握以 下几种模型) ○ 1 等腰(等边)三角形中的中线 ○ 2 菱形(正方形)的对角线互相垂直 ○3勾股定理中的三角形 ○4 1:1:2 的直角梯形中 ○5 利用相似或全等证明直角。 例:在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1A O OE ⊥ (2) 异面垂直 (利用线面垂直来证明,高考中的意图) 例1 在正四面体ABCD 中,求证AC BD ⊥

变式1 如图,在四棱锥ABCD P -中,底面ABCD 是矩形,已知 60,22,2,2,3=∠====PAB PD PA AD AB . 证明:AD PB ⊥; 变式2 如图,在边长为2的正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,将△AED,△DCF 分别沿,DE DF 折起,使,A C 两点重合于'A . 求证:'A D EF ⊥; 变式3如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠PAC =∠PBC =90 o 证明:AB ⊥PC 类型二:线面垂直证明 方法○1 利用线面垂直的判断定理 例2:在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心,E 为1CC ,求证: 1A O BDE ⊥平面 B E 'A D F G

必修二立体几何经典证明题

B 1 C B A D C 1 A 1 必修二立体几何经典证明试题 1. 如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=1 2AA 1,D 是棱AA 1的中点 (I)证明:平面BDC 1⊥平面BDC (Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比. 1. 【解析】(Ⅰ)由题设知BC ⊥1CC ,BC ⊥AC ,1CC AC C ?=,∴BC ⊥面11ACC A , 又∵1DC ?面11ACC A , ∴1DC BC ⊥, 由题设知0 1145A DC ADC ∠=∠=,∴1CDC ∠=090,即1DC DC ⊥, 又∵DC BC C ?=, ∴1DC ⊥面BDC , ∵1DC ?面1BDC , ∴面BDC ⊥面1BDC ; (Ⅱ)设棱锥1B DACC -的体积为1V ,AC =1,由题意得,1V =1121132 +???=1 2, 由三棱柱111ABC A B C -的体积V =1, ∴11():V V V -=1:1, ∴平面1BDC 分此棱柱为两部分体积之比为1:1. 2. 如图5所示,在四棱锥P ABCD -中,AB ⊥平面PAD ,//AB CD ,PD AD =,E 是PB 的中点,F 是 CD 上的点且1 2 DF AB = ,PH 为△PAD 中AD 边上的高. (1)证明:PH ⊥平面ABCD ; (2)若1PH =,2AD = 1FC =,求三棱锥E BCF -的体积; (3)证明:EF ⊥平面PAB . 【解析】(1)证明:因为AB ⊥平面PAD ,所以PH AB ⊥。 因为PH 为△PAD 中AD 边上的高,所以PH AD ⊥。 因为AB AD A =,所以PH ⊥平面ABCD 。 (2)连结BH ,取BH 中点G ,连结EG 。 因为E 是PB 的中点,所以//EG PH 。 因为PH ⊥平面ABCD 所以EG ⊥平面ABCD 。 则1122EG PH = =, 111 332 E BC F BCF V S E G FC AD EG -?=?=????=212。 (3)证明:取PA 中点M ,连结MD ,ME 。因为E 是PB 的中点,所以1 // 2ME AB =。 因为1 // 2DF AB =,所以//ME DF = ,所以四边形MEDF 是平行四边形,所以//EF MD 。 因为PD AD =,所以MD PA ⊥。因为AB ⊥平面PAD ,所以MD AB ⊥。 因为PA AB A =,所以MD ⊥平面PAB ,所以EF ⊥平面PAB 。

2016高考立体几何证明垂直的专题训练

P E D C B A 高中立体几何证明垂直的专题训练 (1) 通过“平移”,根据若//,,a b b a αα⊥⊥且平面则平面 1.在四棱锥P-ABCD 中,△PBC 为正三角形,AB ⊥平面PBC ,AB ∥CD ,AB= 2 1 DC ,中点为PD E .求证:AE ⊥平面PDC. 2.如图,四棱锥P -ABCD 的底面是正方形,PA ⊥底面ABCD ,∠PDA=45°,点E 为棱AB 的中点. 求证:平面PCE ⊥平面PCD ; 3、如图所示,在四棱锥P ABCD -中, AB PAD ⊥平面,//AB CD ,PD AD =,E 是PB 的中点,F 是 CD 上的点,且1 2 DF AB = ,PH 为PAD ?中AD 边上的高。 (1)证明:PH ABCD ⊥平面; (2)若121PH AD FC ===,,,求三棱锥E BCF -的体积; (3)证明:EF PAB ⊥平面. 4.如图所示, 四棱锥P -ABCD 底面是直角梯形 ,,2,BA AD CD AD CD AB PA ⊥⊥=⊥底面ABCD , E 为PC 的中点, PA =AD 。 证明: BE PDC ⊥平面; (2)利用等腰三角形底边上的中线的性质 5、在三棱锥P ABC -中,2AC BC ==,90ACB ∠=, AP BP AB ==,PC AC ⊥. (Ⅰ)求证:PC AB ⊥; (Ⅱ)求二面角B AP C --的大小; 6、如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠PAC =∠PBC =90 o 证明:AB ⊥PC (3)利用勾股定理 7、如图,四棱锥P ABCD -的底面是边长为1的正方形, ,1, 2.PA CD PA PD ⊥== 求证:PA ⊥平面ABCD ; 8、如图1,在直角梯形ABCD 中,CD AB //,AD AB ⊥,且 _ P E F B A C D P (第2题图) A C B P

高中立体几何证明方法及例题

由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: αβ αγβγ //,// ==???? a b a b 面面平行性质 ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化: a a OA a PO a PO a AO ?⊥?⊥⊥?⊥αα 在内射影则 面面垂直判定 线面垂直定义 l a l a ⊥??⊥? ??α α 面面垂直性质,推论2 αβ αββα⊥=?⊥?⊥??? ? ? b a a b a , αγβγαβ γ⊥⊥=?⊥? ?? ? ? a a 面面垂直定义 αβαβαβ =--?⊥? ?? l l ,且二面角成直二面角

面面∥面面平行判定2 线面垂直性质2a b a b //⊥?⊥??? α α a b a b ⊥ ⊥???? αα// a a ⊥⊥?? ?? αβα β // αβα β//a a ⊥⊥? ?? a 4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。” 5. 唯一性结论: 1. 三类角的定义: (1)异面直线所成的角θ:0°<θ≤90 ° (2)直线与平面所成的角:0°≤θ≤90° (3)二面角:二面角的平面角θ,0°<θ≤180° 2. 三类角的求法:转化为平面角“一找、二作、三算” 即:(1)找出或作出有关的角;(2)证明其符合定义; (3)指出所求作的角; (4)计算大小。

高中立体几何证明线垂直的方法(学生)

高中立体几何证明线线垂直方法 (1)通过“平移”,根据若αα平面则平面且⊥⊥a b b a ,,// 1.在四棱锥P-ABCD 中,△PBC 为正三角形,AB ⊥平面PBC ,AB ∥CD ,AB= 2 1 DC ,中点为PD E .求证:AE ⊥平面PDC. 2.如图,四棱锥P -ABCD 的底面是正方形,PA ⊥底面ABCD ,∠PDA=45°,点E 为棱AB 的中点. 求证:平面PCE ⊥平面PCD ; 3.如图所示,在四棱锥P ABCD -中,AB PAD ⊥平面,//AB CD ,PD AD =,E 是PB 的中点,F 是 CD 上的点,且1 2 DF AB = ,PH 为PAD ?中AD 边上的高。 (1)证明:PH ABCD ⊥平面; (2)若11PH AD FC == =,, 求三棱锥E BCF -的体积; (3)证明:EF PAB ⊥平面. (第2题图)

4.如图所示, 四棱锥P -ABCD 底面是直角梯形,,2,BA AD CD AD CD AB PA ⊥⊥=⊥底面ABCD , E 为 PC 的中点, PA =AD 。 证明: BE PDC ⊥平面; 5.在三棱锥P ABC -中,2AC BC ==,90ACB ∠= ,AP BP AB ==,PC AC ⊥. (Ⅰ)求证:PC AB ⊥; (Ⅱ)求二面角B AP C --的大小; 6.如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠PAC =∠PBC =90 o 证明:AB ⊥PC (3)利用勾股定理 7.如图,四棱锥P ABCD -的底面是边长为1 的正方形,,1,PA CD PA PD ⊥== 求证:PA ⊥平面ABCD ; _ D _ C _ B _ A _ P A C B P

立体几何中垂直的证明

全方位教学辅导教案 线面垂直的判定及其性质 ●知识要点 1.线面垂直 (1)定义: 如果直线l 与平面α内的任意一条直线都垂直,则直线l 与平面α互相垂直,记作l α⊥. l -平面α的垂线,α-直线l 的垂面,它们的唯一公共点P 叫做垂足. (2)判定定理:(线线垂直→线面垂直) 一条直线与一个平面内的两条相交直线都垂直,则这条直线与该平面垂直. ☆ 符号语言:若l ⊥m ,l ⊥n ,m ∩n =B ,m α,n α,则l ⊥α. (3)性质定理:(线面垂直→线线平行) 垂直于同一个平面的两条直线平行. 2.二面角 (1)定义: 从一条直线出发的两个半平面所组成的图形叫二面角. 这条直线叫做二面角的棱,这两个半平面叫做二面角的面. 记作二面角AB αβ--. (简记P AB Q --) (2)二面角的平面角: 在二面角αβ-l -的棱l 上任取一点O ,以点O 为垂足,在半平面,αβ内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的AOB ∠叫做二面角的平面角. 范围:000180θ<<. 3.面面垂直 (1)定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直. 记作αβ⊥. (2)判定定理:(线面垂直→面面垂直) 一个平面过另一个平面的垂线,则这两个平面垂直. (3)性质定理:(面面垂直→线面垂直) 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直. “垂直关系”常见证明方法 (一)直线与直线垂直的证明

4.在正方体''''ABCD A B C D -中,求直线'A B 和平面''''A B C D 所成的角. 题型一、线面垂直的判定与性质 1、已知:如图,P 是棱形ABCD 所在平面外一点,且PA=PC 求证:AC PBD ⊥平面 2、已知,如图,四面体A-BCD 中, ,,AB CD AD BC H BCD ⊥⊥V 为的垂心。 求证:AH BCD ⊥平面 3、如图,,,PA ABCD ABCD M N AB PC ⊥平面,是矩形,点分别为的中点, 求证:MN AB ⊥ 4、如图,在多面体ABCDE 中,AE ⊥面ABC ,BD ∥AE ,且AC =AB =BC =BD =2,AE =1,F 为 CD 中点. (1)求证:EF ⊥面BCD ; A D C B P H B C D A

相关主题