搜档网
当前位置:搜档网 › 铁碳相图

铁碳相图

Iron-Carbon Phase Diagram

αγδεΨ

1.铁素体:Ferrite ---F

存在图中GPQ下方,它是碳溶于α-Fe中的固溶体,碳的溶解量很小,在723℃时达到最大值,其质量分数为0.0218%,常温时的质量分数为:0.006%。

特性:强度和硬度较低,塑性和韧性好。

另:碳溶于δ-Fe形成的固溶体,叫δ固溶体,以δ表示,也是铁素体。

2.奥氏体:Austenite --A

存在于图GSEJN区域,它是碳溶于γ-Fe中的固溶体。碳的溶解量随温度的升高而增多,至1148℃时达到最大值,质量分数为:2.11%。

特性:硬度为170~220HBS,伸长率为40%~50%,即硬度较低塑性较高。

3. 渗碳体:Cementite --Fe3C

由垂线DN表示,是含碳质量分数为6.67%的铁碳化合物。

特点:硬度高800HBS,脆性大,塑性极低。

4. 珠光体:Pearlite---P

A1线;在铁素体上分布着硬脆的渗碳体,形成的组织为珠光体。Ferrite+Cementite=Pearlite

特点:抗拉强度:δ=750MPa,布氏硬度:240HBS,断面收缩率:Ψ=12%~15%;因而珠光体是一种高硬度、强度和韧性的组织。

依据渗碳体的存在形式,可分为片状珠光体和粒状珠光体,含碳量相同的钢材,粒状珠光体比片状珠光体硬度强度低一些,在相同硬度情况下,粒状珠光体的屈服强度、塑性、韧性都比片状珠光体优越。

5. 贝氏体:Bainite

当奥氏体过冷到550℃左右至马氏体点(Ms)温度范围时,其转变成的组织成为贝氏体。可分为上贝氏体和下贝氏体,上贝氏体是过冷奥氏体大约在550~350℃温度范围转变成的,下贝氏体是过冷奥氏体在350℃左右至马氏体点(Ms)之间的温度范围内转变成的。

上贝氏体强度大,脆性大;下贝氏体强度和韧性都比较高。

6. 马氏体:Martensite

当奥氏体以大于临界冷却速度冷却,并过冷到Ms点以下时,可转变为马氏体。

特点:高强度,脆性大。

液相L线:温度高于ABCD线部分,所有铁碳合金均处于熔化状态。

A

线:MN线,230℃,为渗碳体磁性转变线,高于此温度其磁性消失。

A

1

线:PS线,727℃,为共析转变线,冷却到此温度,奥氏体同时转变为铁素体和渗碳体,组成珠光体;而加热到此温度时,珠光体转变为奥氏体。共析成分含碳量的质量分数为0.8%,S为共析点。

A

2

线:GSP内短水平虚线,770℃,为铁素体磁性转变温度线,高于此温度,铁素体磁性消失。

A

3线:GS线,727~910℃,为铁素体和奥氏体的转变温度线,加热到A

1

线时铁素

体开始转变为奥氏体,加热到A

3线时,铁素体全部转化为奥氏体,冷却到A

3

线时,

奥氏体开始析出铁素体。

A

cm

线, ES线,727~1148℃,为碳在奥氏体中的溶解度曲线。加热到此线以上,钢中的渗碳体完全熔解于奥氏体中;奥氏体冷却到此线以下,就要析出过饱和的碳,形成渗碳体。

共晶线, EF线,1148℃,液相铁碳合金冷却到此温度线时,同时转换为奥氏体和渗

5)低合金钢-合金量<5% 6)中合金钢-合金量5%~10% 7)高合金钢-合金量>10%

1. 塑性伸长率:δ=[(L1-L0)/L0]X100% 或Ψ=[(A0-A1)/A0]X100%

2. 强度:ζs=F s/A0 ζb=F b/A0

弹性:Elasticity, 塑性:Plasticity, 强度:Intensity,硬度:Hardness,冲击韧性:Impact Toughness

Heat Treatment Iron-Carbon Phase Diagram

铁碳相图是制定热处理工艺的主要依据之一,常利用它来粗略的确定各种含碳量的碳素钢和低合金钢的热处理温度范围。但是,此图是在极缓慢加热和冷却的条件下得到的,它只表示在平衡状态下的成分、温度和相的关系;实际上,加热速度和冷却速度对相变温度、组织成分和组织形态有很大影响,加热速度增大,会使相变温度升高;冷却速度增大,则相变温度下降。注脚c表示加热时的实际相变温度,注脚r表示冷却时的实际相变温度。

Nodular cast, spherical-graphite cast—球墨铸铁

制造步骤

(一)严格要求化学成分,对原铁液要求的碳硅含量比灰铸铁高,降低球墨铸铁中锰,磷,硫的含量

(二)铁液出炉温度比灰铸铁更高,以补偿球化,孕育处理时铁液温度的损失

(三)进行球化处理,即往铁液中添加球化剂

(四)加入孕育剂进行孕育处理

(五)球墨铸铁流动性较差,收缩较大,因此需要较高的浇注温度及较大的浇注系统尺寸,合理应用冒口,冷铁,采用顺序凝固原则(六)进行热处理

铁炭相图

二、Fe - Fe3C 相图的分析 (一)图中主要的特性点和线及其意义 图中主要的特性点及其意义: A —纯铁的熔点(1538℃)。 C — 共晶点(1148℃,ωc=4.3%)。 D —渗碳体的熔点(理论计算值1227℃)。 E —表示碳在γ-Fe 中的最大溶解度。 G —纯铁的同素异晶转变点,α-Fe 与γ-Fe 相互转变。 S —共析点(727℃,ωc=0.77%)。 图中主要特性线及其意义: ACD — 液相线。 AECF — 固相线 ES —碳在γ—Fe 中的溶解度曲线 GS —奥氏体和铁素体的相互转变线 ECF —共晶线 PSK —共析线 纯铁(含碳0~0.0218 % ) 铸铁(含碳2.11~6.69%) 碳钢(含碳0.0218~2.11%) 纯铁熔点 (1538℃) Fe 3C A 渗碳体熔点 (1227℃) 共晶点(1148℃) 碳在γ-Fe 中 的最大溶解度 (1148℃) 共析线 渗碳体(含 碳6.69%) G 纯铁的同素异晶 转变点(912℃) 碳在α-Fe 中 的最大溶解度 (727℃) 共析点 (727 ℃ )

第三节 典型铁碳合金的结晶过程及组织 一、铁碳合金的分类 1、工业纯铁:成分在P 点左面,碳的质量分数小于0.0218% 的铁碳合金。 2、钢:成分在P 点与E 点之间,碳的质量分数0.0218%~2.11% 的铁碳合金,根据其室温组织的特点,又可以S 点为界 分为三类: 共析钢:ωc=0.77%; 亚共析钢:ωc=0.0218%~0.77%; 过共析钢: ωc=0.77%~2.11%. 3、白口铸铁:成分在E 点和F 点之间,碳的质量分数为2.11%~ 6.69%的铁碳合金。白口铸铁组织的特点,也可 以C 点为界分为三类: 共晶白口铸铁: ωc=4.30%; 亚共晶白口铸铁: ωc=2.11%~4.30%; 过共晶白口铸铁: ωc=4.30%~6.69%. 2.按钢的质量分类: *碳素钢: Wp = (0.035% ~ 0.045%) Ws = (0.035% ~ 0.050%) *优质碳素钢: Wp = 0.035% Ws = (0.030% ~ 0.035%) *高级优质碳素钢: Wp ≤ 0.030% Ws = ( 0.020%~0.025% ) 3.按钢的用途分类: *碳素结构钢 ( carbon structural steel ) 用于制造各种机械零件、工程构件。一般为 低、中碳钢。 *碳素工具钢 ( carbon tool steel ) 用于制造各种工具。一般为高碳钢。 Fe - Fe 3C 相图

详解铁碳相图

详解铁碳相图 (注:在解读上面铁碳相图之前,我们要明白纯铁在不同的温度下会发生同素异晶转变,这个对于我们解读上面相图很有用。) 1:ACD线: ACD线上面完全是液相,没有固相产生。在温度1538℃时候,此时的液态铁的晶格类型为δ-Fe,如果此时的碳溶解在δ-Fe的晶格间隙中,那么就会产生一种新的相,即为铁素体相,为了区别碳溶解在α-Fe中的铁素体相,分别给它们前面加上一个δ或者α,即如果是碳溶解到晶格类型为δ-Fe的间隙中形成间隙固溶体相的就命名为δ-铁素体或直接写δ,如果是溶解到晶格类型为α-Fe的间隙中形成间隙固溶体相的就命名为α-铁素体或α或F。 伴随着温度的下降,组元----温度----成分三者是这个铁碳相图的核心理念。要看懂这个相图,弄明白组元----温度----成分关系,就能读懂这个相图。 从图中你可以看见,即便同一个温度,不同的碳含量,它的成分是不一样的,这就是为什么要提到组元----温度----成分这三者关系的原因。而铁碳相图会一直要用到这三者的关系来加以理解。 重点:铁素体就是碳溶解到δ-Fe和α-Fe的晶格间隙而形成的一种间隙固溶体相。 2:AEC区域和CDF区域 AEC和CDF区域有液相也有固相,但是,它们的成分是不一样的,AEC区域为什么是奥氏体+液相呢?为什么CDF区域是渗碳体+液相呢?首先,AEC区域之所以是奥氏体+液相,那是因为在1500℃---1148℃时候δ-Fe会转变成γ-Fe(转变温度为1394℃),也就是说,当温度从1394℃再次冷却到1148℃的时候,这时候δ-Fe已经转变成了γ-Fe,此时的碳就会溶解到γ-Fe晶格中形成一种新的间隙固溶体相,即为奥氏体,由于受到温度原因,液相并没

铁碳合金相图分析

第四章铁碳合金 第一节铁碳合金的相结构与性能 一、纯铁的同素异晶转变 δ-Fe→γ-Fe→α-Fe 体心面心体心 同素异晶转变——固态下,一种元素的 晶体结构 随温度发生变化的 现象. 特点: 是形核与长大的过程重结晶 将导致体积变化产生内应力 通过热处理改变其组织、结构→ 性能 二、铁碳合金的基本相 基本相定义力学性能溶碳量 铁素体 F碳在α-Fe中的 间隙固溶体强度,硬度低,塑性, 韧性好 最大% 奥氏体 A碳在γ-Fe中的 间隙固溶体 硬度低,塑性好最大% 渗碳体Fe3C Fe与C的金属化 合物 硬而脆 800HBW,δ↑=αk=0 %

第二节铁碳合金相图一、相图分析 两组元:Fe、 Fe3C 上半部分图形二元共晶相 图 共晶转变: 1148℃ 727℃ → + Fe3C → P + Fe3C莱氏体Ld Ld′ 2、下半部分图形共析相图 两个基本相:F、Fe3C 共析转变: 727℃ → + Fe3C 珠光体P 二、典型合金结晶过程 分类: 三条重要的特性曲线

① GS线---又称为A3线它是在冷却过程中由奥氏体析出铁素体的开始线或者说在加热过程中铁素体溶入奥氏体的终 了线. ② ES线---是碳在奥氏体中的溶解度曲线当温度低于此曲线时就要从奥氏体中析出次生渗碳体通常称之为二次渗碳 体因此该曲线又是二次渗碳体的开始析出线.也叫Acm线. ③ PQ线---是碳在铁素体中的溶解度曲线.铁素体中的最大溶碳量于727oC时达到最大值%.随着温度的降低铁素体中的溶碳量逐渐减少在300oC以下溶碳量小于%.因此当铁素体从727oC冷却下来时要从铁素体中析出渗碳体称之为三次渗碳体记为Fe3CⅢ. 工业纯铁<%C 钢——亚共析钢、共析钢%C、过共析钢 白口铸铁——亚共晶白口铸铁、共晶白口铸铁、过共晶白口铸铁 L → L+A → A → PF+Fe3C L → L+A → A → A+F →P+F L → L+A → A → A+ Fe3CⅡ→P+ Fe3CⅡ

铁碳合金相图

铁碳合金相图 用以温度为纵坐标,以碳含量为横坐标的图解方法,表示在接近平衡或亚稳状态下,以铁碳为单元组成的合金,在不同温度下相与相之间关系的图称为铁碳平衡图,也称为铁碳相图。它是研究铁碳合金的基础,是研究碳钢和铸铁的成分、温度、组织及性能之间关系的理论基础,是制定热加工、热处理、冶炼和铸造等工艺依据,对了解我们厂内金属材料,尤其认识、理解锅炉管材有重要的意义,对后续想做好锅炉四管运行和维护也都是重要的基础。 一、基本概念 1)我们日常接触的“铁、钢”等其实都是合金,含铁、碳、硫、硅等等,要认识了解所熟知的“铁、钢”就必须先认识他们中最基础的两种元素,纯铁和碳。纯铁在1394℃以上以体心立方结构(δ-Fe)稳定存在,温度下降,在912~1394℃范围内发生同素异构转变,以面心立方晶格的γ-Fe稳定存在,在912℃以下又重新回复到体心立方晶格的α-Fe,说体心立方体、面心立方体都离不开另一个主角碳,就是碳在以铁元素构成的立方体中在其体心或者面心。 2)碳溶入α-Fe和γ-Fe中所形成的固溶体称为铁素体和奥氏体。当含量超过铁素体和奥氏体的溶解度时,则会出现金属化合物相Fe3C,称为渗碳体。 3)碳原子溶入δ-Fe中所形成的固溶体称为高温铁素体。它在1394℃以上的高温出现,对工程上应用的铁碳合金的组织和性能没有什么影响,故不作为铁碳合金的基本相。 4)铁碳合金相图的基本组成相是铁素体、奥氏体和渗碳体,这里引出这三个体,具体理解如下。 1、铁素体 碳原子溶入α-Fe中形成的间隙固溶体,称做铁素体,如图1所示。由于体心立方晶格的α-Fe的晶格间隙半径只有0.036nm,而碳原子半径为0.077nm,所以碳在铁素体中的溶解度很小。在727℃时最大固溶度为0.0218%,而在室温时碳的固溶度几乎降为零。因此,常温下铁素体的力学性能与纯铁相近,铁素体有优良的塑性和韧性,但强度,硬度较低,在铁碳合金中是软韧相,铁素体是912℃以下的平衡相,也称做常温相,其显微组织图如图2所示。在铁碳相图中铁素体用符号F或α表示。

铁碳相图详解

三、典型铁碳合金的平衡结晶过程 铁碳相图上的合金,按成分可分为三类: ⑴工业纯铁(<0.0218% C),其显微组织为铁素体晶粒,工业上很少应用。 ⑵碳钢(0.0218%~2.11%C),其特点是高温组织为单相A,易于变形,碳钢又分为亚共析钢(0.0218%~0.77%C)、共析钢(0.77%C)和过共析钢(0.77%~2.11%C)。 ⑶白口铸铁(2.11%~6.69%C),其特点是铸造性能好,但硬而脆,白口铸铁又分为亚共晶白口铸铁(2.11%~4.3%C)、共晶白口铸铁(4.3%C)和过共晶白口铸铁(4.3—6.69%C) 下面结合图3-26,分析典型铁碳合金的结晶过程及其组织变化。 图3-26 七种典型合金在铁碳合金相图中的位置 ㈠工业纯铁(图3-26中合金①)的结晶过程 合金液体在1~2点之间通过匀晶反应转变为δ铁素体。继续降温时,在2~3点之间,不发生组织转变。温度降低到3点以后,开始从δ铁素体中析出奥氏体,在3~4点之间,随温度下降,奥氏体的数量不断增多,到达4点以后,δ铁素体全部转变为奥氏体。在4~5点之间,不发生组织转变。冷却到5点时,开始从奥氏体中析出铁素体,温度降到6点,奥氏体全部转变为铁素体。在6-7点之间冷却,不发生组织转变。温度降到7点,开始沿铁素体晶 界析出三次渗碳体Fe 3C III 。7点以下,随温度下降,Fe 3 C III 量不断增加,室温下Fe 3 C III 的最大 量为: % 31 .0 % 100 0008 .0 69 .6 0008 .0 0218 .0 3 = ⨯ - - = Ⅲ C Fe Q 。图3-27为工业纯铁的冷却曲线及组织转变示意图。 工业纯铁的室温组织为α+Fe 3C III ,如图3-28所示,图中个别部位的双晶界内是Fe 3 C III 。

铁碳平衡相图

铁碳平衡相图 又称铁碳相图或铁碳状态图。它以温度为纵坐标,碳含量为横坐标,表示在接近平衡条件(铁-石墨)和亚稳条件(铁-碳化铁)下(或极缓慢的冷却条件下)以铁、碳为组元的二元合金在不同温度下所呈现的相和这些相之间的平衡关系。 简史早期利用热分析法和金相法发现铁的加热和冷却曲线上出现两个驻点,即临界点A3和A2,它们的在 1868 年,俄国学者切尔诺夫(Д.к.Чернов)就注意到只有把钢加热到某一温度”a”以上再快冷,才能使钢淬硬,从而有了临界点的概念。至1887~1892年奥斯蒙(F.Osmond)温度视加热或冷却 (分别以A c和A r表示)过程而异。奥斯蒙认为这表明铁有同素异构体,他称在室温至A2温度之间保持稳定的相为α铁;A2~A3间为β铁;A3以上为γ铁。1895年,他又进一步证明,如铁中含有少量碳,则在690或710℃左右出现临界点,即A r1点,标志在此温度以上碳溶解在铁中,而在低于这一温度时,碳以渗碳体形式由固溶体中分解出来,随铁中碳量提高,A r3下降而与A r2 1合为一点。1904年又发现A4至熔点相合,然后断续下降,至含碳为0.8~0.9%时与A r 间为δ铁。以上述临界点工作的成果为基础,1899年罗伯茨-奥斯汀(W.C.Roberts-Austen)制定了第一张铁碳相图;而洛兹本 (H.W.Bakhius Roozeboom)更首先在合金系统中应用吉布斯(Gibbs)相律,于1990年制定出较完整的铁碳平衡图。随着科学技术的发展,铁碳平衡图不断得到修订,日臻完善。目前采用的铁碳平衡图示于图1,图中各重要点的温度、浓度及含义如下表所列。当铁中含碳量不同时,得到的典型组织如图2所示。

铁碳相图详解

Fe-C相图详解 图1 Fe-Fe3C合金相图 1、相图中的基本相及其符号表示 (1)液相(L):铁碳合金在熔化温度以上形成的均匀液体。 (2)高温铁素体(δ):碳固溶在δ-Fe中形成的间隙固溶体,呈体心立方晶格结构;因存在的温度较高,故称高温铁素体或δ固溶体,在1394℃以上存在;在1495℃时溶碳量最大,碳的质量分数为0.09%。 (3)铁素体(α/F):碳固溶在α-Fe中形成的间隙固溶体,呈体心立方晶格结构;由于晶格间隙很小,其溶碳能力很低,常温下仅能溶解为0.0008%的碳,在727℃时最大的溶碳能力为0.02%,因此其性能几乎和纯铁相同,强度、硬度不高,但具有良好的塑性与韧性。 (4)奥氏体(γ/A):碳固溶在γ-Fe中形成的间隙固溶体, 呈面心立方晶格结构,是钢铁的一种层片状的显微组织;由于八面体间隙较大,因此可以容纳更多的碳;奥氏体塑性很好,强度较低,具有一定韧性,不具有铁磁性。 (5)渗碳体(Fe3C):铁与碳形成的金属化合物;渗碳体的含碳量为ωc=6.67%,熔点为1227℃;其晶格为复杂的正交晶格,硬度很高,塑性、韧性几乎为零,脆性很大; 在铁碳合金中有不同形态的渗碳体,其数量、形态与分布对合金的性能有直接影响:一次渗碳体(Fe3C I):液相合金冷却到液相线以下时析出的渗碳体,为块状。 共晶渗碳体(Fe3C共晶):莱氏体中的渗碳体,呈骨骼/树枝状。 二次渗碳体(Fe3C II):由奥氏体中析出的渗碳体,为网状。

共析渗碳体(Fe3C共析):珠光体中的渗碳体,呈片状。 三次渗碳体(Fe3C III):从铁素体晶界上析出,沿铁素体晶界呈断续片状/短棒状分布。(6)珠光体(P):铁素体和渗碳体一起组成的机械混合物;力学性能介于两者之间。(7)莱氏体(Ld/Ld’):常温下是珠光体、渗碳体和共晶渗碳体的混合物;当温度高于727℃时,莱氏体由奥氏体和渗碳体组成,用符号Ld表示;在低于727℃时,莱氏 体是由珠光体和渗碳体组成,用符号Ld’表示,称为变态莱氏。 2、相图中的特性点及其数值、物理意义 3 (注:部分相图中Q温度为600℃,ωC=0.0057%,代表600℃时碳在α-Fe中的溶解度) 3、相图中相变曲线的物理含义 (1)恒温(1495℃)转变线HJB:包晶线。 0.09%≤ωC≤0.53%的铁碳合金(即ωC值落在H点和B点横坐标间的铁碳合金)在 1495℃发生包晶转变(L B+δH?A J),产生奥氏体。 (2)恒温(1148℃)转变线ECF:共晶线。 2.11%≤ωC≤6.69%的铁碳合金(即ωC值落在E点和F点横坐标间的铁碳合金)在 1148℃发生共晶转变(L C?A E+Fe3C),产生莱氏体。 (3)恒温(727℃)转变线PSK:共析线。 0.0218%≤ωC≤6.69%的铁碳合金(即ωC值落在P点和K点横坐标间的铁碳合金) 在727℃发生共析转变(A S?F P+Fe3C),产生珠光体。 (4)ES(A cm线):碳在奥氏体中的溶解曲线。 ωC≥0.77%的铁碳合金在由1148℃缓冷至727℃时沿奥氏体晶界析出二次渗碳体。(5)PQ:碳在铁素体中的溶解度曲线。 ωC≥0.0008%的铁碳合金,在由727℃缓冷至室温时沿着铁素体晶界析出三次渗碳体。(6)GS(A3线):奥氏体与铁素体之间的转变曲线;此线以上全部为奥氏体。 4、相图中分界曲线的物理含义

铁碳相图

Iron-Carbon Phase Diagram αγδεΨ 1.铁素体:Ferrite ---F 存在图中GPQ下方,它是碳溶于α-Fe中的固溶体,碳的溶解量很小,在723℃时达到最大值,其质量分数为0.0218%,常温时的质量分数为:0.006%。 特性:强度和硬度较低,塑性和韧性好。 另:碳溶于δ-Fe形成的固溶体,叫δ固溶体,以δ表示,也是铁素体。 2.奥氏体:Austenite --A 存在于图GSEJN区域,它是碳溶于γ-Fe中的固溶体。碳的溶解量随温度的升高而增多,至1148℃时达到最大值,质量分数为:2.11%。 特性:硬度为170~220HBS,伸长率为40%~50%,即硬度较低塑性较高。 3. 渗碳体:Cementite --Fe3C 由垂线DN表示,是含碳质量分数为6.67%的铁碳化合物。 特点:硬度高800HBS,脆性大,塑性极低。 4. 珠光体:Pearlite---P A1线;在铁素体上分布着硬脆的渗碳体,形成的组织为珠光体。Ferrite+Cementite=Pearlite 特点:抗拉强度:δ=750MPa,布氏硬度:240HBS,断面收缩率:Ψ=12%~15%;因而珠光体是一种高硬度、强度和韧性的组织。 依据渗碳体的存在形式,可分为片状珠光体和粒状珠光体,含碳量相同的钢材,粒状珠光体比片状珠光体硬度强度低一些,在相同硬度情况下,粒状珠光体的屈服强度、塑性、韧性都比片状珠光体优越。

5. 贝氏体:Bainite 当奥氏体过冷到550℃左右至马氏体点(Ms)温度范围时,其转变成的组织成为贝氏体。可分为上贝氏体和下贝氏体,上贝氏体是过冷奥氏体大约在550~350℃温度范围转变成的,下贝氏体是过冷奥氏体在350℃左右至马氏体点(Ms)之间的温度范围内转变成的。 上贝氏体强度大,脆性大;下贝氏体强度和韧性都比较高。 6. 马氏体:Martensite 当奥氏体以大于临界冷却速度冷却,并过冷到Ms点以下时,可转变为马氏体。 特点:高强度,脆性大。 液相L线:温度高于ABCD线部分,所有铁碳合金均处于熔化状态。 A 线:MN线,230℃,为渗碳体磁性转变线,高于此温度其磁性消失。 A 1 线:PS线,727℃,为共析转变线,冷却到此温度,奥氏体同时转变为铁素体和渗碳体,组成珠光体;而加热到此温度时,珠光体转变为奥氏体。共析成分含碳量的质量分数为0.8%,S为共析点。 A 2 线:GSP内短水平虚线,770℃,为铁素体磁性转变温度线,高于此温度,铁素体磁性消失。 A 3线:GS线,727~910℃,为铁素体和奥氏体的转变温度线,加热到A 1 线时铁素 体开始转变为奥氏体,加热到A 3线时,铁素体全部转化为奥氏体,冷却到A 3 线时, 奥氏体开始析出铁素体。 A cm 线, ES线,727~1148℃,为碳在奥氏体中的溶解度曲线。加热到此线以上,钢中的渗碳体完全熔解于奥氏体中;奥氏体冷却到此线以下,就要析出过饱和的碳,形成渗碳体。 共晶线, EF线,1148℃,液相铁碳合金冷却到此温度线时,同时转换为奥氏体和渗 5)低合金钢-合金量<5% 6)中合金钢-合金量5%~10% 7)高合金钢-合金量>10% 1. 塑性伸长率:δ=[(L1-L0)/L0]X100% 或Ψ=[(A0-A1)/A0]X100% 2. 强度:ζs=F s/A0 ζb=F b/A0 弹性:Elasticity, 塑性:Plasticity, 强度:Intensity,硬度:Hardness,冲击韧性:Impact Toughness

铁碳相图分析

铁碳合金相图 从某种意义上讲,铁碳合金相图是研究铁碳合金的工 具,是研究碳钢和铸铁成分、温度、组织和性能之间 关系的理论基础,也是制定各种热加工工艺的依据。 一、铁碳合金中的基本相 铁碳合金相图实际上是Fe-Fe3C相图,铁碳合金的基 本组元也应该是纯铁和Fe3C。铁存在着同素异晶转变, 即在固态下有不同的结构。不同结构的铁与碳可以形 成不同的固溶体,Fe—Fe3C相图上的固溶体都是间隙固溶体。由于α-Fe和γ-Fe晶格中的孔隙特点不同,因而两者的溶碳能力也不同。 1,铁素体(ferrite) 铁素体是碳在α-Fe中的间隙固溶体,用符号"F"(或α)表示,体心立方晶格; 虽然BCC的间隙总体积较大,但单个间隙体积较小,所以它的溶碳量很小,最多只有0.0218%(727℃时),室温时几乎为0,因此铁素体的性能与纯铁相似,硬度低而塑性高,并有铁磁性. 铁碳合金中的基本相 铁素体的力学性能特点是塑性,韧性好,而强度,硬度低. δ=30%~50%,AKU=128~160J σb=180~280MPa,50~80HBS. 铁碳合金中的基本相 铁素体的显微组织与纯铁相同,用4%硝酸酒精溶液浸蚀后,在显微镜下呈现明亮的多边形等轴晶粒,在亚共析钢中铁素体呈白色块状分布,但当含碳量接近共析成分时,铁素体因量少而呈断续的网状分布在珠光体的周围. 铁碳合金中的基本相 2,奥氏体(Austenite ) 奥氏体是碳在γ-Fe中的间隙固溶体,用符号"A"(或γ)表示,面心立方晶格; 虽然FCC的间隙总体积较小,但单个间隙体积较大,所以它的溶碳量较大,最多有2.11%(1148℃时),727℃时为0.77%. 铁碳合金中的基本相 在一般情况下, 奥氏体是一种高温组织,稳定存在的温度范围为727~1394℃,故奥氏体的硬度低,塑性较高,通常在对钢铁材料进行热变形加工,如锻造,热轧等时,都应将其加热成奥氏体状态,所谓"趁热打铁"正是这个意 思.σb=400MPa,170~220HBS,δ=40%~50%. 另外奥氏体还有一个重要的性能,就是它具有顺磁性,可用于要求不受磁场的零件或部件. 铁碳合金中的基本相 奥氏体的组织与铁素体相似,但晶界较为平直,且常有孪晶存在. 铁碳合金中的基本相 3,渗碳体(Cementite) 渗碳体是铁和碳形成的具有复杂结构的金属化合物,用化学分子式"Fe3C"表示.它的碳质量分数Wc=6.69%,熔点为1227℃, 质硬而脆,耐腐蚀.用4%硝酸酒精溶液浸蚀后,在显微镜下呈白色,如果用4%苦味

铁碳相图知识(打印)

铁碳相图知识 化合物Fe3C称为渗碳体(Cementite),是一种亚稳定的化合物,在一定条件下可以分解为Fe和C,C原子聚集到一起就是石墨。因此,铁碳相图常表示为Fe-Fe3C和Fe-石墨双重相图(图1)。Fe-Fe3C相图主要用于钢,而Fe-石墨相图则主要用于铸铁的研究和生产。 铁具有异晶转变,即固态的铁在不同的温度具有不同的晶体结构。纯铁的同素异晶转变如下: 由于Fe的晶体结构不同,C在Fe中的溶解度差别较大。碳在面心立方(FCC)的γ-Fe 中的最大溶解度为2.11%,而在体心立方(BCC)的α-Fe和δ-Fe中最大仅分别为0.0218%和0.09%。 纯铁 纯铁的熔点1538℃,固态下具有同素异晶转变:912℃以下为体心立方(BCC)晶体结构,912℃到1394℃之间为面心立方(FCC), 1394℃到熔点之间为体心立方。工业纯铁的显微组织见图2。

图2 工业纯铁的显微组织图3 奥氏体的显微组织 铁的固溶体 碳溶解于α-Fe和δ-Fe中形成的固溶体称为铁素体(Ferrite),用α、δ或F表示, 由于δ-Fe是高温相,因此也称为高温铁素体。铁素体的含碳量非常低(室温下含碳仅为0.005%),所以其性能与纯铁相似:硬度(HB50~80)低,塑性(延伸率δ为30%~50%)高。铁素体的显微组织与工业纯铁相同(图2) 碳溶解于γ-Fe中形成的固溶体称为奥氏体(Austenite),用γ或A表示。具有面心立方晶体结构的奥氏体可以溶解较多的碳,1148℃时最多可以溶解2.11%的碳,到727℃时含碳量降到0.8%。奥氏体的硬度(HB170~220)较低,塑性(延伸率δ为40%~50%)高。奥氏体的显微组织见图3,图4表示碳原子存在于面心立方晶格中正八面体的中心。 图4 碳在γ-Fe晶格中的位置图5 渗碳体的晶格 渗碳体(Fe3C) 渗碳体是铁和碳形成的化合物,含碳量为6.67%(有些书上为6.69%),具有复杂的晶体结构(图5),熔点为1227℃。渗碳体硬度极高(HB800),塑性几乎等于0,是硬脆相。

铁碳合金相图

铁碳合金相图 非合金钢[(GB/T 13304-91),将钢分为非合金钢、低合金钢和合金钢三大类]和铸铁是应用极其广泛的重要金属材料,都是以铁为基主要由铁和碳组成的铁碳合金。了解铁碳合金成分与组织、性能的关系,有助于我们更好地研究和使用钢铁材料。本章将着重讨论铁碳相图及其应用方面的一些问题。 铁与碳可以形成一系列化合物:C Fe 3、C Fe 2 、FeC等。C Fe 3 的含碳量为6.69%,铁碳合金含 碳量超过6.69%,脆性很大,没有实用价值,所以本章讨论的铁碳相图,实际是Fe-C Fe 3 相图。相图的两个组元是Fe和C Fe 3 。 3.1 Fe-C Fe 3 系合金的组元与基本相 ⑴2 /m kg 3。 MPa,伸长率= δ 芯。 ⑵Fe 3 Cm 表示。Fe0 = δ。 Fe- ⑴ ⑵ 极小,%,但也⑶ Fe-

图3.1及表3.1中代表符号属通用,一般不随意改变。 3.2.2 Fe C Fe 3三个重要的特性点 ⑴J 点为包晶点 合金在平衡结晶过程中冷却到1495℃时。B 点成分的L 与H 点成分的δ 发生包晶反应,生成J 点成分的A 。包晶反应在恒温下进行,反应过程中L 、δ、A 三相共存,反应式 为:H B L δ+J A 或 09.053.0δ+L 17.0A 。

⑵C 点为共晶点 合金在平衡结晶过程中冷却到1148℃时。C 点成分的L 发生共晶反应,生成E 点成分的A 和C Fe 3。共晶反应在恒温下进行,反应过程中L 、A 、C Fe 3三相共存,反应式为: C L C Fe A E 3+ 或 3 .4 L C Fe A 311.2+。 共晶反应的产物是A 与C Fe 3 的共晶混合物,称莱氏体,用符号Le 表示,所以共晶反应式也可表达为: 3.4 L 3.4Le 。 莱氏体组织中的渗碳体称为共晶渗碳体。在显微镜下莱氏体的形态是块状或粒状A (727℃时转变为珠光体)分布在渗碳体基体上。 ⑶S 点为共析点 合金在平衡结晶过程中冷却到727℃时S 点成分的A 发生共析反应,生成P 点成分的F 和C Fe 3。共析反应在恒温下进行,反应过程中A 、F 、C Fe 3三相共存,反应式为: S A C Fe F P 3+ 或 77 .0 A C Fe F 30218.0+ P P ⑴ 反应。 ⑵ ⑶ ⑷ ⑸ 2.11%,而在727从A II C 3的临⑹ 0.0008C Fe 3。 III C Fe 3 3.3 典型铁碳合金的平衡结晶过程 根据Fe -C Fe 3相图,铁碳含金可分为三类: ⑴ ()0.0218%C 工业纯铁≤ ⑵ ()()()()⎪⎩⎪⎨⎧≤〈=〈〈≤〈 2.11C 0.77过共析钢0.77%C 共析钢0.77%C 0.0218%亚共析钢2.11%C 0.0218%钢 ⑶ ()()()() ⎪⎩⎪⎨⎧〈〈=〈〈〈〈 6.69%C 4.3%过共晶白口铸铁 4.3%C 共晶白口铸铁 4.3%C 2.11%亚共晶白口铸铁6.69%C 2.11%白口铸铁

最全的铁碳相图

最全的铁碳相图 首先,想要了解铁碳合金、铁碳相图,则需要一些准备知识,比如合金、相、组元成分的概念等,基本如下: 合金:一种金属元素与另外一种或几种元素,通过熔化或其他方法结合而成的具有金属特性的物质。 相:合金中同一化学成分、同一聚集状态,并以界面相互分开的各个均匀组成部分。 固溶体:是一个(或几个)组元的原子(化合物)溶入另一个组元的晶格中,而仍保持另一组元的晶格类型的固态金属晶体,固溶体分间隙固溶体和置换固溶体两种。 固溶强化:由于溶质原子进入溶剂晶格的间隙或结点,使晶格发生畸变,使固溶体硬度和强度升高,这种现象叫固溶强化现象。 金属化合物:合金的组元间以一定比例发生相互作用儿生成的一种新相,通常能以化学式表示其组成。 铁碳合金相图实际上是Fe-Fe3C相图,铁碳合金的基本组元也应该是纯铁和Fe3C。铁存在着同素异晶转变,即在固态下有不同的结构。不同结构的铁与碳可以形成不同的固溶体,Fe—Fe3C相图上的固溶体都是间隙固溶体。由于α-Fe和γ-Fe 晶格中的孔隙特点不同,因而两者的溶碳能力也不同。 在铁碳合金中一共有三个相,即铁素体、奥氏体和渗碳体。 1.铁素体 铁素体是碳在α-Fe中的间隙固溶体,用符号“F”(或α)表示,体心立方晶格;虽然BCC的间隙总体积较大,但单个间隙体积较小,所以它的溶碳量很小,最多只有0.0218%(727℃时),室温时几乎为0,因此铁素体的性能与纯铁相似,硬度低而塑性高,并有铁磁性。 δ=30%~50%,A KU=128~160J,σb=180~280MPa,50~80HBS. 铁素体的显微组织与纯铁相同,用4%硝酸酒精溶液浸蚀后,在显微镜下呈现明亮的多边形等轴晶粒,在亚共析钢中铁素体呈白色块状分布,但当含碳量接近共析成分时,铁素体因量少而呈断续的网状分布在珠光体的周围。 2.奥氏体

铁碳合金相图详解

第三章 铁碳合金相图 非合金钢[(GB /T 13304-91),将钢分为非合金钢、低合金钢和合金钢三大类]和铸铁是应用极其广泛的重要金属材料,都是以铁为基主要由铁和碳组成的铁碳合金。了解铁碳合金成分与组织、性能的关系,有助于我们更好地研究和使用钢铁材料。本章将着重讨论铁碳相图及其应用方面的一些问题。 铁与碳可以形成一系列化合物:C Fe 3、C Fe 2、FeC 等。C Fe 3的含碳量为6.69%,铁碳合金含碳量超过6.69%,脆性很大,没有实用价值,所以本章讨论的铁碳相图,实际是Fe -C Fe 3相图。相图的两个组元是Fe 和C Fe 3。 3.1 Fe -C Fe 3系合金的组元与基本相 3.l.l 组元 ⑴纯铁 Fe 是过渡族元素,1个大气压下的熔点为1538℃,20℃时的密度为2/m kg 3107.87⨯。纯铁在不同的温度区间有不同的晶体结构(同素异构转变),即: δ-Fe (体心) γ-Fe (面心) α-Fe (体心) 工业纯铁的力学性能大致如下:抗拉强度b σ=180~230MPa ,屈服强度2.0σ=100~ 170MPa ,伸长率=δ30~50%,硬度为50~80HBS 。 可见,纯铁强度低,硬度低,塑性好,很少做结构材料,由于有高的磁导率,主要作为电工材料用于各种铁芯。 ⑵C Fe 3 C Fe 3是铁和碳形成的间隙化合物,晶体结构十分复杂,通常称渗碳体,可用符号Cm 表示。C Fe 3具有很高的硬度但很脆,硬度约为950~1050HV ,抗拉强度 b σ=30MPa ,伸长率0=δ。 3.1.2 基本相 Fe -C Fe 3相图中除了高温时存在的液相L ,和化合物相C Fe 3外,还有碳溶于铁形成的 几种间隙固溶体相: ⑴高温铁素体 碳溶于δ-Fe 的间隙固溶体,体心立方晶格,用符号δ表示。 ⑵铁素体 碳溶于α-Fe 的间隙固溶体,体心立方晶格,用符号α或F 表示。F 中碳的固溶度极小,室温时约为0.0008%,600℃时约为0.0057%,在727℃时溶碳量最大,约为0.0218%,但也不大,在后续的计算中,如果无特殊要求可忽略不计。力学性能与工业纯铁相当。 ⑶奥氏体 碳溶于γ-Fe 的间隙固溶体,面心立方晶格,用符号γ或A 表示。奥氏体中碳的固溶度较大,在1148℃时最大达2.11%。奥氏体强度较低,硬度不高,易于塑性变形。 3.2 Fe -C Fe 3相图 3.2.1 Fe -C Fe 3相图中各点的温度、含碳量及含义 Fe -C Fe 3相图及相图中各点的温度、含碳量等见图3.1及表3.1所示。

铁碳合金相图

第二节 Fe-Fe3C 相图 相图:表示在平衡条件下(极其缓慢加热和冷却)合金成分、温度、组织状态之间的关系图形称为合金相图,又称合金状态图。本节主要讨论铁碳合金相图。 相图测定方法:最常用的相图测定方法为热分析法,即对合金系中不同成分的合金进行加热熔化,观察在极其缓慢加热和冷却过程中内部组织的变化,测出其相变临界点,并标于“温度——成分”坐标中,绘成相图。(以Cu-Ni相图为例,点击此处可观看Cu-Ni合金相图测定原理) 由于Wc>6.69%的铁碳合金脆性极大,加工困难,生产中无实用价值,并且Fe3C(Wc = 6.69%)可以作为一个独立组元。因此,我们仅研究Wc为0%~ 6.69%的Fe-Fe3C相图部分。为便于研究,将相图左上角部分简化,得到简化后的Fe-Fe3C相图。 一、Fe-Fe 3 C相图分析 相图分析思路:特性点--- →特性线--- →相 区 简化后的Fe-Fe3C相图可看作由两个简单组元组成的典型二元相图,图中纵坐标表示温度,横坐标表示成分。左端原点Wc=0%,即纯铁;右端点Wc=6.69%,即Fe3C。横坐标上任何一个固定的成分均代表一种铁碳合金。例如S点,表示Wc=0.77%的铁碳合金。

Fe-Fe C相图 3 C相图的特性点 1、Fe-Fe 3 Fe-Fe3C相图中特性点的成分和温度与被测材料纯度和测试条件有关,故在不同资料中,各特性点位置略有不同。各特性点的温度、成分及含义见下表。 Fe-Fe3C相图特性点 特性点温度t/℃Wc/% 含义 A1538 0 纯铁的熔点 C1148 4.3 共晶点,LC→ld D1227 6.69 渗碳体的熔点(计算值) E1148 2.11 碳在γ-Fe中的最大溶解度 G912 0 纯铁的同素异晶转变点,α-Fe→γ-Fe

铁碳相图归纳

第四章 纯铁:α-Fe 在770℃(居里温度)发生由铁磁性转变为顺磁性,即铁磁性消失。 工业纯铁的力学性能特点是:强度、硬度低,塑性、韧性好 C在钢铁中存在的三种形式: 溶入Fe的晶格形成固溶体(间隙固溶体)-钢 以游离石墨存在于钢铁中-铸铁。 与铁成金属间化合物如Fe3C, Fe2C, FeC)-金属间化合物 石墨性能:耐高温,可导电,润滑性好,强度、硬度、塑性和韧性低。 实线为 Fe-Fe3C 相图虚线为 Fe-C 相图 α相 C在α-Fe中的间隙固溶体,晶体结构为bcc,仅由α相形成的组织称为铁素体,记为 F(Ferrite)。α= F γ相 C在γ-Fe中的间隙固溶体,晶体结构为fcc,仅由γ相形成的组织称为奥氏体,记为 A(Austenite)。γ= A δ相 C在δ-Fe中的间隙固溶体,晶体结构也为bcc,δ相出现的温度较高,组织形貌一般不易观察,也有称高温铁素体。

Fe3C相铁与碳生成的间隙化合物,其中碳的重量百分比为6.69%,晶体结构是复杂正交晶系,仅由Fe3C相构成的组织称为渗碳体,依然记为Fe3C,也有写为 Cm(Cementite)。 石墨在铁碳合金中的游离状态下存在的碳为石墨,组织记G(Graphite)。 L相碳在高温下熔入液体,相图中标记 L(Liquid)。 的冷却过程中组织还会发生变化。 Ld(Ledeburite) 的共析体组织,称为珠光体,记为P(Pearlite)

(1) ABCD ―液相线(2) AHJECF ―固相线 (3) HJB ―包晶反应线 (1495 C) L B+δH←→A J (4) ECF ―共晶反应线 (1148 C) L C←→ A E+Fe3C I (称为莱氏体) (5) PSK ―共析反应线 (727 C)As←→Fp+Fe3C (称为珠光体) (6) A CM线(ES线)―从奥氏体析出Fe3CⅡ的临界温度线 (7) A3线(GS线)―从奥氏体转变为铁素体线 五个单相区:液相区 L 高温固溶体δ;γ相(奥氏体,A) ;α相(铁素体,F) Fe3C相(渗碳体,Cm) 七个双相区:L+δ, L+γ, L+ Fe3C,δ+γ,γ+ Fe3C,α+γ;α+Fe3C 三个三相区:HJB线 L+δ+γ;ECK线 L +γ+ Fe3C;PSK线γ+α+Fe3C 工业纯铁 (C%<0.02%) 碳钢 ( C%= 0.02% 2.11 wt %) 依据C含量不同,又分为: 亚共析钢:C<0.77 wt% 共析钢: C=0.77 wt% 过共析钢:C>0.77 wt% 白口铸铁 (生铁)(C%= 2.11 6.69 wt %) 依据C含量不同,又分为: 亚共晶白口铸铁 C<4.3 wt% 共晶白口铸铁 C=4.3 wt% 过共晶白口铸铁 C>4.3 wt% 灰口铸铁(C%= 2.11 6.69 wt %) 亚共晶、共晶、过共晶灰口铸铁 工业纯铁(C%<0.02%):组织:F 相:α (F) 共析钢(C%≈0.77%):组织:P 相:α(F)+Fe3C 亚共析钢(C%=0.02 0.77%):组织:F+P 相:α (F)+Fe3C 组织转变: L→L+A→A→F+A→F+P 过共析钢(C%=0.77 2.11%):组织:P+Fe3C II相;α (F) +Fe3C 组织转变:L→L+A →A→A+Fe3C II→P+Fe3C II 共晶白口铁(C%≈4.3%):组织:L’d 相:α (F) +Fe3C 组织转变 L → Ld(A+Fe3C I)→A+Fe3C II+Fe3C I → (P + Fe3C I(Fe3CⅡ)) 亚共晶白口铁(C%=2.11~4.3%):组织:P+Fe3C II+L’d 相:α (F) +Fe3C 组织转变L→L+A→A+Ld→A+Fe3C II+Ld→P+Fe3C II+L’d 过共晶白口铁(C%=4.3 ~ 6.69%):组织:Fe3C I+L’d 相:α (F) +Fe3C 组织转变 L→L+Fe3C I→Fe3C I+Ld→Fe3C I+L’d

FeC合金相图

铁碳合金的结晶 一.铁碳相 图 ☆提示:重点内容 铁碳相图是研究钢和铸铁的基础,对于钢铁材料的应用以及热加工和热处理工艺的制订也具有重要的指导意义。 铁和碳可以形成一系列化合物,如Fe 3C、Fe 2 C、FeC等, 有实用意义并被 深入研究的只是Fe-Fe 3C部分,通常称其为 Fe-Fe 3 C相图, 此时相图的组元为Fe 和Fe 3 C。 Fe-Fe 3 C相图

Fe-Fe C相图中各点的温度、碳含量及含义 3 1. 铁碳合金的组元 (1) Fe 铁是过渡族元素, 熔点或凝固点为1538℃, 相对密度是 7.87g/cm3。纯铁从液态结晶为固态后, 继续冷却到1394℃及912℃时, 先后发生两次同素异构转变。(见2-1-2) ?纯铁是如何结晶的

工业纯铁的机械性能特点是强度低、硬度低、塑性好。主要机械性能如下: 抗拉强度极限σ b 180MPa~230MPa 抗拉屈服极限σ 0.2 100MPa~170MPa 延伸率δ30%~50% 断面收缩率ψ 70%~80% 冲击韧性 a k 1.6×106J/m2~2×106J/m2 硬度50HB~80HB (2) Fe 3C Fe 3 C是Fe与C的一种具有复杂结构的间隙化合物, 通常称为 渗碳体, 用Cm表示。

渗碳体的机械性能特点是硬而脆, 大致性能如下: 2. 铁碳合金中的相 Fe-Fe 3 C相图中存在五种相。 ①液相L 液相L是铁与碳的液溶体。 ②δ相δ相又称高温铁素体, 是碳在δ-Fe中的间隙固溶体, 呈体心立方晶格, 在1394℃以上存在, 在1495℃时溶碳量最大, 为0.09%。 ③α相α相也称铁素体, 用符号F或α表示, 是碳在α-Fe 中的间隙固溶体, 呈体心立方晶格。铁素体中碳的固溶度极小, 室温时约为0.0008%, 600℃时为 0.0057%, 在727℃时溶碳量最大, 为0.0218%。铁素体的性能特点是强度低、硬度低、塑性好。其机械性能与工业纯铁大致相同。 ④γ相相常称奥氏体, 用符号A或γ表示, 是碳在γ-Fe中的间隙固溶体, 呈面心立方晶格。奥氏体中碳的固溶度较大, 在1148℃时溶碳量最大达2.11%。奥氏体的强度较低, 硬度不高, 易于塑性变形。 ⑤Fe 3C相 Fe 3 C相是一个化合物相, 其晶体结构和性能已于前述, 渗碳体 根据生成条件不同有条状、网状、片状、粒状等形态, 对铁碳合金的机械性能有很大影响。 3. 相图中重要的点和线

杠杆原理在铁碳相图的应用

杠杆原理在铁碳相图的应用 引言 杠杆原理是力学中的一个重要概念,而在材料学中,它也有广泛的应用。铁碳 相图是描述铁和碳的相变关系的图表,通过理解和运用杠杆原理,可以更好地解释和预测铁碳相图的变化规律,从而为材料设计和加工提供指导。 杠杆原理简介 杠杆原理是指在一个平衡系统中,如果一个物体在杠杆上受到两个力的作用, 且两个力的乘积相等,那么这个物体在杠杆上的平衡点将会保持不变。杠杆原理可以用公式表示为:$F_1 \\cdot d_1 = F_2 \\cdot d_2$,其中F1和F2分别为作用在杠 杆两端的力,d1和d2分别为力的作用点到杠杆转轴的距离。 铁碳相图的基本概念 铁碳相图是描述铁和碳在不同温度和成分下的相变关系的图表。它是材料学中 最重要的相图之一,对于理解和控制钢铁的组织和性能具有重要意义。铁碳相图通常分为三个区域:铁的α固溶区、铁的γ固溶区和铁的σ相区。在不同的温度和 碳含量下,铁和碳会发生不同的相变,在铁碳相图中可以清晰地展示这些相变的关系。 杠杆原理在铁碳相图中的应用 1. 预测相变温度 根据杠杆原理,我们知道在相图中,相变发生的温度取决于两个相的稳定状态。通过测量和分析铁碳相图中各相的稳定状态,可以预测相变的温度范围。例如,在铁碳相图中,通过测量铁的α和γ相的稳定状态,可以预测过渡温度的范围,从 而指导合金设计和热处理过程。 2. 设计合金成分 根据杠杆原理,在铁碳相图中,可以通过调整合金中碳含量来改变相变温度和 相区组织的稳定性。通过合理设计合金成分,可以实现所需的相变温度和组织结构,从而调控材料的性能。例如,在钢铁行业中,通过控制合金中的碳含量,可以实现不同硬度和强度的钢材的生产。

铁碳相图及其应用

铁碳相图及其应用 一、铁碳相图的发展史:早在 1868 年,俄国学者切尔诺夫就注意到只有把钢加热到某一温度”T”以上再快冷,才能使钢淬硬,从而有了临界点的概念。至1887~1892年奥斯蒙等利用热分析法和金相法发现铁的加热和冷却曲线上出现两个驻点,即临界点。奥斯蒙认为这表明铁有同素异形体,即α铁、β铁和γ铁。1895年,他又进一步证明,如铁中含有少量碳,则在690或710℃左右出现临界点,标志在此温度以上碳溶解在铁中,而在低于这一温度时,碳以渗碳体形式由固溶体中分解出来。1904年又发现了δ铁。1899年罗伯茨-奥斯汀制定了第一张铁碳相图;而洛兹本更首先在合金系统中应用吉布斯相律,于1990年制定出较完整的铁碳平衡图。随着科学技术的发展,铁碳平衡图不断得到修改。目前采用的铁碳平衡相图如图1所示: 图1—铁碳平衡相图 二、铁碳平衡图释义:纯铁有两种同素异构体,在912℃以下为体心立方的α-Fe;在912~1394℃为面心立方的γ-Fe;在1394~1538℃(熔点)又呈体心立方结构,即δ-Fe。当碳溶于α-Fe时形成的固溶体称铁素体(F)、溶于γ-Fe时形成的固溶体称奥氏体(A),碳含量超过铁的溶解度后,剩余的碳可能以稳定态石墨形式存在,也可能以亚稳态渗碳体(Fe3C)形式存在。Fe3C有可能分解成铁和石墨稳定相。但这过程在室温下是极其缓慢的;即使加热到700℃,Fe3C分解成稳定相也需几年(合金中含有硅等促进石墨化元素时,Fe3C稳定性减弱),石墨虽然在铸铁(2~4%C)中大量存在,但在一般钢(0.03~1.5%C)中却较难形成这种稳定

相。Fe-Fe3C平衡图有重要的意义并得到广泛的应用。图1中的实线绘出亚稳的 Fe-Fe3C 系;虚线和相应的一部分实线表示稳定的Fe-C(石墨)系;平衡图中绝大多数线是根据实验测得的数据绘制的;有些线,如Fe3C的液相线,石墨在奥氏体中溶解度等是由热力学计算得出的。 Fe-Fe3C平衡图由包晶、共晶、共析三个基本反应组成。 ①在1495℃(HJB线)发生包晶反应,L B+δH=A J。此时液相LB(0.53%C),δ铁素体δH(0.09%C),奥氏体A J(0.17%C)三相共存。冷凝时反应的结果形成奥氏体。 ②在1148℃(ECF线)发生共晶反应,LC=A E+Fe3C。此时液相L C(4.30%C),奥氏体A E(2.11%C)。渗碳体(6.69%C)三相共存。冷凝时反应的结果形成了奥氏体与渗碳体的机械混合物,通称为莱氏体。 ③在727℃(PSK线)发生共析反应,A S=FP+Fe3C,此时奥氏体A s(0.77%C),铁素体 F P(0.0218%C),渗碳体(6.69%C)三相共存。冷却时反应的结果形成铁素体与渗碳体的混合物,通称珠光体。共析反应温度常标为A1温度。 其他几条线的含义如下:①GS线,奥氏体中开始析出铁素体或铁素体全部溶入奥氏体的转变线,称A3温度。②ES线,碳在奥氏体中的溶解限度线,称A cm温度。在1148℃时,碳在奥氏体中的最大溶解度为2.11%,而在727℃时只为0.77%。所以凡是碳含量大于0.77%的铁

相关主题