搜档网
当前位置:搜档网 › 模电实验—互补对称功率放大电路

模电实验—互补对称功率放大电路

模电实验—互补对称功率放大电路
模电实验—互补对称功率放大电路

实验四互补对称功率放大电路

一、实验目的

(1)观察乙类对称功放电路输出波形,学习克服输出中交越失真的方法。

(2)学习是最大输出电压的范围。

(3)进一步掌握用Multisim进行瞬态分析和直流分析的方法。

二、实验内容

1.实验电路图

2.设置瞬态分析

3.仿真

由图可见,Vo出现了交越失真。

4.求电压传输特性

(1)设置直流扫描分析。

(2)电压传输特性。

由图可知,交越失真发生的范围是-709.03mV~675.585mV。

5.克服交越失真

(1)变换电路。

(2)瞬态分析得到输入、输出波形。

由图可见,Vo已基本不出现交越失真。

(3)直流扫描分析,得出电压传输特性曲线。

(4)求最大输出电压范围。

此时电压传输特性为:

由图可得,最大输出电压范围为:-5.0081V~4.9436V。

6.甲乙类互补对称功放电路的输出功率

(1)利用示波器得到vi、Vo波形。

由图可得Vom=4.643V (2)启动后处理程序。

得出输出功率曲线:

由图可知,最大输出功率Pm=0.53W (3)直流电源功率曲线为:

由图可见,直流电源提供的功率Pv=1.7645W. (4)功率放大电路的效率图像为:

由图可见,功放电路的效率为30.14%。(5)功率管的管耗曲线为:

由图得每个功率管的管耗为0.611W.

模电实验报告互补对称功率放大器

实验四互补对称功率放大器 一、实验电路 图20-1互补对称功率放大器 二、预习要求 1、分析图20-1电路中各三极管工作状态及交越失真情况。 电路中采用NPN、PNP两支晶体管,其特性一致。利用NPN、PNP管轮流导通,交替工作,在负载RL上得到一个完整的被放大的交流信号。 静态时,电源通过V2向C充电,调整参数使得三极管发射极电位: 动态时,Ui>0,V2导通V3截止,i L=i c2,R L上得到上正下负的电压。Ui<0,V2截止V3导通,C两端的电压为V3、R L提供电源, i L=i c2,R L上得到上负下正的电压。 输入信号很小时,达不到三极管的开启电压,三极管不导电。因此在正、负半周交替过零处会出现一些非线性失真,这个失真称为交越失真。 电路中二极管D1、D2即可消除交越失真。 2、电路中若不加输入信号,V2、V3管的功耗是多少。 静态时,Vin = 0V , V2、V3均不工作 ,此时其功耗为0。 3、电阻R 4、R5的作用是什么? 电阻R4、R5与三极管V1构成放大电路,为后级电路提供电压。 4、根据实验内容自拟实验步骤及记录表格。 三、实验仪器及材料 1、信号发生器 2、示波器 四、实验内容 1、调整直流工作点,使M点电压为0.5V CC。 2、测量最大不失真输出功率与效率。 3、改变电源电压 (例如由+12V变为+6V),测量并比较输出功率和效率。 4、比较放大器在带5K1和8Ω负载 (扬声器)时的功耗和效率。

电源电压加12V,负载接入喇叭: 首先调整直流工作点,使M点电压为0.5V CC。然后在输入端接1KHZ信号时,输出端接用示波器观察输出波形,逐渐增大输入电压幅度,直至出现失真为止、记录此时输入电压、输出电压幅值、并记录波形。 实验结果:输入电压U i(有效)= 219mV 输出电压U o(有效)= 1.2V 电流I=81.2mA 输出功率P o = U o2/ R L= 0.18W P V=VCC*I/2=0.487W 转换效率η= P o/ P v= 36.96% 电源电压加6V,负载接入喇叭: 首先调整直流工作点,使M点电压为0.5V CC。然后在输入端接1KHZ信号时,输出端接用示波器观察输出波形,逐渐增大输入电压幅度,直至出现失真为止、记录此时输入电压、输出电压幅值、并记录波形。 实验结果:输入电压U i(有效)= 104mV 输出电压U o(有效)= 488mV 电流I=34.2mA 输出功率P o = U o2/ R L= 0.0298W P v = V cc·I/2=0.2052W 转换效率η= P o/ P v= 14.5% 电源电压加12V,负载接入5.1kΩ电阻: 首先调整直流工作点,使M点电压为0.5V CC。然后在输入端接1KHZ信号时,输出端接用示波器观察输出波形,逐渐增大输入电压幅度,直至出现失真为止、记录此时输入电压、输出电压幅值、并记录波形。 实验结果:输入电压U i(有效)= 179mV 输出电压U o(有效)= 3.28V 电流I=7.95mA 输出功率P o = U o2/ R L= 0.00211W P v = V cc·I/2=0.0477W

实验三功率放大电路实验报告

实验三功率放大电路实验 报告 The following text is amended on 12 November 2020.

集成功率放大电路一. 实验目的 1.掌握功率放大电路的调试及输出功率、效率的测量方法; 2.了解集成功率放大器外围电路元件参数的选择和集成功率放大器的使用方法。 二. 实验仪器设备 1.实验箱 2. 示波器 3. 万用表 4. 电流表 有关试验方法的说明: (1)测量最大不失真功率:max O P 在放大器的输入端接入频率为1kHz的正弦频率信号;Vi置最小 (Vi<20mV);在放大器的输出端街上示波器和毫伏表,逐渐增大Vi, 使示波器显示出最大不失真波形,用毫伏表测出电压有效值mox O V,则最大不失真输出功率为: (2)测量功率放大器的效率 : 在保持Vo为最大不失真输出幅度的情况下,由电流表测量直流电源Vcc的输出电流E I,此时电源Vcc提供的直流输出功率为: 注:此处Vcc应为正负电源之差。 功率放大器的效率为:

集成功率放大器的实验电路 三. 实验内容及步骤 1、连接电路: 接入正负电源(+V CC、-V EE) 接入负载电阻R L 串入电流表 2、打开电源开关,记录电流表的读数,即为静态电流I E

3、将电流表换至较高档位,接入输入信号v i,按后面要求进行测量。 负载电阻R L=时, 按表分别用示波器测量输出电压峰值为2V和4V时的电流I E,计算输出功率P O、电源供给功率P E和效率η; 逐渐增大输入电压,用示波器监视输出波形,记录最大不失真时的输出电压的峰值v omax和电流I E,并计算此时的输出功率P O,电源供给功率P E 和效率η,填表。 实验需要测量的数值有I E和V omax ,P O,P E ,η由实验数据计算得到,计算公式如下: 实验注意事项: 功率放大器输出大电压大电流,工作在极限状态,产热较多,需要谨慎操作防止烧毁功放; I时刻监视电流表防止电流超过电流表在测量最大不失真电压时的E 量程; V时,一定使输入电压Vi置最小,然后逐渐测量最大不失真电压max O 慢慢增大输入Vi 。

实验6:互补对称功率放大器

实验六互补对称功率放大器 201408080127 潘松 201408080130 张崇琪 一、实验目的 1、理解互补对称功率放大器的工作原理。 2、加深理解电路静态工作点的调整方法。 3、学会互补对称功率放大电路调试及主要性能指标的测试方法。 二、实验仪器 1、双踪示波器 2、万用表 3、毫伏表 4、直流毫安表 5、信号发生器 三、实验原理

图6-1 互补对称功率放大器实验电路 图6-1所示为互补对称低频功率放大器。其中由晶体三极管T1组成推动级(也称前置放大级),T2、T3是一对参数对称的NPN 和PNP 型晶体三极管,它们组成互补对称功放电路。由于每一个管子都接成射极输出器形式,因此具有输出电阻低,负载能力强等优点,适合于作功率输出级。T1管工作于甲类状态,它的集电极电流IC1由电位器RW1进行调节。二极管D1、D2,给T2、T3提供偏压,可以使T2、T3得到合适的静态电流而工作于甲、乙类状态,以克服交越失真。由于RW1的一端接T1、T2的输出端,因此在电路中引入交、直流电压并联负反馈,一方面能够稳定放大器的静态工作点,同时也改善了非线性失真。 当输入正弦交流信号U i 时,经T1放大、倒相后同时作用于T2、T3的基极,U i 的负半周使T2管导通(T3管截止),有电流通过负载R L (可用嗽叭作为负载),在U i 的正半周,T3导通(T2截止),则已充好电的电容器C 3起着电源的作用,通过负载R L 放电,这样在R L 上就得到完整的正弦波。 C2和R 5构成自举电路,用于提高输出电压正半周的幅度,以得到大的动态范围。由于信号源输出阻抗不同,输入信号源受功率放大电路的输入阻抗影响而可能失真。为了得到尽可能大的输出功率,晶体管一般工作在接近临界参数的状态,如I CM ,U (BR )C EO 和P CM ,这样工作时晶体管极易发热,有条件的话晶体管有时还要采用散热措施,由于三极管参数易受温度影响,在温度变化的情况下三极管的静态工作点也跟随着变化,这样定量分析电路时所测数据存在一定的误差,我们用动态调节方法来调节静态工作点,受三极管对温度的敏感性影响所测电路电流是个变化量,我们尽量在变化缓慢时读数作为定量分析的数据来减小误差。 ※OTL 电路的主要性能指标: 1、 最大不失真输出功率P om 在实验中可通过测量RL 两端的电压有效值,来求得实际的 L om R U P 2 = (7-1) 2、效率η %100?= E om P P η

OTL功率放大器实验报告(DOC)

课程设计 课程名称模拟电子技术 题目名称功率放大器 专业班级12网络工程本2 学生姓名郭能 学号51202032019 指导教师孙艳孙长伟 二○一三年十二月二十三日 目录 引言 (2)

一、设计任务与要求 (2) 1.1 设计任务 (2) 1.2 设计要求 (2) 二、方案设计 (3) 三、总原理图及元器件清单 (4) 四、电路仿真与调试 (6) 五、性能测试与分析 (7) 六、总结 (8) 七、参考文献 (8)

OTL功率放大器 引言:OTL(Output transformerless )电路是一种没有输出变压器的功率放大电路。过去大功率的功率放大器多采用变压器耦合方式,以解决阻抗变换问题,使电路得到最佳负载值。但是,这种电路有体积大、笨重、频率特性不好等缺点,目前已较少使用。OTL电路不再用输出变压器,而采用输出电容与负载连接的互补对称功率放大电路,使电路轻便、适于电路的集成化,只要输出电容的容量足够大,电路的频率特性也能保证,是目前常见的一种功率放大电路。它的特点是:采用互补对称电路(NPN、PNP参数一致,互补对称,均为射随组态,串联,中间两管子的射极作为输出),有输出电容,单电源供电,电路轻便可靠。两组串联的输出中点”可理解为采用互补对称电路(NPN、PNP参数一致,互补对称,均为射随组态,串联,中间两管子的射极作为输出)。 1:设计任务与要求 1.1设计任务: 1.学习基本理论在实践中综合运用的初步经验,掌握模拟电路设计的基本方法、设计步骤,培养综合设计与调试能力。 2.培养实践技能,提高分析和解决实际问题的能力。 3.掌握OTL音频功率放大器的设计方法,基本工作原理和性能指标测试方法。 4. 通过一个OTL功率放大器的设计、安装和调试,进一步加深对互补对称功率放大电路的理解,增强实际动手能力。 1.2 设计要求: 1.设计时要综合考虑实用,经济并满足性能指标的要求,合理选用元器件。 2.广泛查阅相关的资料,不懂的地方积极向老师同学请教,讨论。认真独立的完成课题的设计。 3.按时完成课程设计并提交设计报告。 2:方案设计 要求设计一个由二极管,三极管,电容,电阻等元件组合而成的OTL音频功

音频功率放大器实验报告

一、实验目的 1)了解音频功率放大器的电路组成,多级放大器级联的特点与性能; 2)学会通过综合运用所学知识,设计符合要求的电路,分析并解决设计过程中遇到的问题,掌握设计的基本过程与分析方法; 3)学会使用Multisim、Pspice等软件对电路进行仿真测试,学会Altium Designer使用进行PCB制版,最后焊接做成实物,学会对实际功放的测试调试方法,达到理想的效果。 4)培养设计开发过程中分析处理问题的能力、团队合作的能力。 二、实验要求 1)设计要求 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8Ω。要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标: (1)频带宽度50Hz~20kHz,输出波形基本不失真; (2)电路输出功率大于8W; (3)输入阻抗:≥10kΩ; (4)放大倍数:≥40dB; (5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz 处有±12dB的调节范围; (6)所设计的电路具有一定的抗干扰能力; (7)具有合适频响宽度、保真度要好、动态特性好。 发挥部分: (1)增加电路输出短路保护功能; (2)尽量提高放大器效率; (3)尽量降低放大器电源电压; (4)采用交流220V,50Hz电源供电。 2)实物要求 正确理解有关要求,完成系统设计,具体要求如下: (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出;

(5)PCB文件生成与打印输出; (6)PCB版图制作与焊接; (7)电路调试及参数测量。 三、实验内容与原理 音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于对弱音频信号的放大以及音频信号的传输增强和处理。按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。 v 图1 音频功率放大器的组成框图 1)前置放大级 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD 唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,

互补对称式功率放大电路

中山大学模拟电路实验报告 SUN YAT-SEN UNIVERSITY 实验题目:实验6 互补对称式功率放大电路 一、实验目的 在这个实验中,我们将讨论互补对称式功率放大电路的工作原理和性能测试方法。首先,我们对功放电路进行静态调整;其次,对调整好的电路进行电路功率和效率的测量。然后,我们将探讨自举电路的作用和观察“交越失真”现象。 通过这次实验,你能够 1)熟悉互补对称式功率放大器的性能测试方法。 2)了解自举电路的原理及其对改善互补对称式功率放大器的性能所起的作用。 二、实验仪器 (1)二踪示波器 1台 (2)函数发生器 1台 (3)交流毫伏表 1台 (4)直流稳压电源 1台 三、实验原理图 V CC v o R L v s 实验电路图3.1互补对称式功率放大电路 注意: 1)实验前应该先调好限流保护,电流控制在200mA。 2)电路调整时,应先调好电压、再调电流。

四、实验内容 1. 静态测试 合上开关K 、K1、K2,用万用表先测量直流稳压电源使输出V V CC 6=,调节1W R 使B 点的直流电位约为3V 。断开K 、K2,调节2W R 使23C I 约为mA 52- , (23C I 的测量可用万用表电流档串接测量,但要注意万用表笔的正负极性)测完后取走万用表合上K 。 检查电路中各个管是否工作正常。 注意:在接入稳压电源之前,2W R 应先调到最小值,电源接入后,在调节2W R 的过程中,应不时用手触摸2Q 、3Q 两管,若发现两管发热严重,则应马上断开电源,检查原因(如 2W R 开路,电路自激,或输出管性能不好等),以防烧毁管子。如无异常现象,可开始调试, 如无特殊情况,不得再随意旋动2W R 的位置。 调试数据如下表4.1.1 V cc V B I 23 6.0V 2.99V 3.5V 2. 测量放大器的质量指标 (1)最大不失真电压、最大不失真功率: 把示波器和交流毫伏表的输入端同时接入放大器的输出端(此时可同时测量输出幅度的大小和观察输出波形),然后将音频信号发生器的输出调节旋钮放到最小,并将它的输出端接入放大器的输入端,而音频信号发生器的频率放在Z KH 1上,以后逐渐增大输入信号幅度并同时观察输出波形,输入增大、输出亦增大,当输出波形增大到刚好出现失真时,就停止增大输入信号,以后减小输入信号,使输出信号刚好不失真。记下这时放大器的输出电压即为最大不失真电压,并计算最大不失真功率。 (2)电源供给的实际功率和效率: 在最大不失真输出时,用万用电表测量此时电源供给的直流平均电流C I (用万用表电流档串入CC V 的总线处测量,注意是在有输入信号下测量)记录C I 计算电源供给的功率和效率。 有自举情况下的测量数据 4.2.1

音频功率放大电路实验报告分析

实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 成绩:__________________ 实验名称: 音频功率放大电路 实验类型: 研究探索型实验 同组学生姓名:__________ 一、实验目的和要求 1、理解音频功率放大电路的工作原理。 2、学习手工焊接和电路布局组装方法。 3、提高电子电路的综合调试能力。 4、通过myDAQ 来分析理论数据和实际数据之间的关系。 二、实验内容和原理(必填) 音频功率放大电路,也即音响系统放大器,用于对音频信号的处理和放大。按其构成可分为前置放大级、音调控制级和功率放大级三部分。 作为音响系统中的放大设备,它接受的信号源有多种形式,通常有话筒输出、唱机输出、录音输出和调谐器输出。它们的输出信号差异很大,因此,音频功放电路中设置前置放大级以适应不同信号源的输入。 为了满足听众对频响的要求和弥补设置了音调控制放大器,希望能对高音、低音部分的频率特性进行调节扬声器系统的频率响应不足,。 为了充分地推动扬声器,通常音响系统中的功率放大器能输出数十瓦以上功率,而高级音响系统的功放最大输出功率可达几百瓦以上。 扩音机的整机电路如下图所示,按其构成,可分为前置放大级,音调控制级和功率放大级三部分。 装 订 线

前置放大电路: 前置放大级输入阻抗较高,输出阻抗较低。前置放大级的性能对整个音频功放电路的影响很大,为了减小噪声,前置级通常要选用低噪声的运放。 由A1组成的前置放大电路是一个电压串联负反馈同相输入比例放大器。 理想闭环电压放大倍数为:23 1R R A vf + = 输入电阻:1R R if = 输出电阻:0of =R 功率放大级: 对于功率放大级,除了输出功率应满足技术指标外,还要求电路的效率高、非线性失真小、输出与音箱负载相匹配,否则将会影响放音效果。 集成功率放大器通常有OTL 和OCL 两种电路结构形式。OTL 功放的优点是只需单电源供电,缺点是输出要通过大电容与负载耦合,因此低频响应较差;OCL 功放的优点是输出与负载可直接耦合,频响特性较好,但需要用双电源供电。(实验室提供本功能模块) 本实验电路的功率放大级由集成功率器件TDA2030A 连成OCL 电路输出形式。 TDA2030A 功率集成电路具有转换速率高,失真小,输出功率大,外围电路简单等特点,采用5脚塑料封装结构。其中1脚为同相输入端;2脚为反相输入端;3脚为负电源;4脚为输出端; 5脚为正电源。 功放级电路中,电容C15、C16用作电源滤波。D1和D2为防止输出端的瞬时过电压损坏芯片的保护二极管。R11、C10为输出端校正网络以补偿感性负载,其作用是把扬声器的电感性负载补偿接近纯电阻性,避免自激和过电压。 图中通过R10、R9、C9引入了深度交直流电压串联负反馈。由于接入C9,直流反馈系数F ′=1。对于交流信号而言,

互补对称功率放大电路原理

互补对称功率放大电路原理

————————————————————————————————作者:————————————————————————————————日期:

3.4 互补对称功率放大电路 教学要求 掌握甲类、乙类和甲乙类三类功率放大电路的工作原理; 理解交越失真形成机理; 了解复合管结构及其特性。 一、概述 对功率放大电路的基本要求 1.不失真情况下输出尽可能大的功率:I与U都大,管子工作在尽限状态。 2.提高效率: = P omax / P DC 要高 3.集电极最大功耗: P 0=P v -P C (管耗),另一部分消耗在管子上,功放管尽限应用,选管要 保 证安全。 二、放大电路的工作状态 放大电路按三极管在一个信号周期内导通时间的不同,可分为甲类、乙类以及甲乙类放大。在整个输 入信号周期内,管子都有电流流通的,称为甲类放大,如下表所示,此时三极管的静态工作点电流I CQ比较大;在一个周期内,管子只有半周期有电流流通的,称乙类放大;若一周期内有半个多周期有电流流通,则称为甲乙类放大。 状态一个信号周期 内导通时间 工作特点图示 甲类整个周期内导 通 失真小,静态电流大,管耗大,效率 低。 乙类半个周期内导 通 失真大,静态电流为零,管耗小,效 率高。 甲乙类半个多周期内 导通 失真大,静态电流小,管耗小,效 率较高。 三、乙类双电源互补对称功率放大电路(OCL) (OCL — Output Capacitorless)

(一)电路组成及工作原理 采用正、负电源构成的乙类互补对称功率放大电路如下动画所示,V1和V2分别为NPN型管和PNP型管, 两管的基极和发射极分别连接在一起,信号从基极输入,从发射极输出,R L为负载。要求两管特性相同,且V CC=V EE。 特点:去掉C,双电源,T1与T2交替工作,正负电源交替供电,输入与输出之间双向跟随。 原理:静态即u i = 0 时,V 1 、V 2 均零偏置,两管的I BQ、I CQ均为零,u o=0,电路不消耗功率。 u i > 0时,V 1 正偏导通,V2反偏截止,i o= i E1= i C1, u O= i C1R L; u i< 0 时,V 1 反偏截止,V2正偏导通,i o= i E2= i C2, u O= i C2R L; 问题:两管交替导电时刻,输入电压小于死区电压时,三极管截止,在输入信号的一个周期内,V1、 V2轮流导通时,基极电流波形在过零点附近一个区域内出现失真,称为交越失真。且输入信号幅度越小失真越明显。 产生交越失真的原因:静态时,U B E Q =0,u i 尚小时,电流增长缓慢。 (二)功率和效率 1.输出功率:输出电流和输出电压有效值的乘积,就是功率放大电路的输出功率。 最大输出功率 2.电源功率:两个管子轮流工作半个周期,每个电源只提供半周期的电流。 最大输出功率时P DC = 2V2 CC / R L 3.效率:效率是负载获得的信号功率P o与直流电源供给功率P DC之比。实用中,放大电路很难达到最 大效率,由于饱和压降及元件损耗等因素,乙类推挽放大电路的效率仅能达到60%左右。 4.管耗 直流电源提供的功率除了负载获得的功率外便为V 1、V 2 管消耗的功率,即管耗。V 1 、V 2两管消耗的 功

实验三功率放大电路实验报告

集成功率放大电路 一. 实验目的 1.掌握功率放大电路的调试及输出功率、效率的测量方法; 2.了解集成功率放大器外围电路元件参数的选择和集成功 率放大器的使用方法。 二. 实验仪器设备 1.实验箱 2. 示波器 3. 万用表 4. 电流表 有关试验方法的说明: (1) 测量最大不失真功率:max O P 在放大器的输入端接入频率为1kHz 的正弦频率信号;Vi 置最小(Vi<20mV );在放大器的输出端街上示波器和毫伏表,逐渐增大Vi ,使示波器显示出最大不失真波形,用毫伏表测出电压有效值 mox O V ,则最大不失真输出功率为: 2max max O O L V P R = (2)测量功率放大器的效率 η: 在保持Vo 为最大不失真输出幅度的情况下,由电流表测量直流电源Vcc 的输出电流E I ,此时电源Vcc 提供的直流输出功率为: ×E E CC P I V = 注:此处Vcc 应为正负电源之差。

功率放大器的效率为: max = O E P P 集成功率放大器的实验电路 三. 实验内容及步骤 1、连接电路: 接入正负电源(+V CC 、-V EE ) 接入负载电阻R L 串入电流表 2、打开电源开关,记录电流表的读数,即为静态电流I E 3、将电流表换至较高档位,接入输入信号v i ,按后面要求进行测量。 负载电阻R L = 时, 按表分别用示波器测量输出电压峰值为2V 和4V 时的电流I E ,计算输出功率P O 、电源供给功率P E 和效率η; 逐渐增大输入电压,用示波器监视输出波形,记录最大不失真时的输出电压的峰值v omax 和电流I E ,并计算此时的输出功率P O ,电源供给功率P E 和效率η,填表。 峰值 I E P O P E η

6低频功率放大器实验报告1

实验报告 姓名: 学号: 日期: 成绩 : 课程名称 模拟电子实验 实验室名称 模电实验室 实验 名称 低频功率放大器 同组 同学 指导 老师 一、实验目的 1、进一步理解OTL 功率放大器的工作原理 2、学会OTL 电路的调试及主要性能指标的测试方法 二、实验原理 图7-1所示为OTL 低频功率放大器。其中由晶体三极管T 1组成推动级(也称前置放大级),T 2、T 3是一对参数对称的NPN 和PNP 型晶体三极管,它们组成互补推挽OTL 功放电路。由于每一个管子都接成射极输出器形式,因此具 图7-1 OTL 功率放大器实验电路 有输出电阻低,负载能力强等优点,适合于作功率输出级。T 1管工作于甲类状态,它的集电极电流I C1由电位器R W1进行调节。I C1 的一部分流经电位器R W2及二极管

D , 给T 2、T 3提供偏压。调节R W2,可以使T 2、T 3得到合适的静态电流而工作于甲、 乙类状态,以克服交越失真。静态时要求输出端中点A 的电位CC A U 21 U =,可以 通过调节R W1来实现,又由于R W1的一端接在A 点,因此在电路中引入交、直流电压并联负反馈,一方面能够稳定放大器的静态工作点,同时也改善了非线性失真。 当输入正弦交流信号u i 时,经T 1放大、倒相后同时作用于T 2、T 3的基极,u i 的负半周使T 2管导通(T 3管截止),有电流通过负载R L ,同时向电容C 0充电,在u i 的正半周,T 3导通(T 2截止),则已充好电的电容器C 0起着电源的作用,通过负载R L 放电,这样在R L 上就得到完整的正弦波。 C 2和R 构成自举电路,用于提高输出电压正半周的幅度,以得到大的动态范围。 OTL 电路的主要性能指标 1、最大不失真输出功率P 0m 理想情况下,L 2CC om R U 81P =,在实验中可通过测量R L 两端的电压有效值,来 求得实际的L 2 O om R U P =。 2、 效率η 100%P P ηE om = P E —直流电源供给的平均功率 理想情况下,ηmax = 78.5% 。在实验中,可测量电源供给的平均电流I dC , 从而求得P E =U CC ·I dC ,负载上的交流功率已用上述方法求出,因而也就可以计算实际效率了。 3、 频率响应 详见实验二有关部分内容 4、 输入灵敏度 输入灵敏度是指输出最大不失真功率时,输入信号U i 之值。 三、实验设备与器件 1、 +5V 直流电源 5、 直流电压表 2、 函数信号发生器 6、 直流毫安表

音频功率放大电路实验报告

实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 成绩:__________________ 实验名称: 音频功率放大电路 实验类型: 研究探索型实验 同组学生姓名:__________ 一、实验目的和要求 1、理解音频功率放大电路的工作原理。 2、学习手工焊接和电路布局组装方法。 3、提高电子电路的综合调试能力。 4、通过myDAQ 来分析理论数据和实际数据之间的关系。 二、实验内容和原理(必填) 音频功率放大电路,也即音响系统放大器,用于对音频信号的处理和放大。按其构成可分为前置放大级、音调控制级和功率放大级三部分。 作为音响系统中的放大设备,它接受的信号源有多种形式,通常有话筒输出、唱机输出、录音输出和调谐器输出。它们的输出信号差异很大,因此,音频功放电路中设置前置放大级以适应不同信号源的输入。 为了满足听众对频响的要求和弥补设置了音调控制放大器,希望能对高音、低音部分的频率特性进行调节扬声器系统的频率响应不足,。 为了充分地推动扬声器,通常音响系统中的功率放大器能输出数十瓦以上功率,而高级音响系统的功放最大输出功率可达几百瓦以上。 扩音机的整机电路如下图所示,按其构成,可分为前置放大级,音调控制级和功率放大级三部分。 专业: 姓名: 学号: 日期: 地点: 桌号 装 订 线 点名册上的序号 前置 放大级 音调控制 放大级 功率 放大级

前置放大电路: 前置放大级输入阻抗较高,输出阻抗较低。前置放大级的性能对整个音频功放电路的影响很大,为了减小噪声,前置级通常要选用低噪声的运放。 由A1组成的前置放大电路是一个电压串联负反馈同相输入比例放大器。 理想闭环电压放大倍数为:23 1R R A vf + = 输入电阻:1R R if = 输出电阻:0of =R 功率放大级: 对于功率放大级,除了输出功率应满足技术指标外,还要求电路的效率高、非线性失真小、输出与音箱负载相匹配,否则将会影响放音效果。 集成功率放大器通常有OTL 和OCL 两种电路结构形式。OTL 功放的优点是只需单电源供电,缺点是输出要通过大电容与负载耦合,因此低频响应较差;OCL 功放的优点是输出与负载可直接耦合,频响特性较好,但需要用双电源供电。(实验室提供本功能模块) 本实验电路的功率放大级由集成功率器件TDA2030A 连成OCL 电路输出形式。 TDA2030A 功率集成电路具有转换速率高,失真小,输出功率大,外围电路简单等特点,采用5脚塑料封装结构。其中1脚为同相输入端;2脚为反相输入端;3脚为负电源;4脚为输出端;5脚为正电源。 功放级电路中,电容C15、C16用作电源滤波。D1和D2

实验报告(互补对称功率放大电路)

实验报告 实验二十互补对称功率放大电路 一、实验仪器及材料 l.信号发生器 2.示波器 二、实验电路 三、实验内容及结果分析 1、V CC=12v,V M=6V时测量静态工作点,然后输入频率为5KHz的正弦波,调节输入幅值使输出波形最大且不失真。(以下输入输出值均为有效值) V B(V) V C(V) V E(V) V i=0.18 R L=+∞R L=5.1KΩR L=8Ω V1 0.93 5.29 0.25 V O(V) 3.25 3.24 1.05 12.5 12.9 67.8 V2 6.69 11.98 6.03 总电流I (ma) V3 5.28 0 5.94 A V18.06 18 5.83 2、V CC=9V,V M=4.5V时测量静态工作点,然后输入频率为5KHz的正弦波,调节输入幅值使输出波形最大且不失真。(以下输入输出值均为有效值) V B(V) V C(V) V E(V) V i=0.126v R L=+∞R L=5.1KΩR L=8Ω V1 0.85 3.80 0.18 V O(V) 2.19 2.18 0.82 9.1 9.1 41.9 V2 5.16 8.99 4.51 总电流I (ma) V3 3.80 0 4.45 A V17.38 17.30 6.51 3、V CC=6V,V M=3V时测量静态工作点,然后输入频率为5KHz的正弦波,调节输入幅值使输出波形最大且不失真。(以下输入输出值均为有效值) V B(V) V C(V) V E(V) V i=0.08V R L=+∞R L=5.1KΩR L=8Ω V1 0.76 2.36 0.11 V O(V) 1.30 1.29 0.38

甲乙类互补对称功率放大电路

甲乙类互补对称功率放大电路 1 甲乙类互补对称功率放大电路 乙类放大电路的失真: 前面讨论了由两个射极输出器组成的乙类互补对称电路(图1),实际上这种电路并不能使输出波形很好地反映输入的变化,由于没有直流偏置,管子的iB必须在|vBE|大于某一个数值(即门坎电压,NPN硅管约为0.6V,PNP锗管约为0.2V)时才有显著变化。当输入信号vi低于这个数值时,T1和T2都截止,i c1和i c2基本为零,负载RL上无电流通过,出现一段死区,如图1所示。这种现象称为交越失真。 图1 交越失真的产生原因 2 甲乙类双电源互补对称电路 一、电路的结构与原理 利用图2所示的偏置电路是克服交越失真的一种方法。 图2 由图可见,T3组成前置放大级(注意,图中未画出T3的偏置电路),T1和T2组成互补输出级。静态时,在D1、D2上产生的压降为T1、T2提供了一个适当的偏压,使之处于微导通状态。由于电路对称,静态时i C1= i C2,I L= 0, v o =0。有信号时,由于电路工作在甲乙类,即使v i很小(D1和D2的交流电阻也小),基本上可线性地进行放大。 上述偏置方法的缺点是,其偏置电压不易调整,改进方法可采用V BE扩展电路。 二、VBE扩展电路

图3 利用二极管进行偏置的甲乙类互补对称电路,其偏置电压不易调整,常采用V BE扩展电路来解决,如图3所示。 在图3中,流入T4的基极电流远小于流过R1、R2的电流,则由图可求出 V CE4=V BE4(R1+R2)/R2 因此,利用T4管的V BE4基本为一固定值(硅管约为0.6~0.7V),只要适当调节R1、R2的比值,就可改变T1、T2的偏压值。这种方法,在集成电路中经常用到。 3 单电源互补对称电路 图4 一、电路结构与原理 图4是采用一个电源的互补对称原理电路,图中的T3组成前置放大级,T2和T1组成互补对称电路输出级。在输入信号vi =0时,一般只要R1、R2有适当的数值,就可使I C3、V B2和V B1达到所需大小,给T2和T1提供一个合适的偏置,从而使K点电位V K=V C=V CC/2 。 当加入信号v i时,在信号的负半周,T1导电,有电流通过负载RL,同时向C充电;在信号的正半周,T2导电,则已充电的电容C起着双电源互补对称电路中电源-V CC的作用,通过负载RL放电。只要选择时间常数RLC足够大(比信号的最长周期还大得多),就可以认为用电容C和一个电源V CC可代替原来的+V CC和-V CC两个电源的作用。 值得指出的是,采用一个电源的互补对称电路,由于每个管子的工作电压不是原来的V CC,而是V CC/2,即输出电压幅值V om最大也只能达到约V CC/2,所以前面导出的计算Po、P T、和P V的最大值公式,必须加以修正才能使用。修正的方法也很简单,只要以V CC/2代

音频功率放大电路实验报告

. . . . 实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 成绩:__________________ 实验名称: 音频功率放大电路 实验类型: 研究探索型实验 同组学生:__________ 一、实验目的和要求 1、理解音频功率放大电路的工作原理。 2、学习手工焊接和电路布局组装方法。 3、提高电子电路的综合调试能力。 4、通过myDAQ 来分析理论数据和实际数据之间的关系。 二、实验容和原理(必填) 音频功率放大电路,也即音响系统放大器,用于对音频信号的处理和放大。按其构成可分为前置放大级、音调控制级和功率放大级三部分。 作为音响系统中的放大设备,它接受的信号源有多种形式,通常有话筒输出、唱机输出、录音输出和调谐器输出。它们的输出信号差异很大,因此,音频功放电路中设置前置放大级以适应不同信号源的输入。 为了满足听众对频响的要求和弥补设置了音调控制放大器,希望能对高音、低音部分的频率特性进行调节扬声器系统的频率响应不足,。 为了充分地推动扬声器,通常音响系统中的功率放大器能输出数十瓦以上功率,而高级音响系统的功放最大输出功率可达几百瓦以上。 扩音机的整机电路如下图所示,按其构成,可分为前置放大级,音调控制级和功率放大级三部分。 专业: 姓名: 学号: 日期: 地点: 桌号 装 订 线 点名册上的序号 前置 放大级 音调控制 放大级 功率 放大级

前置放大电路: 前置放大级输入阻抗较高,输出阻抗较低。前置放大级的性能对整个音频功放电路的影响很大,为了减小噪声,前置级通常要选用低噪声的运放。 由A1组成的前置放大电路是一个电压串联负反馈同相输入比例放大器。 理想闭环电压放大倍数为:23 1R R A vf + = 输入电阻:1R R if = 输出电阻:0of =R 功率放大级: 对于功率放大级,除了输出功率应满足技术指标外,还要求电路的效率高、非线性失真小、输出与音箱负载相匹配,否则将会影响放音效果。 集成功率放大器通常有OTL 和OCL 两种电路结构形式。OTL 功放的优点是只需单电源供电,缺点是输出要通过大电容与负载耦合,因此低频响应较差;OCL 功放的优点是输出与负载可直接耦合,频响特性较好,但需要用双电源供电。(实验室提供本功能模块) 本实验电路的功率放大级由集成功率器件TDA2030A 连成OCL 电路输出形式。 TDA2030A 功率集成电路具有转换速率高,失真小,输出功率大,外围电路简单等特点,采用5脚塑料封装结构。其中1脚为同相输入端;2脚为反相输入端;3脚为负电源;4脚为输出端;5脚为正电源。 功放级电路中,电容C15、C16用作电源滤波。D1和D2为防止输出端的瞬时过电压损坏芯片的保护二极管。R11、C10为输出端校正网络以补偿感性负载,其作用是把

实验七:互补对称功率放大器

实验七互补对称功率放大器 一、实验目的 1、理解互补对称功率放大器的工作原理。 2、加深理解电路静态工作点的调整方法。 3、学会互补对称功率放大电路调试及主要性能指标的测试方法。 二、实验仪器 1、双踪示波器 2、万用表 3、毫伏表 4、直流毫安表 5、信号发生器 三、实验原理 图7-1 互补对称功率放大器实验电路

图7-1所示为互补对称低频功率放大器。其中由晶体三极管T1组成推动级(也称前置放大级),T2、T3是一对参数对称的NPN 和PNP 型晶体三极管,它们组成互补对称功放电路。由于每一个管子都接成射极输出器形式,因此具有输出电阻低,负载能力强等优点,适合于作功率输出级。T1管工作于甲类状态,它的集电极电流IC1由电位器RW1进行调节。二极管D1、D2,给T2、T3提供偏压,可以使T2、T3得到合适的静态电流而工作于甲、乙类状态,以克服交越失真。由于RW1的一端接T1、T2的输出端,因此在电路中引入交、直流电压并联负反馈,一方面能够稳定放大器的静态工作点,同时也改善了非线性失真。 当输入正弦交流信号U i 时,经T1放大、倒相后同时作用于T2、T3的基极,U i 的负半周使T2管导通(T3管截止),有电流通过负载R L (可用嗽叭作为负载),在U i 的正半周,T3导通(T2截止),则已充好电的电容器C 3起着电源的作用,通过负载R L 放电,这样在R L 上就得到完整的正弦波。 C2和R 5构成自举电路,用于提高输出电压正半周的幅度,以得到大的动态范围。由于信号源输出阻抗不同,输入信号源受功率放大电路的输入阻抗影响而可能失真。为了得到尽可能大的输出功率,晶体管一般工作在接近临界参数的状态,如I CM ,U (BR )C EO 和P CM ,这样工作时晶体管极易发热,有条件的话晶体管有时还要采用散热措施,由于三极管参数易受温度影响,在温度变化的情况下三极管的静态工作点也跟随着变化,这样定量分析电路时所测数据存在一定的误差,我们用动态调节方法来调节静态工作点,受三极管对温度的敏感性影响所测电路电流是个变化量,我们尽量在变化缓慢时读数作为定量分析的数据来减小误差。 ※OTL 电路的主要性能指标: 1、 最大不失真输出功率P om 在实验中可通过测量RL 两端的电压有效值,来求得实际的 L om R U P 2 = (7-1) 2、效率η %100?= E om P P η (7-2) PE —直流电源供给的平均功率 理想情况下ηmax =78.5%。在实验中,可测量电源供给的平均电流Idc (多测几次I 取其平均值),从而求得 E CC dc P U I =? (7-3) 负载上的交流功率已用上述方法求出,因而也就可以计算实际效率了。 3、频率响应 详见实验四有关部分内容 4、输入灵敏度

非线性丙类功率放大器实验报告讲解

非线性丙类功率放大器实验报告 姓名: 学号: 班级: 日期: 37 38 非线性丙类功率放大器实验 一、实验目的 1. 了解丙类功率放大器的基本工作原理, 掌握丙类放大器的调谐特性以及负载改变时的动态特性。 2. 了解高频功率放大器丙类工作的物理过程以及当激励信号变化对功率放大器工作状态的影响。 3. 比较甲类功率放大器与丙类功率放大器的功率、效率与特点。 二、实验基本原理 非线性丙类功率放大器的电流导通角 o 90<θ, 效率可达到 80%,通常作为发射机末级功放以获得较大的输出功率和较高的效率。特点:非线性丙类功率放大器通常用来放大窄带高频信号 (信号的通带宽度只有其中心频率的 1%或更小 ,基极偏置为负值,电流导通角o 90<θ,为了不失真地放大信号,它的负载必须是 LC 谐振回路。 丙类功率放大器

丙类功率放大器的基极偏置电压 V BE 是利用发射极电流的直流分量 I EO (≈ I CO 在射极电阻上产生的压降来提供的,故称为自给偏压电路。当放大器的输入信号 ' i v 为正弦波时,集电极的输出电流 i C 为余弦脉冲波。利用谐振回路 LC 的选频作用可输出基波谐振电压 v c1, 电流 i c1。图 8-3画出了丙类功率放大器的基极与集电极间的电流、电压波形关系。分析可得下列基本关系式: 011R I V m c m c = 式中, m c V 1为集电极输出的谐振电压及基波电压的振幅; m c I 1为集电极基波电流振幅; 0R 为集电极回路的谐振阻抗。 2102111212121R V R I I V P m c m c m c m c C === 39 式中, P C 为集电极输出功率 CO CC D I V P = 式中, P D 为电源 V CC 供给的直流功率; I CO 为集电极电流脉冲 i C 的直流分量。 放大器的效率η为 CO m c CC m c I I V V 1121? ?

实验十一_____互补对称功率放大器(1)OTL功率发大器

实验十一低频功率放大器OTL 一、实验目的 1.进一步理解OTL功率放大器的工作原理。 2. 学会OTL电路的调试及主要性能指标的测试方法。 二、实验原理 图12—1所示为OTL低频功率放大器。其中由晶体三极管T1组成推动级(也称前至放大级),T2、T3是一对参数对称的NPN和PNP型晶体三极管,它们组成互补推挽OTL 功放电路。由于每一个管子都接成射极输出器形式,因此具有输出电阻低,负载能力强等优点,适合于作功率输出级。T1管工作于甲类状态,它的集电极电流Icl由电位器RW1进行调节。Icl的一部分流经电位器RW:及二极管D,T2、T3提供偏压。调节RW2,可以使T2、T3得到合适的静态电流而工作于甲、乙类状态,以克服交越失真。静态时要求输出端中点A的电位UA=(1/2)Ucc,可以通过调节RW1来实现,又由于RW1的一端接在A 点,因此在电路中引入交、直流电压并联负反馈,一方面能够稳定放大器的静态工作点,同时也改善了非线性失真。

当输入正弦交流信号Ui时,经T1放大、倒相后同时作用于T2、T3的基极Ui的负半周使T2管导通(T3管截止),有电流通过负载RL,同时向电容Co充电,在Ui的正半周,T3导通(T2截止),则已充好电的电容器Co起着电源的作用,通过负载RL放电,这样在RL上就得到完整的正弦波。 C2和R构成自举电路,用于提高输出电压正半周的幅度,以得到大的动态范围。 0TL电路的主要性能指标 1. 最大不失真输出功率Pom 理想情况下 Pom=(1/8)(U2cc/RL) 在实验中可通过测量RL两端的电压有效值,来求得实际的 Pom=U2o/ RL 2.效率η η=(Pom/PE)*100% PE一直流电源供给的平均功率 理想情况下,ηmax=78.5%。在实验中,可测量电源供给的平均电流Idc,从而求得PE=Ucc·Idc,负载上的交流功率已用上述方法求出,因而也就可以计算实际效率了。 3. 频率响应 详见实验二有关部分内容 4. 输入灵敏度 输入灵敏度是指输出最大不失真功率时,输入信号Ui之值。 三、实验设备与器件 1.+5V直流电源 5.直流电压表 2,函数信号发生器 6.直流毫安表 3.双踪示波器 7. 频率计 4.交流毫伏表 8.晶体三极管3DG6×1(9013×1)3DGl2×1(9013×1) 3CG12×1(9012×1)晶体二极管22CP×1 8Ω喇叭×1,电阻器、电容器若干 四、实验内容 在整个测试过程中,电路不应有自激现象。 1.静态工作点的测试 按图12—1连接实验电路,电源接线中串入直流毫安表,电位器RW1置最小位,RW2置中间位置。接通+5V电源,观察毫安表指示,同时用手触摸输出级管子,若电流过大,或管子温升显著,应立即断开电源检查原因(如Rw2开路,电路自激,或输出管性能不好

相关主题