搜档网
当前位置:搜档网 › 行星齿轮机构(20131103154724)

行星齿轮机构(20131103154724)

行星齿轮机构(20131103154724)
行星齿轮机构(20131103154724)

行星齿轮机构原理及应用

行星齿轮机构原理及应用 我们熟知的齿轮绝大部分都是转动轴线固定的齿 轮。例如机械式钟表、普通机械式变速箱、减速器,上面所有的齿轮尽管都在做转动,但是它们的转动中心(与圆心位置重合)往往通过轴承安装在机壳上,因此,它们的转动轴都是相对机壳固定的,因而也被称为"定轴齿轮"。 有定必有动,对应地,有一类不那么为人熟知的称为"行星齿轮"的齿轮,它们的转动轴线是不固定的,而是安装在一个可以转动的支架(蓝色)上(图中黑色部分是壳体,黄色表示轴承)。行星齿轮(绿色)除了能象定轴齿轮那样围绕着自己的转动轴(B-B)转动之外,它们的转动轴还随着蓝色的支架(称为行星架)绕其它齿轮的轴线(A-A)转动。绕自己轴线的转动称为"自转",绕其它齿轮轴线的转动称为"公转",就象太阳系中的行星那样,因此得 名。 也如太阳系一样,成为行星齿轮公转中心的那些轴线固定的齿轮被称为"太阳轮",如图中红色的齿轮。在一个行星齿轮上、或者在两个互相固连的行星齿轮上通常有两个啮合点,分别与两个太阳轮发生关系。如右图中,灰色的内齿轮轴线与红色的外齿轮轴线重合,也是太阳轮。 轴线固定的齿轮传动原理很简单,在一对互相啮合的齿轮中,有一个齿轮作为主动轮,动力从它那里传入,另一个齿轮作为从动轮,动力从它往外输出。也有的齿轮仅作为中转站,一边与主动轮啮合,另一边与从动轮啮合,动力从它那里通过。 在包含行星齿轮的齿轮系统中,情形就不同了。由于存在行星架,也就是说,可以有三条转动轴允许动力输入/输出,还可以用离合器或制动器之类的手段,在需要的时候限制其中一条轴的转动,剩下两条轴进行传动,这样一来,互相啮合的齿轮之间的关系就可以有多种组合:

行星齿轮结构及工作原理

行星齿轮机构和工作原理 一、 简单的行星齿轮机构的特点 行星齿轮机构的组成: 简单(单排)的行星齿轮机构是变速机构 的基础,通常自动变速器的变速机构都由两排 或三排以上行星齿轮机构组成。简单行星齿轮 机构包括一个太阳轮、若干个行星齿轮和一个 齿轮圈,其中行星齿轮由行星架的固定轴支 承,允许行星轮在支承轴上转动。行星齿轮和 相邻的太阳轮、齿圈总是处于常啮合状态,通 常都采用斜齿轮以提高工作的平稳性(如图l 所示)。 如图2表示了简单行星齿轮机构,位于行星齿轮机构中心的是太阳轮,太阳轮和行星轮常啮合,两个外齿轮啮合旋转方向相反。正如太阳位于太阳系的中心一样,太阳轮也因其位置而得名。行星轮除了可以绕行星架支承轴旋转外,在有些工况下,还会在行星架的带动下,围绕太阳轮的中心轴线旋转,这就像地球的自转和绕着太阳的公转一样,当出现这种 情况时,就称为行星齿轮机构作用的传动 方式。在整个行星齿轮机构中,如行星轮 的自转存在,而行星架则固定不动,这种 方式类似平行轴式的传动称为定轴传动。 齿圈是内齿轮,它和行星轮常啮合,是内 齿和外齿轮啮合,两者间旋转方向相同。 行星齿轮的个数取决于变速器的设计负 荷,通常有三个或四个,个数愈多承担负 荷愈大。 简单的行星齿轮机构通常称为三构件机构,三个构件分别指太阳轮、行星架和齿圈。这三构件如果要确定相互间的运动关系,一般情况下首先需要固定

其中的一个构件,然后确定谁是主动件,并确定主动件的转速和旋转方向,结 果被动件的转速、旋转方向就确定了。 二、 单排行星齿轮机构的工作原理 根据能量守恒定律,三个元件上输入和输出的功率的代数和应等于零,从而得到单排行星齿轮机构一般运动规律的特性方程。 特性方程:n1+an2-(1+a)n3=0 n1——太阳轮转速,n2——齿圈转速,n3——行星架转速,a——齿圈与太阳轮齿数比。 由特性方程可以看出,由于单排行星齿轮机构具有两个自由度,在太阳轮、环形内齿圈和行星架三个机构中,任选两个分别作为主动件和从动件,而使另一个元件固定不动,或使其运动受一定的约束(即该元件的转速为某定值),则机构只有一个自由度,整个轮系以一定的传动比传递动力。下面分别讨论三种情况。 1、齿圈固定,太阳轮为主动件且顺时针转动,而行星架则为被动件。太阳轮顺时针转动时,太阳轮轮齿必给行星轮齿A一个推力F 1 ,则行星轮应为逆时针 转动,但由于齿圈固定,所以齿圈轮齿必给行星轮齿B一个反作用力F 2 ,行星轮 在F 1和 F 2 合力作用下必绕太阳轮顺时针旋转,结果行星轮不仅存在逆时针自 转,并且在行星架的带动下,绕太阳轮中心轴线顺时针公转。在这种状态下,就出现了行星齿轮机构作用的传动方式,而且被动件行星架的旋转方向与主动件同方向。在这里,太阳轮是主动件而且是小齿轮,被动件行星架没有具体齿数的传动关系,因此定义行星架的当量齿数等于太阳轮和齿圈齿数之和。这样,太阳轮带动行星架转动仍属于小齿轮带动最大的齿轮,是一种减速运动且有最大的传动比。因为此时n2=0,故传动比 i13=n1?n3=1+a。(如图3)

行星齿轮传动设计详解

1 绪论 行星齿轮传动与普通定轴齿轮传动相比较,具有质量小、体积小、传动比大、承载能力大以及传动平稳和传动效率高等优点,这些已被我国越来越多的机械工程技术人员所了解和重视。由于在各种类型的行星齿轮传动中均有效的利用了功率分流性和输入、输出的同轴性以及合理地采用了内啮合,才使得其具有了上述的许多独特的优点。行星齿轮传动不仅适用于高速、大功率而且可用于低速、大转矩的机械传动装置上。它可以用作减速、增速和变速传动,运动的合成和分解,以及其特殊的应用中;这些功用对于现代机械传动发展有着重要意义。因此,行星齿轮传动在起重运输、工程机械、冶金矿山、石油化工、建筑机械、轻工纺织、医疗器械、仪器仪表、汽车、船舶、兵器、和航空航天等工业部门均获得了广泛的应用[1-2]。 1.1 发展概况 世界上一些工业发达国家,如日本、德国、英国、美国和俄罗斯等,对行星齿轮传动的应用、生产和研究都十分重视,在结构优化、传动性能,传动功率、转矩和速度等方面均处于领先地位,并出现一些新型的行星传动技术,如封闭行星齿轮传动、行星齿轮变速传动和微型行星齿轮传动等早已在现代化的机械传动设备中获得了成功的应用。行星齿轮传动在我国已有了许多年的发展史,很早就有了应用。然而,自20世纪60年代以来,我国才开始对行星齿轮传动进行了较深入、系统的研究和试制工作。无论是在设计理论方面,还是在试制和应用实践方面,均取得了较大的成就,并获得了许多的研究成果。近20多年来,尤其是我国改革开放以来,随着我国科学技术水平的进步和发展,我国已从世界上许多工业发达国家引进了大量先进的机械设备和技术,经过我国机械科技人员不断积极的吸收和消化,与时俱进,开拓创新地努力奋进,使我国的行星传动技术有了迅速的发展[1-8]。 1.2 3K型行星齿轮传动 在图4所示的3K型行星齿轮传动中,其基本构件是三个中心轮a、b和e,故其传动类型代号为3K[10]。在3K型行星传动中,由于其转臂H不承受外力矩的作用,所以,它不是基本构件,而只是用于支承行星轮心轴所必需的结构元件,

行星齿轮设计【模板】

第二章 原始数据及系统组成框图 (一)有关原始数据 课题: 一种行星轮系减速器的设计 原始数据及工作条件: 使用地点:减速离合器内部减速装置; 传动比:p i =5.2 输入转速:n=2600r/min 输入功率:P=150w 行星轮个数:w n =3 内齿圈齿数b z =63 第五章 行星齿轮传动设计 (一)行星齿轮传动的传动比和效率计算 行星齿轮传动比符号及角标含义为: 123i 1—固定件、2—主动件、3—从动件 1、齿轮b 固定时(图1—1),2K —H (NGW )型传动的传动比b aH i 为 b aH i =1-H ab i =1+b z /a z 可得 H ab i =1-b aH i =1-p i =1-5.2=-4.2 a z =b z /b aH i -1=63*5/21=15 输出转速: H n =a n /p i =n/p i =2600/5.2=500r/min 2、行星齿轮传动的效率计算: η=1-|a n -H n /(H ab i -1)* H n |*H ψ H ψ=*H H H a b B ψψψ+ H a ψ为a —g 啮合的损失系数,H b ψ为b —g 啮合的损失系数,H B ψ为轴承的损失系数,H ψ 为总的损失系数,一般取H ψ=0.025 按a n =2600 r/min 、H n =500r/min 、H ab i =-21/5可得

η=1-|a n -H n /(H ab i -1)* H n |*H ψ=1-|2600-500/(-4.2-1)*500|*0.025=97.98% (二) 行星齿轮传动的配齿计算 1、传动比的要求——传动比条件 即 b aH i =1+b z /a z 可得 1+b z /a z =63/5=21/5=4.2 =b aH i 所以中心轮a 和内齿轮b 的齿数满足给定传动比的要求。 2、保证中心轮、内齿轮和行星架轴线重合——同轴条件 为保证行星轮g z 与两个中心轮a z 、b z 同时正确啮合,要求外啮合齿轮a —g 的中心距等于内啮合齿轮b —g 的中心距,即 w (a )a g - =()w b g a - 称为同轴条件。 对于非变位或高度变位传动,有 m/2(a z +g z )=m/2(b z -g z ) 得 g z =b z -a z /2=63-15/2=24 3、保证多个行星轮均布装入两个中心轮的齿间——装配条件 想邻两个行星轮所夹的中心角H ?=2π/w n 中心轮a 相应转过1?角,1?角必须等于中心轮a 转过γ个(整数)齿所对的中心角, 即 1?=γ*2π/a z 式中2π/a z 为中心轮a 转过一个齿(周节)所对的中心角。 p i =n/H n =1?/H ?=1+b z /a z 将1?和H ?代入上式,有 2π*γ/a z /2π/w n =1+b z /a z 经整理后γ=a z +b z =(15+63)/2=24 满足两中心轮的齿数和应为行星轮数目的整数倍的装配条件。 4、保证相邻两行星轮的齿顶不相碰——邻接条件 在行星传动中,为保证两相邻行星轮的齿顶不致相碰,相邻两行星轮的中心距应大于两轮齿顶圆半径之和,如图1—2所示

行星齿轮机构练习答案

一、填空题。 1、单排行星齿轮机构是由一个太阳轮、一个齿圈、一个行星架和支承在行星架上的几个行星齿轮(一般3-6个)组成的,成为一个行星排。 2. 行星齿轮机构一般由太阳轮、行星齿轮、行星架和齿圈四个基本构件组成。 3.双排辛普森式行星齿轮变速器通常具有四个独立元件,分别是前排齿圈、前后太阳轮组件、后排行星架、前行星架和后齿圈组件。 4.拉维娜行星齿轮机构的主要组成有大太阳轮、小太阳轮、长行星轮、短行星齿轮和齿圈。 5、传动比等于从动齿轮的齿数除以主动齿轮的齿数。 6、倒档的实现是通过在两个齿轮之间附加一个惰轮。 7、当一个小齿轮驱动一个大齿轮时,转矩增大而转速降低。 · 8、在行星齿系中,如果齿圈固定和以太阳齿轮为主动件,则可以形成减速档。 9、如果行星齿轮机构中任意两元件以相同转速和相同方向转动,则第三元件与前二者一起同速转动,而形成直接档。 10、双行星轮式行星齿轮机构:太阳轮和齿圈之间有两组互相啮合的行星齿轮,其中外面一组行星齿轮和齿圈啮合,里面一组行星齿轮和太阳轮啮合。 二、简答题。 1. 简述单排行星齿轮机构的结构及其变速原理. 答:单排行星齿轮机构是由太阳轮,行星架(含行星轮),齿圈组成.固定其中任意一个件其它两个件分别作为输入输出件就得到一种传动比,这样有8种组合方式;当其中任两件锁为一体时相当于直接挡,一比一输出;当没有固定件时相当于空挡,无输出动力。 ^

/ 2、请画出单排行星齿轮机构简图。 3、请画出辛普森式行星齿轮机构简图。

1-前齿圈;2-前行星轮;3-前行星架和后齿圈组件4-前后太阳轮组件;5-后行星轮;6-后行星架 ¥

行星齿轮结构和工作原理

行星齿轮机构和工作原理

§3-3 行星齿轮机构和工作原理 Ⅰ授课思路:在初步了解行星齿轮机构的组成的基础上,通过单排行星齿轮机构一般运动规律的特性方程结合力和反作用力的作用原理使学生掌握单排行星齿轮的工作原理。拓展学生的能力,使学生概括出单排行星齿轮的基本特征。Ⅱ过程设计: 1.提问问题,复习上次课内容(约3min) ⑴导轮单向离合器有哪几种?(楔块式、滚柱式) ⑵锁止离合器的作用?(提高传动效率,使液力变矩器有液力传动变为机械 传动) 2.导入新课(约1min) 自动变速器是怎样实现自动换挡的呢?这就是我们这节课讲的主要内容3.新课内容:具体内容见“授课内容”(约73min) 4.本次课内容小结(约2min) 5.布置作业(约1min) Ⅲ讲解要点:单排行星齿轮的工作原理和单排行星齿轮的基本特征这一主线进行讲解。 Ⅳ授课内容: 一、简单的行星齿轮机构的特点 行星齿轮机构的组成: 简单(单排)的行星齿轮机构是变速机构 的基础,通常自动变速器的变速机构都由两排 或三排以上行星齿轮机构组成。简单行星齿轮

机构包括一个太阳轮、若干个行星齿轮和一个齿轮圈,其中行星齿轮由行星架的固定轴支承,允许行星轮在支承轴上转动。行星齿轮和相邻的太阳轮、齿圈总是处于常啮合状态,通常都采用斜齿轮以提高工作的平稳性(如图l所示)。 如图2表示了简单行星齿轮机构,位于行星齿轮机构中心的是太阳轮,太阳轮和行星轮常啮合,两个外齿轮啮合旋转方向相反。正如太阳位于太阳系的中心一样,太阳轮也因其位置而得名。行星轮除了可以绕行星架支承轴旋转外,在有些工况下,还会在行星架的带动下,围绕太阳轮的中心轴线旋转,这就像地球的自转和绕着太阳的公转一样,当出现这种 情况时,就称为行星齿轮机构作用的传动 方式。在整个行星齿轮机构中,如行星轮 的自转存在,而行星架则固定不动,这种 方式类似平行轴式的传动称为定轴传动。 齿圈是内齿轮,它和行星轮常啮合,是内 齿和外齿轮啮合,两者间旋转方向相同。 行星齿轮的个数取决于变速器的设计负 荷,通常有三个或四个,个数愈多承担负 荷愈大。 简单的行星齿轮机构通常称为三构件机构,三个构件分别指太阳轮、行星架和齿圈。这三构件如果要确定相互间的运动关系,一般情况下首先需要固定其中的一个构件,然后确定谁是主动件,并确定主动件的转速和旋转方向,结果被动件的转速、旋转方向就确定了。 二、单排行星齿轮机构的工作原理 根据能量守恒定律,三个元件上输入和输出的功率的代数和应等于零,从而得到单排行星齿轮机构一般运动规律的特性方程。 特性方程:n1+an2-(1+a)n3=0 n1——太阳轮转速,n2——齿圈转速,n3——行星架转速,a——齿圈与太阳轮齿数比。 由特性方程可以看出,由于单排行星齿轮机构具有两个自由度,在太阳轮、环形

NGW型行星齿轮减速器——行星轮的设计DOC

目录 一.绪论 (3) 1.引言 (3) 2.本文的主要内容 (3) 二.拟定传动方案及相关参数 (4) 1.机构简图的确定 (4) 2.齿形与精度 (4) 3.齿轮材料及其性能 (5) 三.设计计算 (5) 1.配齿数 (5) 2.初步计算齿轮主要参数 (6) (1)按齿面接触强度计算太阳轮分度圆直径 (6) (2)按弯曲强度初算模数 (7) 3.几何尺寸计算 (8) 4.重合度计算 (9) 5.啮合效率计算 (10) 四.行星轮的的强度计算及强度校核 (11) 1.强度计算 (11) 2.疲劳强度校核 (15) 1.外啮合 (15) 2.内啮合 (19) 3.安全系数校核 (20)

五.零件图及装配图 (24) 六.参考文献 (25)

一.绪论 1.引言 渐开线行星齿轮减速器是一种至少有一个齿轮绕着位置固定的几何轴线作圆周运动的齿轮传动,这种传动通常用内啮合且多采用几个行星轮同时传递载荷,以使功率分流。渐开线行星齿轮传动具有以下优点:传动比范围大、结构紧凑、体积和质量小、效率普遍较高、噪音低以及运转平稳等,因此被广泛应用于起重、冶金、工程机械、运输、航空、机床、电工机械以及国防工业等部门作为减速、变速或增速齿轮传动装置。 渐开线行星齿轮减速器所用的行星齿轮传动类型很多,按传动机构中齿轮的啮合方式分为:NGW、NW、NN、NGWN、ZU飞VGW、W.W等,其中的字母表示:N—内啮合,W—外啮合,G—内外啮合公用行星齿轮,ZU—锥齿轮。 NGW型行星齿轮传动机构的主要特点有: 重量轻、体积小。在相同条件下比硬齿面渐开线圆柱齿轮减速机重量减速轻1/2以上,体积缩小1/2—1/3; 传动效率高; 传动功率范围大,可由小于1千瓦到上万千瓦,且功率越大优点越突出,经济效益越高; 装配型式多样,适用性广,运转平稳,噪音小; 外齿轮为6级精度,内齿轮为7级精度,使用寿命一般均在十年以上。 因此NGW型渐开线行星齿轮传动已成为传动中应用最多、传递功率最大的一种行星齿轮传动。 2.本文的主要内容 NGW型行星齿轮传动机构的传动原理:当高速轴由电动机驱动时,带动太阳轮回转,再带动行星轮转动,由于内齿圈固定不动,便驱动行星架作输出运动,行星轮在行星架上既作自转又作公转,以此同样的结构组成二级、三级或多级传动。NGW型行星齿轮传动机构主要由太阳轮、行星轮、内齿圈及行星架所组成,

3Z型行星齿轮减速器设计

1.绪论 1.1课题研究的背景和意义 “十一五”期间我国将按照国家储备与企业储备相结合,以国家储备为主的方针,统一规划,分批建设国家战略石油储备基地。为了快速建立起我国独立的石油储备基地,根据我国国情石油储备形式以大型工业油罐为主。 在使用大型油罐进行原油储备的过程中,遇到最关键的问题就是油泥的问题,储运重未经提炼制的原油重平均约含2.2%的油泥,即对一个10万立方的储罐来说,灌满原油后其中约有2200立方的油泥成点在油罐底部。如不及时清除,再次加入原油是油泥将继续累积在一起,形成硬块,为油罐的检查及清洗增加困难。而且数量如此巨大的油泥存在于油罐底部,不经减小油罐的有效储存空间,降低储存周期寿命,造成进出阀的阻塞,而且较厚的油泥层使浮顶灌的浮顶不能不下降到底而引起浮顶倾斜,对储油安全造成威胁。因此大型原油储罐在建立时就必须增设油泥防止和消除系统,以增加油罐的储油效率,提高储油安全性,减小清灌难度。 大型原油储罐灌底油泥的防止和消除方法主要是在灌内增加油泥的混合搅拌系统,使油泥破碎细化,便于通过管线输出,我们选用了旋转喷射搅拌器。但是,其喷嘴口径相对于大型储罐的直径而言是很小的,喷嘴固定是射流束的搅拌范围是有限的,于是,在旋转喷射器入口处设置轴流涡轮,考循环油泵加压后的原油流动带动轴流涡轮高速旋转,旋转的涡轮通过主轴带动结构上完全隔绝的传动箱内一系列的减速传动使喷嘴缓慢旋转,而且通过传动箱内有关参数的选择来调节喷嘴旋转的速度,是从喷嘴喷出的射流也随之缓慢旋转,射流可打击到油罐底周向任一位置的油泥,实现彻底清除油泥,不留死角的功能。 可见,旋转喷射器中减速箱是工业油罐底油泥旋转喷射混合系统中重要的一部分。高速旋转的涡轮带动喷水嘴低速的转动,中间需要一个传动比很大的减速器连接。 1.2行星齿轮减速器研究现状及发展动态 行星齿轮传动与普通定州齿轮传动相比较,具有质量小,体积小,传动比大,承载能力大以及传动平稳和传动效率高等优点,这些已经被我过越来越多的机械工程技术人员所了解和重视。由于在各种类型的行星齿轮传动种均有效地利用了功率分流性和输入,输出地同轴性以及合理的采用了内啮合,才使得其具有了上述的许多独特的优点。行星齿轮传动不仅适用于高速,大功率而且可用于低速,大转矩的机械传动装置上。它可以用作减速,增速和变速传动,运动的合成和分解,以及其特殊的应用中:

行星齿轮机构结构与工作原理

行星齿轮机构结构与工作原理 1、行星齿轮机构的基本结构 行星齿轮机构有很多类型,其中最简单的行星齿轮机构是由1个太阳轮、1个齿圈、1个行星架和支承在行星架上的几个行星齿轮组成的,称为1个行星排。 行星齿轮机构中的太阳轮、齿圈及行星架有一个共同的固定轴线,行星齿轮支承在固定于行星架的行星齿轮轴上,并同时与太阳轮和齿圈啮合。当行星齿轮机构运转时,空套在行星架上的行星齿轮轴上的几个行星齿轮一方面可以绕着自己的轴线旋转,另一方面又可以随着行星架一起绕着太阳轮回转,就像天上行星的运动那样,兼有自转和公转两种运动状态(行星齿轮的名称即因此而来),在行星排中,具有固定轴线的太阳轮、齿圈和行星架称为行星排的3个基本元件。 2、行星齿轮机构的类型 行星齿轮机构可按不同的方式进行分类 (1)按照齿轮的啮合方式分类 按照齿轮的啮合方式不同,行星齿轮机构可以分为外啮合式和内啮合式两种。外啮合式行星齿轮机构体积大,传动效率低,故在汽车上已被淘汰;内啮合式行星齿轮机构结构紧凑,传动效率高,因而在自动变速器中被广为使用。 (2)按照齿轮的排数分类 按照齿轮的排数不同,行星齿轮机构可以分为单排和多排两种。

多排行星齿轮机构是由几个单排行星齿轮机构组成的。汽车自动变速器中,行星排的多少因挡位数的多少而有所不同,一般三挡位有2个行星排,四挡位(具有超速挡的)有3个行星排,通常使用的是由2个或2个单排行星的齿轮机构组成的多排行星齿轮机构。 (3)按照太阳轮和齿圈之间的行星齿轮组数分类 按照太阳轮和齿圈之间的行星齿轮组数的不同,行星齿轮机构可以分为单行星齿轮式和双行星齿轮式两种。 双行星齿轮机构在太阳轮和齿圈之间有两组互相啮合的行星齿轮,其外面一组行星齿轮和齿圈啮合,里面一组行星齿轮和太阳轮啮合。它与单行星齿轮机构在其它条件相同的情况下相比,齿圈可以得到反向传动。 用行星齿轮机构作为变速机构,由于有多个行星齿轮同时传递动力,而且常采用内啮合式,充分利用了齿圈中部的空间,故与普通齿轮变速机构相比,在传递同样功率的条件下,可以大大减小变速机构的尺寸和重量,并可实现同向、同轴减速传动;另外,由于采用常啮合传动,动力不间断,加速性好,工作也可靠。 3、行星齿轮机构的变速原理 由于单排行星齿轮机构有两个自由度,因此它没有固定的传动比,不能直接用于变速传动。为了组成具有一定传动比的传动机构,必须将太阳轮、齿圈和行星架这三个基本元件中的一个加以固定(即使其转速为0,也称为制动),或使其运动受到一定的约束(即让该构件以某一固定的转速旋转),或将某两个基本元件互相连接在一起

齿轮传动的特点和类型

第一节齿轮传动的特点和类型 一、齿轮传动的特点 齿轮传动是应用最为广泛的一种传动形式,与其它传动相比,具有传递的功率大、速度范围广、效率高、工作可靠、寿命长、结构紧凑、能保证恒定传动比;缺点是制造及安装精度要求高,成本高,不适于两轴中心距过大的传动。 二、齿轮传动分类 1、按轴线相互位置:平面齿轮传动和空间齿轮传动。 平面齿轮传动:按轮齿方向:直齿轮传动,斜齿轮传动和人字齿轮传动;按啮合方式:外啮合、内啮合和齿轮齿条传动; 空间齿轮传动:锥齿轮传动、交错轴斜齿轮传动和蜗杆蜗轮传动。 2、按齿轮是否封闭:开式和闭式齿轮传动 三、齿轮传动的基本要求 1、传动准确平稳; 齿廓啮合基本定律:为保证齿轮传动的瞬时传动比保持不变,则两轮不论在何处接触,过接触点所作两轮的公法线必须与两轮的连心线交于一定点。定点C称为节点,分别以O1、O2为圆心,过节点C所作的两个相切的圆称为节圆。根据齿廓曲线满足齿廓啮合基本定律制出的齿轮有渐开线齿轮、摆线齿轮和圆弧线齿轮。我们主要介绍渐开线齿轮。 渐开线的有关概念:1、发生线在基圆上滚过的长度等于基圆上相应被滚过的弧长;2、发生线即渐开线的法线,它始终与基圆相切,故也是基圆的切线;3、同一基圆上生成的任意两条反向渐开线间的公法线长度处处相等,任意两条同向渐开线间的法向距离处处相等;4、渐开线的形状取决于基圆的大小。基圆越小,渐开线越弯曲;基圆越大,渐开线越平直;5、基圆内无渐开线。 2、承载能力高和较长的使用寿命。 第二节渐开线齿轮的基本参数及几何尺寸计算 一、各部分名称 端平面:垂直于齿轮轴线的平面; 齿槽:相邻两轮之间的空间; 齿顶圆(da)、齿根圆(df)、齿槽宽(ek)、齿厚(sk)、齿顶高(ha)、齿根高(hf)、齿宽(p)、全齿高(h) 二、基本参数 1、模数m:; 2、压力角:规定分度圆上的压力角为标准压力角; 3、齿顶高系数:; 4、顶隙系数:; 5、齿数z:。当m、α不变时,z越大,db越大,渐开线越平直,若当z→∞时,db→∞,渐开线变成直线,齿轮变成齿条。 标准齿轮:m、α、ha*、c*皆为标准值且e=s。 三、几何尺寸计算 1、内齿轮与外齿轮比较:内齿轮的齿根即外齿轮的齿顶,内齿轮的齿顶即外齿轮的齿根;内齿轮的df>da>db; 2、齿条与齿轮比较:齿条的齿廓曲线为直线,齿轮的齿廓曲线为曲线(渐开线);对应的圆都变为直线,如分度线、齿顶线、齿根线;啮合角等于压力角,等于齿形角。齿条上所有轮齿的同侧齿廓都互相平行,齿廓任意位置的齿距都等于分度线的齿距,即pk=p=πm。 3、几何尺寸计算(见书表35-3) 例1、已知:m=7mm,z1=21、z2=37,α=20°,正常齿,求其几何尺寸。

行星齿轮机构运动规律 原理及应用分析

行星齿轮机构运动规律原理及应用分析 类型:转载来源:济民工贸的博客作者:齐兵责任编辑:李笛发布时间:2009年06月11日 我们熟知的齿轮绝大部分都是转动轴线固定的齿轮。例如机械式钟表、普通机械式变速箱、减速器,上面所有的齿轮尽管都在做转动,但是它们的转动中心(与圆心位置重合)往往通过轴承安装在机壳上,因此,它们的转动轴都是相对机壳固定的,因而也被称为"定轴齿轮"。 有定必有动,对应地,有一类不那么为人熟知的称为"行星齿轮"的齿轮,它们的转动轴线是不固定的,而是安装在一个可以转动的支架(蓝色)上(图中黑色部分是壳体,黄色表示轴承)。行星齿轮(绿色)除了能象定轴齿轮那样围绕着自己的转动轴(B-B)转动之外,它们的转动轴还随着蓝色的支架(称为行星架)绕其它齿轮的轴线(A-A)转动。绕自己轴线的转动称为"自转",绕其它齿轮轴线的转动称为"公转",就象太阳系中的行星那样,因此得名。 也如太阳系一样,成为行星齿轮公转中心的那些轴线固定的齿轮被称为"太阳轮",如图中红色的齿轮。在一个行星齿轮上、或者在两个互相固连的行星齿轮上通常有两个啮合点,分别与两个太阳轮发生关系。如右图中,灰色的内齿轮轴线与红色的外齿轮轴线重合,也是太阳轮。 轴线固定的齿轮传动原理很简单,在一对互相啮合的齿轮中,有一个齿轮作为主动轮,动力从它那里传入,另一个齿轮作为从动轮,动力从它往外输出。也有的齿轮仅作为中转站,一边与主动轮啮合,另一边与从动轮啮合,动力从它那里通过。

在包含行星齿轮的齿轮系统中,情形就不同了。由于存在行星架,也就是说,可以有三条转动轴允许动力输入/输出,还可以用离合器或制动器之类的手段,在需要的时候限制其中一条轴的转动,剩下两条轴进行传动,这样一来,互相啮合的齿轮之间的关系就可以有多种组合: 单排行星齿轮机构的结构组成为例 ● (1)行星齿轮机构运动规律 设太阳轮、齿圈和行星架的转速分别为n1、n2和n3,齿数分别为Z1、Z2、Z3;齿圈与太阳轮的齿数比为α。则根据能量守恒定律,由作用在该机构各元件上的力矩和结构参数可导出表示单排行星齿轮机构一般运动规律的特性方程式: n1+αn2-(1+α)n3=0和Z1+Z2=Z3 ●(2)行星齿轮机构各种运动情况分析 由上式可看出,由于单排行星齿轮机构具有两个自由度,在太阳轮、齿圈和行星架这三个基本构件中,任选两个分别作为主动件和从动件,而使另一元件固定不动(即使该元件转速为0),或使其运动受一定的约束(即该元件的转速为某定值),则机构只有一个自由度,整个轮系以一定的传动比传递动力。下面分别讨论各种情况。 行星齿轮机构各种运动情况分析 固定件主动件从动件转速成转向 太阳轮行星架齿圈增速同向 太阳轮齿圈行星架减速同向 齿圈行星架太阳轮增速同向 齿圈太阳轮行星架减速同向 行星架齿圈太阳轮增速反向 行星架太阳轮齿圈减速反向

行星齿轮结构和工作原理

行星齿轮机构和工作原理 §3-3 行星齿轮机构和工作原理 Ⅰ授课思路:在初步了解行星齿轮机构的组成的基础上,通过单排行星齿轮机构一般运动规律的特性方程结合力和反作用力的作用原理使学生掌握单排行星齿轮的工作原理。拓展学生的能力,使学生概括出单排行星齿轮的基本特征。

Ⅱ过程设计: 1.提问问题,复习上次课内容(约3min) ⑴导轮单向离合器有哪几种?(楔块式、滚柱式) ⑵锁止离合器的作用?(提高传动效率,使液力变矩器有液力传动变为机械 传动) 2.导入新课(约1min) 自动变速器是怎样实现自动换挡的呢?这就是我们这节课讲的主要内容3.新课内容:具体内容见“授课内容”(约73min) 4.本次课内容小结(约2min) 5.布置作业(约1min) Ⅲ讲解要点:单排行星齿轮的工作原理和单排行星齿轮的基本特征这一主线进行讲解。 Ⅳ授课内容: 一、简单的行星齿轮机构的特点 行星齿轮机构的组成: 简单(单排)的行星齿轮机构是变速机构 的基础,通常自动变速器的变速机构都由两排 或三排以上行星齿轮机构组成。简单行星齿轮 机构包括一个太阳轮、若干个行星齿轮和一个 齿轮圈,其中行星齿轮由行星架的固定轴支 承,允许行星轮在支承轴上转动。行星齿轮和 相邻的太阳轮、齿圈总是处于常啮合状态,通 常都采用斜齿轮以提高工作的平稳性(如图l 所示)。 如图2表示了简单行星齿轮机构,位于行星齿轮机构中心的是太阳轮,太阳轮和行星轮常啮合,两个外齿轮啮合旋转方向相反。正如太阳位于太阳系的中心一样,太阳轮也因其位置而得名。行星轮除了可以绕行星架支承轴旋转外,在有些工况下,还会在行星架的带动下,围绕太阳轮的中心轴线旋转,这就像地球的

齿轮机构介绍

第五章 齿轮机构 案例导入:通过机床、汽车、摩托车、手表等仪器设备中广泛应用的齿轮传动,引入齿轮传动的类型、特点及基本要求、齿轮传动啮合的特点。在所有众多的齿轮机构中,直齿圆柱齿轮机构是最基本、也是最常用的一种,本章以直齿圆柱齿轮为研究的重点。 第一节 齿轮机构的齿廓啮合基本规律、特点和类型 一、齿轮机构的特点和类型 齿轮传动是近代机械传动中用得最多的传动形式之一。它不仅可用于传递运动,如各种仪表机构;而且可用于传递动力,如常见的各种减速装置、机床传动系统等。 同其他传动形式比较,它具有下列优点:①能保证传动比恒定不变;②适用的载荷与速度范围很广,传递的功率可由很小到几万千瓦,圆周速度可达150m/s ;③结构紧凑;④效率高,一般效率η=0.94~0.99;⑤工作可靠且寿命长。其主要缺点是:①对制造及安装精度要求较高;②当两轴间距离较远时,采用齿轮传动较笨重。 齿轮的分类方法很多,按照两轴线的相对位置,可分为两类:平面齿轮传动和空间齿轮传动。 1.平面齿轮传动 该传动的两轮轴线相互平行,常见的有直齿圆柱齿轮传动(图5-1a ),斜齿圆柱齿轮传动(图5-1d ),人字齿轮传动(图5-1e )。此外,按啮合方式区分,前两种齿轮传动又可分为外啮合传动(图5-1a 、d ),内啮合传动(图5-1b )和齿轮齿条传动(图 5 a) b) c) d) e) 图5-1 平面齿轮传动

-1c )。 2.空间齿轮传动 两轴线不平行的齿轮传动称为空间齿轮传动,如直齿圆锥齿轮传动(图5-2a )、交错轴斜齿轮传动(图5-2b )和蜗杆传动(图5-2c )。 另外,齿轮传动按照齿轮的圆周速度可分为:①低速传动 v < 3m/s ;②中速传动 v =3~15m/s ,(3)高速传动v >15m/s 。按齿轮的工作情况可以分为:①开式齿轮传动;②闭式齿轮传动。 二、齿轮啮合的基本规律 齿轮传动最基本的要求是其瞬时传动比必须恒定不变。否则当主动轮以等速度回转时,从动轮的角速度为变数,因而产生惯性力,影响齿轮的寿命,同时也引起振动,影响其工作精度。 要满足这一基本要求,则齿轮的齿廓曲线必须符 合一定的条件。 图5-3所示为两啮合齿轮的齿廓C 1和C 2在K 点接触的情况,设两轮的角速度分别为 ω1和 ω 2,则齿廓 C 1上K 点的速度k o v K 111ω=;齿廓C 2上K 点的速度 k o v K 222ω=。 过K 点作两齿廓的公法线NN 与两轮中心连线2 1o o 交于C 点,为保证两轮连续和平稳的运动,v k 1与v k 2 在公法线上得分速度应相等,否则两齿廓将互相嵌入 或分离,即 2211cos cos K K K K v v αα= 过2o 作z o 2平行于NN ,与k o 1的延长线交于Z a) b) c) 图5-2 空间齿轮传动

行星齿轮结构原理

一)行星齿轮机构结构与工作原理 1、行星齿轮机构的基本结构 行星齿轮机构有很多类型,其中最简单的行星齿轮机构是由1个太阳轮、1个齿圈、1个行星架和支承在行星架上的几个行星齿轮组成的,称为1个行星排。 行星齿轮机构中的太阳轮、齿圈及行星架有一个共同的固定轴线,行星齿轮支承在固定于行星架的行星齿轮轴上,并同时与太阳轮和齿圈啮合。当行星齿轮机构运转时,空套在行星架上的行星齿轮轴上的几个行星齿轮一方面可以绕着自己的轴线旋转,另一方面又可以随着行星架一起绕着太阳轮回转,就像天上行星的运动那样,兼有自转和公转两种运动状态(将星齿轮的名称即因此而来),在行星排中,具有固定轴线的太阳轮、齿圈和行星架称为行星排的3个基本元件。 2、行星齿轮机构的类型 行星齿轮机构可按不同的方式进行分类 (1)按照齿轮的啮合方式分类 按照齿轮的啮合方式不同,行星齿轮机构可以分为外啮合式和内啮合式两种。外啮合式行星齿轮机构体积大,传动效率低,故在汽车上已被淘汰;内啮合式行星齿轮机构结构紧凑,传动效率高,因而在自动变速器中被广为使用。 (2)按照齿轮的排数分类 按照齿轮的排数不同,行星齿轮机构可以分为单排和多排两种。多排行星齿轮机构是由几个单排行星齿轮机构组成的。汽车自动变速器中,行星排的多少因挡位数的多少而有所不同,一般三挡位有2个行星排,四挡位(具有超速挡的)有3个行星排,通常使用的是由2个或2个单排行星的齿轮机构组成的多排行星齿轮机构。 (3)按照太阳轮和齿圈之间的行星齿轮组数分类 按照太阳轮和齿圈之间的行星齿轮组数的不同,行星齿轮机构可以分为单行星齿轮式和双行星齿轮式两种。 双行星齿轮机构在太阳轮和齿圈之间有两组互相啮合的行星齿轮,其外面一组行星齿轮和齿圈啮合,里面一组行星齿轮和太阳轮啮合。它与单行星齿轮机构在其它条件相同的情况下相比,齿圈可以得到反向传动。 用行星齿轮机构作为变速机构,由于有多个行星齿轮同时传递动力,而且常采用内啮合式,充分利用了齿圈中部的空间,故与普通齿轮变速机构相比,在传递同样功率的条件下,可以大大减小变速机构的尺寸和重量,并可实现同向、同轴减速传动;另外,由于采用常啮合传动,动力不间断,加速性好,工作也可靠。 3、行星齿轮机构的变速原理 由于单排行星齿轮机构有两个自由度,因此它没有固定的传动比,不能直接用于变速传动。为了组成具有一定传动比的传动机构,必须将太阳轮、齿圈和行星架这三个基本元件中的一个加以固定(即使其转速为0,也称为制动),或使其运动受到一定的约束(即让该构件以某一固定的转速旋转),或将某两个基本元件互相连接在一起(即两者转速相同),使行星排变为只有一个自由度的机构,获得确定的传动化。 设太阳轮的齿数为Z1,齿圈齿数为Z2,太阳轮、齿圈和行星架的转速分别为n1、n2、n3,并设齿圈与太阳轮的齿数比为α,即 α=Z2/Z1 则行星齿轮机构的一般运动规律可表达为: n1+αn2-(1+α)n3=0 由上式可以看出,在太阳轮、齿圈和行星架三个基本元件中,可任选两个分别作为主动件和从动件,而使另一个元件固定不动(使该元件转速为零)或使其运动受一定约束(使该

行星齿轮减速器设计

1 引言 行星齿轮传动在我国已有了许多年的发展史,很早就有了应用。然而,自20世纪60年代以来,我国才开始对行星齿轮传动进行了较深入、系统的研究和试制工作。无论是在设计理论方面,还是在试制和应用实践方面,均取得了较大的成就,并获得了许多的研究成果。近20多年来,尤其是我国改革开放以来,随着我国科学技术水平的进步和发展,我国已从世界上许多工业发达国家引进了大量先进的机械设备和技术,经过我国机械科技人员不断积极的吸收和消化,与时俱进,开拓创新地努力奋进,使我国的行星传动技术有了迅速的发展[1] 。 2 设计背景 试为某水泥机械装置设计所需配用的行星齿轮减速器,已知该行星齿轮减速器的要求输入功率为 1 740KW p =,输入转速11000rpm n = ,传动比为35.5p i =,允许传动 比偏差0.1P i ?=,每天要求工作16小时,要求寿命为2年;且要求该行星齿轮减速器传动结构紧凑,外廓尺寸较小和传动效率高。 3 设计计算 3.1选取行星齿轮减速器的传动类型和传动简图 根据上述设计要求可知,该行星齿轮减速器传递功率高、传动比较大、工作环境恶劣等特点。故采用双级行星齿轮传动。2X-A 型结构简单,制造方便,适用于任何工况下的大小功率的传动。选用由两个2X-A 型行星齿轮传动串联而成的双级行星齿轮减速器较为合理,名义传动比可分为17.1p i =,25p i =进行传动。传动简图如图1所示:

图1 3.2 配齿计算 根据2X-A 型行星齿轮传动比 p i 的值和按其配齿计算公式,可得第一级传动的内 齿轮1b ,行星齿轮1c 的齿数。现考虑到该行星齿轮传动的外廓尺寸,故选取第一级中心齿轮1a 数为17和行星齿轮数为3p n =。根据内齿轮()11 1 1 b a p i z z =- ()17.1117103.7103b z =-=≈ 对内齿轮齿数进行圆整后,此时实际的P 值与给定的P 值稍有变化,但是必须控制在其传动比误差范围内。实际传动比为 i =1+ 1 1 za zb =7.0588 其传动比误差i ?= ip i ip -= 7.17.0588 7.1 -=5℅ 根据同心条件可求得行星齿轮c1的齿数为 ()1 11243c b a z z z =-= 所求得的1ZC 适用于非变位或高度变位的行星齿轮传动。再考虑到其安装条件为: 11 2 za zb += C =40 ()整数 第二级传动比 2p i 为 5,选择中心齿轮数为23和行星齿轮数目为3,根据内齿轮zb1

行星齿轮机构变速原理

汽车技术系教案 2014 /2015 学年第2学期 课程名称:汽车构造(二)授课教师:陈检龙 班级:2014级汽修春招班第24讲 题目:第24讲行星齿轮变速机构的结构原理(第九章传动系构造第四节自动变速器六、齿轮变速器)第 12 周星期二 第一节 本讲教学目标: 1、知识目标: ①了解行星齿轮变速机构的结构组成及种类; ②掌握一个单行星排的八种功能状态分析。 2、能力目标: ①通过掌握简单的行星齿轮机构的工作原理,为下面学习各种自动变速器的工作原理准备; ②锻炼学生们分析问题、思考问题的能力。 3、情感目标: 为学生树立自信心,激发出学生的学习动力。本讲主要内容:一、齿轮传动知识的回顾 二、行星齿轮机构中的一个单行星排的变速变向原理 教学重点:行星齿轮机构变速原理 教学难点:行星齿轮机构变速原理 计划课时:2h 教学方法及手段:导入、重点介绍、简介、对比介绍、归纳小结、多媒体 作业或课外阅读资料: 1.一个最简单的行星齿轮机构包含哪些功能元件?它们的运动轴线有什么关系? 2.行星排有哪些种类? 3.一个单行星排有几种功能状态? 4.在单行星排中,当行星架参与旋转运动时,其等效于什么样的齿轮?固定时呢?

上一讲回主页下一讲本讲教学内容: 由普通机械变速器的变速机构导入本讲内容: 重点介绍:·要求掌握行星齿轮变速机构的组成结构及变速原理。 课题导入 一、(提问)自动变速器的组成有几部分?是哪些? 答:包括四部分:液力变矩器、油泵、齿轮变速机构、控制系统。 二、(提问)液力变矩器能否取代齿轮变速机构?为何? 答:不能,因为其传动比较小,不能适应汽车各种运行条件的需要;且传动效率也不高,经济效率不好。 (因此,一般在自动变速器中,齿轮变速机构仍然是其变速的核心组成部分。) 三、(设问)齿轮变速机构有哪些种类? 普通齿轮变速机构,行星齿轮变速机构。 四、本课要解决的问题: 1、齿轮传动的基本知识回顾; 2、行星齿轮变速机构之——一个单行星排的变速原理。 一、齿轮传动的基本知识回顾 (一)齿轮传动种类: 包括平行轴齿轮传动,相交轴齿轮传动和交错轴齿轮传动三种。 (二)典型齿轮传动回顾 1、圆柱齿轮外啮合传动回顾 两轮转向相反,小带大减速,大带小升速。 1 2 2 1 12Z Z n n i- = - = 其中:1、2分别表示输入与输出汽车手动变速器就是以不同的直、斜齿圆柱齿轮成对(组)外啮合,并通过移动换挡齿轮或换挡接合套来实现变速和变向的。 2、圆柱齿轮内啮合传动回顾 两轮转向相同,小带大减速,大带小升速。 1 2 2 1 12Z Z n n i= = 其中:1、2分别表示输入与输出汽车自动变速器所用行星齿轮机构,既包含外啮合(太

行星齿轮结构及工作原理

行星齿轮机构和工作原理 一、简单的行星齿轮机构的特点  行星齿轮机构的组成:  简单(单排)的行星齿轮机构是变速机构 的基础,通常自动变速器的变速机构都由两排 或三排以上行星齿轮机构组成。简单行星齿轮 机构包括一个太阳轮、若干个行星齿轮和一个 齿轮圈,其中行星齿轮由行星架的固定轴支 承,允许行星轮在支承轴上转动。行星齿轮和 相邻的太阳轮、齿圈总是处于常啮合状态,通 常都采用斜齿轮以提高工作的平稳性(如图l 所示)。  如图2表示了简单行星齿轮机构,位于行星齿轮机构中心的是太阳轮,太阳 轮和行星轮常啮合,两个外齿轮啮合旋转方向相反。正如太阳位于太阳系的中心一样,太阳轮也因其位置而得名。行星轮除了可以绕行星架支承轴旋转外,在有些工况下,还会在行星架的带动下,围绕太阳轮的中心轴线旋转,这就像地球的自转和绕着太阳的公转一样,当出现这种 情况时,就称为行星齿轮机构作用的传动 方式。在整个行星齿轮机构中,如行星轮 的自转存在,而行星架则固定不动,这种 方式类似平行轴式的传动称为定轴传动。 齿圈是内齿轮,它和行星轮常啮合,是内 齿和外齿轮啮合,两者间旋转方向相同。 行星齿轮的个数取决于变速器的设计负 荷,通常有三个或四个,个数愈多承担负 荷愈大。  简单的行星齿轮机构通常称为三构件机构,三个构件分别指太阳轮、行星架和齿圈。这三构件如果要确定相互间的运动关系,一般情况下首先需要固定

其中的一个构件,然后确定谁是主动件,并确定主动件的转速和旋转方向,结 果被动件的转速、旋转方向就确定了。  二、单排行星齿轮机构的工作原理  根据能量守恒定律,三个元件上输入和输出的功率的代数和应等于零,从而得到单排行星齿轮机构一般运动规律的特性方程。  特性方程:n1+an2-(1+a)n3=0 n1——太阳轮转速,n2——齿圈转速,n3——行星架转速,a——齿圈与太阳轮齿数比。  由特性方程可以看出,由于单排行星齿轮机构具有两个自由度,在太阳轮、环形内齿圈和行星架三个机构中,任选两个分别作为主动件和从动件,而使另一个元件固定不动,或使其运动受一定的约束(即该元件的转速为某定值),则机构只有一个自由度,整个轮系以一定的传动比传递动力。下面分别讨论三种情况。  1、齿圈固定,太阳轮为主动件且顺时针转动,而行星架则为被动件。太阳轮 顺时针转动时,太阳轮轮齿必给行星轮齿A一个推力F1,则行星轮应为逆时针 转动,但由于齿圈固定,所以齿圈轮齿必给行星轮齿B一个反作用力F2,行星轮在F1和 F2合力作用下必绕太阳轮顺时针旋转,结果行星轮不仅存在逆时针自 转,并且在行星架的带动下,绕太阳轮中心轴线顺时针公转。在这种状态下, 就出现了行星齿轮机构作用的传动方式,而且被动件行星架的旋转方向与主动 件同方向。在这里,太阳轮是主动件而且是小齿轮,被动件行星架没有具体齿 数的传动关系,因此定义行星架的当量齿数等于太阳轮和齿圈齿数之和。这样,太阳轮带动行星架转动仍属于小齿轮带动最大的齿轮,是一种减速运动且有最 大的传动比。因为此时n2=0,故传动比 i13=n1?n3=1+a。(如图3)

相关主题