搜档网
当前位置:搜档网 › 工业机器人控制概述

工业机器人控制概述

工业机器人控制概述
工业机器人控制概述

工业机器人控制概述

摘要:本概述简单介绍了工业机器人的定义及发展,介绍了有关工业机器人控制的特点、功能、控制方式及控制系统的组成。对比说明目前应用于工业机器人的驱动器特点,包括电驱动器、液压驱动器,并针对在工业机器人中应用最为广泛的电动执行器,分析工业机器人对于电动驱动器的具体应用要求。列举了几种在工业机器人技术中常用的控制策略, 如变结构控制、自适应控制、鲁棒控制和智能控制等。最后通过分析全球控制器专利的分布,对目前机器人控制的各国发展的说明,探讨了工业机器人控制技术的发展趋势。

关键字:工业机器人、控制、控制策略; 发展趋势

0.前言

随着生产和科技的进步,人们需要用及其代替人完成一些人类无法完成或不能高质量完成的任务。另外由于市场经济的发展,对增加商品种类、提高质量、降低成本提出了越来越高的要求,产品生产也从单一品种、大批量生产向多品种、小批量过渡。机器人正是为使用生产自动化及市场应变性地更高要求而出现的。

国际机器人联合会(International Federation of Robotics,IFR)将机器人定义如下:机器人是一种半自主或全自主工作的机器,它能完成有益于人类的工作,应用于生产过程称为工业机器人,应用于特殊环境称为专用机器人(特种机器人),应用于家庭或直接服务人称为(家政)服务机器人。这种内涵广义的理解是机器人自动化机器,而不应该理解为如翻译的像人一样机器。

国际标准化组织(International Organization for Standardization,ISO)对机器人的定义为“机器人是一种自动的、位置可控的、具有编程能力的多功能机械手,这种机械手具有几个轴,能够借助于可编程序操作处理各种材料、零件、工具和专用装置,以执行种种任务”。按照ISO定义,工业机器人是面向工业领域的多关节机械手或多自由度的机器人,是自动执行工作的机器装置,是靠自身动力和控制能力来实现各种功能的一种机器;它接受人类的指令后,将按照设定的程序执行运动路径和作业。

可以按照许多标准将机器人分类。按照发展程度将机器人分为三代:第一代机器人是以“示教-再现”方式工作的机器人,这种机器人目前已在生产中得到广泛应用;第二代机器人是具有一定传感装置,能利用所获取的环境与操作对象的简单信息进行反馈控制的机器人,这种机器人目前已有少量应用;第三代机器人是具有多种感知功能,可进行推理判断,能再未知工作环境中独立工作的机器人。

机器人也常按照功能,分为工业机器人、遥控机器人和智能机器人。工业机器人(Industrial Robot),它是应用于工业自动化领域的机器人,越大多数按照“示教-再现”方式进行重复作业。遥控机器人

(Telerobot),它是接受遥控指令而进行远距离作业的机器人,主要用于宇航、海底、核工业及真空等领域。智能机器人(Intelligent Robot)具有运动、感知、学习、适应、逻辑判断以及人机通功能的机器人,属于第三代机器人。

机器人领域的主要研究方向有:机器人机械结构设计,机器人传感器研究,机器人运动轨迹设计与规划,机器人运动学,动力学与控制,机器人欧诺个只语言,机器人视觉、听觉等系统的研究,机器人智能研究等。

1. 工业机器人控制

正如大脑是人类的灵魂和指挥中心,控制系统可称之为机器人的大脑。机器人的感知、潘丹、推理都是通过控制系统的输入、运算、输出来完成的,所有行为和动作都必须通过控制系统发出相应的指令来实现。工业机器人要与外围设备协调动作,共同完成作业任务,就必须具备一个功能完善、灵敏可靠的控制凶。工业机器人的控制系统可分为两大部分:一部分是对其自身运动的控制,另一部分是工业机器人与周边设备的协调控制。

1.1 工业机器人控制系统的特点

工业机器人的结构是一个空间开链机构,各个关节的运动是独立的为了实现末端点的运动轨迹,需要各关节的运动协调,因此工业机器人的控制比较复杂,具体有:

1)控制与机构运动学及动力学密切相关;

2)一般至少要有3-5个自由度;

3)机器人控制系统必须是一个计算机控制系统,才能将多个独立的伺服系统协调控制;

4)仅仅利用位置闭环还不够,还需要利用速度甚至加速度闭环,系统经常使用重力补偿、前馈、解耦或自适应控制等方法;

5)机器人的动作往往可以通过不同的方式和路径来完成,存在“最优”的问题。

总之,机器人控制系统是一个与运动学和动力学原理相关、有耦合、非线性的多变量控制系统。

1.2 工业机器人控制系统的主要功能

工业机器人的控制系统的主要任务是控制工业机器人在工作空间中的运动位置、姿态和轨迹、操作顺序及动作的时间等项目,主要功能有示教再现功能和运动控制功能。

示教再现控制的主要内容主要包括示教及记忆方式和示教编程方式。其中,示教的方式种类较多,集中示教方式就是指同时对位置、速度、操作顺序等进行的示教方式,分离示教是指在示教位置之后,再一

边动作,一边分辨示教位置、速度、操作顺序等的示教方式。采用半导体记忆装置的工业机器人,可使得记忆容量大大增加,特别使用与复杂程度高的操作过程的记忆,并且记忆容量可达无限。

工业机器人的运动控制是指工业机器人的末端执行器从一点移动到另一点的过程中,对其位置。速度和加速度的控制,一般是通过控制关节运动来实现。关节运动控制一般分为两步进行:第一步是关节运动伺服指令的完成,及指将末端执行器在工作空间的位置和姿势的运动转化为由关节变量表示的时间序列或表示为关节变量随时间变化的函数。第二步是关节运动的伺服控制,即跟踪执行第一步所生成的关节变量伺服指令。

1.3 工业机器人的控制方式

工业机器人的控制方式根据作业任务不同,可分为点位控制方式(PTP)、连续轨迹控制方式(CP)、力(等力矩)控制方式赫尔智能控制。

点位控制方式是只控制工业机器人末端执行器在作业空间中某些规定第离散点上的位姿。控制时只要求工业机器人快速、准确地实现相邻各点之间的运动,而对达到目标点的运动轨迹则不做任何规定,主要技术指标是定位精度和运动时间。这种孔氏方式易于实现,但精度不高,一般用于上下料、搬运等只要求目标点位姿准确的作业中。

连续轨迹控制是连续地控制工业机器人末端执行器在作业空间中的位姿,要去其严格按照预定的轨迹和速度在一定的精度要求内运动,且速度可控,轨迹光滑运动平稳,主要技术指标是末端执行器位姿的轨迹跟踪精度及平稳性。

力(力矩)控制,是用于在完成装配等工作室,除要求定位准确,还要求有适度力(力矩)进行工作,这种控制方式的控制原理基本类似于伺服控制原理,只是输入量反馈量是力(力矩)信号.

智能控制是通过传感器获得周围环境的知识,并根据自身诶不的知识库相应作出决策,具有较强的环境适应性和自学习能力,智能控制技术涉及人工神经网络、基因算法、遗传算法、专家系统等人工智能的迅速发展。

1.4 工业机器人的驱动器

1.4.1驱动器

驱动器即将能量(电能、液压能等)转换成机械能,使机器人各关节工作的装置,常见的有步进电机驱动器、直流电机驱动器、交流电机驱动器、液压驱动器、气压驱动器等。

步进电机是一种将输入脉冲信号转换成相应角位移的旋转电机,可以实现高精度的角度控制。步进电机不雅啊哦哦反馈控制,电路简单,可以对数字信号直接进行控制,因此能很容易与微型计算机连接。停

止是能保持转矩,维护方便,但工作效率地,容易引起失步,有时也有振荡现象产生。

直流电机即使用直流电源的电机,使用简单,仅需将电机端子与直流电源相连即可运转。具有优良控制特性。作为控制用电机,直流电机的启动转矩大,体积小、质量轻、转矩和转速容易,并且效率高。无刷直流电动机在寿命和噪声方面又有有刷直流电机,无刷直流电机,在进行位置控制和速度控制时,需要使用转速传感器,实现位置、速度负反馈的闭环控制。为了改变直流电机的转速和转矩,可以通过改变电源电压,控制电机转速,通过改变电枢电流,调节电机转矩。

工业机器人使用的伺服电机,传统上一直采用直流(DC)伺服电机,目前正逐渐被交流(AC)伺服电机所取代,其最大的优点就是免维护,因为没有直流伺服电机的机械接触部分。

液压驱动器包括液压缸、液压马达、摆动马达等,液压驱动器由于工作压力高,所以可以实现小型化,由于以液压油为工作介质,所以装置的润滑性和防锈性能好,通过控制流量调节速度,利用换向装置变换运动防锈,通过压力控制,可以实现无极控制。

气动驱动器类似于液压驱动器,包括气缸、气动马达、摆动式气动驱动器。气动驱动器结构简单、体积小且价格便宜,对环境无特殊要求,保养维护简单,易组成系统。

除以上常用驱动器外,还出现了越来越多的新型驱动器,有的已经用于机器人,主要有超声波驱动器、磁致伸缩驱动器、形状记忆金属驱动器、静电驱动器等。

1.4.2工业机器人对关节电动驱动器的主要要求

在工业机器人中,电动执行器用得最为广泛,机器人对于关节驱动器的要求主要有:快速性、启动转矩惯量、控制特性、调速范围、运行条件等,一般综合分析工作性质和系统要求选择合适的驱动器。

1)快速性

电动机从获得指令信号到完成指令所要求的工作状态的时间应短。响应指令信号的时间愈短,电伺服系统的灵敏性愈高,快速响应性能愈好,一般是以伺服电动机的机电时间常数的大小来说明伺服电动机快速响应的性能。

2)启动转矩惯量比大

在驱动负载的情况下,要求机器人的伺服电动机的起动转矩大,转动惯量小。

3)控制特性的连续性和直线性

随着控制信号的变化,电动机的转速能连续变化,有时还需转速与控制信号成正比或近似成正比。

4)调速范围宽

能使用于1:1000~10000的调速范围。

5)体积小、质量小、轴向尺寸短

6)能经受得起苛刻的运行条件,可进行十分频繁的正反向和加减速运行,并能在短时间内承受过载

目前,由于高起动转矩、大转矩、低惯量的交、直流伺服电动机在工业机器人中得到广泛应用,一般负载1000N(相当100kgf)以下的工业机器人大多采用电伺服驱动系统。所采用的关节驱动电动机主要是AC伺服电动机,步进电动机和DC伺服电动机。其中,交流伺服电动机、直流伺服电动机、直接驱动电动机(DD)均采用位置闭环控制,一般应用于高精度、高速度的机器人驱动系统中。步进电动机驱动系统多适用于对精度、速度要求不高的小型简易机器人开环系统中。交流伺服电动机由于采用电子换向,无换向火花,在易燃易爆环境中得到了广泛的使用。

速度传感器多采用测速发电机和旋转变压器;位置传感器多用光电码盘和旋转变压器。

近年来,国外机器人制造厂家已经在使用一种集光电码盘及旋转变压器功能为一体的混合式光电位置传感器,伺服电动机可与位置及速度检测器、制动器、减速机构组成伺服电动机驱动单元。

1.5 工业机器人控制系统

图1是一个完整的欧冠农业机器人控制系统的基本组成,从图中可以看出,工业机器人控制系统的基本组成,这些基本组成可以归类为硬件和软件两类。

图1工业机器人控制系统组成图

其中,硬件主要由以下几部分组成:①传感装置,该类装置用以检测工业机器人各关节的位置、速度和加速度,即感知其本身的状态,称为内部传感器。相对应的外部传感器就是所谓的视觉、力觉、触觉、听觉、滑觉等传感器,它们可以使工业机器人感知工作环境和工作对象的状态。②控制装置。控制装置是处理各种感觉信息,执行控制软件,产生控制指令。一般由一台微型或小型计算机及相应的接口组成。③关节伺服驱动部分,这部分主要是根据控制装置的指令,按作业任务的要求驱动各关节运动。软件部分主

要指控制软件,它包括运动轨迹规划算法和关节伺服控制算法与相应的动作程序。控制软件可以用任何语言来编制。

2. 控制策略

工业机器人是一个十分复杂的多输入多输出非线性系统, 它具有时变、强耦合和非线性的动力学特征, 因而带来了控制的复杂性。由于测量和建模的不精确, 再加上负载的变化以及外部扰动等不确定性的影响, 难以建立工业机器人精确、完整的运动模型。并且在高速运动的情况下,机器人的非线性动力学效应十分显著,因而传统的独立伺服PID 控制算法在高速和有效载荷变化的情况下难以满足性能要求,实际的工业机器人系统又存在参数不确定性、非参数不确定性和作业环境的干扰,因此具有鲁棒性的先进控制技术成为实现工业机器人高速高精度控制的主要方法。目前,应用于工业机器人的控制方法有自适应控制、变结构控制及现代鲁棒控制等。

2.1 自适应控制

自适应控制的方法就是在运行过程中不断测量受控对象的特性, 根据测得的特征信息使控制系统按最新的特性实现闭环最优控制,使整个系统始终获得满意的控制性能。自适应控制能认识环境的变化, 并能自动改变控制器的参数和结构, 自动调整控制作用, 以保证系统达到满意的控制品质。自适应控制不是一般的系统状态反馈或系统输出反馈控制, 而是一种比较复杂的反馈控制, 自适应控制实时性要求严格,实现比较复杂,并且参数突变经常会破坏总体系统的稳定性;参数的收敛特性通常需要足够的持续激励条件,而该条件实际上又难以满足,因此通常结合其它算法使用,即鲁棒自适应控制方法,应用修正的自适应律使得系统对非参数不确定性也具有一定的鲁棒性。

2.2 滑膜变结构控制

滑模变结构控制是一种特殊的非线性控制方法,通过控制量的不断切换迫使系统状态沿着滑模面滑动,从而保证系统对参数扰动和外界干扰具有完全的自适应性或不变性。变结构控制方法对于系统参数的时变规律、非线性程度以及外界干扰等不需要精确的数学模型, 只要知道它们的变化范围, 就能对系统进行精确的轨迹跟踪控制。变结构控制方法设计过程本身就是解耦过程, 因此在多输入多输出系统中, 多个控制器设计可按各自独立系统进行, 其参数选择也不是十分严格。滑模变结构控制系统快速性好, 无超调, 计算量小,实时性强。变结构控制本身的不连续性以及控制器频繁的切换动作有可能造成跟踪误差在零点附近产生抖动现象, 而不能收敛于零, 这种抖动轻则会引起执行部件的机械磨损, 重则会激励未建模的高频动态响应—特别是考虑到连杆柔性的时候, 容易使控制失效。

2.3 鲁棒控制

鲁棒H∞控制是一种结构和参数都固定不变的控制器,在被控对象具有不确定性的情况下,仍能保证系统的渐近稳定性和满意的控制效果,具有处理扰动、快变参数和未建模动态的能力,并且设计简单,它是一种固定控制, 比较容易实现。一般鲁棒控制系统的设计是以一些最差的情况为基础, 因此一般系统并不工作在最优状态。鲁棒自适应控制对控制器实时性能要求比较严格。鲁棒H∞控制还具有处理多变量问题的能力。

2.4 智能控制

分层递阶的智能控制结构由上往下分为 3个层次, 组织级、协调级和执行级。其控制精度由下往上逐级递减, 智能程度由下往上逐级增加。根据机器人的任务分解, 在面向设备的基础级可以采用常规的自动控制技术, 如 P I D控制、前馈控制等。在协调级和组织级, 存在不确定性, 控制模型往往无法建立或建立的模型不够精确, 无法取得良好的控制效果。因此, 需要采用智能控制方法, 如模糊控制、神经网络控制、专家控制以及集成智能控制。

2.5 工业机器人控制策略发展趋势

到目前为止, 多数商品化工业机器人控制器下级的控制策略基本上是独立关节 PID伺服算法。这种控制方法的主要缺点是, 反馈增益是预先确定的常量,它不能在有效载荷变化的情况下改变反馈增益。机器人高速运动时, 其动力学效应十分显著。为解决上述问题, 就要根据机器人手臂的动态模型求出施加于机器人手臂的力矩。于是就提出了诸如计算力矩法、非线性解耦反馈控制、前馈补偿控制算法等方案。但这些算法大多过于复杂, 难以实时计算。故研究人员一方面研究简化模型、简化计算方法, 提出一些有效的并行算法、递推算法等; 另一方面又研究对系统参数变化及扰动不敏感, 或不过分依赖准确的系统动态模型的控制方法。最后, 充分考虑各控制算法的优缺点, 取长补短, 在一个工业机器人当中采用多种控制算法的结合处理。开展对控制方案、动态控制模型以及控制算法的研究, 以求改善机器人系统的动态控制性能。

3.发展及前景

3.1全球控制器专利分析

控制器是主导工业用机器人多轴运动技术之主要零组件,也是整合所有零组件的核心技术,如图2所示,从美国专利商标局USPTO的专利数据库系统当中,统计2000年到2007年第三季为止的专利申请数量观察,目前以日本申请的专利数量最多,累积高达127件,其次是美国的76件,这也反映出目前工业用机器人大部分仍由这两大主要国家掌握全球工业用机器人几乎八成以上的市场。而我国在控制方面与发达国家相比还有较大差距。

图2 全球工业用机器人控制器专利申请数量

3.2控制系统关键技术

1)开放性模块化的控制系统体系结构:采用分布式CPU计算机结构,分为机器人控制器(RC),运动控制器(MC),光电隔离I/O控制板、传感器处理板和编程示教盒等。机器人控制器(RC)和编程示教盒通过串口/CAN总线进行通讯。机器人控制器(RC)的主计算机完成机器人的运动规划、插补和位置伺服以及主控逻辑、数字I/O、传感器处理等功能,而编程示教盒完成信息的显示和按键的输入。

2)模块化层次化的控制器软件系统:软件系统建立在基于开源的实时多任务操作系统Linux上,采用分层和模块化结构设计,以实现软件系统的开放性。整个控制器软件系统分为三个层次:硬件驱动层、核心层和应用层。三个层次分别面对不同的功能需求,对应不同层次的开发,系统中各个层次内部由若干个功能相对对立的模块组成,这些功能模块相互协作共同实现该层次所提供的功能。

3)机器人的故障诊断与安全维护技术:通过各种信息,对机器人故障进行诊断,并进行相应维护,是保证机器人安全性的关键技术。

4)网络化机器人控制器技术:目前机器人的应用工程由单台机器人工作站向机器人生产线发展,机器人控制器的联网技术变得越来越重要。控制器上具有串口、现场总线及以太网的联网功能。可用于机器人控制器之间和机器人控制器同上位机的通讯,便于对机器人生产线进行监控、诊断和管理。

3.3未来发展方向

现已实现了机器人的全数字化控制,控制能力可达21轴的协调运动控制;基于传感器的控制技术已取得了重大进展。目前重点研究开放式、模块化控制系统,人机界面更加友好,具有良好的语言及图形编辑界面。同时机器人的控制器的标准化和网络化以及基于PC机网络式控制器已成为研究热点。编程技术除进一步提高在线编程的可操作性之外,离线编程的实用化将成为重点研究内容。

机器人已经实现了全数字交流伺服驱动控制,绝对位置反馈。目前正研究利用计算机技术,探索高效的控制驱动算法,提高系统的响应速度和控制精度;同时利用现场总线(FILDBUS)技术,实现的分布式控制。

机器人是一个需要高度精密控制的系统,整合了许多的伺服机构、电子回路等模块在其中。每个模块都需要有相对应的控制逻辑,技术人员的目标在于设计良好的运算法则,透过驱动机制补偿各种在过程中受到干扰所产生的误差,保持系统的正常运作。模块越多,功能越完备,代表处理器运算的电力消耗越高。由以上的各项产品与发展趋势可看出,随着机器人性能要求的提升,系统的模块多样化与复杂化实不可避免,因此适当的精简各种控制演算逻辑便成为必要的工作。所谓精简化,并非指单纯的取舍,而是需要从整合的观点仔细评估整体效能的权衡与配重,避免某个模块占用太多的系统资源,并随时调整。精简化才能提高实用价值,在分析与实务之间找到最佳的平衡点。

机器人学概论

《我看机器人》 学院:理学院 学号:5502211005 姓名:黄志涵 班级:应用物理学111班

摘要:在21世纪,随着科学技术的发展,机器人的研究和发展也将会更进一步。机器人原本起源在美国,但其在美国的发展速度远远不如日本。这里面主要的原因,可能是因为日本劳动力短缺,大部分需要劳动力的工厂得不到劳动力,所以日本政府大力发展机器人产业,用机器人代替短缺的劳动力资源。本文通过三部分简要阐述有关机器人一些发展和应用,以及未来机器人更大的应用前景。 关键词:机器人,机器人发展史,关键技术,分类,应用 正文: 第一部分:机器人的发展史 从1920年捷克斯洛伐克作家卡雷尔·恰佩克在他的科幻小说《罗萨姆的机器人万能公司》中,根据Robota(捷克文,原意为“劳役、苦工”)和Robotnik(波兰文,原意为“工人”),创造出“机器人”这个词。机器人历史有了如下的发展:1939年美国纽约世博会上展出了西屋电气公司制造的家用机器人Elektro。它由电缆控制,可以行走,会说77个字,甚至可以抽烟,不过离真正干家务活还差得远。但它让人们对家用机器人的憧憬变得更加具体。 1942年美国科幻巨匠阿西莫夫提出“机器人三定律”。虽然这只是科幻小说里的创造,但后来成为学术界默认的研发原则。 1948年诺伯特·维纳出版《控制论》,阐述了机器中的通信和控制机能与人的神经、感觉机能的共同规律,率先提出以计算机为核心的自动化工厂。 1954年美国人乔治·德沃尔制造出世界上第一台可编程的机器人,并注册了专利。这种机械手能按照不同的程序从事不同的工作,因此具有通用性和灵活性。 1956年在达特茅斯会议上,马文·明斯基提出了他对智能机器的看法:智能机器“能够创建周围环境的抽象模型,如果遇到问题,能够从抽象模型中寻找解决方法”。这个定义影响到以后30年智能机器人的研究方向。 1959年德沃尔与美国发明家约瑟夫·英格伯格联手制造出第一台工业机器人。随后,成立了世界上第一家机器人制造工厂——Unimation公司。由于英格伯格对工业机器人的研发和宣传,他也被称为“工业机器人之父”。 1962年美国AMF公司生产出“VERSTRAN”(意思是万能搬运),与Unimation 公司生产的Unimate一样成为真正商业化的工业机器人,并出口到世界各国,掀起了全世界对机器人和机器人研究的热潮。 1962年-1963年传感器的应用提高了机器人的可操作性。人们试着在机器人上安装各种各样的传感器,包括1961年恩斯特采用的触觉传感器,托莫维奇和博尼1962年在世界上最早的“灵巧手”上用到了压力传感器,而麦卡锡1963年则开始在机器人中加入视觉传感系统,并在1965年,帮助MIT推出了世界上第一个带有视觉传感器,能识别并定位积木的机器人系统. 1965年约翰·霍普金斯大学应用物理实验室研制出Beast机器人。Beast已经能通过声纳系统、光电管等装置,根据环境校正自己的位置。20世纪60年代中期开始,美国麻省理工学院、斯坦福大学、英国爱丁堡大学等陆续成立了机器人实验室。美国兴起研究第二代带传感器、“有感觉”的机器人,并向人工智能进发。 1968年美国斯坦福研究所公布他们研发成功的机器人Shakey。它带有视觉传感器,能根据人的指令发现并抓取积木,不过控制它的计算机有一个房间那么大。Shakey可以算是世界第一台智能机器人,拉开了第三代机器人研发的序幕。 1969年日本早稻田大学加藤一郎实验室研发出第一台以双脚走路的机器人。加藤一郎长期致力于研究仿人机器人,被誉为“仿人机器人之父”。日本专家

机器人控制器的现状及展望概要

机器人控制器的现状及展望 摘要机器人控制器是影响机器人性能的关键部分之一, 它从一定程度上影响着机器人的发展。本文介绍了目前机器人控制器的现状, 分析了它们各自的优点和不足, 探讨了机器人控制器的发展方向和要着重解决的问题。 1引言 从世界上第一台遥控机械手的诞生至今已有 50年了,在这短短的几年里,伴随着计算机、自动控制理论的发展和工业生产的需要及相关技术的进步,机器人的发展已经历了 3代:(1 可编程的示教再现型机器人; (2 基于传感器控制具有一定自主能力的机器人; (3 智能机器人。作为机器人的核心部分, 机器人控制器是影响机器人性能的关键部分之一。它从一定程度上影响着机器人的发展。目前,由于人工智能、计算机科学、传感器技术及其它相关学科的长足进步, 使得机器人的研究在高水平上进行, 同时也为机器人控制器的性能提出更高的要求。 对于不同类型的机器人, 如有腿的步行机器人与关节型工业机器人, 控制系统的综合方法有较大差别,控制器的设计方案也不一样。本文仅讨论工业机器人控制器问题。 2机器人控制器类型 机器人控制器是根据指令以及传感信息控制机器人完成一定的动作或作业任务的装置, 它是机器人的心脏,决定了机器人性能的优劣。 从机器人控制算法的处理方式来看,可分为串行、并行两种结构类型。 2.1串行处理结构 所谓的串行处理结构是指机器人的控制算法是由串行机来处理。对于这种类型的控制器, 从计算机结构、控制方式来划分,又可分为以下几种。 (1单 CPU 结构、集中控制方式

用一台功能较强的计算机实现全部控制功能。在早期的机器人中, 如 Hero-I, Robot-I等, 就采用这种结构, 但控制过程中需要许多计算 (如坐标变换 , 因此这种控制结构速度较慢。 (2二级 CPU 结构、主从式控制方式 一级 CPU 为主机,担当系统管理、机器人语言编译和人机接口功能,同时也利用它的运算能力完成坐标变换、轨迹插补, 并定时地把运算结果作为关节运动的增量送到公用内存, 供二级 CPU 读取;二级 CPU 完成全部关节位置数字控制。 这类系统的两个 CPU 总线之间基本没有联系,仅通过公用内存交换数据,是一个松耦合的关系。对采用更多的 CPU 进一步分散功能是很困难的。日本于 70年代生产的 Motoman 机器人(5关节,直流电机驱动的计算机系统就属于这种主从式结构。 (3多 CPU 结构、分布式控制方式 目前, 普遍采用这种上、下位机二级分布式结构, 上位机负责整个系统管理以及运动学计算、轨迹规划等。下位机由多 CPU 组成,每个 CPU 控制一个关节运动,这些 CPU 和主控机联系是通过总线形式的紧耦合。这种结构的控制器工作速度和控制性能明显提高。但这些多 CPU 系统共有的特征都是针对具体问题而采用的功能分布式结构,即每个处理器承担固定任务。目前世界上大多数商品化机器人控制器都是这种结构。 控制器计算机控制系统中的位置控制部分,几乎无例外地采用数字式位置控制。 以上几种类型的控制器都是采用串行机来计算机器人控制算法。它们存在一个共同的弱点:计算负担重、实时性差。所以大多采用离线规划和前馈补偿解耦等方法来减轻实时控制 中的计算负担。当机器人在运行中受到干扰时其性能将受到影响, 更难以保证高速运动中所要求的精度指标。

工业机器人的发展史

郑州领航机器人有限公司 工业机器人发展史 工业机器人最早产生于美国,从发展上来看,大至可以分为三代:第一代机器人,也称作示教再现型机器人,它是通过一个计算机,来控制一个多自由度的机械。它通过示教存储程序和信息,工作时再将信息重现,并发出指令,这样机器人就可以重复示教时的结果,再现出示教时的动作。例如:汽车的点焊机器人,只要把点焊的过程示教完以后,它总是重复这样一种工作,它对于外界的环境没有感知,这个操作力的大小,这个工件存在不存在,焊的好与坏,它并不知道。因此,示教再现型机器人也就存在着很多的缺陷。为解决上述问题,在 20 世纪 70 年代后期,人们开始第二代机器人的研究。 第二代机器人,也称作带感觉的机器人,这种带感觉的机器人是模拟人某种功能的感觉,比如说力觉、触觉、滑觉、视觉、听觉和人进行相类比。有了各种各样的感觉,那么在机器人进行实际工作时,它可以通过感觉功能去感知环境与自身的状况,也形成了机器人本身与环境的协调。尤其是 20 世纪 60 年代末,传感器技术得到了飞速的发展与成熟,这就为带感觉机器人发展和应用带来了契机。在此基础上,第二代机器人的发展与成熟也为第三代机器人的发展打下了基础。 第三代机器人,也是我们机器人学中所追求的一个理想的最高级阶段,叫智能机器人。从理论上来说,智能机器人是一种带有思维能

力的机器人,能根据给定的任务去自主的设定完成工作的流程,并不需要人在实现其过程中进行干预。由于受到技术和其它方面的约束,智能机器人目前的发展还是相对的,只是局部的符合这种智能的概念和含义,真正完整意义的这种智能机器人实际上并不存在。 在工业机器人的发展过程中有以下一些里程碑,它们在机器人的发展史上具有重大的意义: 1959 年德沃尔与美国发明家约瑟夫.英格伯格联手制造出第一台工业机器人。随后,成立了世界上第一家机器人制造工厂—Unimation 公司。 1962 年美国 AMF 公司生产出“VERSTRAN”(万能搬运 ),与unimation 公司生产的 Unimate 一样成为真正商业化的工业机器人,并出口到世界各国,掀起了全世界对机器人的研究热潮。 1962 一 1963 年传感器的应用提高了机器人的可操作性。人们试着在机器上安装各种各样的传感器,包括 1961 年恩斯特采用的触觉传感器,托莫维奇和博尼 1962 年在世界上最早的“灵巧手”上用到了压力传感器,而麦卡锡 1963 年则开始在机器人中加入视觉传感系统,并在 1965 年帮助 MIT 推出了世界上第一个带有视觉传感器,能识别并定位积木的机器人系统。 1965 年约翰.霍普金斯大学应用物理实验室研制出 Beast 机器人。 Beast 已经能通过声纳系统、光电管等装置,根据环境校正自己的位置。20 世纪 60 年代中期开始,美国麻省理工学院、斯坦福大学、英国爱丁堡大学等陆续成立了机器人实验室。美国兴起研究第

工业机器人发展现状及趋势

工业机器人发展现状及趋势 1国内工业机器人的发展现状 1.1发展概述 我国的工业机器人研究开始于20世纪80年代中期.在国家的支持下,通过“七五”、“八五”科技攻关.已经基本实现了实验、引进到自主开发的转变。促进了我国制造业、勘探等行业的发展。但随着我国门户的逐渐开放.国内的工业机器人产业面临着越来越大的竞争与冲击。虽然我国机器人的需求量逐年增加,但目前生产的机器人还很难达到所要求的质量.很多机器人的关键部件还需要进口。所以目前来说。我国还处在一个机器人消费型的同家。 现在,我国从事机器人研发的单位有200多家,专业从事机器人产业开发的企业有50家以上。在众多专家的建议和规划下,“七五”期间由机电部主持,中央各部委、中科院及地方科研院所和大学参加,国家投入相当资金,进行了工业机器人基础技术、基础元器件、工业机器人整机及应用工程的开发研究。“九五”期间,在国家“863”高技术计划项目的支持下,沈阳新松机器人自动化股份有限公司、哈尔滨博实自动化设备有限责任公司、上海机电一体化工程公司、北京机械工业自动化所、四川绵阳思维焊接自动化设备有限公司等确立为智能机器人主题产业基地。此外,还有上海富安工厂自动化公司、哈尔滨焊接研究所、国家机械局机械研究院及北京机电研究所、首钢莫托曼公司、安川北科公司、奇瑞汽车股份有限公司等都以其研发生产的特色机器人或应用工程项目而活跃在当今我国工业机器人市场上。 1.2机器人分类 随着科学技术的不断进步,我国工业机器人已经走上了自主研发阶段,这样标志着我国工业自动化走向了新的里程碑按照工业机器人的关键技术发展过程其可分为三代:第一代是示教再现机器人,主要由机器人本体、运动控制器和示教盒组成,操作过程比较简单。第一代机器人使用示教盒在线示教编程,并保存示教信息。当机器人自动运行时,由运动控制器解析并执行存储的示教程序,使机器人实现预定动作。这类机器人通常采用点到点运动,连续轨迹再现的控制方法,可以完成直线和圆弧的连续轨迹运动,然而复杂曲线的运动则由多段圆弧和直线组合而成。由于操作的容易性、可视性强,所以在当前工业中应用最多。

机器人学概述

安徽工业大学 2015级工程硕士期末考核答题卷 专业:机械工程 课程:机器人学 姓名: 学号:1521190215

2017年1月

第一章引言 随着计算机技术的不断向智能化方向发展,机器人应用领域的不断扩展和深化,产业机器人已成为一种高新技术产业,为产业自动化发挥了巨大作用,将对未来生产和社会发展起越来越重要的作用。 本文概括了工业机器人的概念和发展、国外国内机器人的发展现状、未来机器人的发展方向。

第二章机器人的概念与发展 2.1 机器人的定义 工业机器人的问世, 大约是25年前;微处理机的诞生, 大约是15年前。正是由于微处理机的出现, 以及各种LSI、VLSI的飞跃发展, 才使得工业机器人控制系统的机能大幅度提高, 从而使数百种不同结构、不同控制方法、不同用途的工业机器人终于在八十年代,真正进人了实用与普及的阶段, 并发挥了令人难以置信的巨大威力与经济效益。 那么, 什么是工业机器人?回答是令人遗憾的。因为关于工业机器人的定义, 仍在专家们的争议之中, 至今还没有人能够提出一个令人信服的明确定义。美国机器人协会(RIA)对机器人的定义是:“ 所谓工业机器人, 是为了完成不同的作业, 根据种种程序化的运动来实现材料、零部件、工具或特殊装置的移动并可重新编程的多功能操作机。”日本产业机器人协会(JIRA)的定义是:“ 所谓工业机器人, 是在三维空间具有类似人体上肢动作机能及其结构, 并能完成复杂空间动作的多自由度的自动机械” 或“根据感觉机能或认识机能, 能够自行决定行动的机器(智能机器人)。” 不管各国机器人专家们如何定义和解释工业机器人, 有一点是可以明确的, 这就是人们开发研究工业机器人的最终目标, 在于要研制出一种能够缥合人的所有动作特性——通用性、柔软性、灵活性的自动机械。 2.2 机器人的发展 自动化技术的发展,特别是计算机的诞生,推动了机器人的发展。人们通常把机器人划分为三代。第一代是可编程机器人。这种机器人一般可以根据操作人员所编的程序,完成一些简单的重复性操作。这一代机器人是从60年代后半叶开始投入实际使用的,目前在工业界已得到广泛应用。第二代是“感知机器人”,又叫做自适应机器人,它在第一代机器人的基础上发展起来的,能够具有不同程度的“感知”周围环境的能力。这类利用感知信息以改善机器人性能的研究开始于70年代初期,到1982年,美国通用汽车公司为其装配线上的机器人装配了视觉系统,宣告了感

工业机器人的发展历史

1.1.工业机器人发展史 1.1.1.1959-1978 机器人技术发展阶段 1956年,美国发明家乔治? 德沃尔(George Devol)和 物理学家约瑟?英格柏格 (Joe Engelberger)成立了 一家名为Unimation的公 司。公司名字来自于两个单 词“Universal”和 “Animation”的缩写。 1959年,乔治·德沃尔和约 瑟·英格柏格发明了世界上 第一台工业机器人,命名为 Unimate(尤尼梅特),意思 是“万能自动”。英格伯格负 责设计机器人的“手”、“脚”、 “身体”,即机器人的机械部 分和完成操作部分;由德沃 尔设计机器人的“头脑”、“神 经系统”、“肌肉系统”,即机 器人的控制装置和驱动装 置。Unimate重达两吨,通 过磁鼓上的一个程序来控 制。它采用液压执行机构驱 动,基座上有一个大机械臂, 大臂可绕轴在基座上转动, 大臂上又伸出一个小机械 臂,它相对大臂可以伸出或 缩回。小臂顶有一个腕子, 可绕小臂转动,进行俯仰和 侧摇。腕子前头是手,即操 作器。这个机器人的功能和 人手臂功能相似。Unimate 的精确率达1/10000英寸。

1971年,日本机器人协会(Japanese Robot Association)成立。这是世界上第一个国家机器人协会。日本机器人协会最初是一个非官方的自发组织,以开展工业机器人座谈会的形式成立。1972年,工业机器人座谈会改名为日本工业机器人协会(Japan Industrial Robot Association ,JIRA),1973年正式注册成立。1994年改为现名――日本机器人协会(Japanese Robot Association,JARA)。日本工业机器人协会更名为日本机器人协会,是因为机器人领域的重大进展导致了对机器人需求的多样化,机器人由制造业扩展到非制造业,例如,核电站、医疗服务及福利事业,民用工程及建筑业以及海洋事业等方面。1974年,第一台弧焊机器人在日本投入运行。日本川崎Array 重工公司将用于制造川崎摩托车框架的Unimate点焊机器人改造成弧焊机器人。同年,川崎还开发了世界上首款带精密插入控制功能的机器人,命名为“Hi-T-Hand”,该机器人还具备触摸和力学感应功能。这款机器人手腕灵活并带有力反馈控制系统,因此它可以插入一个约 10微米间隙的机械零件。

机器人发展史论文

摘要:我国的工业机器人研制虽然起步晚,但是有着广大的市场潜力,有着众多的人才和资源基础。在十一五规划纲要等国家政策的鼓励支持下,在市场经济和国际竞争愈演愈烈的未来,我们一定能够完全自主制造出自己的工业机器人,并且将工业机器人推广应用到制造与非制造等广大的行业中,提高我国劳动力成本,提高我国企业的生产效率和国际竞争力,从整体上提高我国社会生产的安全高效,为实现伟大祖国的复兴贡献力量。 关键字:工业机器人;日本;日本工业机器人协会;制造;十一五纲要; 引言:生产力在不断进步,推动着科技的进步与革新,以建立更加合理的生产关系。自工业革命以来,人力劳动已经逐渐被机械所取代,而这种变革为人类社会创造出巨大的财富,极大地推动了人类社会的进步。时至今天,机电一体化,机械智能化等技术应运而生并已经成为时代的主旋律。人类充分发挥主观能动性,进一步增强对机械的利用效率,使之为我们创造出愈加巨大的生产力,并在一定程度上维护了社会的和谐。工业机器人的出现是人类在利用机械进行社会生产史上的一个里程碑。在发达国家中,工业机器人自动化生产线成套设备已成为自动化装备的主流及未来的发展方向。国外汽车行业、电子电器行业、工程机械等行业已经大量使用工业机器人自动化生产线,以保证产品质量,提高生产效率,同时避免了大量的工伤事故。全球诸多国家近半个世纪的工业机器人的使用实践表明,工业机器人的普及是实现自动化生产,提高社会生产效率,推动企业和社会生产力发展的有效手段。 一、工业机器人的现状: 据美国电气和电子工程师协会(IEEE)统计,至2008年底,世界各地已经部署了100万台各种工业机器人。其中,日本机器人数量据世界首位。 他们的算法基于制造工人与机器人的比例,即每万名工人拥有多少台制造机器人。其中日本的工业机器人密度达到了世界平均水平的10倍,也比排在第二位的新加坡多出了一倍。其中日本每万名工人拥有295台工业机器人,新加坡169台,韩国164台,德国163台。虽然排在前三位的国家都在亚洲,不过欧洲却是世界上工业机器人密度最大的地区。欧洲国家工业机器人密度为每万名工人50台,美洲为平均31台,亚洲平均27台。 工业机器人在生产生活中的应用 所谓工业机器人,就是具有简单记忆和可变控制程序的自动机械。它是在机械手的基础上发展起来的,国外称为industrial robot。工业机器人的出现将人类从繁重单一的劳动中解放出来,而且它还能够从事一些不适合人类甚至超越人类的劳动,实现生产的自动化,避免工伤事故和提高生产效率。随着世界生产力的发展,必然促进相应科学技术的发展。工业机器人能够极大地提高生产效率,已经广泛地进入人们的生活生产领域。 二、工业机器人的诞生至今 工业机器人的诞生:日本是当今的工业机器人王国,既是工业机器人的最大制造国也是最大消费国。但实际上工业机器人的诞生地是美国。机器人的启蒙思想其实很早就出现了,1920年捷克作家卡雷尔·恰佩克发表了剧本《罗萨姆的万能机器人》,剧中叙述了一个叫做罗萨姆的公司将机器人作为替代人类劳动的工业品推向市场的故事,引起了世人的广泛关注。于是在1959年美国的一家汽车公司,工业机器人应运而生。美国人英格伯格和德奥尔制造出了世界上第一台工业机器人,他们发现可以让机器人去代替工人一些简单重复的劳动,而且不需要报酬和休息,任劳任怨。接着他们两人合办了世界上第一家机器人制造工厂,生

机器人技术大作业

可编辑版 《机器人技术》大作业 (2015年秋季学期) 题目工业机器人概述 姓名 学号 班级 专业机械设计制造及其自动化 报告提交日期2015年12月5日 哈尔滨工业大学 .

内容及要求 1.以某种机器人(如搬运、焊接、喷漆、装配等工业机器人;服务机器人; 仿生鱼、蛇等仿生机器人;军用及其它机器人等)为例,撰写一篇大作业,题目自拟,以下内容仅作参考: 1) 机器人的机械结构设计(包括各部分名称、功能、传动等); 2) 机器人的运动学及动力学分析; 3) 机器人的控制及轨迹规划; 4) 驱动及伺服系统设计; 5) 电气控制电路图及部分控制子程序。 2.题目自拟,拒绝雷同和抄袭; 3.参考文献不少于7篇,其中至少有2篇外文文献; 4.报告统一用该模板撰写,字数不少于5000字,上限不限; 5.正文为小四号宋体,1.25倍行距;图表规范,标注为五号宋体; 6.用A4纸单面打印;左侧装订,1枚钉; 7.提交打印稿及03版word电子文档,由班长收齐。 8.此页不得删除。 评语: 成绩(20分):教师签名: 年月 日

工业机器人概述 机器人学是当今世界极为活跃的研究领域之一,它涉及计算机科学、机械学、电子学、自动控制、人工智能等多种学科。随着计算机、人工智能和光机电一体化技术的迅速发展,机器人已经成为人类的好帮手。在航空航天,深海探测中,往往使用机器人代替人类去完成复杂的极限工作任务。 工业机器人是一个多功能、多自由度的机械和电气一体化的自动机械设备和系统,它可以在制造过程中完成各种任务。它结合制造主机或生产线,可以形成一个单一的或多台机器自动化系统,在无人参与下,实现搬运、焊接、装配和喷涂等多种生产作业。目前,工业机器人技术飞速发展,在生产中的应用日益广泛,已成为现代制造业重要的生产高度自动化设备。 一、工业机器人特性 自20世纪60年代美国第一代机器人的开始,工业机器人的发展和应用迅速发展起来,工业机器人的最重要的特性概括如下。 1、可编程。生产自动化的进一步发展是柔性自动化。工业机器人能根据工作环境不同、做出相应规划和变化,因而在小批量多品种的高效柔性制造过程可以起到很好的作用,是柔性制造系统(FMS)的重要组成部分。 2、拟人化。工业机器人在机械结构上类似于人体行走、腰转、大臂、小臂、手腕、手爪和部分,在控制上有计算机类似大脑。此外,智能工业机器人具有许多类似生物传的感器,如皮肤接触传感器、力传感器、负载传感器、视觉传感器、声传感器、语言功能等。该传感器提高了自适应能力。 3、通用性。除了专门的特种工业机器人外,一般工业机器人在执行不同任务时具有很好的通用性。例如,更换工业机器人末端执行器(夹具、工具等)可以执行不同的任务。 4、机电一体化。工业机器人技术涉及的学科相当广泛,但总结起来就是是机电一体化技术。第三代智能机器人不仅具有获取外界环境信息的能力,而且具有记忆、语言理解、图像识别、推理和判断等能力,这与微电子技术、特别是计算机技术的应用有着密切的关系。因此,机器人技术的发展将带动其他技术的发展,机器人技术的发展和应用也可以验证一个国家科技和工业技术的发展和水平。 二、工业机器人组成 工业机器人系统由三大部分和六个子系统组成。三大部分:机部分、传感部分、控制部分。六个子系统:驱动系统、机械结构系统、感觉系统、机器人环境交互系统、人机交互系统、控制系统。 1、驱动系统,要使机器人运行起来,就需给各个关节即每个运动自由度安置传动装置,这就是驱动系统。驱动系统可以是液压传动、气动传动、电动传动,或者把它们结合起来应用的综合系统;可以直接驱动或者通过同步带、链条、轮系、谐波齿轮等机械传动

第一章工业机器人概论.doc

第一章概论 提起机器人,我们都不陌生,脱口就能说出一大串机器人的名字:铁臂阿童木、霹雳五号、奥特曼、终结者等,这些都是小说或影视作品中的主人翁。可以说大多数人都是从影视作品中了解机器人的,影视作品中的机器人,功能都很强大,看起来很神奇,正是由于这些影视作品的影响,人们对机器人给予了非常高的希望,但现实中的机器人并不像人,与其说是机器人,还不如说是一台机器。但是只有想到了,才能做到,那些神奇的机器人正是我们共同奋斗的目标。我们只有了解了现实的机器人,才能创造出未来更好的机器人。 机器人技术是一门高新技术,作为21世纪的人才,面临高新技术和自动化技术的冲击,面临国际市场经济和技术迅猛发展的激烈竞争,机器人技术是迎接未来挑战的有力武器和理想助手,机器人使人类从繁琐、恶劣的作业环境中解脱出来,而从事更加雄伟的事业,开创未来世界。 对年青朋友来说,不管你以后搞不搞机器人技术,也不管你涉不涉足机器人产业,都有必要了解一些机器人知识,因为未来的机器人将对你的生活和工作产生巨大的影响。 [作业1] 机器人发展概况综述。 第一节工业机器人的概念 关于工业机器人,目前世界各国尚无统一定义,分类方法也不尽相同。 ①美国: 工业机器人是一种可重复编辑的多功能操作装置,它可以通过改变动作程序来完成各种工作,主要用于搬运材料,传递工件和工具。 ②日本: 1)工业机器人是整机能够回转,有抓取(或吸住)物体的手抓和能够进行伸缩、弯曲、升降(仰俯),回转及其复合动作的臂部,带有记忆 部件,可部分地代替人进行自动操作的具有通用性的机械。 2)具有人体上肢(臂、手)动作功能,可进行多种动作的装置,或者具有感觉功能,可自主进行多种动作的装置。 日本定义的工业机器人的范围是较广的,他们将工业机器人分为六类: 人控机械手 固定程序控制机器人 可变程序控制机器人 示教再现机器人 数值控制机器人 ③我国对“机械手”和“工业机器人”的定义:

国内外工业机器人发展史和现状

课题名称:工业机器人发展史和现状 摘要:我国的工业机器人研制虽然起步晚,但是有着广大的市场潜力,有着众多的人才和资源基础。在十一五规划纲要等国家政策的鼓励支持下,在市场经济和国际竞争愈 演愈烈的未来,我们一定能够完全自主制造出自己的工业机器人,并且将工业机器 人推广应用到制造与非制造等广大的行业中,提高我国劳动力成本,提高我国企业 的生产效率和国际竞争力,从整体上提高我国社会生产的安全高效,为实现伟大祖 国的复兴贡献力量。 关键字:工业机器人;日本;日本工业机器人协会;制造;十一五纲要; 引言:生产力在不断进步,推动着科技的进步与革新,以建立更加合理的生产关系。自工业革命以来,人力劳动已经逐渐被机械所取代,而这种变革为人类社会创造出巨大的财富,极大地推动了人类社会的进步。时至今天,机电一体化,机械智能化等技术应运而生并已经成为时代的主旋律。人类充分发挥主观能动性,进一步增强对机械的利用效率,使之为我们创造出愈加巨大的生产力,并在一定程度上维护了社会的和谐。工业机器人的出现是人类在利用机械进行社会生产史上的一个里程碑。在发达国家中,工业机器人自动化生产线成套设备已成为自动化装备的主流及未来的发展方向。国外汽车行业、电子电器行业、工程机械等行业已经大量使用工业机器人自动化生产线,以保证产品质量,提高生产效率,同时避免了大量的工伤事故。全球诸多国家近半个世纪的工业机器人的使用实践表明,工业机器人的普及是实现自动化生产,提高社会生产效率,推动企业和社会生产力发展的有效手段。 一、工业机器人的现状: 工业机器人在全世界的分布及发展,我们先看两幅图表 UNECE估计,2004年全球至少安装了10万台新的工业机器人。其中:欧盟31 100台(比2003年增加15%,但比2001年的记录仅增加1%);北美16 100台(比2003年增加27%,比2000年的记录高24%);亚洲51 400台,主要在日本,但中国市场增长迅速(比2003年增长24%)。

工业机器人字论文

工业机器人字论文 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

工业机器人的历史与发展现状和未来机器人的应用与发展趋势 梁智茗 摘要:随着科学技术的发展,现代工业越来越依赖自动化设备的辅助,繁重的工业生产也开始摆脱大量劳动力的使用,所以,工业机器人应运而生,作为一种高新技术产业,其为工业自动化水平的发展发挥了巨大作用,并且被广泛的运用到工业生产的方方面面。机器人的出现与普及,不仅带动了社会经济水平的提高,也对未来工业生产与社会发展起到越来越重要的作用。 关键词:工业机器人,历史由来,发展与未来趋势 1、工业机器人的由来与历史 工业机器人是机器人的一种,机器人的概念最早由捷克斯洛伐克作家卡雷尔·恰佩克在其科幻小说《罗萨姆的机器人万能公司》的剧本中提出,其塑造了一个具有人的外表,特征和功能,并愿意为人类服务的机器人奴仆“Robota”。根据这个定义,我们可以这样理解:“机器人是一个在三维空间中具有多自由度,并能实现诸多拟人动作和功能的机器”。而工业机器人,顾名思义,则是在工业生产上应用的机器人。1954年,美国戴尔沃最早提出了工业机器人的概念,并申请了专利,该专利的要点是借助伺服技术控制机器人的关节,利用人手对机器人进行动作示教,机器人能实现动作的记录和再现,这就是所谓的示教再现机器人,现有的机器人差不多都采用这种控制方式,1959年,第一台工业机器人在美国诞生,开创了工业机器人发展的新纪元。

2、工业机器人的构造 工业机器人由主体,驱动系统和控制系统三个基本部分组成,主体便是机座与执行单位,包括臂部与腕部和手部,有的机器人还配备有行走机构,大多数工业机器人拥有3至6个运动自由度,其自由度越高,机器人就越灵活,驱动装置和传动单位用以执行单位产生相应的动作,控制系统则是按照相应的程序对驱动和执行发出指令,并对机器人本体进行控制。 3、工业机器人发展现状 伴随着科学技术的发展与进步,工业机器人发展过程主要分为三代,第一代为示教再现机器人,主要有机器手控制器与示教盒组成,可按预先设计好的程序和引导动作记录下的信息重复再现执行,该种类机器人在当今工业生产中使用最为广泛。第二代为感觉型机器人,其通过自身配备的传感器对外界信息进行反馈,目前还处于应用阶段,第三代则为智能型机器人,其具备感知和理解外部信息的能力,具有高度智能化和灵活性强的特点,目前尚处于实验和研究阶段。我国工业机器人发展大致经历了三个阶段,70年代萌芽期,80年代开发期和90年代应用化期。目前,根据有关资料显示,中国正在服役的工业机器人已占全球总量的10%左右,2015年中国市场工业机器人销量达68556台,同比增长20.71%,工业机器人保有量达到24.4万台,2016年,中国工业机器人产量达到9万台,保有量达30万台,就整体而言,工业机器人在中国市场需求只增不减,在多种因素下,工业机器人发展速度将再次提速,步入历史上第二个繁荣期,或将比第一次浪潮还巨烈。目前国际市场中主

机器人控制原理_百度文库概要

第二章机器人系统简介 2.1 机器人的运动机构(执行机构 机器人的运动机构是机器人实现对象操作及移动自身功能的载体,可以大体 分为操作手(包括臂和手和移动机构两类。对机器人的操作手而言,它应该象人的手臂那样,能把(抓持装工具的手依次伸到预定的操作位置,并保持相应的姿态,完成给定的操作;或者能够以一定速度,沿预定空间曲线移动并保持手的姿态,并在运动过程中完成预定的操作。移动机构应能将机器人移动到任意位置,并保持预定方位姿势。为此,它应能实现前进、后退、各方向的转弯等基本移动功能。在结构上它可以象人、兽、昆虫,具有二足、四足或六足的步行机构, 也可以象车或坦克那样采用轮或履带结构 2.1.1 机器人的臂结构 机器人的臂通常采用关节——连杆链形结构,它由连杆和连杆间的关节组 成。关节,又称运动副,是两个构件组成相对运动的联接。在关节的约束下,两连杆间只能有简单的相对运动。机器人中常用的关节主要有两类: (1 滑动关节 (Prismatic joint: 与关节相连的两连杆只能沿滑动轴做直 线位移运动,移动的距离是滑动关节的主要变量,滑动轴一般和杆的轴线重合或平行。 (2转动关节 (Revolute joint: 与关节相连的两连杆只能绕关节轴做相对 旋转运动,其转动角度是关节的主要变量,转动轴的方向通常与轴线重合或垂直。 杆件和关节的构成方法大致可分为两种:(1 杆件和手臂串联连接,开链机 械手 (2 杆件和手臂串联连接,闭链机械手。

以操作对象为理想刚体为例,物体的位置和姿态各需要 3 个独立变量来描 述。我们将确定物体在坐标系中位姿的独立坐标数目称为自由度(DOF (degree of freedom 。而机器人的自由度是由有关节数和每个关节所具有的自由度数决定的(每个关节可以有一个或多个自由度,通常为 1 个。机器人的自由度是独立的单独运动的数目,是表示机器人运动灵活性的尺度。(由驱动器能产生主动动作的自由度称为主动自由度,不能产生驱动力的自由度称为被动自由度。通常开链机构仅使用主动自由度机器人自由度的构成,取决于它应能保证完成与目标作业相适应的动作。分析可知,为使机器人能任意操纵物体的位姿,至少须 6DOF ,通常用三个自由度确定手的空间位置(手臂,三个自由度确定手的姿态 (手。比较而言,人的臂有七个自由度,手有二十个自由度,其中肩 3DOF ,肘 2 DOF ,碗 2DOF 。这种比 6 还多的自由度称为冗余自由度。人的臂由于有这样的冗余性,在固定手的位置和姿态的情况下,肘的位置不唯一。因此人的手臂能灵活回避障碍物。对机器人而言,冗余自由度的设置易于增强运动的灵活性,但由于存在多解,需要在约束条件下寻优,计算量和控制的难度相对增大。 典型的机器人臂结构有以下几种: (1直角坐标型 (Cartesian/rectanglar/gantry (3P 由三个线性滑动关节组成。 三个关节的滑动方向分别和直角坐标轴 x,y,z 平行。 工作空间是个立方体 (2圆柱坐标型 (cylindrical(R2P 由一个转动关节和两个滑动关节组成。 两个滑动关节分别对应于圆柱坐标的径向和垂直方向位置,一个旋 转关节对应关于圆柱轴线的转角。

工业机器人技术概论

工业机器人技术概论 制造是现代人类所有经济活动的基石,是人类历史发展和文明进步的动力。机器人的诞生,就如同人类直立行走一样代表着人类社会的进步,工业机器人在工业生产中能代替人做某些单调、频繁和重复的长时间作业,或是危险、恶劣环境下的作业,将人们从这些繁重的工作中解脱出来,这是人类文明的又一次飞跃。随着人类工业文明的不断进步,科学技术的迅猛发展,工业机器人的广泛应用正在日益改变着人类的生产和生活方式。 一、工业机器人的发展史 “机器人”一词出自捷克文,意为劳役或苦工。1920年,捷克斯洛伐克小说家、剧作家卡雷尔·查培克在他写的科幻小说《罗萨姆的机器人万能公司》中,根据Robota(捷克文,原意为“劳役、苦工”)和Robotnik(波兰文,原意为“工人”),创造出“机器人”这个词。此后被欧洲各国语言所吸收而成为专门名词。 机器人首先是被工厂所使用的。工业机器人的使用可以追溯到20世纪50年代末。在第二次世界大战中,武器专家发明了武器瞄准用的司服系统,直到这个时候,人们才拥有制造机器人所需的技术。二战结束后不久,发明家约瑟夫·恩格尔贝格(Joseph F.Englberger)意识到这种技术能应用于机器人的研制,于是,他与另一位发明家乔治·德沃尔(George Devol)共同开发了的一台工业机器人——“尤尼梅特”(Unimate),并于1961年在通用汽车公司的工厂里启用。它的构造相当的简单,功能也只是把零件拿起来,然后放到传送带上,不能对它所处的环境做出反应,只能按预先设定的程序精确的重复同一动作。但是,“尤尼梅特”的应用向人们预示了工业机械化的美好前景,具有十分重要的意义。机器人在许多工厂出现后,不但没有遭到拒绝,而且许多脏活、累活都由机器人来干,受到了工人们的欢迎。 20世纪60年代可谓是工业机器人的黎明期,机器人的许多功能得到了进一步的发展。像传感器的应用提高了机器人的可操作性,人们试着在机器人上安装各种各样的传感器,包括恩斯特采用的触觉传感器,托莫维奇和博尼在世界上最早的“灵巧手”上用到了压力传感器,而麦卡锡则开始在机器人中加入视觉传感系统,并帮助MIT推出了世界上第一个带有视觉传感器,能识别并定位积木的机器人系统;声纳系统、光电管等技术的应用,使机器人可以根据环境校正自己的位置。20世纪60年代中期开始,美国麻省理工学院、斯坦福大学、英国爱丁堡大学等陆续成立了机器人实验室。美国兴起研究第二代带传感器、“有感觉”的机器人,并向人工智能进发。 20世纪70年代,随着计算机和人工智能技术的发展,机器人进入了实用化时代。像日立公司推出的具有触觉、压力传感器,7轴交流电动机驱动的机器人;美国Milacron公司推出的世界第一台小型计算机控制的机器人,由电液司服驱动,可跟踪移动物体,用于装配和多功能作业;适用于装配作业的机器人还有像日本山梨大学发明的SCARA平面关节型机器人等;70年代末期,由美国Unimation 公司推出的PUMA系列机器人,为多关节、多CPU二级计算机控制,全电动,有

工业机器人发展史论文[1]

课题名称:工业机器人发展史 工业机器人http:// https://www.sodocs.net/doc/db6881033.html, 摘要:我国的工业机器人研制虽然起步晚,但是有着广大的市场潜力,有着众多的人才和资源基础。在十一五规划纲要等国家政策的鼓励支持下,在市场经济和国际竞争愈演愈烈的未来,我们一定能够完全自主制造出自己的工业机器人,并且将工业机器人推广应用到制造与非制造等广大的行业中,提高我国劳动力成本,提高我国企业的生产效率和国际竞争力,从整体上提高我国社会生产的安全高效,为实现伟大祖国的复兴贡献力量。 关键字:工业机器人;日本;日本工业机器人协会;制造;十一五纲要; 引言:生产力在不断进步,推动着科技的进步与革新,以建立更加合理的生产关系。自工业革命以来,人力劳动已经逐渐被机械所取代,而这种变革为人类社会创造出巨大的财富,极大地推动了人类社会的进步。时至今天,机电一体化,机械智能化等技术应运而生并已经成为时代的主旋律。人类充分发挥主观能动性,进一步增强对机械的利用效率,使之为我们创造出愈加巨大的生产力,并在一定程度上维护了社会的和谐。工业机器人的出现是人类在利用机械进行社会生产史上的一个里程碑。在发达国家中,工业机器人自动化生产线成套设备已成为自动化装备的主流及未来的发展方向。国外汽车行业、电子电器行业、工程机械等行业已经大量使用工业机器人自动化生产线,以保证产品质量,提高生产效率,同时避免了大量的工伤事故。全球诸多国家近半个世纪的工业机器人的使用实践表明,工业机器人的普及是实现自动化生产,提高社会生产效率,推动企业和社会生产力发展的有效手段。 一、工业机器人的现状: 工业机器人在全世界的分布及发展,我们先看两幅图表 UNECE估计,2004年全球至少安装了10万台新的工业机器人。其中:欧盟31 100台(比2003年增加15%,但比2001年的记录仅增加1%);北美16 100台(比2003年增加

【推荐下载】工业智能机器人技术和商业化的里程碑——工业机器人发展史系列之二

张小只智能机械工业网工业机器人技术和商业化的里程碑——工业机器人发展史系列之二 1970年,在美国芝加哥举行第一届美国工业机器人研讨会。一年以后,该研讨会升级为国际工业机器人研讨会(International Symposium on Industrial Robots ,ISIR)。举行国际工业机器人研讨会的目的是给在机器人领域的世界各地的研究人员和工程师提供一个机会以展示他们的作品,并分享自己的想法。1997年,该研讨会更名为国际机器人研讨会(International Symposium on Robotics ,ISR),其中包括服务机器人的技术。 目前,国际机器人研讨会(ISR)继续开展有关机器人的所有科学、技术和产业发展的会议议题。研讨会的主要目的是加强学术界和产业界的联系。现在的ISR配合国际机器人展每年举办一次,由美国、欧洲或亚洲的某个国家机器人协会主办。 1971年,日本机器人协会(Japanese Robot Association)成立。这是世界上第一个国家机器人协会。日本机器人协会最初是一个非官方的自发组织,以开展工业机器人座谈会的形式成立。1972年,工业机器人座谈会改名为日本工业机器人协会(Japan Industrial Robot Association ,JIRA),1973年正式注册成立。1994年改为现名――日本机器人协会(Japanese Robot Association,JARA)。日本工业机器人协会更名为日本机器人协会,是因为机器人领域的重大进展导致了对机器人需求的多样化,机器人由制造业扩展到非制造业,例如,核电站、医疗服务及福利事业,民用工程及建筑业以及海洋事业等方面。 1972年,意大利的菲亚特汽车公司(FIAT)和日本日产汽车公司(Nissan)安装运行了点焊机器人生产线。 1973年,第一台机电驱动的6轴机器人面世。德国库卡公司(KUKA)将其使张小只机械知识库

工业机器人概述

工业机器人概述 摘要:工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作、自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动生产设备。 关键词:工业机器人;由来;发展;应用领域 0 引言 工业机器人是面向工业领域的多关节 机械手或多自由度的机器人,是自动执行工作的机器装置,是靠自身动力和控制能力来实现各种功能的专门系统。它可以接受人类指挥,也可以按照预先编排的程序运行,现代的工业机器人还可以根据人工智能技术 制定的原则纲领行动。因其灵活性高、输出功率大、定位精确的特点,工业机器人被广泛应用于制造业的各个环节。以其高效 高质、稳定的运转工作,工业机器人为所在行业的高效生产和稳定质量起到重要作用。 图1 工业机器人 1 工业机器人的由来 1920年捷克作家卡雷尔·查培克在其剧本《罗萨姆的万能机器人》中最早使用机器人一词,剧中机器人“Robot”这个词的本意是苦力,即剧作家笔下的一个具有人的外表,特征和功能的机器,是一种人造的劳力。它是最早的工业机器人设想。20世纪40 年代中后期,机器人的研究与发明得到了更多人的关心与关注。50年代以后,美国橡树岭国家实验室开始研究能搬运核原料的遥控操纵机械手,如图0.2所示,这是一种主从型控制系统,主机械手的运动。系统中加入力反馈,可使操作者获知施加力的大小,主从机械手之间有防护墙隔开,操作者可通过观察窗或闭路电视对从机械手操作机进行有效的监视,主从机械手系统的出现为机器人的产生为近代机器人的 设计与制造作了铺垫。 1954年美国戴沃尔最早提出了工业机 器人的概念,并申请了专利。该专利的要点是借助伺服技术控制机器人的关节,利用人手对机器人进行动作示教,机器人能实现动作的记录和再现。这就是所谓的示教再现机器人。现有的机器人差不多都采用这种控制方式。1959年UNIMATION公司的第一台工业机器人在美国诞生,开创了机器人发展的新纪元。UNIMATION的VAL(very advantage language)语言也成为机器人领域最早的编程语言在各大学及科研机构中传播,也是各个机器人品牌的最基本范本。其机械结构也成为行业的模板。其后,UNIMATION公司被瑞士STAUBLI收购,并利用STAUBLI的技术优势,进一步得以改良发展。日本第一台机器人由KAWASAKI从UNIMATION进口,并由kawasaki模仿改进在国内推广。

相关主题