搜档网
当前位置:搜档网 › 磁悬浮演示装置设计设计报告

磁悬浮演示装置设计设计报告

磁悬浮演示装置设计设计报告
磁悬浮演示装置设计设计报告

磁悬浮演示装置设计设计报告

毕业设计

题目:磁悬浮演示装置设计

院:电气信息学院

专业:电子信息工程班级: 1101 学号: 25 学生姓名:余东升

导师姓名:李延平

完成日期: 2015年 6月 10日

诚信声明

本人声明:

1、本人所呈交的毕业设计(论文)是在老师指导下进行的研究工作及取得的研究成果;

2、据查证,除了文中特别加以标注和致谢的地方外,毕业设计(论文)中不包含其他人已经公开发表过的研究成果,也不包含为获得其他教育机构的学位而使用过的材料;

3、我承诺,本人提交的毕业设计(论文)中的所有内容均真实、可信。

作者签名:日期:年月日

毕业设计(论文)任务书

题目:磁悬浮演示装置设计

姓名余东升学院电气信息学院专业电子信息工程班级1101 学号201101030125

指导老师李延平职称讲师教研室主任刘望军

一、基本任务及要求:

课题内容是以TI公司的Tiva C平台为基础实现一个磁悬浮实验演示装置,具体要求如下:

1、搭建实验装置的实物平台;

2、实现对磁铁的悬浮控制;

3、磁平衡的控制参数可调;

4、完成实物制作

二、进度安排及完成时间:

1、第一周至第二周:查阅资料、撰写文献综述和开题报告;

2、第三周至第四周:毕业实习;

3、第五周至第六周:各参数测试算法研究;

4、第七周至第八周:完成硬件的设计及模型组装;

5、第九周至第十一周:完成系统硬件电路的设计及调试;

6、第十二周至第十三周:完成单片机程序的编写及调试;

7、第十四周至第十五周:撰写设计说明书;

8、第十六周:毕业设计答辩

目录

摘要.................................................................... I Abstract ............................................................... II 第1章概述. (1)

1.1磁悬浮的研究背景 (1)

1.2磁悬浮研究的现状 (1)

第2章系统方案 (3)

2.1 系统总体方案设计 (3)

2.2 霍尔传感器 (3)

2.3 信号处理方案 (4)

2.4 线圈驱动器选型 (5)

2.5 主控芯片选择 (5)

第3章系统硬件设计 (7)

3.1 主控模块设计 (7)

3.2电源设计 (8)

3.3 传感器电路设计 (8)

3.4 控制线圈驱动模块设计 (8)

3.5霍尔元件与控制线圈的安装 (9)

第4章软件设计 (10)

4.1 编程语言的选择 (10)

4.2 主程序设计 (10)

4.3 模块程序设计 (11)

第5章调试与运行 (15)

5.1 编程工具CCS的介绍 (15)

5.2程序调试与下载 (16)

5.3 PID调试与结果 (17)

第6章结论与展望 (19)

参考文献 (20)

致谢 (21)

附录程序 (22)

磁悬浮演示装置设计

摘要:磁悬浮系统是一种非线性,复杂、自然不稳定系统,其空控制性能的好坏直接影响磁悬浮的应用。其研究包括控制原理,磁场理论、电子相关技术。磁悬浮系统对实时性的要求很高,要使用先进算法控制算法使磁悬浮稳定。

本文首先介绍了磁悬浮系统的工作原理,在此基础上搭建物理模型,利用霍尔元件搜集磁悬浮的数据利用ARM处理器处理数据和控制悬浮体的位置。根据系统传递函数和接受到的数据,并据此函数进行PID控制的设计和调节,最终是悬浮体稳定。

关键词:悬浮体,PID算法,霍尔效应,ARM处理器

Maglev demonstration device design

Abstract:Magnetic levitation system is a complex nonlinear nature unstable system air control performance directly affects the application of magnetic levitation. The research includes control theory, field theory, electronic related technologies. magnetic levitation system for real-time demanding, to use advanced algorithms control algorithms enable stable levitation.

This paper introduces the principle of magnetic levitation system, built on the basis of a physical model using the Hall sensor magnetic levitation collect data use ARM processor to process data and control the position of the suspension. The system transfer function and the received data, and accordingly design function and regulation PID control, and ultimately suspension stability.

Key words:suspension;PID control;Hall sensor;ARM processor

第1章概述

1.1磁悬浮的研究背景

磁悬浮技术是将力学、机械学、电磁学、自动控制技术、传感器技术等高新技术有机就额和在一起,成为典型的机电一体化的技术。磁悬浮技术是利用磁场将意味体沿着某一基准的轴或者几轴保持固定,并且与周围支撑没有任何接触的技术,克服了由摩擦带来的能量损耗和速度上的限制,具有能耗低、寿命长、安全可靠等优点。目前,各国已在广泛的对磁悬浮进行研究,随着控制理论的不断的发展和完善,选用先进的控制方法对系统畸形的控制和设计,是系统具有更好的鲁棒性。在我国,磁悬浮技术技术研究起步较晚,水平相对落后。

随着电子技术的发展,特别是计算机技术的的迅速发展,促进了磁悬浮控制系统智能化的方向快速发展。磁悬浮技术开始由宇宙、军事等领域向一般工业方面发展。在很多领域有广泛应用,如:磁悬浮列车、磁悬浮承轴等。

磁悬浮块是一种单一方向控制的悬浮系统,只需要控制准确一个方向就可以完成块的准确悬浮。磁悬浮块实验数据分析容易,组成简单,在研究磁悬浮系统,对于多种控制算法方面的验证和实施具有重要的作用。

1.2磁悬浮研究的现状

在多年研究工作下和转子动力学和控制理论的研究和随着电子元件的高度集成化,国内外在此技术上获得了巨大的进展。然而在还是在实现产品化和研究理论的过程中,此磁悬浮技术有还是遗留很多难题,众所周知的磁悬浮列车悬浮与推进的技术难题以及复杂的控制系统实现都不是很成熟,需要完成的研究是实现工程化和组成系统的技术提升,还需要运用电磁技术、电子技术、直线电机、机械技术、计算机技术、新型材料和系统分析等方面的技术研究成果。

磁悬浮在另一个运用范畴是电力工程,在磁悬浮轴承的基本原理上研究,制作出大功率的磁悬浮轴承能够很大程度减少调峰时机组启停次数。进行磁悬浮轴承系统的振动控制理论的研究,将其应用于汽轮机转子的振动和故障分析中,通过调整磁悬浮轴承的刚度来改变汽轮机转子结构设计的思想,从而改善转子运行的动态特性,提高机组运行的可靠性,避去可能出现的共振情况等,提供全新的电力技术难题解决方案。

现已广泛应用于工业基本都是传统的磁轴承(需要位置传感器磁轴承),轴承需要5个或10个接触式位置传感器来检测转子的排量。由于传感器的,使轴向磁轴承系统大小的增加,从而降低了系统的动态性能,以及成本高和可靠性低。由于结构上的限

制,传感器不能被安装在磁性轴承的中间,方程式彼此耦合的系统中,控制器的设计更加复杂。此外,由于传感器的价格较高,导致在一个非常高的价格的磁悬浮轴承,这大大限制了其在工业中的应用。

如何降低磁悬浮轴承的价格,它是国际上研究的热点话题。近年来,结合最新的研究成果和无传感器检测磁轴承两个研究领域,一个新的研究方向的诞生——无传感器磁轴承。即,没有必要根据获得的电磁线圈的电流和电压信号设计转子的特殊位移传感器,位移。在显著的改进和增强在以下方面获得这样的磁性轴承:转子的轴向尺寸的减小,系统的动态性能提高;进一步提高磁悬浮轴承的可靠性;改进磁轴承控制器的设计;价格将会显著降低。

1.3课题要求

1、搭建实验装置的实物平台;

2、实现对磁铁的悬浮控制;

3、磁平衡的控制参数可调;

4、完成实物制作。

第2章系统方案

2.1 系统总体方案设计

本系统包括:永磁、控制线圈、霍尔元件、放大模块等。可以实现浮子在没有支撑的情况下悬浮在空中

系统框图如图2.1所示:

图2.1系统框图

具体施行方案如下:

使用一块永磁提供悬浮物所需要的上推的力,通过两个互相垂直的霍尔元件检测悬浮物由于不稳定所造成的位置偏移。使用LM358求差电路将获得的偏移电压放大从而获得霍尔元件得到的悬浮物的较小偏移量,并将电压控制在0-3.3处为ADC所能检测到的电压。处理器获得放大后的电压后使用PID算法进行计算输出适当的PWM波到L298N电机驱动上使控制线圈获得x,y,轴上对悬浮物的拉力使其稳定在所需要的位置。整个系统是个闭环的系统。

2.2 霍尔传感器

霍尔传感器是对霍尔效应的应用。霍尔效应是电磁现象的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。在之后的研究表明导电流体和半导体等也有这种现象,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔传感器,应用广泛于工业自动化、电子检测及信息处理等技术方面。霍尔效应是研究半导体材料性能的一种可行方法。通过霍尔效应实验测定的霍尔系数,能够分辨半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。霍尔元件硬件图:

图2.2 霍尔元件

霍尔元件获取的数据是根据随磁场的强度变化而变化,磁场增大,电压增大,磁场减小,电压电压,霍尔效应得到的值很小,需要经集成运算放大器处理,就能得到足以输出较强的信号。若使霍尔集成电路起传感作用,需要方法来改变磁场强度。霍尔效应传感器属于被动型传感器,它要有外部电源才能工作,这一特点使它能检测转速低的运转情况。

2.3 信号处理方案

LM358是双运算放大器。内部包括有高增益、独立的、内部频率补偿的双运算放大器,电源电压范围很宽的单电源电源可使用,也可适用于双电源工作模式,在正常工作条件下,电源电流与电源电压无相关。它的范畴包括直流增益模块、传感放大器和其他可用单电源供电的运算放大器的情况。LM358引脚图:

图2.3 LM358引脚图

2)求差电路

求差电路是用来实现v i1、vi2两个电压相减的电路,又称差分放大电路。在电路上来分析,可以看出该电路同向输入和反向输入一同工作的放大电路。此项设计需要对接收到霍尔元件的偏移电压进行放大并且调节范围在0-3.3V,以便ARM处理器ADC检测和处理。求差电路电路图:

图2.4求差电路电路图

求差电路公式:

V0 = (1+R4/R1)((R3/R2)/(1+R3/R2))V i2 - (R4/R1)V i1(2.1)2.4 线圈驱动器选型

意法半导体生产的L298N是提供高电流和高电压一款驱动。其主要特点是:高电压,46V的最大工作电压;输出最大电流3A,2A的一般工作电流;功率为25W。H桥高电压和高电流全桥驱动器可以用来驱动直流电动机等电感性负载线圈;使用标准逻辑电平信号控制;具有两个使能控制终端,不管输入信号的影响许可证的情况下或禁用设备具有逻辑电源输入,在低电压下工作的内部的逻辑电路的一部分;可以是一个外部检测电阻变化量反馈给控制电路。使用L298N芯片驱动电机,该芯片可以驱动两相步进电机或四相步进电机,可以驱动两个直流电动机。图2.5为L298N芯片

图2.5 电机驱动

L298N可以控制电机的转速和正反转正好符合控制电磁铁所需要的电流方向和大小。通过处理器对偏移电压数据的处理,PWM输出到L298N就可以实现悬浮物的控制。

2.5 主控芯片选择

ARM处理器是Acorn计算机有限公司面向低预算市场设计的一款RISC微处理器。更早称作Acorn RISC Machine。ARM处理器本身是32位设计,但也配备16位指令集。一般来讲比等价32位代码节省达35%,却能保留32位系统的所有优势。ARM处理器的三大特点是:耗电少功能强、16位/32位双指令集和合作伙伴众多,ARM微处理器可以为我们提供许多高性价的应用场合,可灵活的应用于各种领域。如下图为LaunchPad。

图2.6 TIVA C 实物图

TIVA C系列TM4C123G的LaunchPad评估板(EK-TM4C123GXL)是一种低成本评估平台基于ARM?Cortex?-M4F微控制器。该TIVA C系列LaunchPad的设计突出了TM4C123GH6PMI微控制器的USB2.0设备接口,休眠模块和运动控制脉宽调制器(MC PWM)模块。该TIVA C系列的LaunchPad还采用可编程用户按钮和三原色LED自定义应用程序。TIVA C系列TM4C123G的LaunchPad BoosterPack XL界面证明它是多么容易扩大。在TIVA C系列的LaunchPad功能接口与其他外设上许多现有的时候BoosterPack插件板以及未来的产品。

第3章系统硬件设计

3.1 主控模块设计

ARM最小系统主要由晶振电路,复位电路,下载接口等构成。其中晶振电路是处理器的心脏,有着固定的频率。这里用到的晶振为16M,它能位处理器提供稳定的时序。

Tiva C系列评估板使用的是内部集成的调试接口,这个调试接口能用于TM4C123GHP6M芯片的调试和程序下载,程序下载可用LMFlashProgrammer 和任何支持的工具链。最小系统原理图如图3.1所示。

图3.1主控芯片电路图

3.2电源设计

电源选用固纬电源18v输出,18v对L298N提供输入电压以供其输出,使控制线圈能工作。利用7805稳压芯片将其转换为5v 提供供霍尔元件和处理器的工作电压。电压的稳定性决定悬浮物的稳定性。

图3.2电源电路

3.3 传感器电路设计

图3.3传感器电路

电路采用求差电路将霍尔元件接收到的电压进行放大,这里经过测量须放大30倍左右,如图根据公式(2.1)可得出上图将霍尔元件的电压放大了21倍。

3.4 控制线圈驱动模块设计

控制线圈模块采用了可调节,可反向的L298N电机驱动每组,两个线圈同名端相连(即反向串接)。霍尔置于4个线圈中间的空隙,高度约在线圈中部,需注意霍尔作用面应位于线圈中轴线上,不应采用图中虚线标示的安装方式,否则会造成定位误差。磁环置于电路板下面,需要注意的是磁环的放置会影响霍尔输出,因此运放输出中点调节最好配合磁环定位同时调节。线圈供电模块电路图:

图3.4 线圈供电模块电路图

3.5霍尔元件与控制线圈的安装

图中垂直部分为互相垂直的霍尔元件用于接收悬浮物的位置变化。霍尔元件必须位于线圈圆心的链接线上,四个圆圈表示控制线圈,长方形表示垂直的霍尔元件。由于控

制线圈互相垂直,霍尔元件也是垂直可以保证控制线圈的磁场在中间互相抵消,不会影响霍尔元件的数值,能正确的接受到磁悬浮物发生偏移时磁场的变化。控制线圈摆于永磁上方正中心磁力线垂直向上霍尔元件检测不到,也保证了对霍尔元件的数值没有影响。

图3.5 霍尔元件安装图

安装使用万用板上的白线为衡量,先把霍尔元件安装上,根据垂直白线摆正霍尔元件然后焊接上,霍尔元件的方向可以最好把地或者电源接在一起便于焊接。然后四个线圈安装上,中间留有一定大的空隙,不能太大,也不能太小,由于线圈磁力方向要相反,所以线圈两端要等待测试磁力方向后再做连接,做好必要的标识,完成如下图所示。

图3.6 线圈霍尔元件安装实物图

第4章软件设计

4.1 编程语言的选择

对于ARM单片机有几种语言。常用的编程语言有汇编语言和C语言两种,每种语言都有各自的优缺点。

汇编语言是用文字助记符来作为机器指令的底层符号语言,是最接近机器代码的一种变成语言。汇编语言可以直接有效地控制计算机各种操作,产生的执行文件运行速度和执行效率都比高级语言好,程序体积比高级语言小巧。

C语言是一种高级程序设计语言,包含了很多高级语言的优点。其本身不依赖于机器硬件设备,可将程序在不同处理器间执行,有时需要修改移植。同时C语言标准库提供了多种常用数学函数,也支持浮点运算,开发效率较高,开发时间短,程序可读性高,可维护性强。

使用C语言来编写目标程序,开发周期缩短,程序可读性增强,易于改进和扩充,为规模更大和性能更完备的系统提供基础。因此,用C语言进行单片机程序设计单片机有一定的优势,也是以后市场的趋势。对于使用汇编语言只要能够读懂程序,只要在时间需要较精确的方面中进行程序的优化。对于使用的汇编语言程序,只要理解它们,只要以优化程序所需要的时间更精确的方面。不要对C语言结构的单片机和硬件接口有更深的了解,编译器可以自动完成分配变量存储单元,程序员可以专注于应用软件的设计和加快软件开发的速度。用C语言可以很容易地编程的微控制器移植。

根据产品的特点C语言的模块化结构,它可以使程序模块共享,不断丰富。根据C 语言特性的可读性,从而便于对前辈的发展经验,以提高软件的设计水平。用C语言,微控制器芯片的制备通用驱动程序的功能,可以用于相应的功能的功能模块,算法的制备通用接口。这些功能都可以通过整理专家库,为广大的单片机爱好者完美的形成,这将大大增加国内供应链管理软件的设计水平。

4.2 主程序设计

系统中为了使得各硬件之间能够正确运行,有效地完成检测、传输等基本功能,除了要有合理的硬件设计外,高质量的软件支持也是必不可少的。处理器的执行效率,工作稳定性与其软件的设计密切相关,软件设计的好与坏直接影响系统的整体运行效果。本设计的程序由两大部分组成,一是检测部分程序,二是PID计算部分。检测部分的程序主要功能是霍尔元件接收到的悬浮体的位置偏移。当悬浮物发生偏移ADC电压会发生变化。第二部分是PID算法部分。本设计中,各种功能都是通过调用子程序来实

现。各个中断服务程序都非常短小,功能不同是通过一些标志位供主程序进行判断,跳转。这样的设计是因为在使用中断的程序中,中断服务程序如果过长,执行时间太久,会影响到其他中断服务的运行,造成系统反应迟钝等不良现象,所以我们在设计程序时尽量避免CPU长时间停留在中断服务程序的运算中。使用中断也可以有效的提高系统的工作效率。

图4.1总程序框图

4.3 模块程序设计

1)ADC模块

主函数初始化ADC模块进入while循环,由于磁悬浮在空中,数据变化快,所以经过快速的定时器中断,得到大量数据后经过滤波后,能得到准确的实时便宜位置,便于后期的控制。

磁悬浮小球仿真报告

磁悬浮小球控制仿真报告 一.仿真要求 采用根轨迹和频域法仿真磁悬浮小球系统 二.系统建模 磁悬浮系统方程可以由下面的方程描述: 22 d x(t)m F(i,x )mg dt =+动力学方程 2 i F(i,x )K( )x = 电学力学关联方程 (,)+=F i x mg 0 边界方程 ()()=+1 di U t Ri t L dt 电学方程 对2x i K x i F )(),(=泰勒展开: )x -)(x x ,(i F )i -)(i x ,(i F )x ,F(i x)F(i,000x 000i 00++= )x -(x K )i -(i K )x ,F(i x)F(i,0x 0i 00++= 平衡点小球电磁力和重力平衡,有 (,)+=F i x mg 0 |,δδ=== 00i 00i i x x F(i,x)F(i ,x )i ;|,δδ===00 x 00i i x x F(i,x) F (i ,x )x 对2 i F(i,x )K()x =求偏导数得: ==- 20x x 003 02Ki K F (i ,x )x ==0 i i 00202Ki K F(i ,x )x 此系统的方程式如下: x x 2Ki i x 2Ki )x -(x K )i -(i K dt x d m 30 2 02000x 0i 22-=+= 拉普拉斯变换后得:

)()()(s x mx 2Ki s i mx 2Ki s s x 3 2 2002 -= 由边界方程 )20 2 0x i K(mg -= 代入得系统的开环传递函数: 200 x(s)-1 = i(s)a s -b 定义系统对象的输入量为控制电压in U ,系统对象输出量为x 所反映出来的输出电压为out U ,则该系统控制对象的模型可写为: out s s a 2in a 00 U (s)K x(s)-(K /K ) G(s)= ==U (s)K i(s)a s -b 00000 i i a = , b =2g x 特征方程为:200a s -b =0 解得系统的开环极点为:s =取系统状态变量分别为1out 2out x =u ,x =u 系统的状态空间表示法如下: ?11in s ?2200 a 0 1 0x x =+u 2g 2g?K 0-x x x i ?K ???????? ? ? ? ? ? ? ? ??? ? ??????? ][121x x x 0 1y =??? ? ??= 代入实际参数,可以得到 in 2121U 124990x x 0098010 x x ???? ? ?+???? ?????? ??=???? ? ????.. 系统的状态方程可以写为

磁悬浮列车设计方案

自制教具 磁悬浮列车 设计方案 一、制作材料:53cm × 20cm×3cm的木料、2cm×1cm×3mm的强力磁铁一百多块、小型铁钉一包、几片10厘米×5厘米的薄木片、53厘米×20厘米、21厘米×20厘米的玻璃各两快、若干装饰彩纸等材料。 二、制作工具:老虎钳、羊角锤、剪刀、尺子等。 三、制作过程: 1. 准备一块长方体木料,大小大致53cm×20cm×3cm,在53cm ×20cm长方形面上横向留出2条宽2厘米磁铁轨道槽,磁铁轨道槽上方用薄木片盖上,并用铁钉加以固定(这样可以防止强力磁铁在拼装过程中向外挤压,可以使强力磁铁的拼装更加方便。) 2. 磁铁轨道槽钉上薄木片以后,把磁铁按排列单位进行横向组合连续磁铁拼装,并将两条磁铁轨道槽拼装完整。两条轨道的磁铁排列呈左右对称方式。 3. 准备一块厚2cm的木料板,木料板宽度略小于53cm ×20cm×3cm长方体木料,长度自定。留出方式和53cm × 20cm×3cm 长方体木料相同。列车上的底面磁铁轨道拼装方式和53cm ×20cm×3cm长方体木料类似,磁铁方向也横向组合连续拼装,以

增强列车悬浮滑行的稳定性,列车上的两条底面磁铁轨道呈左右对称方式,宽度和53cm × 20cm×3cm长方体木料磁铁轨道相同。 4、依据53cm × 20cm×3cm长方体木料,制作底座,用以安放53cm × 20cm×3cm长方体木料。 5. 准备4块玻璃,长53厘米、宽20厘米,长21厘米、宽20厘米的玻璃各两块,再将这4块玻璃固定到长方体底座木料的前后左右四侧,玻璃下面部分和长方体底座木料对齐,成为列车防滑护栏板。为防止悬浮列车滑出两侧,在列车防滑护栏板左右两侧再固定几块小型防滑玻璃。这样即能保证磁悬浮列车的稳定性,又能保障高效的演示性。 6. 最后在根据个人喜好对磁悬浮列车模型进行装饰,模型即宣告制作完成。 注意:1、拼装要紧密; 2、磁铁片的同极向上; 3、拼装时,钉一次薄木片拼装一次,并钉钉抵住磁铁,防止磁铁向外挤压,用相同方法直至拼装完四条磁铁轨道槽。 使用说明: 1. 将磁悬浮列车模型的列车部分,磁铁面朝下横放入列车底座防滑护栏板之间,即能实现列车的有效悬浮,悬浮高度大约是3厘米。

哈工大_控制系统实践_磁悬浮实验报告

研究生自动控制专业实验 地点:A区主楼518房间 姓名:实验日期:年月日斑号:学号:机组编号: 同组人:成绩:教师签字:磁悬浮小球系统 实验报告 主编:钱玉恒,杨亚非 哈工大航天学院控制科学实验室

磁悬浮小球控制系统实验报告 一、实验内容 1、熟悉磁悬浮球控制系统的结构和原理; 2、了解磁悬浮物理模型建模与控制器设计; 3、掌握根轨迹控制实验设计与仿真; 4、掌握频率响应控制实验与仿真; 5、掌握PID控制器设计实验与仿真; 6、实验PID控制器的实物系统调试; 二、实验设备 1、磁悬浮球控制系统一套 磁悬浮球控制系统包括磁悬浮小球控制器、磁悬浮小球实验装置等组成。在控制器的前部设有操作面板,操作面板上有起动/停止开关,控制器的后部有电源开关。 磁悬浮球控制系统计算机部分 磁悬浮球控制系统计算机部分主要有计算机、1711控制卡等; 三、实验步骤 1、系统实验的线路连接 磁悬浮小球控制器与计算机、磁悬浮小球实验装置全部采用标准线连接,电源部分有标准电源线,考虑实验设备的使用便利,在试验前,实验装置的线路已经连接完毕。 2、启动实验装置 通电之前,请详细检察电源等连线是否正确,确认无误后,可接通控制器电源,随后起动计算机和控制器,在编程和仿真情况下,不要启动控制器。 系统实验的参数调试

根据仿真的数据及控制规则进行参数调试(根轨迹、频率、PID 等),直到获得较理想参数为止。 四、实验要求 1、学生上机前要求 学生在实际上机调试之前,必须用自己的计算机,对系统的仿真全部做完,并且经过老师的检查许可后,才能申请上机调试。 学生必须交实验报告后才能上机调试。 2、学生上机要求 上机的同学要按照要求进行实验,不得有违反操作规程的现象,严格遵守实验室的有关规定。 五、系统建模思考题 1、系统模型线性化处理是否合理,写出推理过程? 合理,推理过程: 由级数理论,将非线性函数展开为泰勒级数。由此证明,在平衡点)x ,(i 00对 系统进行线性化处理是可行的。 对式2x i K x i F )(),(=作泰勒级数展开,省略高阶项可得: )x -)(x x ,(i F )i -)(i x ,(i F )x ,F(i x)F(i,000x 000i 00++= )x -(x K )i -(i K )x ,F(i x)F(i,0x 0i 00++= 平衡点小球电磁力和重力平衡,有 (,)+=F i x mg 0 |,δδ===00 i 00 i i x x F(i,x) F(i ,x )i ;|,δδ===00x 00i i x x F(i,x)F (i ,x )x 对2 i F(i,x )K()x =求偏导数得:

磁悬浮轴承的技术进展及发展趋势

磁悬浮轴承的发展现状及应用研究 一、磁悬浮技术概述 磁悬浮,亦作磁浮,是运用磁铁“同性相斥,异性相吸”的性质,使磁铁具有抗拒地心引力的能力,即“磁性悬浮”,从而使物件不受引力束缚自由浮动,具有无接触、无摩擦、低能耗、低噪声、无需润滑、维护费用低、使用寿命长、高精度以及自动化程度高等优点。磁悬浮技术是集电磁学、电子技术、控制工程、信号处理、机械学、动力学等为一体的机电一体化综合性较强的高新技术,其研究源于德国,早在1922年德国工程师赫尔曼〃肯佩尔就提出了电磁悬浮原理,并于1934年申请了磁悬浮列车的专利。1966年,美国科学家詹姆斯·鲍威尔和戈登·丹比提出了第一个具有实用性质的磁悬浮运输系统,此后,德国、日本、美国、加拿大、法国、英国等发达国家为提高交通运输能力以适应经济发展需要加快筹划磁悬浮运输系统的开发。随着电子技术、控制工程、信号处理元器件、电磁理论及新型电磁材料的发展和转子动力学的进展,磁悬浮技术得到了长足的发展。至2012年世界上已有三种类型的磁悬浮,一是以德国为代表的常导电式磁悬浮,二是以日本为代表的超导电动磁悬浮,这两种磁悬浮都需要用电力来产生磁悬浮动力。第三种是中国的永磁悬浮,它利用特殊的永磁材料,不需要任何其他动力支持。 磁悬浮技术应用范围及其广泛,涉及工业、民用及军事各个领域,磁悬浮产品涵盖高速精密电主轴、磁悬浮飞轮电池、磁悬浮人工心脏泵,磁悬浮火车、卫星、远程导弹的制

导与姿态控制,军事通讯用的UPS,航空发动机的高速转子,潜艇的振动控制与传动噪音,坦克、装甲车的动力储能、磁悬浮冶炼、搬运技术等。当前,国内外对磁悬浮技术的研究热点是磁悬浮轴承和磁悬浮列车,而应用最广泛的是磁悬浮轴承。 二、磁悬浮轴承及其类型 磁悬浮轴承也称电磁轴承或磁力轴承,是利用磁场力将轴承无机械摩擦、无润滑的、悬浮在空间的一种新型高性能轴承,其作为一种新颖的支撑部件,是继油润滑、气润滑之后轴承行业的又一次革命性变化, 被誉为21世纪最有发展前景的高新技术之一。 磁悬浮轴承的原理是磁感应线与磁浮线成垂直,轴芯与磁浮线平行,转子的重量能够固定在运转的轨道上,利用几乎是无负载的轴芯往反磁浮线方向顶撑,形成整个转子悬空,固定在特定运转轨道上。 按照磁力的提供方式,磁悬浮轴承可分为三大类 : (一)主动磁浮轴承 (Active Magnetic Bearing,简称 AMB),轴承磁场是可控的,通过传感器检测转轴的位置,由控制系统对电磁铁电流进行主动控制来实现转轴的稳定悬浮。 (二)被动磁浮轴承 (Passive Magnetic Bearing,简称PMB),轴承部分自由度由超导磁体或永磁体来实现被动悬浮支承。 (三)混合磁浮轴承 (Hybrid Magnetic Bearing,简称 HMB),轴承的机械结构中既包含了可控的电磁铁,又包含了提供偏置磁场的超导磁体或永磁体。 同时,按磁场力的来源分类,可以分为永久磁铁型、电

磁悬浮系统的PID控制

磁悬浮系统的PID控制

本科毕业设计(论文)题目: 磁悬浮系统的PID控制 姓名: 学号: 专业: 指导教师: 职称: 日期: 华科学院

摘要 磁悬浮技术具有无摩擦、无磨损、无需润滑以及寿命较长等一系列优点,在能源、交通、航空航天、机械工业和生命科学等高科技领域有着广泛的应用背景。 本设计毕业设计在分析磁悬浮系统构成及工作原理的基础上,建立其数学模型,并以此为研究对象,设计了PID控制器,确定控制方案,运用MATLAB软件进行仿真研究,得出较好的控制参数。最后,本文对以后研究工作的重点进行了思考,提出了自己的见解。 关键词:磁悬浮系统控制器MATLAB软件PID控制

Abstract Magnetic suspension technology, which has a series of advantages such as contact-free, no friction, no wear, no need of lubrication and long life expectancy, is widely concerned and adopted in high-tech areas such as energy, transportation, aerospace, industrial machinery and life science.On the basis of analyzing of magnetic suspension system’s structure and working principle, its system mathematical model was established, this thesis describe PID controller designed and get control scheme. It get the better control parmeters by MATLAB software simulation studies.The key research works for further study are proposed at last. Key Word:Magnetic Levitation Ball System Digital Controller MATLAB PID Control

磁悬浮主轴设计

1前言 1.1 高速切削简介 高速切削的概念被提出后,经过了长期探索研究与发展后,才在近十几年被广泛应用在机械加工过程中。高速切削作为一种新兴的先进机械加工技术,与传统的机械加工技术相比,其具有一系列的优点。它集高效率、高加工精度、低功耗等于一体。高速切削解决了常规切削加工中一些长期存在而无法解决的问题,例如由于机械加工过程中,刀具的切削量很小,产生的切削热比较少并且绝大部分切削热被切屑及时带走,从而提高了刀具的切削寿命;随着切削速度的提高,在单位时间内被加工材料的去除率有了很大的提高,进而减少了切削时间,提高了工件的加工效率;高速切削的进给量小,因而切削力也就相对要小,而且形成的切屑能够在很短的时间内被排出,切削过程所产生的热量在还没有传导至刀具时,就被切屑带走了,这样就降低了刀具及工件上的切削热;由于高速切削可以达到很高的加工精度,所以在某些场合可以实现以车代铣、以铣代磨等工序。这些优点极大地缩短了产品的制造周期,这在竞争日益激烈的当代是很有发展前途的。 1.2 磁悬浮轴承简介 磁悬浮轴承也被人们称为磁力轴承,它是一种靠磁场力来承受载荷或将转子悬浮起来的一种新型的支承形式,根据不同的工作原理可将磁悬浮轴承系统分为三大类:主动磁悬浮轴承、被动磁悬浮轴承和混合式磁悬浮轴承。主动磁悬浮轴承是利用可控电磁力来悬浮主轴转子的,它有主动电子控制系统;被动磁悬浮轴承是利用磁场本身的特性使主轴转子悬浮,它没有主动电子控制系统,其应用最多的是永磁轴承;混合式磁悬浮轴承是由主动磁悬浮轴承和被动磁悬浮轴承以及其他一些必要的辅助支撑共同组合而成的,它既有主动磁轴承的优点也有被动磁轴承的优点。为了便于设计制造,本设计中采用主动磁悬浮轴承磁悬浮轴承具有一系列的优点:定子与转子之间无接触,因而无摩擦,且功耗低,可以使主轴实现高速旋转;无需润滑和密封,因而可以简化系统结构的设计;支撑精度比一般的接触式轴承还高,工作稳定可靠。但是,其支撑刚度比接触式轴承要低,而且结构复杂,需要专门的控制系统,主轴上还要设计增加位移传感器,成本较高。 虽然磁悬浮轴承由多个磁极构成,但是为便于研究【2】,我们仍然可以将其简化为下图所示结构。

磁悬浮小球matlab

磁悬浮系统建模及其PID控制器设计Magnetic levitation system based on PID controller simulation 摘要 磁悬浮技术具有无摩擦、无磨损、无需润滑以及寿命较长等一系列优点,在能源、交通、航空航天、机械工业和生命科学等高科技领域有着广泛的应用背景。 随着磁悬浮技术的广泛应用,对磁悬浮系统的控制已成为首要问题。本设计以PID控制为原理,设计出PID控制器对磁悬浮系统进行控制。 在分析磁悬浮系统构成及工作原理的基础上,建立磁悬浮控制系统的数学模型,并以此为研究对象,设计了PID控制器,确定控制方案,运用MATLAB软件进行仿真,得出较好的控制参数,并对磁悬浮控制系统进行实时控制,验证控制参数。最后,本设计对以后研究工作的重点进行了思考,提出了自己的见解。 PID控制器自产生以来,一直是工业生产过程中应用最广、也是最成熟的控制器。目前大多数工业控制器都是PID控制器或其改进型。尽管在控制领域,各种新型控制器不断涌现,但PID控制器还是以其结构简单、易实现、鲁棒性强等优点,处于主导地位。 关键字:磁悬浮系统;PID控制器;MATLAB仿真 设计报告内容 1. 简述磁悬浮球系统的工作原理; 2. 依据电磁等相关物理定理,列写磁悬浮系统的运动方程;

3. 根据磁悬浮系统的运动方程搭建被控对象在Simulink环境下的仿真模型; 4. 结合单位反馈控制系统的控制原理,为被控对象设计PID控制器。 5. 分析综述比例P、积分I、微分D三个调节参数对系统控制性能的影响。 设计报告正文 1. 简述磁悬浮球系统的工作原理; 磁悬浮控制系统由铁心、线圈、光位移传感器、控制器、功率放大器和被控对象(钢球)等元器件组成。它是一个典型的吸浮式悬浮系统。系统开环结构如图4所示。 图2系统开环结构图 电磁铁绕组中通以一定的电流会产生电磁力,控制电磁铁绕组中的电流,使之产生的电磁力与钢球的重力相平衡,钢球就可以悬浮于空中而处于平衡状态。但是这种平衡是一种不稳定平衡,这是由于电磁铁与钢球之间的电磁力的大小与它们之间的距离)(t x成反比,只要平衡状态稍微受到扰动(如:加在电磁铁线圈上的电压产生脉动、周围的振动、风等),就会导致钢球掉下来或被电磁铁吸住,因此必须对系统实现闭环控制。由电涡流位移传感器检测钢球与电磁铁之间的

磁悬浮系统建模及其PID控制器设计

《Matlab仿真技术》 设计报告 题目磁悬浮系统建模及其PID控制器设计 专业班级电气工程及其自动化 11**班 学号 201110710247 学生姓名 ** 指导教师 ** 学院名称电气信息工程学院 完成日期: 2014 年 5 月 7 日

磁悬浮系统建模及其PID控制器设计 Magnetic levitation system based on PID controller simulation 摘要 磁悬浮技术具有无摩擦、无磨损、无需润滑以及寿命较长等一系列优点,在能源、交通、航空航天、机械工业和生命科学等高科技领域有着广泛的应用背景。 随着磁悬浮技术的广泛应用,对磁悬浮系统的控制已成为首要问题。本设计以PID 控制为原理,设计出PID控制器对磁悬浮系统进行控制。 在分析磁悬浮系统构成及工作原理的基础上,建立磁悬浮控制系统的数学模型,并以此为研究对象,设计了PID控制器,确定控制方案,运用MATLAB软件进行仿真,得出较好的控制参数,并对磁悬浮控制系统进行实时控制,验证控制参数。最后,本设计对以后研究工作的重点进行了思考,提出了自己的见解。 PID控制器自产生以来,一直是工业生产过程中应用最广、也是最成熟的控制器。目前大多数工业控制器都是PID控制器或其改进型。尽管在控制领域,各种新型控制器不断涌现,但PID控制器还是以其结构简单、易实现、鲁棒性强等优点,处于主导地位。 关键字:磁悬浮系统;PID控制器;MATLAB仿真

一、磁悬浮技术简介 1.概述: 磁悬浮是利用悬浮磁力使物体处于一个无摩擦、无接触悬浮的平衡状态,磁悬浮看起来简单,但是具体磁悬浮悬浮特性的实现却经历了一个漫长的岁月。由于磁悬浮技术原理是集电磁学、电子技术、控制工程、信号处理、机械学、动力学为一体的典型的机电一体化高新技术。伴随着电子技术、控制工程、信号处理元器件、电磁理论及新型电磁材料的发展和转子动力学的进一步的研究,磁悬浮随之解开了其神秘一方面。 1900年初,美国,法国等专家曾提出物体摆脱自身重力阻力并高效运营的若干猜想--也就是磁悬浮的早期模型。并列出了无摩擦阻力的磁悬浮列车使用的可能性。然而,当时由于科学技术以及材料局限性磁悬浮列车只处于猜想阶段,未提出一个切实可行的办法来实现这一目标。 1842年,英国物理学家Earnshow就提出了磁悬浮的概念,同时指出:单靠永久磁铁是不能将一个铁磁体在所有六个自由度上都保持在自由稳定的悬浮状态。 1934年,德国的赫尔曼·肯佩尔申请了磁悬浮列车这一的专利。 在20世纪70、80年代,磁悬浮列车系统继续在德国蒂森亨舍尔测试和实施运行。德国开始命名这套磁悬浮系统为“磁悬浮”。 1966年,美国科学家詹姆斯·鲍威尔和戈登·丹比提出了第一个具有实用性质的磁悬浮运输系统。 1970年代以后,随着世界工业化国家经济实力的不断加强,为提高交通运输能力以适应其经济发展的需要,德国、日本、美国、加拿大、法国、英国等发达国家相继开始筹划进行磁悬浮运输系统的开发。 2009年时,国内外研究的热点是磁悬浮轴承和磁悬浮列车,而应用最广泛的是磁悬浮轴承。它的无接触、无摩擦、使用寿命长、不用润滑以及高精度等特殊的优点引起世界各国科学界的特别关注,国内外学者和企业界人士都对其倾注了极大的兴趣和研究热情。 2. 磁悬浮技术的应用及展望 20世纪60年代,世界上出现了3个载人的气垫车试验系统,它是最早对磁悬浮列车进行研究的系统。随着技术的发展,特别是固体电子学的出现,使原来十分庞大的控制设备变得十分轻巧,这就给磁悬浮列车技术提供了实现的可能。1969年,德国牵引机车公司的马法伊研制出小型磁悬浮列车模型,以后命名为TR01型,该车在1km 轨道上的时速达165km,这是磁悬浮列车发展的第一个里程碑。在制造磁悬浮列车的

磁悬浮轴承应用及分析

磁悬浮轴承发展及应用 概述 : 磁浮轴承是利用磁力实现无接触的新型轴承,具有无接触、不需要润滑和密封、振动小、使用寿命长、维护费用低等一系列优良品质,属于高技术领域。轴承是机电工业的基础产业之一,其性能的好坏直接影响到机电产品(如超高速超精密加工机床)的科技含量及其在国际上的竞争力。本项目不仅要可以在国内建立生产磁浮轴承的高技术企业,填补国内在这方面的空白,而且可以带动机电行业的很多相关企业进行产品结构调整,形成新的经济增长点。此外,本项目具有重要的国防应用价值,可为我国研制以磁轴承支承的新一代航空发动机储备先进的科学技术。 磁浮轴承的基本原理 磁浮轴承从原理上可分为两种,一种是主动磁浮轴承(active magnetic bearing),简称AMB;另一种是被动磁浮轴承(passive magnetic bearing),简称PMB。由于前者具有较好的性能,它在工业上得到了越来越广泛的应用。这里介绍的是主动磁浮轴承。 磁浮轴承系统主要由被悬浮物体、传感器、控制器和执行器四大部分组成。其中执行器包括电磁铁和功率放大器两部分。下图是一个简单的磁浮轴承系统,电磁铁绕组上的电流为I,它对被悬浮物体产生的吸力和被悬浮物体本身的重力mg相平衡,被悬浮物体处于悬浮的平衡位置,这个位置也称为参考位置。假设在参考位置上,被悬浮物体受到一个向下的扰动,它就会偏离其参考位置向下运动,此时传感器检测出被悬浮物体偏离其参考位置的位移,控制器将这一位移信号变换成控制信号,功率放大器使流过电磁绕组上的电流变大,因此,电磁铁的吸力也变大了,从而驱动被悬浮物体返回到原来的平衡位置。如果被悬浮物体受到一个相上的扰动并向上运动,此时控制器和功率放大器使流过电磁场铁绕组上的电流变小,因此,电磁铁的吸力也变小了,被悬浮物体也能返回到原来的平衡位置。因此,不论被悬浮物体受到向上或向下的扰动,下图中的球状被悬浮物体始终能处于稳定的平衡状态。

磁悬浮轴承

磁悬浮轴承 3分(内容丰富) 编辑词条 摘要 磁悬浮轴承(Magnetic Bearing) 是利用磁力作用将转子悬浮于空中,使转子与定子之间没有机械接触。其原理是磁感应线与磁浮线成垂直,轴芯与磁浮线是平行的,所以转子的重量就固定在运转的轨道上,利用几乎是无负载的轴芯往反磁浮线方向顶撑,形成整个转子悬空,在固定运转轨道上。与传统的滚珠轴承、滑动轴承以及油膜轴承相比,磁轴承不存在机械接触,转子可以运行到很高的转速,具有机械磨损小、能耗低、噪声小、寿命长、无需润滑、无油污染等优点,特别适用于高速、真空、超净等特殊环境中。磁悬浮事实上只是一种辅助功能,并非是独立的轴承形式,具体应用还得配合其它的轴承形式,例如磁悬浮+滚珠轴承、磁悬浮+含油轴承、磁悬浮+汽化轴承等等。这项技术并没有得到欧美国家的认可。 编辑摘要 目录-[ 隐藏 ] 1.1概述 2.2工作原理 编辑本段|回到顶部概述 利用磁力使物体处于无接触悬浮状态的 设想由来已久, 但实现起来并不容易。早在 1842 年, Ea rn show 就证明: 单靠永久磁体是 不能将一个铁磁体在所有 6 个自由度上都保

持在自由稳定的悬浮状态的.然而, 真正意义 上的磁悬浮研究是从本世纪初的利用电磁相 吸原理的悬浮车辆研究开始的。 1937 年, Kenp er 申请了第一个磁悬浮 技术专利, 他认为要使铁磁体实现稳定的磁 悬浮, 必须根据物体的悬浮状态不断的调节 磁场力的大小, 即采用可控电磁铁才能实现, 这一思想成为以后开展磁悬浮列车和磁悬浮 轴承研究的主导思想。伴随着现代控制理论 和电子技术的飞跃发展, 本世纪 60 年代中期 对磁悬浮技术的研究跃上了一个新台阶。英 国、日本、德国都相继开展了对磁悬浮列车的 研究。磁悬浮轴承的研究是磁悬浮技术发展 并向应用方向转化的一个重要实例。据有关 资料记载: 1969 年, 法国军部科研实验室 (L RBA ) 开始对磁悬浮轴承的研究; 1972 年, 将第一个磁悬浮轴承用于卫星导向轮的支撑 上, 从而揭开了磁悬浮轴承发展的序幕。此 后, 磁悬浮轴承很快被应用到国防、航天等各 个领域。美国在 1983 年 11 月搭载于航天飞 机上的欧洲空间试验仓里采用了磁悬浮轴承 真空泵; 日本将磁悬浮轴承列为 80 年代新的 加工技术之一, 1984 年, S2M 公司与日本精 工电子工业公司联合成立了日本电磁轴承公 司, 在日本生产、销售涡轮分子泵和机床电磁 主轴等。经过 30 多年的发展, 磁悬浮轴承在 国外的应用场合进一步扩大, 从应用角度看, 在高速旋转和相关高精度的应用场合磁悬浮 轴承具有极大的优势并已逐渐成为应用研究 的主流。 编辑本段|回到顶部工作原理 磁悬浮轴承是一个复杂的机电耦合系 统。在早期的研究过程中, 它由机械系统和 控

磁悬浮系统建模及其PID控制器设计

《Matlab仿真技术》 设计报告 题目磁悬浮系统建模及其PID控制器设计专业班级电气工程及其自动化11**班 学号 2 学生姓名 ** 指导教师** 学院名称电气信息工程学院 完成日期: 2014年 5 月 7 日

磁悬浮系统建模及其PID控制器设计Magnetic levitation system base don PID controller simulation 摘要 磁悬浮技术具有无摩擦、无磨损、无需润滑以及寿命较长等一系列优点,在能源、交通、航空航天、机械工业与生命科学等高科技领域有着广泛得应用背景。 随着磁悬浮技术得广泛应用,对磁悬浮系统得控制已成为首要问题。本设计以PID 控制为原理,设计出PID控制器对磁悬浮系统进行控制。 在分析磁悬浮系统构成及工作原理得基础上,建立磁悬浮控制系统得数学模型,并以此为研究对象,设计了PID控制器,确定控制方案,运用MATLAB软件进行仿真,得出较好得控制参数,并对磁悬浮控制系统进行实时控制,验证控制参数。最后,本设计对以后研究工作得重点进行了思考,提出了自己得见解。 PID控制器自产生以来,一直就是工业生产过程中应用最广、也就是最成熟得控制器。目前大多数工业控制器都就是PID控制器或其改进型。尽管在控制领域,各种新型控制器不断涌现,但PID控制器还就是以其结构简单、易实现、鲁棒性强等优点,处于主导地位。 关键字:磁悬浮系统;PID控制器;MATLAB仿真 一、磁悬浮技术简介 1、概述: 磁悬浮就是利用悬浮磁力使物体处于一个无摩擦、无接触悬浮得平衡状态,磁悬浮瞧起来简单,但就是具体磁悬浮悬浮特性得实现却经历了一个漫长得岁月。由于磁悬浮技术原理就是集电磁学、电子技术、控制工程、信号处理、机械学、动力学为一体得典型得机电一体化高新技术。伴随着电子技术、控制工程、信号处理元器件、电磁理论及新型电磁材料得发展与转子动力学得进一步得研究,磁悬浮随之解开了其神秘一方面。 1900年初,美国,法国等专家曾提出物体摆脱自身重力阻力并高效运营得若干猜想--也就就是磁悬浮得早期模型。并列出了无摩擦阻力得磁悬浮列车使用得可能性。然而,当时由于科学技术以及材料局限性磁悬浮列车只处于猜想阶段,未提出一个切实可行得办法来实现这一目标。 1842年,英国物理学家Earnshow就提出了磁悬浮得概念,同时指出:单靠永久磁铁就是不能将一个铁磁体在所有六个自由度上都保持在自由稳定得悬浮状态。

(完整版)基于单片机的磁悬浮小球控制系统设计毕业设计

基于单片机的磁悬浮小球控制系统设计 摘要 随着越来越多的磁悬浮技术应用到现实生活中的各个领域,磁悬浮这个在几年前还是很陌生的一个词现在已经广为人知。磁悬浮以悬浮力产生的原理分类可以分为超导磁悬浮和常导磁悬浮。磁悬浮的控制系统是一个很复杂的问题。本文 研究的重点就是这两种磁悬浮的控制问题。 超导磁悬浮是利用处于超导状态下的超导体具有斥磁力的原理产生的。超导磁悬浮的悬浮物体就是超导体本身,所以超导磁悬浮的控制重点就落在了超导体上。本文从介绍超导磁悬浮的基本应用入手,逐步深入地介绍超导体的基本物理性质,然后介绍超导磁悬浮系统的控制方法、过程和原理。 与超导磁悬浮相比,常导磁悬浮的应用就更为广泛,因为常导磁悬浮的实现过程要简单得多。常导磁悬浮可以分为应用电磁铁的磁悬

浮和引用非电磁性磁铁(稀土永磁铁、普通磁铁等)的磁悬浮。但是由于电磁铁便于控制和利用,所以利用电磁铁的磁悬浮义勇更为广泛。本文在常导磁悬浮方面的研究是从一个实例入手,分析电磁铁式磁悬浮的原理,从而进一步研究电磁铁式磁悬浮的控制方法、过程和原理。 在本文的最后,我利用在大学里所学的知识,结合本文的研究重点——磁悬浮装置的控制问题,做出了一个简单的电磁悬浮装置。这个悬浮装置的原理是利用对电磁铁电流的控制来实现一个铁球在空中的来回反复运动,达到视觉上的悬浮效果。这虽然与实际的电磁铁悬浮控制方原理不同,但是利用这简单手段也能够达到相同的目的。这个实例给了我们一个启示:简单的演示实验装置也能够说明磁悬浮列车等高新技术的工作原理,磁悬浮并不是遥不可及的。 关键词:常导磁悬浮,超导磁悬浮,磁悬浮的控制,演示实验装置,磁悬浮列车

磁悬浮球控制系统的仿真研究

磁悬浮球控制系统的仿真研究 王玲玲,王宏,梁勇 (海军航空工程学院,山东烟台 264000) 作者简介:王玲玲(1984—),女,硕士,讲师,主要从事控制技术研究。 本文引用格式:王玲玲,王宏,梁勇.磁悬浮球控制系统的仿真研究[J].兵器装备工程学报,2017(4):122-126. Citation:format:WANG Ling-ling, WANG Hong, LIANG Yong.Simulation and Research of Magnetic Levitation Ball Control System[J].Journal of Ordnance Equipment Engineering,2017(4):122-126. 摘要:针对磁悬浮球系统的本质不稳定性,设计PID控制算法实现系统的稳定控制。建立磁悬浮球系统的动力学模型,并对其中的非线性部分进行平衡点处的线性化,采用根轨迹校正设计超前滞后控制器。最后采用PID控制设计,并使用根轨迹校正中零极点对系统性能影响的思想去调整PID参数,使系统的稳定性、动态性能和稳态性能满足要求。 关键词:磁悬浮球系统;PID;根轨迹法;校正 磁悬浮可以用于实现各种机械结构的高速、无摩擦运转,如高速磁悬浮列车、高速磁悬浮电机、磁悬浮轴承等。尽管磁悬浮的应用领域繁多,系统形式和结构各不相同,但究其本质都具有本质非线性、不确定性、开环不确定性等特征。这些特征增加了对其控制的难度,也正是由于磁悬浮的这些特性,使其更加具有研究价值和意义。本文针对磁悬浮球系统,研究其稳定控制,并使其性能指标满足要求。 1 磁悬浮球控制系统的基本原理 磁悬浮球控制系统主要由铁芯、线圈、光电源、位置传感器、放大及补偿装置、数字控制器和控制对象钢球等部件组成[1],如图1所示。 当电磁铁上的线圈绕组通电时,位于磁场中的刚体受到电磁力的吸引作用。当产生的电磁力与球体的重力相等时,球体悬浮于空中,处于不稳定的平衡状态,当它受到外界扰动时,易失去平衡。因此,为了使系统稳定,就必须加上反馈环节,实现闭环控制,并设计控制算法,使稳定后的性能满足要求。

动力磁悬浮轴承的研究现状及关键技术

动,有力地推动了纳米电磁致动器的发展。毫无疑问,在某些场合它仍有很大的应用价值。然而,其 位移精度是众多因素(如驱动力和作用时间等)共同作用的结果,任何一个因素的不利变化都会导致位移精度下降。特别是在大驱动力和变载荷情况下,上述影响就更为显著,成为其进一步发展的严重障碍。 本文介绍的电磁-压电组合式纳米致动器,最大的优点就是成功地将位移精度与驱动力分开处理,使其在大驱动力、变载荷和高稳定性纳米驱动方面具有明显的优势。初步的研究已揭示出该组合式纳米致动器具有良好的前景,进一步的研究工作正在进行之中。有理由相信,在不久的将来会有更多更好的纳米组合式致动器出现。 参考文献: [1] 姚健,尤政.21世纪的科技前沿——纳米技术.中国 机械工程,1995,6(3):14~16 [2] 杨辉,吴明根.现代超精密加工技术,航空精密制造 技术,1997,33(1):1~8 [3] 江小宁,周兆英,李勇等.微驱动技术.中国仪器仪 表,1993(2):10~12,14 [4] W AN G W an jun ,L lene Bu sch -V ishn ial .A H igh P recisi on M icropo sitoner Based on M agneto stric 2ti on p rinci p le ,R ev .Sci .In strum ,1992,63(1): 249~254 [5] Douglas P E Sm ith ,Sco tt A E lrod .M agnetically driven m icropo siti oners .R ev .Sci .In strum .,1985,56(10):1970~1971 [6] D avydov D N ,D eltou r R ,Ho rii N .C ryogen ic Scan 2 n ing T unnelingM icro scopeW ith a M agnetic Coarse A pp roach ,R ev .Sci .In strum ,1993,64(11):3153~3156 [7] 颜国正,赵国光,余承业.微小型任意行程电磁冲击 式纳米级步距驱动装置及其控制技术的研究.仪器仪表学报,1996,17(4):391~396 [8] B lackfo rd B L ,Jericho M H .A H amm er -A cti on M icropo siti oner fo r Scann ing P robe M icro scopes .R ev .Sci .In strum ,1997,68(1):133~135(编辑 华 恒) 作者简介:杨圣,男,1962年生。中国科学技术大学(合肥市  230026)九系副教授、博士。研究方向为精密仪器与精密工程。获 北京市科技进步三等奖1项。参编教材1部,发表论文20余篇。刘东伟,男,1978年生。南京航空航天大学(南京市210016)机电工程学院硕士研究生。 文章编号:1004-132 (2001)11-1319-04 动力磁悬浮轴承的研究现状及关键技术 曾 励 副教授 曾 励 陈 飞 宋爱平 黄民双 摘要:提出一种新型的机电一体化产品——具有电机功能的动力磁悬浮 轴承,阐述了它的研究现状和工作原理,分析了它的应用特点,并介绍了动力磁悬浮轴承理论研究的关键技术。 关键词:动力磁悬浮轴承;旋转偏磁磁通;旋转控制磁通;旋转机械;无轴 承电机 中图分类号:TH 703.3;TM 32 文献标识码:A 1 动力磁悬浮轴承的提出及特点 实现旋转机械高速、大负荷运转的关键是支承转子的轴承和驱动电机的性能。采用传统的支承及驱动方式,必须对支承转子及驱动电机的各机械轴承进行油雾或油液润滑,需要有经验和技术的人员进行调整,而且非常麻烦。这种支承驱动 收稿日期:1999—10—26 基金项目:江苏省教育基金资助项目(00KJB 460009) 方式,轴向尺寸过大,可靠性差,而且由于共振频 率低,无法得到高速和超高速的转动。如果能研制出一种具有电机功能的动力磁悬浮轴承,就可以将旋转机械的驱动电机去掉,由动力磁悬浮轴承支承转子并直接驱动其转动,使结构小型化,并真正实现高速、大负荷运转。 动力磁悬浮轴承(pow er m agnetic bearing ,P -M B )在原理上是以普通的磁悬浮轴承为基础,使其电磁铁提供的磁场不仅要产生支承转子的径向力,而且还要产生驱动转子的扭矩,是集电动机 ? 9131?动力磁悬浮轴承的研究现状及关键技术——曾 励 陈 飞 宋爱平等

磁悬浮设计文档

项目设计 主题:基于MSP430F5438的交流磁悬浮控制器的设计 完成时间:2013.11.14 学生姓名:刘天月 指导教师:王庐山

○目○录 一、引言 (1) 二、MSP430F5438单片机简介 (1) 三、磁悬浮控制系统结构框图 (2) 四、系统功能实现分析 (2) 五、程序功能说明 (3) 六、程序清单(附) (5)

一、引言 磁悬浮是根据电磁感应原理和楞次定律,由交流电流通过线圈产生交变磁场,交变磁场使闭合的导体产生感生电流,感生电流的方向,总是使自己的磁场阻碍原来磁场的变化。因此线圈产生的磁场和感生电流的磁场是相斥的,若斥力超过重力,可观察到磁悬浮现象。交流磁悬浮控制器的设计采用MSP430F5438A单片机控制,由检测机构反馈高度电信号给单片机,再由MSP430F5438A单片机产生一路触发脉冲信号,控制交流调压模块电路的输出,从而实现对线圈高度的闭环控制。 二、MSP430F5438单片机简介 MSP430系列单片机是美国德州仪器公司研发的一款16位超低功耗单片机[3],因为其具有精简指令集的混合信号处理器,所以称之为混合信号处理器。该系列单片机具有如下特点: ◆处理能力强 MSP430系列单片机是一个16位的单片机,采用了精简指令集(RISC)结构,具有丰富的寻址方式(7 种源操作数寻址、4 种目的操作数寻址)、简洁的 27 条内核指令以及大量的模拟指令;大量的寄存器以及片内数据存储器都可参加多种运算;还有高效的查表处理指令。这些特点保证了可编制出高效率的源程序。 ◆运算速度快 MSP430 系列单片机能在25MHz晶体的驱动下,实现40ns的指令周期。16位的数据宽度、40ns的指令周期以及多功能的硬件乘法器(能实现乘加运算)相配合,能实现数字信号处理的某些算法(如 FFT 等)。 ◆超低功耗 MSP430 单片机之所以有超低的功耗,是因为其在降低芯片的电源电压和灵活而可控的运行时钟方面都有其独到之处。 首先,MSP430 系列单片机的电源电压采用的是1.8-3.6V 电压。因而可使其在1MHz 的时钟条件下运行时,芯片的电流最低会在165μA左右,RAM 保持模式下的最低功耗只有0.1μA。 其次,独特的时钟系统设计。在 MSP430 系列中有两个不同的时钟系统:基本时钟系统、锁频环(FLL 和FLL+)时钟系统和DCO数字振荡器时钟系统。可以只使用一个晶体振荡器(32768Hz),也可以使用两个晶体振荡器。由系统时钟系统产生 CPU 和各功能所需的时钟。并且这些时钟可以在指令的控制下,打开和关闭,从而实现对总体功耗的控制。 由于系统运行时开启的功能模块不同,即采用不同的工作模式,芯片的功耗有着显著的不同。在系统中共有一种活动模式(AM)和五种低功耗模式(LPM0~LPM4)。在实时时钟模式下,可达2.5μA ,在RAM 保持模式下,最低可达0.1μA 。 ◆片内资源丰富 MSP430 系列单片机的各系列都集成了较丰富的片内外设。它们分别是看门狗(WDT)、模拟比较器A、定时器A0(Timer_A0)、定时器A1(Timer_A1)、定时器B0(Timer_B0)、UART、SPI、I2C、硬件乘法器、液晶驱动器、10位/12位ADC、16位Σ-Δ ADC、DMA、I/O端口、基本定时器(Basic Timer)、实时时钟(RTC)和USB控制器等若干外围模块的不同组合。

基于模拟电路的磁悬浮控制系统

基于模拟电路的磁悬浮控制系统 摘要:本文首先简要地介绍磁浮轴承的发展历程和国内外研究、应用状况,接着利用电磁学、电子学和控制理论对磁悬浮的原理进行了分析,建立了系统的数学模型。对电路参数进行分析,设计了基于模拟电路的磁悬浮控制系统。该系统采用电磁永磁混合支持,提高了系统稳定性并降低了系统功耗。 关键词:混合磁悬浮,霍尔传感器 0 引言 人类希望利用磁场力对物体进行无接触支撑的想法由来已久。20世纪初,科学家首次在实验室利用电流的磁效应实现了物体在空中自由悬浮。然而由于磁悬浮技术是一门涉及多种学科的综合性技术,其发展受到了多方面的制约。随着近几十年电子技术、控制工程、信号处理元器件、电磁理论、新型电磁材料及转子动力学的发展,磁悬浮技术才得到了长足的发展。特别是进入上世纪80年代,超导技术首先应用于磁悬浮。超导技术与磁悬浮技术的结合,新材料,新工艺,新器件的出现以及现代控制技术的发展,使电磁悬浮技术趋于成熟,磁悬浮技术有精度高、非接触和消耗能量少等优点。在能源紧张的今天,研究磁悬浮系统具有重要的实际意义。磁悬浮技术不仅可以应用于磁悬浮列车,而且在磁悬浮轴承、磁悬浮飞轮储能、航天器与电磁炮的磁悬浮发射、磁悬浮精密平台、磁悬浮冶炼等方面也有广泛应用。磁悬浮技术有着广阔的商业前景,适合商业应用。例如,磁悬浮可以用于广告牌悬浮、地球仪悬浮,科技展览、沙盘展示(空中楼阁)、悬空高档礼品等。因此,磁悬浮是一种能带动众多高新技术发展的具有广泛前景的应用技术。基于模拟电路的磁悬浮控制系统可以用来研究电磁式磁悬浮固有的开环不稳定性和非线性性。 1 磁悬浮系统的组成及原理分析 磁悬浮旋转装置主要由永磁体、铁芯、线圈、磁场传感器、功率放大器和控制器等组成。其结构如图a所示

磁悬浮轴承

磁悬浮轴承

摘要 磁悬浮轴承(Magnetic Bearing) 是利用磁力作用将转子悬浮于空中,使转子与定子之间没有机械接触。其原理是磁感应线与磁浮线成垂直,轴芯与磁浮线是平行的,所以转子的重量就固定在运转的轨道上,利用几乎是无负载的轴芯往反磁浮线方向顶撑,形成整个转子悬空,在固定运转轨道上。与传统的滚珠轴承、滑动轴承以及油膜轴承相比,磁轴承不存在机械接触,转子可以运行到很高的转速,具有机械磨损小、能耗低、噪声小、寿命长、无需润滑、无油污染等优点,特别适用于高速、真空、超净等特殊环境中。磁悬浮事实上只是一种辅助功能,并非是独立的轴承形式,具体应用还得配合其它的轴承形式,例如磁悬浮+滚珠轴承、磁悬浮+含油轴承、磁悬浮+汽化轴承等等。这项技术并没有得到欧美国家的认可。 目录 1 磁悬浮轴承概述 2 磁悬浮轴承工作原理 1 磁悬浮轴承概述 利用磁力使物体处于无接触悬浮状态的设想由来已久, 但实现起来并不容易。早在1842 年, Ea rn show 就证明: 单靠永久磁体是不能将一个铁磁体在所有 6 个自由度上都保持在自由稳定的悬浮状态的.然而, 真正意义上的磁悬浮研究是从本世纪初的利用电磁相吸原理的悬浮车辆 研究开始的。 1937 年, Kenp er 申请了第一个磁悬浮技术专利, 他认为要使铁磁体实现稳定的磁悬浮, 必须根据物体的悬浮状态不断的调 节磁场力的大小, 即采用可控电磁铁才能实现,这一思想成为以后开展磁 悬浮列车和磁悬浮轴承研究的主导思想。伴随着现代控制理论和电子技 术的飞跃发展, 本世纪 60 年代中期对磁悬浮技术的研究跃上了一个新 台阶。英国、日本、德国都相继开展了对磁悬浮列车的研究。磁悬浮 轴承的研究是磁悬浮技术发展并向应用方向转化的一个重要实例。据有 关资料记载: 1969 年, 法国军部科研实验室(L RBA ) 开始 对磁悬浮轴承的研究; 1972 年,将第一个磁悬浮轴承用于卫星导向轮的 支撑上, 从而揭开了磁悬浮轴承发展的序幕。此后, 磁悬浮轴承很快被

相关主题