搜档网
当前位置:搜档网 › 基恩士光纤布拉格光栅传感器的工作原理

基恩士光纤布拉格光栅传感器的工作原理

基恩士光纤布拉格光栅传感器的工作原理

KEYENCE光纤传感器的另外一个大类是利用光纤的传感器。其结构大致如下:传感器位于光纤端部,光纤只是光的传输线,将被测量的物理量变换成为光的振幅,相位或者振幅的变化。在这种传感器系统中,传统的传感器和光纤相结合。光纤的导入使得实现探针化的遥测提供了可能性。这种光纤传输的传感器适用范围广,使用简便,但是精度比第一类传感器稍低。

KEYENCE光纤在传感器家族中是后起之秀,它凭借着光纤的优异性能而得到广泛的应用,是在生产实践中值得注意的一种传感器。

KEYENCE光纤传感器凭借着其大量的优点已经成为传感器家族的后起之秀,并且在各种不同的测量中发挥着自己独到的作用,成为传感器家族中不可缺少的一员。

KEYENCE光纤传感器的基本工作原理是将来自光源的光经过光纤送入调制器,使待测参数与进入调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位、偏正态等)发生变化,称为被调制的信号光,在经过光纤送入光探测器,经解调后,获得被测参数。

艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。

如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城。https://www.sodocs.net/doc/e312063901.html,/

光纤光栅温度传感器 报告

波长调制型光纤温度传感器《光纤传感测试技术》 课程作业报告 提交时间:2011年10月27 日

1 研究背景 (执笔人: ) 被测场或参量与敏感光纤相互作用,引起光纤中传输光的波长改变,进而通过测量光波长的变化来确定北侧参量的传感方法即为波长调制型光纤传感器。 光纤光栅传感器是一种典型的波长调制型光纤传感器。基于光纤光栅的传感过程是通过外界参量对布拉格中心波长B λ的调制来获取传感信息,其数学表达式为: 2B eff n λ=Λ 式中:eff n 为纤芯的有效折射率;Λ是光栅周期。 这是一种波长调制型光纤温度传感器,它具有一下明显优势: (1)抗干扰能力强。由于光纤传感器是利用光波传输信息,而光纤又是电绝缘、耐腐蚀的传输介质,因而不怕强电磁干扰,也不影响外界的电磁场,并且安全可靠。这使它在各种大型机电、石油化工、冶金高压、强电磁干扰、易燃、易爆、强腐蚀环境中能方便而有效地传感,具有很高的可靠性和稳定性。 (2)传感探头结构简单,体积小,重量轻,外形可变,适合埋入大型结构中测量结构内部的应力 、应变及结构损伤,稳定性、重复性好,适用于许多应用场合,尤其是智能材料和结构。 (3)测量结果具有良好的重复性。 (4)便于构成各种形式的光纤传感网络。 (5)可用于外界参量的绝对测量。 (6)光栅的写入技术已经较为成熟,便于形成规模生产。 (7)轻巧柔软,可以在一根光纤中写入多个光栅,构成传感阵列,与波分复用和时分复用系统相结合,实现分布式传感。 由于以上优点,光纤光栅传感器在大型土木工程结构、航空航天等领域的健康检测以及能源化工等领域得到了广泛的应用。但是它也存在一些不足之处。因为光纤光栅传感的关键技术在于对波长漂移的检测,而目前对波长漂移的检测需要用较复杂的技术和较昂贵的仪器或光纤器件,需大功率的宽带光源或可调谐光源,其检测的分辨率和动态范围也受到一定的限制等。 光纤布拉格光栅无疑是一种优秀的光纤传感器,尤其在测量应力和应变的场合,具有其它一些传感器无法比拟的优点,被认为是智能结构中最有希望集成在材料内部,作为检测材

取样光纤布拉格光栅特性的研究_肖永良

第32卷 第4期光电工程V ol.32, No.4 2005年4月 Opto-Electronic Engineering April, 2005文章编号:1003-501X (2005) 04-0053-03 取样光纤布拉格光栅特性的研究 肖永良1,秦子雄1,曾庆科1,韦芙芽2 ( 1. 广西师范大学物理与信息工程学院,广西桂林 541004; 2. 南昌航空工业学院电子系,江西南昌 330034 ) 摘要:用传输矩阵法从理论上计算了取样光纤布拉格光栅的反射谱特性。这种方法将光栅视为多 层均匀薄膜的叠加,利用每一层的传输矩阵相乘获得了光栅的反射谱特性。研究表明,随着光栅长度的增加和采样率、折射率调制深度的减少,反射峰的均匀性得到了改善,旁瓣的反射率变小,带宽明显变窄,而反射峰间隔保持不变。反射峰的间隔由光栅周期决定,与采样率无关,而某些文献则要求采样率小于10%。这与频谱分析所得结论相吻合。 关键词:光纤光栅;取样光纤布拉格光栅;反射谱;传输矩阵 中图分类号:TN253 文献标识码:A Study on properties of sampled fiber Bragg grating XIAO Yong-liang1, QIN Zi-xiong1, ZENG Qing-ke1, WEI Fu-ya2 (1. College of Physics and Information Engineering, Guangxi Normal University, Guilin 541004, China; 2.Department of Electronics, Nanchang Institute of Aeronautical Technology, Nanchang 330034, China ) Abstract:Reflective spectral properties of sampled fiber Bragg grating is theoretically calculated by transfer matrix method. With this method, the grating is regarded as the overlapping of multi-layer uniform thin film and the reflective spectral properties of the grating are calculated by multiplying transfer matrix of each layer. The study shows that with the increase of grating length and the decrease of sampling rate and refractive index modulation depth, the uniformity of reflective peak will be improved, the reflectance of the side lobes will decrease slightly and the band width will be obviously narrowed but the interval between two reflective peaks is maintained constant. The interval between reflective peaks is determined by grating period and is independent of sampling rate. Some references require that the sampling rate must be less than 10%. This is consistent with the conclusion obtained from spectrum analysis. Key words: Optical fiber grating;Sampled fiber Bragg grating;Reflective spectrum;Transmission matrix 引言 光纤光栅具有插入损耗低、对偏振不敏感、与普通光纤接续简便、光谱响应特性动态可控以及结构紧凑、易于集成等特点。取样光纤光栅除有一般光纤光栅的优点之外,它的反射谱响应还具有通道多、通道间隔稳定、通带窄的独特特性,在现代大容量高速率波分复用光纤通信网中有着广阔的应用前景。由取样光栅构成的新型光子学器件有:多波长激光器、信道交错器、波分复用/解复用器和多信道色散补偿器等[1-4]。分析光纤光栅可以用傅立叶变换法和耦合模理论[5]。前者物理意义直观,但难于求解;后者采用数值法解 收稿日期:2004-08-05;收到修改稿日期:2004-12-19 基金项目:广西科学基金(桂科回0448011);广西高校百名中青年学科带头人资助计划;广西师范大学校重点基金 作者简介:肖永良(1978-),男(汉族),湖南双峰人,硕士生,从事光纤通信器件与传感器方面的研究。E-mail: xylroc@https://www.sodocs.net/doc/e312063901.html,

光纤布拉格光栅(FBG)的光学传感技术

光纤布拉格光栅(FBG)的光学传感技术 电子传感器数十年来一直作为测量物理与机械现象的标准机制。尽管具有普遍性,却因为种种限制,在许多应用中显得缺乏安全、不切实际或无法使用。基于光纤布拉格光栅(FBG)的光学传感技术,利用“光”作为介质取代“电”,使用标准光纤替代铜线,从而克服种种的挑战:由于光纤不导电且电气无源的良好特性,可以消除由电磁干扰(EMI)引起的噪声影响,并且能在少量损耗乃至不损耗信号完整性的前提下远距离传输数据。此外,多个FBG传感器可沿一根光纤通过菊花链(daisy chain)方式连接,极大减少了测量系统的尺寸、重量和复杂性。 1.FBG 光学传感器基础 1.1概述 近几十年以来,电气传感器一直作为测量物理与机械现象的标准设备发挥着它的作用。尽管它们在测试测量中无处不在,但作为电气化的设备,他们有着与生俱来的缺陷,例如信号传输过程中的损耗,容易受电磁噪声的干扰等等。这些缺陷会造成在一些特殊的应用场合中,电气传感器的使用变得相当具有挑战性,甚至完全不适用。光纤光学传感器就是针对这些应用挑战极好的解决方法,使用光束代替电流,而使用标准光纤代替铜线作为传输介质。 在过去的二十年中,光电子学的发展以及光纤通信行业中大量的革新极大地降低了光学器件的价格,提高了质量。通过调整光学器件行业的经济规模,光纤传感器和光纤仪器已经从实验室试验研究阶段扩展到了现场实际应用场合,比如建筑结构健康监测应用等。 1.2光纤传感器简介 从基本原理来看,光纤传感器会根据所测试的外部环境参数的变化来改变其传播的光波的一个或几个属性,比如强度、相位、偏振状态以及频率等。非固有型 (混合型) 光纤传感器仅仅将光纤作为光波在设备与传感元件之间的传输介质,而固有型光纤传感器则将光纤本身作为传感元件使用。 光纤传感技术的核心是光纤–一条纤细的玻璃线,光波能够在其中心进行传播。光纤主要由三个部分组成:纤芯(core),包层(cladding)和保护层(buffer coating)。其中包层能够将纤芯发出的杂散光波反射回纤芯中,以保证光波在纤芯中具有最低的传输损耗。这个功能的实现原理是纤芯的光折射率比包层的折射率高,这样光波从纤芯传播到包层的时候会发生全内反射。最外面的保护层提供保护作用,避免外界环境或外力对光纤造成损坏。而且可以根据需要要强度和保护程序的不同,使用多层保护层。

光纤光栅原理及应用

光纤光栅传感器原理及应用 (武汉理工大学) 1光纤光栅传感原理 光纤光栅就是利用紫外光曝光技术,在光纤中产生折射率的周期分布,这种光纤内部折射率分布的周期性结构就是光纤光栅。光纤布喇格光栅(Fiber Bragg grating ,FBG )在目前的应用和研究中最为广泛。光纤布喇格光栅,周期0.1微米数量级。FBG 是通过改变光纤芯区折射率,周期的折射率扰动仅会对很窄的一小段光谱产生影响,因此,如果宽带光波在光栅中传输时,入射光将在相应的波长上被反射回来,其余的透射光则不受影响,这样光纤光栅就起到了波长选择的作用,如图1。 图1 FBG 结构及其波长选择原理图 在外力作用下,光弹效应导致折射率变化,形变则使光栅常数发生变化;温度变化时,热光效应导致折射率变化,而热膨胀系数则使光栅常数发生变化。 (1)光纤光栅应变传感原理 光纤光栅反射光中心波长的变化反映了外界被测信号的变化情况,在外力作用下,光弹效应导致光纤光栅折射率变化,形变则使光栅栅格发生变化,同时弹光效应还使得介质折射率发生改变,光纤光栅波长为1300nm ,则每个με将导致1.01pm 的波长改变量。 (2)光纤光栅温度传感原理 光温度变化时,热光效应导致光纤光栅折射率变化,而热膨胀系数则使光栅栅格发生变化。光纤光栅中心波长为1300nm ,当温度变化1摄氏度时,波长改变量为9.1pm 。 反射光谱 入射光谱 投射光谱 入射光 反射光 投射光 包层 纤芯 光栅 光栅周期

2光纤光栅传感器特点 利用光敏元件或材料,将被测参量转换为相应光信号的新一代传感技术,最大特点就是一根光纤上能够刻多个光纤光栅,如图2所示。 光纤光栅传感器可测物理量: 温度、应力/应变、压力、流量、位移等。 图2 光纤光栅传感器分布式测量原理 光纤光栅的特点: ● 本质安全,抗电磁干扰 ● 一纤多点(20-30个点),动态多场:分布式、组网测量、远程监测 ● 尺寸小、重量轻; ● 寿命长: 寿命 20 年以上 3目前我校已经开展的工作(部分) 3.1 基于光纤光栅传感的旋转传动机械动态实时在线监测技术与系统 利用光纤光栅传感技术的特性,实现转子运行状态的非接触直接测量。 被测参量 宽带光源 光纤F-P 腔 测点1 测点2 测点3 测点n 波长 光 强 λ1 测点1 λ2 测点2 λ3 测点3 λn 测点n 光源波长

常见光纤光栅传感器工作原理

常见光纤光栅传感器工作原理 光纤光栅传感器的工作原理 光栅的Bragg波长λB由下式决定:λB=2nΛ (1) 式中,n为芯模有效折射率,Λ为光栅周期。当光纤光栅所处环境的温度、应力、应变或其它物理量发生变化时,光栅的周期或纤芯折射率将发生变化,从而使反射光的波长发生变化,通过测量物理量变化前后反射光波长的变化,就可以获得待测物理量的变化情况。如利用磁场诱导的左右旋极化波的折射率变化不同,可实现对磁场的直接测量。此外,通过特定的技术,可实现对应力和温度的分别测量,也可同时测量。通过在光栅上涂敷特定的功能材料(如压电材料),还可实现对电场等物理量的间接测量。 1、啁啾光纤光栅传感器的工作原理 上面介绍的光栅传感器系统,光栅的几何结构是均匀的,对单参数的定点测量很有效,但在需要同时测量应变和温度或者测量应变或温度沿光栅长度的分布时,就显得力不从心。一种较好的方法就是采用啁啾光纤光栅传感器。 啁啾光纤光栅由于其优异的色散补偿能力而应用在高比特远程通信系统中。与光纤Bragg光栅传感器的工作原理基本相同,在外界物理量的作用下啁啾光纤光栅除了△λB的变化外,还会引起光谱的展宽。这种传感器在应变和温度均存在的场合是非常有用的,啁啾光纤光栅由于应变的影响导致了反射信号的拓宽和峰值波长的位移,而温度的变化则由于折射率的温度依赖性(dn/dT),仅影响重心的位置。通过同时测量光谱位移和展宽,就可以同时测量应变和温度。 2、长周期光纤光栅(LPG)传感器的工作原理 长周期光纤光栅(LPG)的周期一般认为有数百微米,LPG在特定的波长上把纤芯的

光耦合进包层:λi=(n0-niclad)。Λ。式中,n0为纤芯的折射率,niclad为i阶轴对称包层模的有效折射率。光在包层中将由于包层/空气界面的损耗而迅速衰减,留下一串损耗带。一个独立的LPG可能在一个很宽的波长范围上有许多的共振,LPG共振的中心波长主要取决于芯和包层的折射率差,由应变、温度或外部折射率变化而产生的任何变化都能在共振中产生大的波长位移,通过检测△λi,就可获得外界物理量变化的信息。LPG在给定波长上的共振带的响应通常有不同的幅度,因而LPG适用于多参数传感器。 光纤光栅传感器的应用 1、在民用工程结构中的应用 民用工程的结构监测是光纤光栅传感器最活跃的领域。力学参量的测量对于桥梁、矿井、隧道、大坝、建筑物等的维护和状况监测是非常重要的。通过测量上述结构的应变分布,可以预知结构局部的载荷及状况。光纤光栅传感器可以贴在结构的表面或预先埋入结构中,对结构同时进行冲击检测、形状控制和振动阻尼检测等,以监视结构的缺陷情况。另外,多个光纤光栅传感器可以串接成一个传感网络,对结构进行准分布式检测,可以用计算机对传感信号进行远程控制。 光纤光栅传感器可以检测的建筑结构之一为桥梁。应用时,一组光纤光栅被粘于桥梁复合筋的表面,或在梁的表面开一个小凹槽,使光栅的裸纤芯部分嵌进凹槽得以保护。如果需要更加完善的保护,则最好是在建造桥时把光栅埋进复合筋,由于需要修正温度效应引起的应变,可使用应力和温度分开的传感臂,并在每一个梁上均安装这两个臂。 两个具有相同中心波长的光纤光栅代替法布里-珀罗干涉仪的反射镜,形成全光纤法布里-珀罗干涉仪(FFH),利用低相干性使干涉的相位噪声最小化,这一方法实现了高灵敏度的动态应变测量。用FFPI结合另外两个FBG,其中一个光栅用来测应变,另一个被保护起来,免受应力影响,以测量和修正温度效应,所以FFP~FBG实现了同时测量三个量:温度、静态应变、瞬时动态应变。这种方法兼有干涉仪的相干性和光纤布拉格光栅传感器的优点。已在5mε的测量范围内,实现了小于1με的静态应变测量精度、0.1℃的温度灵敏度和小于1nε/(Hz)1/2的动态应变灵敏度。

光纤布拉格光栅温度应力传感器要点

光纤布拉格光栅温度应力传感器 崔丽 10401067 摘要:光纤光栅传感器是一种新型的波长编码传感器,与传统的“光强型”和“干涉型”光纤传感器相比,具有很强的抗干扰能力,为温度、应力、应变等物理量的精确测量提供了很好的方法。本文在对光纤布拉格光栅温度和应力传感原理分析的基础上,讨论了多种解决交叉敏感问题的方法,归纳出建立“复用”传感器的一般方法。文章同时给出了基于悬臂梁结构的传感器,其位移与Bragg波长的关系,进而提出了光纤光栅位移和温度“复用”传感器的基本结构和原理。 关键词:光纤布拉格光栅;温度;应力;传感器 1. 引言 光纤光栅是近几年发展最快的光纤无源器件之一。自从1978年加拿大渥太华通信研究中心的K. O. Hill等人首次在掺锗石英光纤中发现光纤的光敏效应,并采用驻波写入法制成世界上第一只光纤光栅[1,2]开始,直到1989年,美国联合技术研究中心的G. Meltz等人实现了光纤Bragg光栅(FBG)的UV激光侧面写入技术[3],才使得光纤光栅的制作技术实现了突破性的进展。其后,1993年,K. O. Hill等人提出了相位掩膜制造法,光纤光栅的制造技术得到了更进一步地发展[4],使它灵活的大批量制造成为可能,之后,光纤光栅器件逐步走向实用化。 光纤传感技术是伴随着光导纤维及光纤通信技术发展而迅速发展起来的,一种以光为载体、光纤为媒质、感知和传输外界信号(被测量)的新型传感技术。光纤光栅传感器是一种用光纤布拉格光栅(FBG)作敏感元件的功能型光纤传感器。自1989年Morey报道[5]将其用于传感技术以来,光纤光栅在传感领域的理论和应用研究引起了人们的极大兴趣[6-9]。光纤光栅通常是通过外界参量对布拉格中心反射波长的调制来获取传感信息的。作为一种波长调制型的光纤传感器,它除了具有普通光纤传感器抗电磁、抗腐蚀、耐高温、重量轻、体积小等优点外,与传统的“光强型”[10]和“干涉型”[11]光纤传感器相比,还具有自身独特的优点[12-14]:探头结构简单,尺寸小,易于与光纤耦合,耦合损耗小;与光源强度、光源起伏、光纤弯

光纤传感器论文

摘要 关键词:光纤传感器;介绍;优点;应用 近几年来,物联网发展飞快。光纤通信与光纤传感技术将在物联网领域发挥重要作用。光纤具有宽带特性,可将各种传感器复用到一根光纤,进行检测和传输。由于光纤本身具有电绝缘性好、不受电磁干扰、无火花、能在易燃易爆的环境中,还具有成本低、结构简单、可靠性高等优点,光纤材料用做传感器具有独特的优势。物联网与光纤传感有相辅相成、相互促进的作用。各种光纤传感器有望在物联网中得到广泛应用。 ABSTRACT The Internet of things develop quickly in recent years.Optical fiber communication and optical fiber sensing technology will play an important role in the field of Internet of things.Optical fiber have broadband characteristics, various sensors can be reused to a single fiber to text and transport.Because of the fiber’s good electrical insulation, not subject to electromagnetic interference, no spark, can in inflammable and explosive environment ,also has the advantages of low cost, simple structure, high reliability ,optical fiber materials used for sensor has a unique advantage.The Internet of things with the optical fiber sensing supplement each other and promote each other. All kinds of optical fiber sensor is expected to be widely used in the Internet of things. Keywords:Optical fiber grating sensor; Introduction; Advantages; application

光纤温度传感器

光纤温度传感器 电子092班 张洪亮 2009131041

光纤温度传感器 摘要 本文从光纤和光纤传感器以及光纤温度传感器的发展历程开始详细分析国内外 主要光纤温度测温方法的原理及特点,比较了不同方法的温度测量范围和性能指标以及各自的优缺点。通过研究发现了当前的光纤温度传感器的种类和特点,详细介绍了光纤温度传感器的原理,种类和各自的特点和优缺点。可以根据这些传感器各自特点将各种传感器应用到不同的领域,本文也简要分析了各种光纤温度传感器的运用范围和领域。本文还通过图文并茂的方式比较详细地分析了介绍了空调器的基本结构,工作电气原理和基本的热力学过程。本文对毕业设计主要内容和拟采用的研究方案也做出了详细地介绍分析。 关键词:光纤传感器,光纤温度传感器,运用领域,空调器,空调器原理 1 引言: 光纤温度传感器是一种新型的温度传感器.它具有抗电磁干扰、耐高压、耐腐蚀、防爆防燃、体积小、重量轻等优点,其中几种主要的光纤温度传感器:分布式光纤温度传感器、光纤光栅温度传感器、干涉型光纤温度传感器、光纤荧光温度传感器和基于弯曲损耗的光纤温度传感器更有着自己独特的优点。与传统的传感器相比具有一下优点:灵敏度高;是无源器件,对被测对象不产生影响;光纤耐高压,耐腐蚀,在易燃、易爆环境下安全可靠;频带宽,动态范围大;几何形状具有多方面的适应性;可以与光纤遥测技术相配合,实现远距离测量和控制;体积小,重量轻等。它将在航空航天、远程控制、化学、生物化学、医疗、安全保险、电力工业等特殊环境下测温有着广阔的应用前景。在本论文中将详细分析当前光纤温度传感器的主要种类和各自的原理,特点和应用范围。70 年代中期,人们开始意识到光纤不仅具有传光特性,且其本身就可以构成一种新的直接交换信息的基础,无需任何中间级就能把待测的量与光纤内的导光联系起来。1977 年,美国海军研究所开始执行光纤传感器系统计划,这被认为是光纤传感器问世的日子。从这以后,光纤传感器在全世界的许多实验室里出现。从70 年代中期到 80 年代中期近十年的时间,光纤传感器己达近百种,它在国防军事部门、科研部门以及制造工业、能源工业、医学、化学和日常消费部门都得到实际应用。从目前的情况看,己有一些形成产品投入市场,但大量的是处在实验室研究阶段。光纤传感器与传统的传感器相比具有一下优点:灵敏度高; 是无源器件,对被测对象不产生影响;光纤耐高压,耐腐蚀,在易燃、易爆环境下安全可靠;频带宽,动态范围大;几何形状具有多方面的适应性;可以与光纤遥测技术相配合,实现远距离测量和控制;体积小,重量轻等。目前,世界各国都对光纤传感器展开了广泛,深入的研究,几个研究工作开展早的国家情况如下:美国对光纤传感器研究共有六个方面:这些项目分别是: 光纤传感系统;现代数字光 纤控制系统;光纤陀螺;核辐射监控;飞机发动机监控; 民用研究计划。以上计划仅在 1983 年就投资 12-14 亿美元。美国从事光纤传感器研究的有美国海军研究所、美国宇航局、西屋电器公司、斯坦福大学等 28 个主要单位。美国光纤

多峰光纤布拉格光栅传感信号的自适应寻峰处理_陈勇

第42卷第8期 2015年8月Vol.42,No.8August,2015中国激光CHINESE JOURNAL OF LASERS 多峰光纤布拉格光栅传感信号的自适应寻峰处理 陈勇1杨凯1刘焕淋2* 1重庆邮电大学工业物联网与网络化控制教育部重点实验室,重庆400065 2重庆邮电大学光纤通信技术重点实验室,重庆400065 摘要针对寻峰算法不能自适应检测光纤布拉格光栅(FBG)多峰值光谱的问题,提出了一种多峰自适应寻峰算法。 采用滑动均值滤波法对光谱信号进行去噪预处理,并结合希尔伯特变换对多峰光谱自适应峰值区域分割;分析了 谱峰的不对称特性,对单峰光谱采用基于非对称广义高斯模型的峰值修正策略,实现了峰值的精确定位。实验结 果表明,与对比算法相比所提算法寻峰精度最高,稳定性最好,检测误差在1pm 以下,对分布式传感网络中的多峰 值检测具有借鉴意义。 关键词光纤光学;多峰寻峰算法;光纤布拉格光栅;自适应;非对称光谱 中图分类号TP212文献标识码A doi:10.3788/CJL201542.0805008 A Self-adaptive Peak Detection Algorithm to Process Multi-peak Fiber Bragg Grating Sensing Signal Chen Yong 1 Yang Kai 1Liu Huanlin 21Key Laboratory of Industrial Internet of Things &Network Control,MOE,Chongqing University of Posts and Telecommunications,Chongqing 400065,China 2Key Laboratory of Optical Fiber Communication Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,China Abstract To the problem of the peak detection that could not be adaptively solved in the multi-peak fiber Bragg grating (FBG)signal,a self-adaptive multi-peak detection algorithm is proposed.This algorithm uses the sliding mean filtering method to remove the noise in spectral signal,and combines with the Hilbert transform to adaptively segment the peak area of the multi-peak spectrum.By analyzing the asymmetric characteristic of spectral peak, a peak value is compensated by the strategy based on the asymmetric generalized Gaussian model for improving position precision of spectral peak.Experimental results show that the proposed algorithm could gain higher accuracy and better stability than the comparing algorithms,and the detection error is under 1pm.The proposed algorithm impacts on the multi-peak detection of distributed sensor networks. Key words fiber optics;multi-peak detection algorithm;fiber Bragg grating;self-adaptive;asymmetric spectrum OCIS codes 060.3735;070.2025;070.4790 收稿日期:2015-03-12;收到修改稿日期:2015-04-12 基金项目:国家自然科学基金(61275077)、重庆市研究生科研创新项目(CYS14151) 作者简介:陈勇(1963—),男,博士,教授,主要从事光纤传感检测及其信号处理等方面的研究。 E-mail:chenyong@https://www.sodocs.net/doc/e312063901.html, *通信联系人。E-mail:liuhl@https://www.sodocs.net/doc/e312063901.html, 1引言光纤布拉格光栅(FBG)作为一种光纤传感器件,由于其具有易弯曲、耐腐蚀、耐高温、安全性高、易串接复用、对宿主材料结构性能影响小等特点,被广泛应用于土木工程、石油化工、航空航天等工程领域。工程中将FBG 传感器复用构成分布式传感网络,以实现恶劣环境下大型复杂工程结构的实时在线监测[1-3]。FBG 传感系统是通过建立其反射谱中心波长漂移量与待测物理参量间的函数关系,间接实现对待测参量变化量的

光纤光栅传感器的应用

光纤光栅传感器的应用 光纤布拉格光栅传感器的应用 1。光纤光栅传感器 的优点与传统传感器相比,光纤光栅传感器有其独特的优点:(1)传感头结构简单,体积小,重量轻,形状可变,适合嵌入大型结构中,能够测量结构内部的应力、应变和结构损伤,具有良好的稳定性和重复性; (2)与光纤自然兼容,易于与光纤连接,损耗低,光谱特性好,可靠性高; (3)不导电,对被测介质影响小,具有耐腐蚀和抗电磁干扰的特点,适合在恶劣环境下工作; (4)轻便灵活,可在一根光纤中写入多个光栅组成传感阵列,结合波分复用和时分复用系统实现分布式传感; (5)测量信息为波长编码,因此光纤光栅传感器不受光源光强波动、光纤连接和耦合损耗以及光波偏振态变化的影响,抗干扰能力强。 (6)高灵敏度和分辨率 正是因为它的许多优点。近年来,光纤光栅传感器已经广泛应用于大型土木工程结构、航空航天等领域的健康监测,以及能源和化工等领域。 光纤光栅传感器无疑是一种优秀的光纤传感器,特别是在测量应力和应变的情况下,具有其他传感器无法比拟的优势。它被认为是智能结构中最有前途的集成在材料内部的传感器,作为监测材料和结构的

载荷和检测其损伤的传感器。 2,光纤光栅的传感应用 1,在土木和水利工程中的应用 土木工程中的结构监测是光纤光栅传感器应用最活跃的领域 力学参数的测量对于桥梁、矿山、隧道、大坝、建筑物等的维护和健康监测非常重要。通过测量上述结构的应变分布,可以预测结构的局部载荷和健康状况。光纤布拉格光栅传感器可以预先附着在结构表面或嵌入结构中,同时对结构进行健康检测、冲击检测、形状控制和减振检测,监测结构的缺陷。 另外,多个光纤光栅传感器可以串联成传感网络,对结构进行准分布式检测,传感信号可以由计算机远程控制 (1)在桥梁安全监测中的应用目前,光纤光栅传感器应用最广泛的领域是桥梁安全监测 斜拉桥的斜拉索、悬索桥的主缆和吊杆、系杆拱桥的系杆是这些桥梁体系的关键受力构件,其他土木工程结构的预应力锚固系统,如用于结构加固的锚索和锚杆,也是关键受力构件上述受力构件的应力大小和分布变化最直接地反映了结构的健康状况,因此监测这些构件的应力状态并以此为基础进行安全分析和评价具有重要意义。加拿大卡尔加里附近的 199贝丁顿小道桥是最早使用光纤光栅传感器进行测量的桥梁之一(1993)。16个光纤光栅传感器连接到预应力混凝土支撑的钢筋和碳纤维复合材料钢筋上,对桥梁结构进行长期监测,这在以前被认为是不

光纤温度传感器简介

光纤温度传感器 摘要:本文分析了光纤温度传感器在温度探测中的优势,分别介绍了分布式光纤温度传感器、光纤光栅温度传感器、干涉型光纤温度传感器、光纤荧光温度传感器的工作原理,最后综述了光纤温度感器在现代工业及生活的应用。 关键字:光纤传感温度应用 1引言 在科研和生产中,有很多温度测量问题,传统的温度传感器有热电偶,热电阻温度传感器,热敏电阻温度传感器,半导体温度传感器等等。光纤温度传感器是20世纪70年代发展起来的一种新型传感器。与传统的温度传感器相比,它具有灵敏度高,体积小,质量轻,易弯曲,不产生电磁干扰,不受电磁干扰,抗腐蚀性好等等优点,特别适用于易燃,易爆,空间狭窄和具有腐蚀性强的气体,液体以及射线污染等苛刻环境下的温度检测。 2光纤温度传感器分类 光纤温度传感器按照调制机理可分为相位调制,振幅调制,偏振态调制;按工作原理分,光纤温度传感器可分为功能性和传输型两种。功能型温度传感器中光纤作为传感器的同时也是光信号的载体,而传输型温度传感器中光纤则只传输光信号。传光型与传感型相比,虽然灵敏度稍差,但可靠性高,实用的传感器大多是这种类型。 目前主要的光纤温度传感器包括分布式光纤温度传感器、光纤光栅温度传感器、光纤荧光温度传感器、干涉型光纤温度传感器等。 2.1光纤光栅温度传感器 光纤光栅温度传感器是利用光纤材料的光敏性在光纤纤芯形成的空间相位光栅来进行测温的。光纤光栅以波长为编码,具有传统传感器不可比拟的优势,近年来光纤光栅成为发展最为迅速,最具代表性的光纤无源器件之一,已广泛用于建筑、航天、石油化工、电力行业等。 光纤光栅温度传感器主要有Bragg光纤光栅温度传感器和长周期光纤光栅传感器。Bragg光纤光栅是指单模掺锗光纤经紫外光照射成栅技术而形成的全新光纤型Bragg光栅,成栅后的光纤纤芯折射率呈现周期性分布条纹并产生Bragg 光栅效应,其基本光学特性就是以共振波长为中心的窄带光学滤波器,满足如下光学方程: =2nA 式中:为Bragg波长,A为光栅周期,n为光纤模式的有效折射率。 长周期光纤光栅是一种特殊的光纤光栅,其传光原理是将前向传输的基模耦合到前向传输的包层模中。由于其宽带滤波、极低的背景发射等特点引起人们的重视,是一种新型的宽带带阻滤波器。 光纤温度监测系统主要由光纤光栅传感器、传输信号用的光纤和光纤光栅解调器组成。光纤光栅解调器用于对光纤光栅传感器的信号检测和数据处理,以获得测量结果,传输光纤用于传输光信号,光纤光栅传感器则主要用于反射随温度变化中心波长的窄带光,如图1所示:

光纤温度传感器

光纤温度传感器的种类很多,除了以上所介绍的荧光和分布式光纤温度传感器外,还有光纤光栅温度传感器、干涉型光纤温度传感器以及基于弯曲损耗的光纤温度传感器等等,由于其种类很多,应用发展也很广泛,例如,应用于电力系统、建筑业、航空航天业以及海洋开发领域等等。 分布式光纤温度传感器在电力系统行业的发展 光纤温度传感器在电力系统的应用中得到发展,由于电力电缆温度、高压配电设备内部温度、发电厂环境的温度等,都需要使用光纤传感器进行测量,因此就促进了光纤传感器的不断完善和发展。尤其是分布式光纤温度传感器得到了改善,经过在电力系统行业的应用,从而使其接收信号和处理检测系统的能力都得到了提升。 光纤光栅温度传感器在建筑业的发展 光纤光栅温度传感器由于其较高的分辨率和测量范围广泛等优点,被广泛应用于建筑业温度测量工作中。西方很多发达国家都已普遍采用此系统,进行建筑物的温度、位移等安全指标的测试工作,例如,美国墨西哥使用光栅温度传感器,对高速公路上桥梁的温度进行检测。通过广泛使用,光栅温度传感器所存在的问题,如:交叉敏感的消除、光纤光栅的封装等都得到了解决,因而此系统得到了完善。 航空航天业中的应用发展 航空航天业使用传感器的频率较高,包括对飞行器的压力、温度、燃料等各方面的检测,都需要使用光纤温度传感器进行检测,并且所使用到的传感器数量多达百个,所以对传感器的大小和重量要求很严

格。因此,基于航空航天业对传感器的要求,光纤温度传感器的体积、重量规格方面都经过了调整。2222222分布式光纤温度传感器分布式光纤温度传感器,通常用在检测空间温度分布的系统,其原理最早于1981年提出,后随着科学家的实验研究,最终研制出了此项技术。这种传感器原理发展是基于三种传感器的研究,分别是瑞利散射、布里渊散射、喇曼散射。在瑞利散射(OTDR)和布里渊散射(OTDR)的研究已取得了很大的进展,因此未来的传感器研究热点,将放在对基于喇曼散射(OTDR)的新分布式光纤传感器的研究上。最近,土耳其Gunes Yilmaz开发出了一种分布式光纤温度传感器,此传感器的温度分辨率是1℃,空间分辨率是1.23m。在我国也有很多大学展开了对分布式光纤温度传感器的研究,例如,中国计量大学1997年发明出煤矿温度检测的传感器系统,其检测温度为-49℃~150℃,温度分辨率为0.1℃。 光纤荧光温度传感器 当前最热门的研究,就是针对光纤荧光温度传感器,其是利用荧光的材料会发光的特性,来检测发光区域的温度。这种荧光的材料通常在受到紫外线或红外线的刺激时,就会出现发光的情况,发射出的光参数和温度是有着必然联系的,因此可以通过检测荧光强度来测试温度。世界各国的高校都设计过此类传感器,例如,韩国汉城大学发现10cm的双掺杂光纤,在其915nm的地方所反射出的荧光强度所对应的温度指数是20℃~290℃;我国清华大学借用半导体GaAs原料来吸收光,进而以光随温度改变的原理,研发出了温度范围是0℃~

光纤光栅传感器及其在桥梁结构健康监测中的应用

光纤光栅传感器及其在桥梁结构健康监 测中的应用 姓名:朱少波 学号:U201115536 班级:电气中英1101班 2015年1月23日星期五

摘要:作为20世纪测试领域的重大发明,光纤光栅传感技术得到了快速发展,并已经成 为诸多领域的前沿研究与应用方向。本文主要介绍了相关产业化企业近年来基于光纤光栅感知元件发展起来的系列传感器、部品、重大土木工程结构健康监测的应用以及项目研究与产业化状况。主要包括:光纤光栅系列直接传感器、光纤光栅间接传感器、光纤光栅传感部品(结构)与结构健康监测的光纤光栅传感网络与集成系统及其在大型桥梁结构健康监测中的应用。最后,介绍了课题组与相关企业在该方向的项目研究、国际合作与产业化情况,并指出该方向的主要研究与应用方向。 关键词:光纤光栅传感器,桥梁结构,健康监测 1.引言 重大桥梁工程结构的使用期长达几十年、甚至上百年,环境侵蚀、材料老化和荷载的长期效应、疲劳效应与突变效应等灾害因素的耦合作用将不可避免地导致结构和系统的损伤积累和抗力衰减,从而抵抗自然灾害、甚至正常环境作用的能力下降,极端情况下引发灾难性的突发事故。因此,为了保障结构的安全性、完整性、适用性与耐久性,对重大桥梁工程结构增设长期的健康监测系统,以监测结构的服役安全状况,并为验证结构设计、施工控制以及研究结构服役期间的损伤演化规律提供有效的、直接的手段,并实时监测其服役期间的安全状况、避免重大事故的发生。结构健康监测已经成为世界范围内重大桥梁结构工程的前沿研究方向。 然而,重大桥梁工程结构和基础设施体积大、跨度长、分布面积大,使用期限长,传统的电学量传感设备组成的长期监测系统性能稳定性、耐久性和分布范围都不能很好地满足实际工程需要。随着智能感知材料的发展,高性能传感器及其测试技术为结构智能健康监测系统的研究与发展提供了崭新的途径,尤其是以光纤光栅为代表的光纤传感元件的出现与发展,更为这一热点课题提供了广阔的生机。光纤通信技术和光纤传感技术在20世纪后半叶至21世纪初期的几十年里日新月异,极大地推动了人类社会的进步。光纤传感技术随着光通信技术的发展应运而生,尤其是光纤光栅的出现不仅给光纤传感技术,而且给相关领域带来了一次里程碑式的革命[1],使人们可以设计和制作大量基于光纤光栅的新型智能传感器[2]。与传统的各类传感器相比光纤光栅传感器具有以下优点[3]: 1)抗电磁干扰,电绝缘,本质安全 由于光纤传感器是利用光波传输信息,而光纤是电绝缘的传输媒质,因而不怕强电磁干扰,也不影响外界的电磁场,并且安全可靠。这一特性使其在高压、强电磁干扰、易燃、易爆的环境中能有效的传感。 2)耐腐蚀 由于光纤表面的涂覆层是由高分子材料组成,承受环境或者结构中酸碱等化学成分腐蚀的能力强,适合于结构的长期健康监测。 3)测量精度高 光纤传感器采用波长调制技术,分辨率可达到波长尺度的皮米量级,对应温度监测中0.1℃与应变监测中1με。光测量及波长调制技术使光纤传感器的灵敏度优于一般的传感器。 4)测量对象广泛

倾斜布拉格光纤光栅应用研究

征文专题号: P-5 倾斜布拉格光纤光栅及应用研究 刘波1,苗银萍2,张昊1 (1 南开大学信息技术科学学院,天津,300071 2 天津理工大学电子信息工程学院,天津,) 摘要:自上世纪70年代,Hill等人成功地写制了第一根布拉格光纤光栅以来,光纤光栅特别是布拉格光栅,以其低插入损耗,易于集成,稳定性好等优点被广泛应用于光通信及传感领域,成为了不可缺少的光学元件。与普通布拉格光栅相比,倾斜布拉格光纤光栅的成栅面与光纤轴向垂直面呈一定角度的倾斜。因此,其耦合特性与布拉格光栅有很大区别,并且因倾斜角度而不同。当倾斜角度较小时,其存在前向基模与后向基模以及后向包层模的耦合。随着角度增大,前向基模与后向基模耦合减弱,与后向包层模的耦合增大。当倾斜角大于一定角度时,前向基模向前向包层模耦合,耦合强度随角度增大而增大。小角度倾斜布拉格光栅由于布拉格峰的存在而自身能够解决交叉敏感问题,从而在实际中得到了广泛的应用。 由于耦合到包层中的模式很容易受到外界环境参量的调制,倾斜光纤光栅可以设计成各式各样的传感元件。利用这一特性,我们设计出了基于强度解调的倾斜布拉格光纤光栅的折射率传感器,实现了在1.3723到1.4532范围内,灵敏度为-1.913dBm/折射单位的传感。将聚乙烯醇涂敷在倾斜布拉格光栅的栅区,利用聚乙烯醇吸收水分后折射率发生改变的特性,设计出湿度传感器,实现了相对湿度在20%~74%范围内灵敏度为2.52dBm/湿度百分比以及相对湿度为74%~98%范围内灵敏度为14.947dBm/湿度百分比的传感。利用倾斜光栅浸入液体的长度不同响应不同的特性设计出了液位传感器,实现了测量范围为14mm,灵敏度为0.1dBm/mm的传感。进一步实验证明,这种基于强度解调的液位传感对于温度并不敏感。对倾斜光栅的栅区进行腐蚀,其温度灵敏度不会发生变化而对折射率的灵敏度随腐蚀程度增大而增大。此外,将倾斜光栅浸入功能性液体材料能得到其他物理参量的测量,如将倾斜光栅浸入磁流体中,我们设计出了磁场传感器。 小角度的倾斜布拉格光栅的耦合特性包括前向基模与后向基模的耦合,以及前向基模与后向包层模的耦合,由此产生了两种不同类型的谐振峰。利用这两类谐振峰对大部分外界参量响应不同可以实现单个倾斜布拉格光栅的双参量传感。由于温度对于基模和包层模有效折射率的影响一致,倾斜光栅的包层模谐振峰与布拉格谐振峰的温度响应是一致的,而对于应变的响应不同,我们设计出了应变温度双参量传感。其布拉格峰与包层模谐振峰温度响应为11.1pm/°C,应变响应分别为:K Bragg,ε=0.657pm/με,K Clad, ε=0.766pm/με。对倾斜光栅进行弯曲,我们得到布拉格峰及Ghost峰的不同响应:布拉格峰与曲率呈线性关系而Ghost峰与曲率呈二次函数关系。另外,不同弯曲方向的包层模谐振峰的响应也不同。 利用谐振峰线性边沿的特性提出了倾斜光栅线性沿解调理论。应用该理论以及布拉格峰与包层模谐振峰温度响应一致的特性设计出了基于倾斜光栅的动态温度补偿系统的应变传感器。 此外,我们利用相位掩膜紫外侧写技术在柚子型光纤上写制了倾斜角为2°~5°的倾斜布拉格光栅,研究了传感特性。对其填充功能性材料能够实现其他物理量的传感,如填充磁流体能够实现磁场的传感。

相关主题