搜档网
当前位置:搜档网 › 数据采集及分析系统

数据采集及分析系统

数据采集及分析系统
数据采集及分析系统

关键词:声卡数据采集 MATLAB 信号处理

论文摘要:利用数据采集卡构建的数据采集系统一般价格昂贵且难以与实际需求完全匹配。声卡作为数据采集卡具有价格低廉、开发容易和系统灵活等优点。本文详细介绍了系统的开发背景,软件结构和特点,系统地分析了数据采集硬件和软件设计技术,在此基础上以声卡为数据采集卡,以MATLAB为开发平台设计了数据采集与分析系统。

本文介绍了MATLAB及其数据采集工具箱, 利用声卡的A/ D、D/ A 技术和MATLAB 的方便编程及可视化功能,提出了一种基于声卡的数据采集与分析方案,该方案具有实现简单、性价比和灵活度高的优点。用MATLAB 语言编制了相应软件,实现了该系统。该软件有着简洁的人机交互工作界面,操作方便,并且可以根据用户的需求进行功能扩充。最后给出了应用该系统采集数据的应用实例。

1绪论

1.1 课题背景

数据也称观测值,是实验、测量、观察、调查等的结果,常以数量的形式给出。数据采集,又称数据获取,就是将系统需要管理的所有对象的原始数据收集、归类、整理、录入到系统当中去。数据采集是机管理系统使用前的一个数据初始化过程。数据采集技术广泛引用在各个领域。比如摄像头,麦克风,都是数据采集工具。

数据采集(Data Acquisition)是将被测对象(外部世界、现场)的各种参量(可以是物理量,也可以是化学量、生物量等)通过各种传感元件作适当转换后,再经信号调理、采样、量化、编码、传输等步骤,最后送到控制器进行数据处理或存储记录的过程。

被采集数据是已被转换为电讯号的各种物理量,如温度、水位、风速、压力等,可以是模拟量,也可以是数字量。采集一般是采样方式,即隔一定时间(称采样周期)对同一点数据重复采集。采集的数据大多是瞬时值,也可是某段时间内的一个特征值。准确的数据测量是数据采集的基础。数据测量方法有接触式和非接触式,检测元件多种多样。不论哪种方法和元件,都以不影响被测对象状态和测量环境为前提,以保证数据的正确性。数据采集含义很广,包括对连续物理量的采集。在计算机辅助制图、测图、设计中,对图形或图像数字化过程也可称为数据采集,此时被采集的是几何量数据。

在智能仪器、信号处理以及自动控制等领域,都存在着数据的测量与控制问题,常常需要对外部的温度、压力、流量、位移等模拟量进行采集。数据采集技术是一种流行且实用的技术。它广泛应用于信号检测、信号处理、仪器仪表等领域。近年来,随着数字化技术的不断,数据采集技术也呈现出速度更高、通道更多、数据量更大的发展态势。

数据采集系统是一种应用极为广泛的模拟量测量设备,其基本任务是把信号送入计算机或相应的信号处理系统,根据不同的需要进行相应的计算和处理。它将模拟量采集、转换成数字量后,再经过计算机处理得出所需的数据。同时,还可以用计算机将得到的数据进行储存、显示和打印,以实现对某些物理量的监视,其中一部分数据还将被用作生产过程中的反馈控制量。

数据采集系统是计算机测控系统中非常重要的环节,目前,有各种数据采集卡或采集系统可供选择,以满足生产和科研试验等各方面的不同需要,但由于数据源以及用户需求的多样性,有时并不能满足要求。特别是在某些应用中,需要同时高速采集多个通道的数据,而且为了分析比较各通道信号间的相互关系,常常要求所有通道的采集必须同步。现有的数据采集系统能够满足上述要求的比较少,且价格十分昂贵,体积较大,分量较重,使用十分不方便。

一般模拟量是通过各种数据采集卡进行数据采集。目前常用的是具有 ISA 总线、PCI 总线等接口形式的 A/D 采集卡,虽然数据传输率很高,但是还存在整个系统笨重,缺乏灵活性,不能实现即插即用,不适合小型、便携设备采用等缺点。另外这些类型的采集卡在计算机上安装比较麻烦,而且由于受计算机插槽数量、地址、中断资源的限制不可能挂接很多设备。因此,工程师们往往需要花费大量的时间和资源用于系统搭建。

随着工业技术的迅猛发展,生产规模的不断壮大,生产过程和制作工艺的日趋复杂,对自动测试和各种信息集成的要求也就越来越高。数据采集系统的好坏将直接影响自动测试系统的可靠性和稳定性,为了

满足不同的测试需求,以及减少对资源的浪费,在系统的设计上应该尽量满足通用性和可扩展性。在高度发展的当今社会中,技术的突飞猛进和生产过程的高度自动化已成为人所共知的必然趋势,而它们的共同要求是必须建立在有着不断发展与提高的信息工业基础上。人们只有从外界获取大量准确、可靠的信息经过一系列的科学分析、处理、加工与判断,进而认识和掌握界与科学技术中的各种现象与其相关的变化,并通过相应的系统和方法实现科学实验研究与生产过程的高度自动化。换言之,生产过程的自动化面临的第一个问题就是必须根据从各种传感器得到的数据来检测、监视现场,以保证现场设备的正常工作。所以对现场进行数据采集是重要的前期基础工作,然后再对现场数据进行传输和相应的处理工作,以满足不同的需要。

数据采集卡是中低端数据采集系统设计的必选产品。基于 ISA、PCI 的插卡式数据采集设备存在以下缺陷:安装麻烦;价格昂贵;受计算机插槽数量、地址、中断资源限制,可扩展性差;在一些电磁干扰性强的测试现场,无法专门对其做电磁屏蔽,导致采集的数据失真。而现代工业生产和科学研究的发展要求数据采集卡具有更好的数据采集、处理能力,传统的 CPU 已经不能满足这一要求。针对以上要求,本文将论述一种基于PC机的声卡技术,它安装容易,成本较低。只需利用计算机本身的软硬件资源,而不需添加其他任何设备即可构成数据采集与分析系统,使用MATIAB语言编制简洁的图形用户界面,该界面操作方便,并且可以根据用户的需求进行功能扩充。

数据分析在整个科研工作中是个重要的必不可少的环节,它的目的是把隐没在一大批看来杂乱无章的数据中的信息集中、萃取和提炼出来,以找出所研究对象的内在规律。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。数据分析是组织有目的地收集数据、分析数据,使之成为信息的过程。这一过程是质量管理体系的支持过程。在产品的整个寿命周期,包括从市场调研到售后服务和最终处置的各个过程都需要适当运用数据分析过程,以提升有效性。例如,一个的领导人要通过市场调查,分析所得数据以判定市场动向,从而制定合适的生产及销售计划。因此数据分析有极其广泛的应用范围。数据分析系统工作的质量和速度如何,对整个科研工作的影响也是很大的。因此研究一种质量性能高的通用数据采集平台具有很大的意义。

在近几十年来 IC 技术和计算机技术的高速发展,为数据采集与分析提供了非常良好与可靠的科学技术基础,也提出了更高的要求和强有力的推动。如今面临着先进的计算机技术和信息技术与落后的信息采集与分析技术的现实差距,那将大大影响科学技术的高度发展和生产过程的高度自动化。所以,近几十年来世界各国都大量投入进行信息采集与分析的工作,尤其是在发达的美、英、德、法日等国与我国,都对这一技术高度重视。

1.2 国内外研究动态

数据采集是获取信息的基本手段,数据采集技术作为信息科学的一个重要分支,与传感器、信号测量与处理、微型计算机等技术为基础而形成的一门综合应用技术,它研究信息数据的采集、存储、处理及控制等作业,具有很强的实用性。随着科学技术的发展,数据采集系统得到了越来越广泛得应用,同时人们对数据采集系统的各项技术指标,如:采样率、线性度、精度、输入范围、控制方法以及抗干扰能力等提出了越来越高的要求,特别是精度和采样率更是使用者和设计者所共同关注的重要问题,于是,高速及超高速数据采集系统应运而生并且得到了快速发展。今天,数据采集技术己经在雷达、通信、水声、振动工程、无损监测、智能仪器、工业自动控制以及生物医学工程等众多领域得到广泛的应用并且收到了良好的效果。高速数据采集系统在国防、航天、边缘科学研究中及国民经济的各个领域的成功的应用,进一步引起了各方的关注,推动了它的研制和发展。随着科学技术的发展,数据采集系统得到了越来越广泛的应用。目前,国外很多公司与厂商都投入巨资进行数据采集系统的研制开发与生产销售,其中比较著名的

有 NEFF, NI、HP,TEK 等。

从数据采集系统产品来看,各大公司提供的系列产品都包括了完成数据采集的诸如信号放大、滤波、多路开关、模数转换和接口等各种模块。现有的高速数据采集器件和开发的产品中,目前还没有完全实现高速、高分辨率。在雷达、通信、谱分析、瞬态分析、电视等应用领域,为满足实时检测和高速采集的日益更新的需要,实现数据采集的高速、高分辨率已成为数据采集系统的一个发展方向。现有的高速 ADC 器

件和产品价格都比较昂贵,有些高速、高分辨率的器件本身还存在着不稳定性,因此,在数据采集系统向高速、高分辨率发展的同时,开发和研制的器件和产品应不断地提高可靠性,降低成本,提高性价比,以便使之得到更广泛的应用。在国内,由于、技术等原因,我们的产品普遍存在:通用性差、用途单一、测点少、测量距离小、环境适应性差等缺点,远没有形成系列化、模块化、标准化的通用产品,根本无法满足国内用户不断增长的需要,也远远不能与国外产品抗衡,正因此使得价格高昂的国外产品占有了相当大的市场份额。

1.3 数据采集系统的现状及发展

数据采集与分析一直是生产实践研究与应用领域的一个热点和难点。随着微电子制造工艺水平的飞速提高及数据分析理论的进一步完善与成熟,目前国内外对数据采集系统的高性能方面的研究上取得了很大的成就。就 A/D 转换的精度、速度和通道数来说,采样通道从单通道发展到双通道、多通道,采样频率、分辨率、精度逐步提高,为分析功能的加强提供了前提条件。而在数据分析的微处理器上,最初的数据采集系统以 8 位单片机为核心,随着微电子技术的不断发展,新兴单片机的不断问世,十六位、三十二位单片机也为数据采集系统研制厂家所采用,近年来采用具有 DSP 功能的数据采集系统也己投入市场。同时,通用 PC 机的 CPU 用于数据处理也较为常见。总之,伴随着高性能微处理器的采用和用户技术要求的不断提高,数据采集系统的功能也越来越完善。数据采集系统的发展主要体现在以下几个趋势:首先,在专业测控方面,基于 PC 计算机的数据采集系统越来越成熟和智能化。在过去的二十年中,开放式架构 PC 机的处理能力平均每十八个月就增强一倍。为了充分利用处理器速度的发展,现代开放式测量平台结合了高速总线接口,如 PCI和 PXI/Compact PCI,以便获得性能的进一步提升。计算机的性能提升和由此引起的基于计算机的测量技术的创新,正在持续不断地模糊着传统仪器和基于计算机的测量仪器之间的界线。

其次,在通用测控方面,采用嵌入式微处理器的方案也由早期的采用 A/D 器件和标准单片机组成应用系统发展到在单芯片上实现完整的数据采集与分析,即目前极为热门的 SOC (System On Chip)。通常在一块芯片上会集成一个,可以采样多路模拟信号的 A/D 转换子系统和一个硬 CPU 核(比如增强

型 80_52 内核),而且其CPU 的运算处理速度和性能也较早期的标准 CPU 内核提高了数倍,而且有着极低的功耗。这种单芯片解决方案降低了系统的成本和设计的复杂性。

此外,为了解决 SOC 方案中数据处理性能的不足,采用 DSP 作为数据采集系统的 CPU 的研究与应用目前也逐渐引起业内重视。但是这类产品目前仅仅处于发展的初级阶段,在精度、速度或其它性能指标上并不能很好的满足要求。因此,国内外以 DSP 作为数据采集系统的采样控制和分析运算的研究与应用正在展开。

近年来随着芯片技术、计算机技术和技术的发展,数据采集技术取得了许多新的技术成果,市场上推出了繁多的新产品。高速数据采集技术的发展一方面是提高采集速率,另一方面不断向两端延伸。一端是输入的信号调理,另一端是采集后的数字化信号的实时处理与事后处理。20世纪90年代末,随着数字技术快速发展,数据采集技术已向着并行、高速、大量存储、实时分析处理、集成化等方向发展。

(1)采样方式

①过采样(Over Sampling)。采样方式中最早是过采样,根据采样定理,采样频率fs必须高于被采信号最高频率fch的两倍,才不致产生频率混叠现象。例如信号最高频率为10kHz,采样频率必须高于20kHz。

②欠采样(Under Sampling)。在通信和动态数据的采集中,发展了一种欠采样技术,即采样频率fs可以低于信号频率fch,但信号的频带宽度不得大于0.5fs,利用采样信号产生的高次谐波,将采样后的信号移至第二或者更高的奈奎斯特区。例如采样频率fs为10kHz,可对频带fch落于11~14kHz的信号(频带宽度为3kHz,低于0.5fs=5kHz)进行欠采样。于是在采样频率2次谐波两边产生的采样后的信号频带为f2ch = 2fs±fch = 20 kHz±(11~14 kHz)= 31~34 kHz,或9~6 kHz

③等效时间采样(Equivalent Time Sampling )。主要是对于重复的周期波形进行等效时间采样。例如美国泰克公司的TDS784D数字存储示波器,其实际的采样频率为 1 GS/s ( 1GHz ),对于重复的

周期信号,采取周期微差法,可以达到250GS/s(250GHz)的等效时间采样。例如对于 1 GHz 的方波,进行周期微差法采样,每个周期的采样只有微小的时差,将若干个周期中的样点集中排列,即可测出方波上升沿和下降沿的波形。对于单次瞬态信号,这种方法是无效的。

④变速率变分辨率采样。

(2)采集方式的发展

①扫描式采集(Scanning Acquisition):时分制、多通道巡回采集。

②并行式采集(Parallel Acquisition):多个通道同步并行采集,每个通道采用一个独立的A/D转换器,通道采集速率只取决于A/D的转换速率,与通道数无关。

③交替采集(Internative Acquisition):一个通道由多个A/D转换器交替采集,使每个通道采样速率等于多个A/D的转换速率之和,可以高于单个A/D的转换速率。

(3)采集数据的实时分析与处理软件

目前国外的测试仪器或系统生产厂家,在生产硬件的同时,推出其相应的支持软件或软件开发平台,如为产品开发者提供的软件工具;为系统集成者提供系统应用软件的集成的环境;为终端用户提供编写自己的用户应用程序的手段。

1.4 本文主要内容和章节安排

本文完成了一种基于MATLAB的数据采集系统的方案的设计,实现了在MATLAB环境下利用声卡和MATLAB数据采集工具箱进行的数据采集与分析。

全文的结构安排如下:

第一章绪论,说明了研究背景、意义、国内外现状,以及系统的发展现状。

第二章主要介绍了系统结构特点及性能

第三章主要介绍了声卡、MATLAB软件及其工具箱的使用

第四章主要讨论了系统结构功能设计与实现,以及数据采集与分析的具体过程

第五章主要对数据采集进行了举例

2数据采集系统结构特点

2.1 系统组成结构

数据采集系统主要由两部分组成:采集子系统和计算机子系统,即下位机智能数据采集系统和上位

机 HMI(Human Machine Interface)系统。采集子系统实现将客观世界被测对象信号采集和转换为能被计算机处理的数字信号的功能等;计算机子系统实现对采集数据的控制、存储和处理等功能,计算机起着对采集数据的存储和处理、统计分析、提供人机接口与其他计算机的数据通信和交换的功能。

数据采集系统涉及多学科,所研究的对象是物理或生物等各种非电或电信号。根据各种非电或电信号的特征,利用相应的归一化技术,将其转换为可真实反映事物特征的电信号后,经A/D转换器转换为计算机可识别的有限长二进制数字编码,以此作为研究自然科学和实现工业实时控制的重要依据,实现对宏观和微观自然科学的量化认识,典型的数据采集系统组成如图2-1所示。

图2-1 典型数据采集系统的组成

而一般的外置式数据采集系统结构如图2-2所示。模拟信号由传感器采得经过信号调理模块送入数据采集硬件设备。在数据采集设备中完成A/D转换,包括采样、量化、编码,转化成数字信号后送入与之相连的PC机中。根据不同的要求,在PC机上利用MATLAB以及二次编程实现数据的实时分析与处理。

用户可以通过人机交互界面修改、设定各项参数来控制数据采集硬件设备的工作状态,同时可以得到数据的采集与分析结果,从而实现数据采集与分析的自动化。

图2-2 一般的外置式数据采集系统结构

利用声卡在WINDOWS环境下开发数据采集系统时,由于受编程语言的限制,其数据分析与处理的功能非常有限。例如,为了对所采集的数据进行功率谱分析,则需要用户以VB或C语言来编写功率谱分析的子程序,这显然增加了开发的难度,并且也极不利于分析功能的进一步扩展。

而利用声卡作为A/D转换工具,经过衰减和取样电路得到的模拟信号送至声卡的线路输入端LINEIN,并利用MATLAB中提供的数据采集工具箱,可满足控制声卡进行数据采集的要求。用户通过调用MATLAB命令,可对采集的数据进行分析和处理。

整个系统可分为数据采集和数据分析两大部分,以友好的图形界面与用户进行交互沟通。数据采集部分实现数据采集功能,根据用户选择的采样频率和预设的采样时间,从声卡获得用户需要的数据;数据分析部分对采集到的数据进行频谱分析。全部数据的时域和频域波形以图形方式直观地呈现于用户面前。此外,还提供保存数据以及回放数据的功能。

图2-3给出了基于MATLAB的数据采集系统的简图,主要部件数据采集工具箱提供了硬件驱动程序和MATLAB环境之间“对话”所需的硬件驱动程序适配器、数据采集引擎和M-文件函数.

图2-3 基于MATLAB的数据采集系统简图

硬件驱动程序适配器在硬件驱动程序和数据采集引擎之间交换属性数值、数据和事件;数据采集引擎

用来存储各个设备对象,以及每个设备对象的属性值;对采集到的数据进行存储并且使不同事件同步;M-文件用来创建设备对象、采集或输出数据、配置属性值和检测数据采集状态和数据采集设备。

2.2 系统的特点和性能指标

数据采集系统到今天,一般来说具有如下主要特点:

(1)现代采集系统一般都由机控制,使得数据采集的质量和效率等大为提高,也节省了硬件投资。

(2)软件在数据采集系统中的作用越来越大,增加了系统设计的灵活性。

(3)数据采集与数据处理相互结合的日益紧密,形成数据采集与处理系统,可实现从数据采集、处理到控制的全部工作。

(4)数据采集过程一般都具有“实时”特性,实时的标准是能满足实际需要;对于通用采集系统一般希望有尽可能高的速度,以满足更多的应用环境。

(5)随着技术的发展,电路集成度的提高,数据采集系统的体积越来越小,可靠性越来越高,甚至出现了单片数据采集系统。

(6)总线在数据采集系统中有着广泛的应用,总线技术它对数据采集系统结构的发展起着重要作用。

评价一个数据采集系统的性能有很多指标,但是一般采用以下几个比较常用的指标进行评价。

(1)系统分辨率

系统分辨率是指数据采集系统可以分辨的输入信号的最小变化量。通常可以用如下几种方法表示系统分辨率:

使用系统所采用的 A/D 转换器的位数表示系统分辨率;

使用最低有效位值(LSB)占系统满度值的百分比表示系统分辨率;

使用系统可分辨的实际电压数值表示系统分辨率;

使用满度值可以分的级数表示系统分辨率。

(2)系统精度

系统精度是指当系统工作在额定采集速率下,整个数据采集系统所能达到的转换精度。A/D 转换器的精度是系统精度的极限值。实际上,系统精度往往达不到A/D 转换器的精度。因为系统精度取决于系统的各个环节(子系统)的精度,如前置放大器、滤波器、模拟多路开关等。只有当这些子系统的精度都明显优于 A/D 转换器的精度时,系统精度才有可能达到 A/D 转换器的精度。系统精度是系统的实际输出值与理论输出值之差,它是系统各种误差的总和,通常表示为满度值的百分数。

(3)采集速率

采集速率又称为系统通过速率或吞吐率,是指在满足系统精度指标的前提下,系统对输入的模拟信号在单位时间内所能完成的采集次数,或者说是系统每个通道、每秒钟可采集的有效数据的数量。这里说的“采集”包括对被测物理量进行采样、量化、编码、传输和存储的全部过程。

(4)动态范围

动态范围是指某个确定的物理量的变化范围。信号的动态范围是指信号的最大幅度和最小幅度之比的分贝数。

2.3 系统常见的几种结构形式

(1)多通道共享采样/保持器和 A/D 转换器数据采集系统

这种系统构成如下图所示,这种结构形式采用分时转换工作的方式,多路被测信号共用一个采样/保持器和一个 A/D 转换器。当采样保持器的输出已充分逼近输入信号(按给定精度)时,在控制命令的作用下,采样保持器由采样状态进入保持状态,A/D 转换器开始进行转换,转换完毕后输出数字信号。在转换期间,多路开关将下一路信号切换到采样/保持器的输入端,系统不断重复以上的操作,可以实现对多通道模拟信号的数据采集。采样方式可以按顺序或随机进行。

多通道共享采样保持器和 AD 转换器数据采集系统图

这种采集系统结构形式最简单,所用芯片数量少,适用于信号变化率不高、对采样信号不要求同步的场合。如果被测信号变化速率较慢,可以不用采样保持器,直接进行 A/D 转换。如果信号很弱而干扰噪声强,需要在系统电路中增加信号放大电路和滤波环节。

(2)多通道同步数据采集系统

多通道同步型数据采集系统图

其结构如上图所示,也属于分时转换系统。

多路模拟输入信号共用一个 A/D 转换器,但是每个通道各有一个采样/保持器,在同一采样指令控制下对各路信号同步进行信号采样,得到各路信号在同一时刻的瞬时值。模拟开关分时将各路采样/保持器切换到 A/D 转换器上,进行模数转换。这些同步数据可以描述各路信号的相位关系,所以这种结构被称为同步型数据采集系统。

由于各路信号必须串行的在共用的 A/D 转换器中进行转换和计算,若采样信号回路过多时,这种采集结构的速度仍然较慢。

(3)多通道并行数据采集系统

多通道并行数据采集系统框图如上图所示。这种结构形式中,每个通道都有自己的采样保持器和A/D 转换器,经过A/D转换的数据经过接口电路送到计算机中。相对于前两种数据采集系统,这种结构形式的数据采集速度最快,但所用的硬件电路复杂,成本较高。

通用型模拟量数据采集模块则属于这一类的数据采集子系统。数据采集模块是属于单片机的智能器件,在整个数据采集系统中,每个模块可以认为是实时、并行地工作,每个模块仅完成几路信号的检测和采集,实时响应性能优。

(4)分布式数据采集系统

以上介绍的三种结构形式中,系统各部件之间的空间距离很近,逻辑上耦合程度紧密,都可以称之为数据采集系统。这种系统的优点是:结构简单,容易实现,能满足中小规模的集中数据采集的要求。在市面上均有成熟产品可供选用。系统的体积和设备量小,造价低。

由于工作原理、结构形式和性能设计等原因,这类系统也存在不少缺点:

因为系统结构不灵活,不易扩展,所以不适合大规模的数据采集应用场合。抗干扰能力差,尤其对于被测对象物理位置分散、传感器输出的微弱信号需要长距离传输时,所受的干扰不容忽视的。可靠性差。系统结构中某一部件出现故障会导致整个系统工作崩溃。由于各部件之间紧密耦合,导致系统的可扩展性和灵活性差。分布式数据采集系统是数据采集技术、计算机技术和通信技术综合和发展的产物,基于“分散采集、集中管理”的思想设计的系统结构形式,由若干个“数据采集点”和上位机以及通信接口组成。分布式数据采集系统结构如下图所示:

分布式数据采集系统图

处于分散部位的数据采集点相当于小型的集中数据采集系统,位于被测对象的附近,可独立完成数据采集和预处理任务,并将采集的数据转换为数字信号的形式传送给上位机,采用数据传输的方法可以克服模拟信号传输的固有缺陷。分布式数据采集系统的主要特点是:

(1)系统适应能力强。因为可以通过选用适当数量的数据采集点来构成相应规模的系统,所以无论是大规模的系统,还是中小规模的系统,分布式结构都能够适应。

(2)系统可靠性高。由于采用了多个数据采集点,若某个数据采集点出现故障,只会影响某项数据的采集,而不会对系统的其他部分造成任何影响。

(3)系统实时相应性好。由于系统各个数据采集点之间是真正“并行”工作的,所以系统的实时相应性较好。

(4)另外,这种数据采集系统是用数字信号传输代替模拟信号传输,有利于克服常模干扰和共模干扰。因此,这种系统特别适合于在恶劣的环境下工作。目前对于大规模的数据采集场合一般都采用分布式结构,根据不同的数据采集工作原理、结构形式和性能特点,在本系统中采用集中式的数据采集器件作为数据采集终端,采用上下位的连接方式,最终组成整个数据采集系统。

3 MATLAB软件

3.1 MATLAB 简介

MATLAB 是美国MathWorks 公司开发的一种功能极其强大的高技术计算机语言和内容极其丰富的软件库,它适合于工程各领域的分析设计与复杂计算的软件,该软件包括基本部分和专业扩展两大部分.扩展部分称为工具箱,用于解决某一方面的专业问题.它以矩阵和向量的运算以及运算结果的可视化为基础,把广泛应用于各个学科领域的数值分析、矩阵计算、函数生成、信号处理、图形及图像处理、建模与仿真等诸多强大功能集成在一个便于用户使用的交互式环境中,为使用者提供了一个高效的编程工具及丰富的

算法资源。对于信号处理和图像处理等数字处理领域,MATLAB 更是得天独厚,它丰富的M文件和强大的绘

图可视功能为使用者带来了极大的方便, 被广泛的应用于信号与图像处理、控制系统设计、通信、系统仿真等诸多领域,尤其对初学者可起到事半功倍之效。

MATLAB是一种解释语言,所有的程序和指令都必须在MATLAB解释器中读入后才能运行,因而极大地限制了代码执行速度。MATLAB强大的计算功能只能在其平台上才能使用,也就是说,必需在安装了其解释器的机器上才能使用MATLAB的M文件,这样就给工程应用带来了很大不便。对于一般用户来讲,MATLAB只能作为离线的计算和分析工具,而不能作为实时的工程工具。幸运的是,开发MATLAB的MathWorks公司为广大的应用者提供了应用程序接口(API,ApplicationProgram Interface)和编译器(Compiler)。利用MATLAB和C语言交互,也可以开发基于MATLAB的数据采集系统。如果配上数据采集线路,该系统就可以作为一个虚拟仪器来使用。

3.2 数据采集工具箱及声卡简介

MATLAB 自带的数据采集工具箱(Data Acquisitiontoolbox, DAQ) 能更容易地将实验测得的数据

进行分析和可视化操作。数据采集设备包括: 多媒体声卡、美国国家仪器E系列和1200 系列接口板、Hewlett-Packard-VXIE1432- 系列接口板及其他各种数据采集硬件设备。数据采集硬件设备的内部特性对MATLAB 的接口完全透明, 无论是使用一个或几个硬件设备, 数据采集工具箱都会向所有硬件设备提供单一和统一的接口。通过调用MATLAB 命令和函数可对与计算机兼容的数据采集硬件设备进行访问并对其属性进行可视化监控。

数据采集工具箱是一种建立在MATLAB环境下的M函数文件和MEX动态链接库文件的集合,包含3大区域的组件:M文件函数、数据采集引擎及硬件驱动适配器。它具有如下特点:是一种通过使用与PC 机兼容的、即插即用的数据采集设备在MATLAB环境中的架构;支持模拟信号的输入输出以及数字信号的输入、输出,子系统还包括同步模拟输入输出的转换;支持声卡;事件驱动采集。

在MATLAB数据采集工具箱里集成了数据采集的M 文件格式的函数和MEX文件格式的动态链接库。其主要特征如下:

(1)提供了将实时测量数据从数据采集硬件采集到MATLAB中的框架。

(2)支持模拟量输入(AI)、模拟量输出(A0)以及数字量I/0子系统,包括模拟量I/O实时变换。

(3)支持PC声卡和业界非常流行的数据采集设备如NI卡、并行口(LPT1-LPT3)、Keithley卡等。

(4)采用事件驱动模式进行数据采集。数据采集工具箱由3部分组成:M文件格式的函数、数据采集引擎和硬件驱动,如图3-1所示。这些组成部分使得MATLAB与数据采集硬件之间的信息传递成为可能。

图3-1 数据采集引擎与硬件驱动

目前市面上的数据采集卡一般都包含了完整的数据采集电路和与机的接口电路,如NI公司的E系列数据采集卡、研华的数据采集卡等, 其价格是与性能成正比的,可以说比较昂贵。在采样频率要求不高的情况下,可以利用计算机的声卡作为数据采集的输入和输出。而如今声卡技术已经成熟,成本越来越低。一般的声卡都可以实现双通道、16 位、高保真的数据采集,采样率甚至可以达到48KHz。对于许多试验和工程测量来说,其样本量化精度和采样率是足够高的,甚至优于目前常用数据采集卡的性能。将其用于数据采集,性价比相当高。

声卡是一个非常优秀的音频信号采集系统,其数字信号处理器包括模数转换器(ADC) 和数模转换器

(DAC) ,ADC 用于采集音频信号,DAC用于重现这些数字声音,转换率达到44.1KHz。声卡已成为多媒体计算机的一个标准配置,利用声卡进行采样与输出,就不需要购买专门的采集卡可以降低虚拟仪器的开发成本,且在音频范围内可以完全满足实验要求。

3.3 MATLAB在数据采集中的应用

数据采集工具箱集成于MATLAB中,所以在进行数据采集的同时,可以对采集的数据进行实时分析,或者存储后再进行处理,或者针对数据分析的需要对测试条件的设立进行不断的更新。应用数据采集工具箱提供的命令和函数可以控制任何类型的数据采集。例如,在硬件设备运行时,可以获取事件信息,评估采集状态,定义触发器和回访状态,预览数据以及进行实时分析,可以设置和显示所有的硬件特性以满足用户的技术指标。

4系统设计方案

声音信号的采集与分析处理在工程应用中是经常需要解决的问题,如何实时采集声音信号并对其分析

处理,从而找出声音信号的特征在科学研究中是一项非常有意义的工作。

声卡是多媒体计算机系统中最基本、最常用的硬件之一,其技术已经成熟,它具有AD/DA转换功能,现已被广泛应用于声音信号采集和虚拟仪器系统的设计。MATLAB则是一种功能强大、计算效率高、交互性好的数学计算和可视化计算机高级语言,它将数值分析、信号采集与处理和图形显示有机地融为一体,形成了一个极其方便、用户界面友好的操作环境。本文所设计的声音信号采集与分析系统就是充分利用了声卡的AD/DA转换功能和MATLAB强大的数据处理功能,同时,该系统还是建立在MATLAB软件的图形界面实现的,因而使系统具有良好的交互性。

基于计算机声卡的数据采集系统有以下特点:

(1)价格低廉。在数据采集时,所要采用的是模数转换芯片,对于某些应用场合,可以利用计算机上所附带的声卡实现数据采集任务。

(2)灵活性强。用户不仅可以进行实时监视和控制操作,还可以把数据保存到硬盘,供以后分析使用。在CPU足够快的条件下,还可以实时处理数据,动态显示波形的频谱、功率谱。另外在一台计算机上,可以插若干块声卡,组成多通道数据采集系统。

(3)频率范围较窄,不能测直流。由于受声卡的硬件限制,要得到较好的波形,输入信号的频率最好在100Hz~15kHz范围内。

总之,运用廉价的声卡,构成一个较高的采样精度,中等采样频率,且具有很大灵活性的数据采集系统,对于一些应用领域是一种很好的选择。

4.1 系统结构设计

MATLAB提供了一个数据采集工具箱(Data Acquisition Toolbox),在该数据采集工具箱中,有一整套的命令和函数,可用来直接控制与PC机兼容的数据采集设备进行数据采集,因此,利用MATLAB的这一工具箱便可进行声音信号的采集。然后在MATLAB中直接调用频谱分析函数、功率谱分析函数或数值分析函数等,就可以将采集到的声音信号分别进行频谱、功率谱分析等多种谱分析。因此,在MATLAB中可以很容易地实现信号采集与分析处理工作。

图4-1系统实现的总体框图

从系统框图上看,整个系统结构简单,而且数据的后续分析方便,不需要再进行数据转移,而直接在MATLAB软件中完成分析处理工作。在该系统中,从硬件上来讲,只需必要的信号预处理电路和一台普通的多媒体计算机(或笔记本电脑)即可;从软件上来讲,则只需使用本文中所编制的程序,便可从声卡获取数据并

保存为文件,然后再可根据实际需要进行数据分析处理。

4.2 系统功能设计

本系统由数据采集和数据分析两大部分组成,数据采集部分是实现信号采集功能,根据用户选择的采样

频率和预设的采样样本数从声卡获得用户需要的数据。数据分析部分主要实现以下功能:(1)从信号采集部分获取数据,或者从数据文件读取数据;(2)实现将采集到的声音信号数据进行频谱分析,画出频谱图以图形方式很直观地反映出信号特征;(3)保存数据,包括保存所有数据和部分数据的功能,同时保存对应的频谱数据;(4)

显示声音信号数据的时域图和频谱图;(5)其他功能。根据不同的需要,还可以进行修改,以选择合适的实验方案。

4.3 系统设计实现

声音信号采集功能的实现是由MATLAB控制计算机声卡将传感器得到的模拟信号转换为数字信号并存储在计算机中;而信号分析功能是将采集得到的数据进行时、频域分析和各项数值分析等。整个系统设计主要包括系统的硬件配置、编制程序实现数据采集、编制程序实现数据分析及系统的界面设计四部分。

4.3.1 声音信号采集的硬件配置

将声卡插入计算机的PCI插槽,安装好相应的驱动程序后,将声音传感器设备与声卡的模拟输入端连接起来,这就构建了声音采集的硬件设备,需要注意的是对声音传感器的选择,应选择音频专用电缆或屏蔽电缆以减小噪声信号的引入,最好能选择单向性声音传感器。在MATLAB的信号采集工具箱中有专门为声卡生成一个操作对象的函数,初始化该操作对象即能建立MATLAB与声卡的通信,并为已创建的声卡设备对象增加数据采集通道和触发方式。若缺省设置则系统采用一个数据通道、手动触发方式启动工作。进行数据采集时,根据所配置的声卡的工作特性和信号分析的设计要求,可设置相应的参数来控制声卡在数据采集时的

行为,如采样频率、采样时间、预计模拟信号的输入/输出范围、采样的出发方式,采样点数据的存储等。另外需要注意的一点是采样频率是由声卡的物理特性决定的,实际应用中可以根据情况选择一个声卡支持的

采样频率.MATLAB支持电平触发、事件触发和手动触发三种方式来启动数据采集工作。声音信号采集硬件配置的具体实现过程:

sound=analoginput(…winsound?);%…winsound?为声卡的驱动程序

channel=addchannel(sound,1);% 添加通道为单声道

set(sound, …SampleRate?,44100);%设置采样频率为44100Hz

set(sound, …SamplesPerTrigger?,22050);% 设置采样时间为0.5s

set(sound, …TriggerType?,…manual?);%设置触发方式为手工触发

...% 其它的相关设置

4.3.2 数据采集

启动设备对象,控制声卡开始采集数据,采集过程中可以向声卡发送控制命令,如暂停采集、退出采集等。采集到的数据被暂时存放在计算机的内存中,理论上可采集的最大数据量是由计算机的内存量所决定的。同时, MATLAB能够记录采集设备的硬件属性、采集的启动时刻、采集时间、采样频率及采样通道等信息,如果采集过程中出现了错误,则出错的时刻、错误产生的来源等信息也都会被记录下来供后续工作。需要注意的是,执行完一次数据采集工作后应删除设备对象,将内存中的数据存储在硬盘上之后释放数据存储所占用

的内存空间,以备下一次采集能有足够的内存空间存储新的数据,声音信号采集的实现程序为:

start(sound);% 启动设备对象

try

time=0;data=0;

[data,time]=getdata(sound);% 获取采样数据

catch

time=0;data=0;disp(…A timeout occurred?);

end

stop(sound);% 停止设备对象

delete(sound);% 删除设备对象

4.3.3 数据分析

在设计该部分时,不仅要求实现能从数据采集部分直接获取数据,还需实现能从文件中读取以前所保持好的数据。之后,用户可以根据实际研究的需要,在MATLAB中调用频谱分析函数(periodogram等)、功率谱分析函数(psd等)或数值分析函数(fminbnd等),就可以将采集到的声音信号分别进行频谱、功率谱分析等多种谱分析,并且可方便地将分析结果以图形的形式显示出来,如图4-2所示。在研究蛋壳破损自动检测过程中,通过对所采集的蛋壳声音信号进行频谱分析,找出区分损壳蛋与好壳蛋的特征变量,从而实现蛋壳破损的自动检测。对所采集的声音信号进行频谱分析的程序为:

...% 获取采样数据

Px=abs(fft(data,512)) 2/512;% 对所采集的数据进行傅立叶变换

px=Px(1:256);

s=60+10*log10(px);

...% 其它功能

图4-2 声音信号的采集与频谱分析

4.3.4 系统界面设计

利用MATLAB软件中GUI模块进行设计,在MATLAB中可以方便地设计出基于对话框的图形用户界面,它提供了诸如编辑框、按钮、滚动条等图形对象,通过对这些图形对象的有机组合,再对相应的图形对象编写程序,就可以设计出界面友好、操作方便的系统软件。图4-2所示为声音信号采集与频谱分析系统的运行界面,还可再根据实际需要进行扩展。

建立基于声卡和MATLAB的信号采集与分析系统,能够实现信号采集、设备控制、数据分析以及结果显示等功能。实践证明该系统具有精度高、实时性好、性价比高、人机界面友好、升级修改简单等优点。在进行项目研究过程中,常常需要进行多次实验,采集大量的数据,并且要求对数据能实时地进行分析处理,该系统能很好地满足这种研究需要。此外,这一系统还可以扩展应用到其他相关的领域中,如在语音识别工作中可以用该系统采集语音信号并且加入语音处理的相关分析等。因此,该系统不仅具有良好的实用性,还可为其他的相关研究提供理论和应用基础。

语音信号分析处理系统一般由声电传感器(麦克风) 、数据采集卡、处理器(计算机) 、软件系统等几部分组成。商品数据采集卡(A/ D 板) 都包含了完整的数据采集电路和计算机接口电路,并同时提供驱动程序,产品和种类繁多,性能价格各异,价格一般都比较贵。PC 机的声卡本身就是一个廉价同时又非常优秀的语音信号采集系统,它采用直接内存读取方式传输数据,极大地降低了CPU 的占用率;不仅如此,声卡16 位的A/ D 转换精度比普通16 位A/ D 卡要高,能够满足语音信号采集分析要求。

5 应用设计

一、对声卡产生的模拟输入对象(AI) 进行操作

声卡是MATLAB数据采集工具箱所支持的一种硬件,用声卡完成一个简单的数据采集过程,麦克风

就成了数据采集系统中的传感器.

1)创建设备对象,这里创建的是一个声卡AI设备对象,硬件设备标示符为2.

ai=analoginput(…winsound?,2);

2)给设备对象添加通道,这里添加1个通道.

addchannel(ai,1);

3)设定设备属性值,控制数据采集.

freq=8 000;\采样频率8 000 Hz

set(AI,SampleRate.freq)

duration=2;\采样时间2 s

set(AI,SamplesPerTrigger,duration*freq);

4)数据采集及结果处理.在这里首先将所采集到的数据进行快速傅立叶变换,然后转化成分贝,并显示结果的实数部分.

start(ai);

data=getdata(ai);

fftdata= abs(fft(data));

mag =20*logl0(fftdata);

mag= mag(1:end/2);

5)清除内存中的设备对象.

delete(ai);

clear ai;

图5-1 采样过程中没有对麦克风讲话

图5-2 采样过程中对麦克风讲话

结果分析:图5-1是在采样过程中打开麦克风,但是没有对麦克风讲话的结果(对不同品牌、质量的声

卡,结果可能有所不同),图5-2是在采样的过程中对麦克风讲话的结果.可以看出,讲话与否(传感器感受端的变化)改变了所采集到的数据的结果.

二、直接利用MATLAB数据采集箱中提供的函数命令进行采集

一般的采样过程是对声卡产生的模拟输入对象(AI) 进行操作的,由于机配置和模拟通道的运用使得数据采集过程显得烦琐难以理解,有时还不易获得采样数据。实验过程发现一种更为简单实用的方法可以进行数据采集。在阐述之前,首先介绍一下MATLAB数据采集箱中的几条有关命令:

wavrecord : wavrecord 利用Windows 音频输入设备记录声音,其调用形式为:wavrecord (n ,fs ,ch) 。利用Windows音频输入设备记录n个音频采样, 频率为fs Hz ,通道数为ch。采样值返回到一个大小为n*ch 的矩阵中。缺省时,fs = 11025 ,ch = 1。

waveplay: waveplay 利用Windows音频输出设备播放声音,其调用形为:waveplay(y ,fs) 。以采样频率fs 向Windows 音频设备发送向量信号。标准的音频采样率有:8000、11025、22050 和44100Hz。

wavread :wavread 用于读取Microsoft 的扩展名为“.wav”的声音文件。其调用形式为: y = wavread (file) 。其作用是从字符串file 所指的文件路径读取wave 文件,将读取的采样数据送到y 中。Y的取值范围: [ -1 ,1 ] 。

sound:音频信号是以向量的形式表示声音采样的。sound 函数用于将向量转换为声音,其调用形式为:sound (y ,fs) ,作用是向扬声器送出向量y 中的音频信号(采样频率为fs) 。

应用上述所讲到的MATLAB数据采集箱提供的函数进行一次简单的语音信号的采集实验。记录5 秒钟的8 位音频语音信号并回放之, 采样频率设为11025Hz。

﹥﹥fs = 11025 ; / 设置采样频率

﹥﹥y1 = wavrecord (5*fs ,fs ,…uint8?) ; / 进行无语音采集

﹥﹥plot (y1) ;

﹥﹥y2 =wavrecord (5*fs ,fs ,…uint8?) ; / 开始采集8位语音信号,时间为5s

﹥﹥plot (y2) ;

﹥﹥wavplay(y2 ,fs) ; / 回放所采集的语音

﹥﹥sound (y2 ,fs) ;

﹥﹥y1 =fft (y2) ; / 做信号的fft 变换

﹥﹥plot (y2) ;

图5-3 无声音信号输入波形

图5-4 有声音信号输入波形

图5-5 声音信号傅里叶变换

图形分析:用户可以变换采样频率及采样时间,也可以不同的频率回放语音。感受不同函数在相同的频率下回放的语音信号是否一致。此例进行的是实时回放,若要事后回放则可用wavread 函数。从程序语言及实现上可看出此方法简便了许多,而且实验结果与传统方法得到的实验结果完全一致。图5-3为在采样过程中打开麦克风,但是没有对麦克风讲话的结果(对不同品牌、质量的声卡,结果可能不同) ,从图上可以看到除开始采样的极短一段时间内有个信号接收过程产生阶跃外,其余时间内波形都在很小的范围内平稳的波动。图5-4是采样过程中对麦克风讲话的结果,可以看出,讲话(传感器端接收到信号)改变了采集的数据的结果。从图5-4中看出波形发生了很大的变化,波形随声音信号的高低强弱而发生变化,可知计算机已经通过麦克风接收到了语音信号,说明信号采集工作成功。图5-5为对采集到的信号进行的快速傅立叶变换所得到的图形。

上面介绍的基于声卡和MATLAB的语音数据采集系统,具有实现简单、性价比和灵活度高的特点。经实例分析证明,利用该系统可实现在线连续采集语音信号并进行分析和处理。

应用前文所述的MATLAB 数据采集工具箱提供的命令函数和系统环境为Windows98 的计算机上的板载声卡进行简单数据采集。记录5s的16 bit音频语音信号并回放, 采样频率设为11025 Hz。

fs=11025 %设置采样频率

y1=wavrecord( 5*fs, fs, …unit16?) %进行无语音采集

plot( y1) %画出所采集到的信号的波形

y2=wavrecord( 5*fs, fs, …unit16?) %进行语音采集

wavplay( y1, fs)

sound( y2, fs) %回放所采集的语音

图5-6是用MATLAB的DAQ工具箱中的命令函数的方法采集数据, 采样过程中传声器无语音输入;

图5-7是用创建声卡设备对象的方法采集数据, 采样过程中传声器有语音输入。

图5-6 传声器无语音输入

图5-7 传声器有语音输入

智能手机终端的数据采集及分析系统

智能手机终端的数据采集及分析系统 主要功能如下: 采集使用数据采集程序手机的手机号码:数据采集程序必须开通GPRS,实时传输采集数据及监听服务端指令;所以会有一定的数据量。为解决用户因GPRS传输采集数据产生的费用,所以记录用户的手机号码。 采集GPS信息:经纬度,时间,速度; 采集无线网络状况信息:GSM,GPRS网络情况; 获取的无线网络信息并附加GPS信息,帮助数据分析专家系统分析处理; 数据采集终端的主要功能如下: 实时诊断网络信息; 诊断分为空闲时诊断与使用时诊断; 空闲时诊断:根据运营商的相关规定设定网络异常指标;当手机处于空闲状态时,指定频率(秒)获取无线网络的基本参数,如CID,LAC,BSIC,BCCH,RxQuality,RxLevel,C/I,C/A,TxPower,TA,TS等;根据设定的异常指标来判断是否出现异常;如果出现异常则保存本次信息,并获取此时此地的GPS信息、本手机的手机号码一并发送至指定服务器,由“数据分析专家系统”分析处理。 发送数据内容:本手机的手机号码+无线网络基本参数+GPS信息; 数据格式:XML文件格式; 传输方式:使用GPRS进行数据传输; 使用时诊断:用户使用手机时,检测用户使用过程中无线网络的状况;如手机数据下载过程中,检测总的下载量,下载时间,是否下载成功,如果不正常则记录本次使用过程; 诊断项: 2通话:未接通、掉话、呼叫时延; 2短信(SMS),彩信(MMS):是否发送或接受成功、发送或接受时间; 2GPRS Attach:Attach是否成功、Attach成功的时长PDP激活,PDP激活是否成功、激活成功的时长; 2WAP数据传输:WAP登陆测试;WAP登陆是否成功;WAP登陆成功时长; 2WAP刷新测试:WAP刷新是否成功;WAP刷新成功时长;

企业大数据采集、分析与管理系统设计报告(配图版)

企业大数据采集、分析与管理 系 统 设 计 报 告

目录 一、市场需求信息挖掘 (4) 1. 获取市场需求信息 (4) 2. 市场需求信息分析 (4) 二、工厂成本归集 (4) 1. 基于集成化系统的成本数据采集 (4) 2. 产品成本归集和核算 (5) 三、智能车间大数据采集、分析 (8) 1. 制造车间数据采集 (8) 2. 车间整体状态及计划执行情况分析 (11) 四、业务流程审批及进程监控 (11) 1. 业务流程管控 (12) 2. 采购、订单、物料管理与数据分析 (14) 3. 财务分析与统计 (16) 4. 需求、设计、工艺、制造各环节信息管理 (17) 5. 移动端APP (18) 五、质量信息管理与追溯 (18) 1. 质量信息管理 (18) 2. 供应商评价优选 (19) 六、无纸化OA系统及图档管理 (19) 1. 无纸化OA办公系统 (19) 2. 图纸及技术文档安全管理 (20)

企业大数据采集、分析与管理系统设计报告智能制造是制造业转型升级、向中高端制造业迈进的重要举措。离散制造型企业,其本身具有零件种类多、加工工序复杂、生产过程不确定因素众多、工厂透明度不高、部门间存在信息孤岛等特点。本系统从清晰的状态感知、实时数据分析与展示、决策精准执行与审批、全生命周期产品信息管理、无纸化OA及图档管理五大方面着手解决企业痛点,可以实现产品全生命周期生产过程管理、产品成本管理、信息共享管理和项目远程管理,帮助企业打造透明的、全过程可控的、高感知度的、高柔性的智慧工厂。

一、市场需求信息挖掘 1. 获取市场需求信息 市场需求信息能从多方面反映市场活动的方向,是企业指定经营战略、进行市场竞争的重要依据。本系统在每次客户发起询价时,会要求填写详细的需求信息。通过语义网(Semantic Web),对需求信息进行特征抽取和模糊聚类,进行分类存储,并构建适合企业自身的“市场需求指标库”。 2. 市场需求信息分析 将市场信息转化为企业决策,必须经过复杂的数据处理过程。对市场需求信息大数据聚类之后的各簇,建立统一的预测模型,通过时间序列模型、多元线性回归、最小二乘支持向量机等方法,对行业发展趋势做出预测,并将结果进行图表化展示。 二、工厂成本归集 1. 基于集成化系统的成本数据采集 功能:要素耗费的初次分配、生产成本的分配、辅助生产成本的分配、制造费用的分配。 随着信息化的发展,企业采用了基于集成化的成本数据采集方式如图所示,该采集方式将库存管理、财务管理、资源管理和质量管理等系统之间数据传递和采集,获取成本的相关信息。

重庆离散制造企业MES系统数据采集方式

MES系统就是信息化建设过程中必须的一个系统,是通过智能车间、智能工厂、智能制造三个层级实现的。其中智能车间和智能工厂属于术的层级,智能制造才属于道的层级。术无穷,道亦无尽;道尽,术亦可无穷,但较难有质的突破。道未尽,术无穷,一直持续下去,终究会有质的 突破。 重庆,对于这样一个地方来说,无疑是吸引着人们的,许多人生活、学习、工作在这里。当然这里的人也离不开会面临MES系统的选择问题。 不要被小编的慷慨陈词所打动了,和你们说好做彼此的天使,所以今天不选择套路你们。好了,言归正传,来看看小编送上的MES系统福利是否能打动你吧~ 根据离散制造企业中生产数据采集特点,其常用的数据采集方式包括DNC网卡采集方式、宏指令采集方式、PLC采集方式以及RIFT)采集方式。在实际应用过程中,需要结合实际企业的个体 情况,有选择地综合应用这些方式,以满足离散制造企业MES系统生产数据采集的各项原则。 DNC网卡方式 为了设备集中管理和控制的需要,—些大的数控系统厂商针对数控系统都开发有专用的DNC 接口,该接口许可利用外部计算机进行远程监控,采用基于TCP/IP协议的以太网传输%DNC网卡方式可以采集到设备各类带时标生产过程信息以及带时标的设备报警信息,包括当前程序名(零件 名称)、设备运行状态、故障报告、数控设备的开机时间、主轴运转时间、设备运行参数等。 实践过程中,值得注意的是,为了技术的独占和保密的需要,各家数控系统厂商对DNC接口的访问都设置了技术障碍,必须采用他们提供的接口开发工具包软件才能实现对数控系统内部数据的访问,或者是利用他们提供的用于自己系统的管理软件。而数控系统厂商往往不直接对一般软件厂家授权这些开发工具包,而只对机床厂家授权。因此,DNC网卡的采集方式在实施中往往受到数控系统品牌和版本的制约。

生产现场实时数据采集解决方案

生产现场实时数据采集解决方案 摘要:对于大部分制造企业,生产现场的不良品信息及相关的产量数据的实时数据采集是当前企业面临的一大难题,如何实现高效率、简洁、实时的数据采集,是当前制造业急需解决的问题。 现场数据采集仪产生背景 对于大部分制造业企业,测量仪器的自动数据采集一直是个令人烦恼的事情,即使仪器已经具有RS232/485等接口,但仍然在使用一边测量,一边手工记录到纸张,最后再输入到PC中处理的方式,不但工作繁重,同时也无法保证数据的准确性,常常管理人员得到的数据已经是滞后了一两天的数据;而对于现场的不良产品信息及相关的产量数据,如何实现高效率、简洁、实时的数据采集更是一大难题。 太友科技作为国内领先的精益生产解决方案供应商,针对生产现场的数据采集,正式推出国内首创的现场数据采集领先解决方案,从软、硬件方面帮助客户快速建立车间现场数据采集网络,实时获取车间现场的数据信息,为生产及决策提供实时的数据依据。 生产现场数据采集仪的主要功能 ?实时采集来自生产线的产量数据或是不良品的数量、或是生产线的故障类型(如停线、缺料、品质),并传输到数据库系统中; ?接收来自数据库的信息:如生产计划信息、物料信息等; ?传输检查工位的不良品名称及数量信息; ?连接检测仪器,实现检测仪器数字化,数据采集仪自动从测量仪器中获取测量数据,进行记录,分析计算,形成相应的各类图形,对测量结果进行自动判断,如在机械加工零部件的跳动测量,拉力计拉力曲线的绘制等;

数据采集仪的主要特点 ?配备RS232、RS485串口,可连接多个检测仪器实现自动数据采集; ?配备USB接口,方便数据的输出; ?配备RJ45接口,可通过网线接入网络; ?配备VGA视频输出及音频输出接口; ?内置WIFI模块,可通过无线方式接入,方便现场组网; ?最大支持32G数据存储空间; ?配备4.3英寸触摸屏,方便操作; ?用户可在网络中的任一PC通过接口获取数据,方便进行二次开发; ?配备4.3英寸触摸屏,方便操作; ?可移动测量,即时传输数据,也可测试完成后,通过网络上传数据; ?电源连续工作时间6小时,待机时间长达10天; 生产现场数据采集在品质过程中的非常重要的一个环节,好的数据采集方案可把品质管理人员从处理数据的繁重工作中解放出来,有更多的时间去解决实际的品质问题,同时即时的数据采集也使系统真正地实现实时监控,尽早发现问题,避免更大的损失。 另:现场自动数据采集软件

大数据可视化分析平台介绍

大数据可视化分析平台 一、背景与目标 基于邳州市电子政务建设得基础支撑环境,以基础信息资源库(人口库、法人库、宏观经济、地理库)为基础,建设融合业务展示系统,提供综合信息查询展示、信息简报呈现、数据分析、数据开放等资源服务应用。实现市府领导及相关委办得融合数据资源视角,实现数据信息资源融合服务与创新服务,通过系统达到及时了解本市发展得综合情况,及时掌握发展动态,为政策拟定提供依据。 充分运用云计算、大数据等信息技术,建设融合分析平台、展示平台,整合现有数据资源結合政务大数据得分析能力与业务编排展示能力,以人口、法人、地理人口与地理法人与地理实现基础展示与分析,融合公安、交通、工业、教育、旅游等重点行业得数据综合分析,为城市管理、产业升级、民生保障提供有效支撑。 二、政务大数据平台 1、数据采集与交换需求:通过对各个委办局得指定业务数据进行汇聚,将分散得数据进行物理集中与整合管理,为实现对数据得分析提供数据支撑。将为跨机构得各类业务系统之间得业务协同,提供统一与集中得数据交互共享服务。包括数据交换、共享与ETL等功能。 2、海量数据存储管理需求:大数据平台从各个委办局得业务系统里抽取得数据量巨大,数据类型繁杂,数据需要持久化得存储与访问。不论就是结构化数据、半结构化数据,还就是非结构化数据,经过数据存储引擎进行建模后,持久化保存在存储系统上。存储系统要具备髙可靠性、快速查询能力。 3、数据计算分析需求:包括海量数据得离线计算能力、髙效即席数

据查询需求与低时延得实时计算能力。随着数据量得不断增加, 需要数据平台具备线性扩展能力与强大得分析能力,支撑不断增长得数据量,满足未来政务各类业务工作得发展需要,确保业务系统得不间断且有效地工作。 4、数据关联集中需求:对集中存储在数据管理平台得数据,通过正确得技术手段将这些离散得数据进行数据关联,即:通过分析数据间得业务关系,建立关键数据之间得关联关系,将离散得数据串联起来形成能表达更多含义信息集合,以形成基础库、业务库、知识库等数据集。 5、应用开发需求:依靠集中数据集,快速开发创新应用,支撑实际分析业务需要。 6、大数据分析挖掘需求:通过对海量得政务业务大数据进行分析与挖掘,辅助政务决策,提供资源配置分析优化等辅助决策功能,促进民生得发展。

卷包车间生产过程数据采集与集控系统

卷包车间生产过程数据采集与集控系统 李新建 黄 亮 刘艳超 (武汉问道信息技术有限公司 湖北 武汉 430030) 摘 要: 介绍卷烟企业卷包车间生产过程数据采集与集控系统的总体框架和关键技术,结合烟草行业信息化的现状,对实施卷包车间生产过程数据采集与集控系统提出自己的观点和建议。 关键词: 卷包车间;数据采集与集控;OPC 中图分类号:TP311 文献标识码:A 文章编号:1671-7597(2012)1110089-02 对整个卷包生产过程的集中监控、调度指挥与统计分析,部署0 引言 在集控终端上;同时,以wonderware公司的SuiteVoyager为平卷包车间生产过程数据采集与集控系统是卷烟企业信息化台,实现WEB发布功能,部署在WEB服务器上。信息集成层基于总体建设的重要内容。卷烟企业信息化总体建设分为三层结厂内局域网,实现卷包生产数据的归档、上传和展示,实现车构,上层为ERP系统;中间层为MES系统;底层为自动化管控系间过程信息管理,实现与MES、物流等其他系统的集成。 统。自动化管控系统共包括制丝管控系统、卷包数采管控系 1.1 数据采集层 统、物流管控系统、动力能源管控系统四部分。 该层的生产设备是由各种不同类型的现场设备组成。数据卷包车间生产过程数据采集与集控系统是企业制造执行系采集层针对不同设备特点,量身定制出相应的数据采集策略,统(MES)的基础,是联系卷包底层自动化与MES系统的枢纽。实时采集各设备的生产、消耗、设备、质量等数据,并提供标系统通过对卷接包工序所有设备全面、实时、准确的数据采准化的数据通信接口(OPC DA2.0或以上通讯协议),以便I/O 集,通过其与底层自动化的有机集成,实现对卷包生产过程、Server以组态方式集中实现卷包车间所有设备现场数据的采集产品质量和设备运行状况的全过程、实时和有效的控制,提高与存储。设备接口层是卷包车间生产过程数据采集与集控系统管理部门与生产执行部门之间的协同工作能力,保证生产全过最重要和最基本的功能。其软件架构如下图所示。 程的协调运转,改善车间的生产管理水平,实现生产过程的快速反应与敏捷制造[7]。 1 系统总体框架 卷包车间生产过程数据采集与集控系统从软件架构上可以分为四个层次,分别是数据采集层、数据通信层、集中监控层、信息集成层。总体软件体系结构如下图所示: 1.2 数据通信层 现场数采站与数采服务器之间采用工业以太网连接,数据通信层实现现场数采站与数采服务器之间的双向数据交换。 1.3 集中监控层 集中监控层以数据采集为基础,以Wonderware的INTOUCH10.0为核心,配备IndustrialSQL Server(与MES系统共享)为历史数据库,以及SuiteVoyager2.6门户网站服务器,构建卷接包数据采集集控系统,分层次(工序、单元、机台)实时监控各工序/设备(车间、班组)的生产进度、生产的牌号、计划产量、当前产量;实时监控各生产设备运行状态、开停情况、故障次数、数据采集层通过原机控制终端或另配的数采站,实现各种设备现场数据的实时采集与本地监控。数据采集层可直接集成WEB应用功能(如现场管理、物流呼叫)。数据通信层实现现场数采站与数采服务器之间、现场数采站与集控系统之间的双向数据通信。部署在中控室数采服务器上。集中监控层通过部署在卷包中控室的软硬件设施,实时汇集各个机台的生产数据,实现车间管理人员对各个机台生产过程的集中监控功能。在本架构中,集中监控层是以INTOUCH组态软件为平台,实现 故障原因等运行情况;实时监控各生产环节加工质量及在线工艺控制水平,发现异常,及时报警;下达生产控制指令、指挥机台正确生产。 1.4 信息集成层 卷包车间生产过程数据采集与集控系统是企业信息化的一个重要组成部分,必须遵循企业信息化的总体规范和编码要求,实现与MES系统、制丝储丝、除尘风送、条烟输送、车间环境、物流、质检等系统的全面集成。 我采用先进成熟的技术手段,遵照国际通用的软硬件信息

数据采集与分析

审计数据采集与分析技术 计算机审计的含义 ?计算机审计有3层含义: –面向数据的审计 –面向现行信息系统的审计 –对信息系统生命周期的审计 面向数据的计算机审计流程 ?审前调查:电子数据的组织、处理和存储 ?数据采集:审计接口、数据库访问技术、数据采集技术 ?数据清理、转换、验证、建立中间表 ?数据分析:数据分析技术、SQL、审计软件 ?审计取证 一、审前调查及电子数据的组织、处理和存储 1.审前调查的内容和方法 ?对组织结构调查 ?对计算机信息系统的调查 ?提出数据需求 2.电子数据的组织、处理和存储 电子数据处理的特点 ?存储介质改变 ?基于一定的数据处理平台,有一定的数据模型 ?数据表示编码化(各种编码) ?带来系统控制和数据安全性的新问题 ?审计线索改变 如何表示数据 ?数据类型与数据取值 –数据类型决定了取值范围与运算范围 ?数据模型 –数据模型是对现实世界数据特征的抽象 –它提供模型化数据和信息的工具

数据模型的2个层次 ? ?概念模型 –E-R模型的要素 ?实体:客观存在并可以相互区分的事物,用方框表示 ?属性:实体的特征或性质,用椭圆表示 ?联系:实体之间的联系,用菱形表示 ?数据模型 –关系模型 –层次模型 –网状模型 数据模型的3个要素 ?数据结构 –描述模型的静态特征 –是刻画数据模型最重要的方面 ?数据操作 –描述模型的动态特性 ?数据检索 ?数据更新(增加、删除、修改) ?约束条件 –一组完整性规则的集合 ?实体完整性 ?引用(参照)完整性 ?用户定义的完整性 关系模型 ?关系模型是目前最常用的一种数据模型 ?关系数据库采用关系模型作为数据的组织方式 ?关系模型建立在严格的关系代数基础之上 ?关系模型概念单一,用关系表示实体以及实体之间的联系?关系数据库的标准语言SQL是一种非过程化语言,使用方便关系模型的数据结构 ?关系 –一张二维表,每一列都不可再分 –表中的行、列次序并不重要 ?元组 –二维表中的每一行,相当于一条记录 ?属性 –二维表中的每一列,属性有名称与类型。 –属性不可再分,不允许重复 ?主键 –由表中的属性或属性组组成,用于唯一确定一条记录?域

炼钢厂生产过程数据信息管理系统方案

炼钢厂生产工艺信息集成系统的开发与应用 技术方案 一、项目概述: 在转炉炼钢过程采用物流跟踪系统及PLC数据采集等技术,网络架构上采用三层体 系结构,开发出炼钢厂新区工艺信息集成系统,实现了炼钢生产工艺信息共享,使管理工作 有效地指挥生产活动。 二、炼钢信息系统的设计: 2.1 系统设计 建设生产工艺信息化系统,采取分步实施,首先建立各工作站,包括(1)调度中心(坐调)、(2)混铁炉、(3)上料、(4)转炉、(5)废钢、(6)合金、(7)钢包、(8)吹氩、(9)LF精炼、(10) 连铸机、(11)天车、(12)成分分析等工作站,系统尽量实现完全自动采集,尽量减少人工干预。数据采集范围包括物流数据、工艺参数、化验数据采集。第一阶段实现取消工艺卡的目标;第二阶段完成报表系统建立,实现工艺记录的计算机存档和统计报表的自动生成; 第三阶段在数据采集系统基础上建立和完善控制模型。 (1)铁水跨、加料跨物流信息系统: 建立铁包、废钢电子标签定位物流识别系统。 (2)炉后信息系统: 从转炉到精炼再到连铸机的钢包物流信息系统。 (3)完成PLC和仪表监控系统数据自动采集。 (4)工艺信息显示与管理系统: 模拟工艺卡片的功能,查询和显示自动采集的工艺信息,录入本工序的相关信息。 (5)生产历史数据查询分析系统。

2.2 功能设计 系统分三个层次: (1)数据的采集 数据的采集概括为下述3种方式: ①自动从PLC和仪表采集; ②自动从现有信息系统或数据库中采集; ③人工输入。 具体的数据采集时根据生产和工艺流程划分的,主要由以下10个环节采集:调度、混铁炉和铁水包、上料、转炉、转炉合金加入、LF精炼、铁水和钢水成分、吹氩精炼、钢包、铸机、天车、成分分析。 (2)信息的传递

生产制造数据采集控制系统 1.0

菲利科电子技术有限公司 工业物联网专业应用方案提供商 系统方案书 天津菲利科电子技术有限公司 V 1.0 应用技术部 生产制造车间 数据采集控制系统

重要声明: 版权 本技术方案书包含的所有内容均受版权法保护,未经天津菲利科电子技术有限公司书面授权,任何组织和个人不得对本说明书全部或部分内容进行改编复制或转载并用作商业用途。

一、 需求背景 通过MES的实施,可以消除企业计划层与现场控制层的信息鸿沟,而MES发挥真正作用的一个主要前提就是现场各种数据的实时采集,它强调是精确的实时数据。而现阶段的数据采集,大部分还是需要人工录入,无法保证数据的精确性与及时性,从而会对MES的实施产生影响,无法发挥其优势。因此,为保证数据的实时性与准确性,实现对数据的自动采集,就显得尤为重要。 二、 系统概述 通过菲利科“生产制造数据采集控制系统”可以采集作业车间内各传感器、PLC及智能仪表等作业数据,并将采集数据存储于控制中心数据库,而MES系统可以直接调取数据库数据,从而实现数据的无缝对接。通过本系统,可大大减轻客户工作的复杂度,省时省力,方便后续设备的扩充管理等工作。 因工厂车间内需监控的设备间距离较近,并且车间附近一般布有网线,因此,硬件设备方面采用ZigBee近程采集控制设备与以太网相关设备进行配合,软件方面采用菲利科专利产品——物联网数据通道引擎及相关客户端软件实现数据显示、监测及设备控制、报警及任务发布等功能。 三、 解决方案 本方案通过“无线ModBus智能采集控制终端”可以采集PLC、智能仪表数据。通过“ZigBee 智能采集控制终端”可以采集与设备相连的传感器(如温度传感器等)数据,并可进行继电器输出控制。通过“ZigBee-以太网集中网关”可接收“无线ModBus智能采集控制终端”与“ZigBee智能采集控制终端”所采集的数据,并通过以太网传输至控制中心;同时,可以接收控制中心指令,发送给采集设备,对现场设备实现远程智能控制。通过“智能人机交互终端”可以发布作业任务、图纸等;同时,还可以采集传感器、PLC、智能仪表的数据,并可通过以太网传输至数据中心。

关于数据采集技术的内容

关键词:声卡数据采集MATLAB 信号处理 论文摘要:利用数据采集卡构建的数据采集系统一般价格昂贵且难以与实际需求完全匹配。声卡作为数据采集卡具有价格低廉、开发容易和系统灵活等优点。本文详细介绍了系统的开发背景,软件结构和特点,系统地分析了数据采集硬件和软件设计技术,在此基础上以声卡为数据采集卡,以MATLAB为开发平台设计了数据采集与分析系统。 本文介绍了MATLAB及其数据采集工具箱, 利用声卡的A/ D、D/ A 技术和MATLAB 的方便编程及可视化功能,提出了一种基于声卡的数据采集与分析方案,该方案具有实现简单、性价比和灵活度高的优点。用MATLAB 语言编制了相应软件,实现了该系统。该软件有着简洁的人机交互工作界面,操作方便,并且可以根据用户的需求进行功能扩充。最后给出了应用该系统采集数据的应用实例。 1绪论 1.1 课题背景 数据也称观测值,是实验、测量、观察、调查等的结果,常以数量的形式给出。数据采集,又称数据获取,就是将系统需要管理的所有对象的原始数据收集、归类、整理、录入到系统当中去。数据采集是机管理系统使用前的一个数据初始化过程。数据采集技术广泛引用在各个领域。比如摄像头,麦克风,都是数据采集工具。 数据采集(Data Acquisition)是将被测对象(外部世界、现场)的各种参量(可以是物理量,也可以是化学量、生物量等)通过各种传感元件作

适当转换后,再经信号调理、采样、量化、编码、传输等步骤,最后送到控制器进行数据处理或存储记录的过程。 被采集数据是已被转换为电讯号的各种物理量,如温度、水位、风速、压力等,可以是模拟量,也可以是数字量。采集一般是采样方式,即隔一定时间(称采样周期)对同一点数据重复采集。采集的数据大多是瞬时值,也可是某段时间内的一个特征值。准确的数据测量是数据采集的基础。数据测量方法有接触式和非接触式,检测元件多种多样。不论哪种方法和元件,都以不影响被测对象状态和测量环境为前提,以保证数据的正确性。数据采集含义很广,包括对连续物理量的采集。在计算机辅助制图、测图、设计中,对图形或图像数字化过程也可称为数据采集,此时被采集的是几何量数据。 在智能仪器、信号处理以及自动控制等领域,都存在着数据的测量与控制问题,常常需要对外部的温度、压力、流量、位移等模拟量进行采集。数据采集技术是一种流行且实用的技术。它广泛应用于信号检测、信号处理、仪器仪表等领域。近年来,随着数字化技术的不断,数据采集技术也呈现出速度更高、通道更多、数据量更大的发展态势。 数据采集系统是一种应用极为广泛的模拟量测量设备,其基本任务是把信号送入计算机或相应的信号处理系统,根据不同的需要进行相应的计算和处理。它将模拟量采集、转换成数字量后,再经过计算机处理得出所需的数据。同时,还可以用计算机将得到的数据进行储存、显示和打印,以实现对某些物理量的监视,其中一部分数据还将被用作生产过程中的反馈控制量。

数据采集系统在卷烟生产中的应用

数据采集系统在卷烟生产中的应用 随着市场经济的不断发展与完善,企业的管理工作也由原来的粗放型管理改进为细化管理。以前主要关心企业的销量与产量,但是随着烟草企业集团化的进程不断加快,集团企业越来越关心每个生产现场的投入与产出,节能与降耗,增产与增收。同时企业的信息化建设也取得了长足的发展,不仅在行政管理上大量采用信息化管理,而且在很多生产现场也采用了大量先进的信息技术,在一定程度上来说,烟草企业的信息化建设比其它行业的信息化建设要走在前列。并且企业投入的信息成本也在逐步转化为生产力,为企业创收做出了巨大的贡献。 生产车间数据采集系统是在信息化大力发展的基础上 引入的,数据采集系统为车间管理人员及时了解生产现场的生产情况提供了强有力的支持,对现场发生的生产事件提供最快的数据反馈,为及时解决问题提供了良好的支持。生产数据采集系统具备如下两方面的功能: 全面反映生产过程中的情况 为MIS/MES系统生产调度提供基础数据一、数据采集系统的发展史 数据采集系统既对生产过程中的各种实时数据进行检测、统计,汇总分析后形成资料反过来规范生产,改进过程

控制,提高生产和设备管理水平,为企业发展的战略决策提供资料依据。数据采集系统在烟草行业内的应用起源于1990年,起初只是在生产机台上加装或利用检测器检测信号,对信号通过计算机处理,统计出机台的产量、各项原辅材料消耗和设备的简单运行状况,上传到服务器,当时系统只具有简单的数据采集、统计功能。随着时间的推移和科技的进步,数据采集系统逐渐升级改进,功能也日趋完善和强大,到目前为止系统已发展成由三级网络组成,能够对资料分级处理,智能性分析,对生产、设备管理和企业战略决策起到更重要的指导作用,数据采集系统已成为现代企业管理的一个重要环节。二、数据采集系统的发展现状 数据采集系统在近十年得以高速发展,已逐渐发展为由单纯的统计数据到利用程序对数据进行智能性分析的转变,其三级网络分布如下图:下位单板机把采集或收集到的信号计算处理后送给机台计算机,机台计算机通过CAN网 以轮询的方式把信息交给服务器,服务器把收到的信息进行综合处理然后进行上传和下传,下传各机台产量、消耗、报表等公开信息和通知,上传各种报表数据到相关的职能部门。机台的原辅材料发放请求信息则通过小车送辅料系统和高 架仓库管理系统进行响应。三、数据采集系统在生产中的 功能 卷接车间数据采集系统一般可分为以下几个子系统:

数据采集系统

湖南工业大学科技学院 毕业设计(论文)开题报告 (2012届) 教学部:机电信息工程教学部 专业:电子信息工程 学生姓名:肖红杰 班级: 0801 学号 0812140106 指导教师姓名:杨韬仪职称讲师 2011年12 月10 日

题目:基于单片机的数据采集系统的控制器设计 1.结合课题任务情况,查阅文献资料,撰写1500~2000字左右的文献综述。 近年来,数据采集及其应用技术受到人们越来越广泛的关注,数据采集系统在各行各业也迅速的得到应用。如在冶金、化工、医学、和电器性能测试等许多场合需要同时对多通道的模拟信号进行采集、预处理、暂存和向上位机传送、再由上位机进行数据分析和处理,信号波形显示、自动报表生成等处理,这些都需要数据采集系统来完成。但很多数据采集系统存在功能单一、采集通道少、采集速率低、操作复杂、并且对操作环境要求高等问题。人们需要一种应用范围广、性价比高的数据采集系统,基于单片机的数据采集系统具有实现处理功能强大、处理速度快、显示直观,性价比高、应用广泛等特点,可广泛应用于工业控制、仪器、仪表、机电一体化,智能家居等诸多领域。总之,无论在那个应用领域中,数据采集与处理越及时,工作效率就超高,取得的经济效益就越大。 数据采集系统的任务,就是采集传感器输出的模拟信号转换成计算机能识别的信号,并送入计算机,然后将计算得到的数据进行显示或打印,以便实现对某些物理量的监测,其中一些数据还将被生产过程中的计算机控制系统用来控制某些物理量。 数据采集系统的市场需求量大,特别是随着技术的发展,可用数据器为核心构成一个小系统,而目前国内生产的主要是数据采集卡,存在无显示功能、无记忆存储功能等问题,其应用有很大的局限性,所以开发高性能的,具有存储功能的数据采集产品具有很大的市场前景。 随着电子技术的迅速发展,,一些高性能的电子芯片不断推出,为我们进行电子系统设计提供的更多的选择和更多的方便,单片机具有体积小、低功耗、使用方便、处理精度高、性价比高等优点,这些都使得越来越广泛的选用单片机作为数据采集系统的核心处理器。一些高性能的A/D转换芯片的出现也为数据采集系统的设计提供了更多的方便,无论是采集精度还是采样速度都比以前有了较大的提高。其中一些知名的大公司如MAXIM公司、TI公司、ADI公司都有推出性能比效突出的 A/D转换芯片,这些芯片普通具有低功耗、小尺寸的特点,有些芯片还具有多通道的同步转换功能。这些芯片的出现,不仅因为芯片价格便宜,能够降低系统设计的成本,而且可以取代以前繁琐的设计方法,提高系统的集成度。 数据采集器是目前工业控制中应用较多的一类产品,数据采集器的研制已经相当成熟,而且数据采集器的各类不断增多,性能越来越好,功能也越来越强大。 在国外,数据采集器已发展的相当成熟,无论是在工业领域,还是在生活中的应用,比如美国FLUKE公司的262XA系列数据采集器是一种小型、便携、操作简单、使用灵活的数据采集器,它既可单独使用又可和计算机连接使用,它具有多种测量

城市供水生产过程实时数据采集与监控系统

城市供水生产过程实时数据采集与监控系统(SCADA) 系统概述——中国系统集成在线 在我国经济建设飞速发展的今天,综合国力一天一天增强,随着WTO的加入,标志着我国各行各业必须以最快的速度与国际接轨。对我国中小城市自来水公司而言,采用现代电子信息技术及综合自动化技术来改造生产各个部门和进行企业管理是极其重要的,这是改变目前我国中小城市自来水企业被动局面的最有效的办法之一。 就城市自来水公司而言,其企业特点是:分布式、集散型、网络化、全开放。为了安全、稳定、可靠地管理好遍布全城的供气和供水管网,一定要有一个满足其企业特点的、现代化的、先进的企业综合自动化系统(SAS)。 建设意义 随着社会经济的发展,水对人民生活与生产的影响日益加强,对供水的质量与安全可靠性的要求不断提高,人们也更加重视降低供水系统的能耗,为此,一项重要而有效的措施就是加强供水系统工况的监测,尤其是加强水处理厂各个工艺环节的自动监测与控制。 建设水厂在线监测仪表具有如下意义: l 监控水厂生产过程中水质指标,调整生产工艺及加药投料,以便能够使水质能达到规范要求。 l 实现生产自动化控制,节约人力资源。 l 节约生产成本。 建设目的 为及时准确地掌握和了解整个工艺流程运行情况,自动监测和控制各个生产环节,本次设计在工艺流程关键部位上配置了在线式检测仪表,并通过二级分布式计算机集散测控管理系统对全厂实行现代化管理,以达到科学、安全、经济、合理的运行目标。 功能特点 自来水SCADA系统可实现以下主要功能: 1)遥测 根据系统设定参数,遥测水厂和不同站点RTU的监测数据(特别是管网压力监测数据),形成系统运行历史数据库。 2)遥控 控制各水厂内污水泵房、反应沉淀池、滤池、送水泵房的设备运行。 3)报警 监测数据量的上、下限报警,报警记录。 4)参数输入及组态 输入系统参数,如巡检周期、控制参数、报警限、计算公式、系统时间等,并对这些参数进行组态,以形成完整的系统操作、控制、统计、显示、打印参数数据库。整个系统以此数据库为基础运行。 5)自动巡检 自动巡检各水厂和测压站及其它站点数据及生产设备工作情况。 6)手动采集 手动巡检各水厂和测压站及其它站点数据及生产设备工作情况。 7)数据统计 能实现对自来水公司的总用水量、总供水量等数据信息的统计,生成报表。

浅谈生产数据采集系统(MES)的应用

浅谈生产数据采集系统(MES)的应用 引言 云铜股份公司熔炼分厂等主要生产部门,采用了大量DCS和PLC控制系统。但是,这些控制系统由多家厂商提供,相互独立且信息各自封闭,造成在实现了生产自动化的同时却不能共享数据,各工区、分厂和部门的生产信息无法及时交流,极大地阻碍了企业生产信息化的建设进程。实现生产管理信息的现场采集,实时存储,统一管理,科学的统计分析是目前分厂乃至全公司生产信息化建设的迫切需要。生产数据采集系统((MES)在整个企业信息集成系统中承上启下(上承ERP/MIS系统,下接DCS等现场控制系统),是生产活动与管理活动信息沟通的桥梁。本文以公司艾萨炉及艾萨余热锅炉DCS系统为重点,探讨了公司一期工程生产数据采集系统MES(Manufacturing Execution System)建设的必要性、规划及拟实施的方案,同时也充分地考虑到系统远期规划的可实施性。 1 系统的组成 1.1 生产自动化系统 公司以艾萨炉工程为核心的火法系统改造已基本完成,作为艾萨火法冶炼系统主体的熔炼分厂集中了包括艾萨炉DCS控制系统、艾萨余热锅炉DCS系统、贫化电炉DCS系统、备料DCS系统、转炉中压锅炉DCS系统和余热汽化DCS系统在内的6套DCS系统和多套PLC系统。其中艾萨及艾萨锅炉系统2个均属于DELTA V系统同型号,电炉和备料系统同属于北京和利时公司但型号不同,转炉中压及余热汽化系统同属于浙大中控公司但型号也不同,而多套PLC系统有3套是西门子S7-300、几套三菱、施奈德和欧姆龙等系统。这些控制系统的投人,保障了生产安全平稳运行,尤其是艾萨DCS系统,作为艾萨炉的控制核心,发挥了重要作用。它的安全可靠运行保障了云铜艾萨炉实现第一炉期炉寿世界第一的目标。但是,由于该系统当时也没有考虑连网,让生产数据能够实现共享。而其他几个系统也同样如此,各系统间未能进行信息的通信,阻碍了信息和生产数据的共享。 1.2 办公自动化系统 目前熔炼分厂计算机使用比较普及,但是由于各计算机之间没有互连,数据交换、信息共享没有实现。在现有的基础上,将其组建成办公自动化系统,配上相关的应用软件,便能够轻松实现办公系统的自动化,大大提高工作效率。 1.3 系统功能设计 数据采集系统作为整个分厂生产管理信息化建设的基础,需要完成所有具备数据采集条件的生产自动化控制系统生产信息的完整采集。由于目前采用了多种DCS系统和PLC系统,数据采集的模式和实现的手段有所不同,分厂对每一个生产控制系统都配置了现场数据采集工作站,分别针对不同的DCS和PLC系统采取相应的通讯模式实现数据采集功能。同时,现场数据采集工作站还将具备生产监控和一部分生产信息的管理功能。

大数据分析的流程浅析之一:大数据采集过程分析

大数据分析的流程浅析之一:大数据采集过程分析 数据采集,就是使用某种技术或手段,将数据收集起来并存储在某种设备上,这种设备可以是磁盘或磁带。区别于普通的数据分析,大数据分析的数据采集在数据收集和存储技术上都是不同的。具体情况如下: 1.大数据收集过程 在收集阶段,大数据分析在时空两个方面都有显著的不同。在时间维度上,为了获取更多的数据,大数据收集的时间频度大一些,有时也叫数据采集的深度。在空间维度上,为了获取更准确的数据,数据采集点设置得会更密一些。 以收集一个面积为100 平方米的葡萄园的平均温度 为例。小数据时代,由于成 本的原因,葡萄园主只能在 葡萄园的中央设置一个温度 计用来计算温度,而且每一 小时观测一次,这样一天就 只有24个数据。而在大数据 时代,在空间维度上,可以 设置100个温度计,即每个 1平方米一个温度计;在时间维度上,每隔1分钟就观测一次,这

样一天就有144000个数据,是原来的6000倍。 有了大量的数据,我们就可以更准确地知道葡萄园的平均温度,如果加上时间刻度的话,还可以得出一个时间序列的曲线,结果看起来使人很神往。 2.大数据的存储技术 通过增加数据采集的深度和广度,数据量越来越大,数据存储问题就凸现。原来1TB的数据,可以使用一块硬盘就可以实现数据的存储,而现在变成了6000TB,也就是需要6000块硬盘来存放数据,而且这个数据是每天都是增加的。这个时候计算机技术中的分布式计算开始发挥优势,它可以将6000台甚至更多的计算机组合在一起,让它们的硬盘组合成一块巨大的硬盘,这样人们就不用再害怕大数据了,大数据再大,增加计算机就可以了。实现分布式计算的软件有很多,名气最大的,目前市场上应用最广的,就是hadoop技术了,更精确地说应该是叫hadoop框架。 hadoop框架由多种功能性软件组成,其自身只是搭建一个和操作系统打交道的平台。其中最核心的软件有两个,一个是hdfs分布式文件系统,另一个是mapreduce分布式计算。hdfs分布式文件系统完成的功能就是将6000台计算机组合在一起,使它们的硬盘组合成一块巨大的硬盘,至于数据如何在硬盘上存放和读取,这件事由hadoop和hdfs共同完成,不用我们操心,这就如我们在使用一台计算机时只管往硬盘上存放数据,而数据存放在硬盘上的哪个磁道,我们是不用关心的。

服务行业数据采集分析系统介绍

内部文档 服务行业数据采集分析系统介绍 一、客户及项目背景 爱玛客始于1998年,是一家国际领先的专业服务公司,为医疗机构、各类院校、运动和娱乐场所以及商务中心,提供备受赞誉的配餐服务、项目管理服务、以及制服和职业装服务。总部位于美国费城,全球大约有255,000名员工,在22个国家开展其业务。 其中爱玛客中国已经在北京, 天津, 上海, 苏州, 宁波, 徐州, 广州, 中山, 惠州, 福州, 厦门, 泉州, 成都, 西安, 等30多个城市为近250家医院, 工厂, 学校, 政府及商业写字楼提供包括环境保洁, 病人运送, 保安, 设备运行与维护, 洗衣及用品发放, 绿地维护, 配餐等在内的综合服务,聘用员工超过15,000人。 由于各方面业务的高速发展,集团在财务和供应链管理中,需要及时、有效、准确、便捷的对数据进行采集更新。为了保证相关管理工作的正常运转,确保数据的及时准确性,公司需要建立一套完善的数据处理系统实现对财务状况、供应商信息、产品、价格、库存量等进行采集与维护管理,系统简称ART。 二、系统要解决的问题 1.报表数据来源多、制作耗时费力 2.报表发放模式陈旧、效率低下 3.应用系统(Oracle财务、MEC、SCM等)的丰富数据未加以充分利用 三、系统建设要求 爱玛客公司基础业务数据库位于全球多个地区,系统要求按时、按规则,对基础数据库进行数据抽取,形成中间数据仓库。 基于数据仓库,完成数据的查询、分析、展现、打印、导出等,并根据业务需求的变化对财务及供应链科目进行增加、删除等维护。 按照业务要求进行流程封装,通过可配置的界面进行调度任务设定,完成定时自动将数据结果通过邮件方式发送给指定收件人。 四、业务及操作流程 系统管理员对系统机构用户、业务角色、数据及目录资源权限进行管理与维护,并按实际业务要求进行权限分配、调度任务设定等。 业务人员(财务、供应链相关)凭借ID和密码登录系统,制作并查看相关报表,可进行导出、打印等操作。同时,可根据业务调整要求进行相关科目的管理维护。 主管及部门领导,按时接收到由系统推送到邮箱的数据报表,掌握业务情况,及时发现和改正相关问题。 五、系统特色功能 数据抽取 数据ETL是基于调度器模块定时运行数据脚本,脚本中有若干任务的动作,用来从基础业务数据库中进行相关数据抽取,并把抽取的数据加密转换,最后装载到目标数据库,形成

实时数据采集系统方案设计

实时数据采集系统项目解决方案

目录 1、背景 (3) 1. 1、引言 (3) 1.2、项目目标 (3) 2、应用系统体系结构 (4) 2.1、实时数据采集系统的原理构架 (3) 3、实时数据采集系统的主要功能….. ..................................................... .4 4、实时数据采集系统主要技术特征 (5) 4.1、数据传输方面 (5) 4.2、数据存储方面 (5) 4.3、历史数据 (5) 4.4、图形仿真技术 (5) 5、实时数据采集系统性能特征 (6)

5.1、数据具有实时性 (6) 5.2、数据具有稳定性 (6) 5.3、数据具有准确性 (6) 5.4、数据具有开放性 (6) 6、DCS及实时数据采集机连接说明 (7) 7、系统运行环境说明 (9) 7.1系统网络环境说 明 (8) 7.2硬件环境说 明 (8)

1、背景 1. 1、引言 随着国家大力推进走新型工业化道路,以信息化带动工业化,以工业化促进信息化。电力企业面临着日趋激烈的竞争。降低成本,提高生产效率,快速响应市场,是电力企业不断追求的目标。要实现上述目标,必须把企业经营生产中的各个环节,包括市场分析、经营决策、计划调度、过程监控、销售服务、资源管理等全部生产经营活动综合为一个有机的整体,实现综合信息集成,使企业在经营过程中保持柔性,因此,建立全厂统一的生产实时数据平台,就成了流程企业今后生产信息化的关键。 1.2、项目目标 “实时数据采集系统”是为生产过程进行实时综合优化服务信息系统提供数据基础。 企业信息化建设的关键问题是集成,即在获取生产流程所需全部信息的基础上,将分散的控制系统、生产调度系统和管理决策系统有机地 集成起来,不同业务和系统间能够实时的交换和共享数据。 ?建立统一的企业数据模型。 ?解决分期建设的不同应用系统、不同电厂之间彼此隔离、互不匹配、 互不共享的“信息孤岛”问题。 ?保证数据来源一致性,提高数据经过层层抽取之后的可信度。 ?汇总、分析和展示企业历史的业务数据。

上海MES生产数据采集的四大方式

随着公司高速发展,原有的计算机系统的模块功能比较少,系统漏洞多,已不适应公司设备 管理的需求。为了提升设备管理水平,加强企业运营管理,应当全面引入MES系统以提升设备管理 水平。 上海,在这座城市的背后同时也生活着许多辛勤工作的人们,他们通常十分繁忙,朝九晚五。 并没有太多时间来关注MES系统,所以需要机构的协助。 市面上大大小小的MES系统企业比较多,到底哪个是比较适合我们的呢?在这里小编给你推 荐的是:深圳市华磊迅拓科技有限公司。其适用范围大,实用性强,是大多数人的理想选择。 生产数据采集是MES系统业务进行的根本,也是MES系统进行统计分析的基础。MES应用中 根据不同的数据、应用场景、人员能力、设备投入等方面的因素需要采用不同的数据收集方式,选 择不同的生产数据收集设备。根据各类生产数据的分类,采用不同的数据采集方式。 1、必须录入的数据 必须录入的数据指系统必须直接从外部获得的数据。系统可以通过规格基础定义功能以及过 程数据基础定义功能完全的自行建立属于企业自己的生产数据采集项目库。例如产品的编码、产品 流程、工序名称、工艺条件目标等。 2、系统自动生成的生产数据 生产过程中的部分由事件触发的数据可以由系统在过程中自动收集,主要包括:工序开始操作 的时间、结束时间、设备状态等。这一类的数据,可由时间触发之后,根据原本设定的基础数据 ,由系统自动收集。 3、通过条码采集的方式 1

3、通过条码采集的方式 通过条码收集制造数据的方式是最为普遍的方式之一。条码收集数据的前提是信息可以以编码 的方式表达或与预设的数据通过编码建立对应关系。条码方式可收集的生产数据主要包括:产品 批号、物料批号、加工资源编号、运输资源编号、人员编号、异常类别、异常现象、设备状态( 维修、保养、故障停机等)、作业开始、作业结束等。条码可以提高数据录入的准确性,提高录入 速度,且成本较低。因此,建议尽可能的将数据进行分类然后编码处理,转化成条码的方式表达 以便于现场的生产数据采集。 4、采集设备数据的方式 如果企业需要管控到设备,随时监控设备的运行状态和设施,可以采用以下几种方式:DNC 网卡方式、宏指令方式、PLC采集方式,同时也有部分数据可以通过条码采集的方式完成预期目标 ,关键看企业需求是否有需要而选择不同的方式。 实时、准确的生产数据采集并实现是MES系统得以成功的重要基础,企业MES系统建设中应 该充分考虑其数据采集的特点,在采集过程中,根据完整性、实时性原则、多种采集技术综合 应用、人机结合原则、易于集成应用原则,运用多种数据采集方式,并利用计算机、数据网络语通 信设备、各种技术标准和实时历史数据库软件的有机组合来实现生产数据的集成应用。 深圳市华磊迅拓科技有限公司(OrBit Systems Inc.)是国家级高新技术企业以及双软企业,同时 是中国成长性的制造执行系统(MES)解决方案供应商,公司位于中国高新科技发展前沿深圳市,总 部座落于高新区国家级软件园内,拥有平台级企业信息化产品研发力量以及专家级顾问资源,我们 充分了解制造业的需求,从1999年开始,致力于为中国企业提供优秀的MES制造制造系统及配套 服务,WES仓库执行系统、SCADA数据采集监控系统、EAM企业资产管理系统、SPC统计过程 控制系统等。 看完这些pad数据采集是什么意思,是不是有了更多的了解呢?查询更多数据采集方式相关 内容,欢迎关注我们哦! 2

相关主题