搜档网
当前位置:搜档网 › 螺栓设计和计算

螺栓设计和计算

螺栓设计和计算
螺栓设计和计算

弹簧设计和计算

弹簧设计和计算 一.弹簧按工作特点分为三组 二.I组:受动负荷(即受力忽伸忽缩,次数很多)的弹簧,而且当弹簧损坏后将引起整个机构发生 故障.例如:发动机的阀门弹簧、摩擦离合器弹簧、电磁制动器弹簧等。 三.U组:受静负荷或负荷均匀增加的弹簧,例如安全阀和减压阀的弹簧,制动器和传动装置的弹 簧等。 四.川组:不重要的弹簧,例如止回阀弹簧手动装置的弹簧,门弹簧和沙发弹簧等。 五.按照制造精度分为三级 六.1级精度:受力变形量偏差为土5%勺弹簧,例如调速器和仪器等需要准确调整的弹簧。 七.2级精度:受力变形量偏差为土10%勺弹簧,例如安全阀、减压阀和止回阀弹簧,内燃机进气 阀和排气阀的弹簧。 八.3级精度:受力变形量偏差为土15%勺弹簧,不要求准确调整负荷的弹簧,象起重钩和缓冲弹 簧、刹车或联轴器压紧弹簧等。 九■名词和公式 1。螺旋角:也叫“升角”,计算公式是: 螺旋角的正切tg-盘;式中:t---弹簧的节距;D2---中径 般压缩弹簧的螺旋角a =6~9°左右; 2。金属丝的展开长L=^± ~二。2n+钩环或腿的展开长; COSG 式中:n1=弹簧的总圈数;n=弹簧的工作圈数。 3。弹簧指数:是弹簧中径D2与金属丝直径d的比,又叫“旋绕比”,用C来代表,即: C =2 ; d 在实用上C>4,太小了钢丝变形很厉害,尤其受动负荷的弹簧,钢丝弯曲太厉害时使用寿命就短。但C也不能太大,最大被限制于C<25。C太大,弹簧本身重量在巨大的直径上不断地颤动而发生摇摆,同时缠绕以后容易松开,直径难于掌握。一般C=4~9 弹簧指数C可按下表选取。 表弹簧指数C选择

4?用弹簧应力计算公式的时候,还要考虑金属丝弯曲的程度对应力的影响,而加以修正。这影响强度计算的弯曲程度,叫“曲度系数”,分别用下式表示: 压、拉弹簧曲度系数k二归1 0615; 4C 一4 C 扭转弹簧曲度系数k^^^1; 4C — 4 为了便于计算,根据上面两个公式算出K和K1值,列成表2: 曲度系数K和K1表 5.计算扭转弹簧刚度时,主要是受弯曲应力。因此,使用的是弹性模数E。 钢的E=2.1"04(公斤力/毫米2);铜的E=0.95"04(公斤力/毫米2) 6 ?计算压缩、拉伸弹簧时,主要是受剪切应力。因此使用的是剪切弹性模数G 钢的剪切弹性模数3 8000 (公斤力/毫米2); 青铜的剪切弹性模数S4000 (公斤力/毫米2)。7?工作圈数和支承圈 工作圈的作用是使弹簧沿轴线伸缩,是实际参加工作的圈数,又叫“有效圈数”,用n来表示。 支承圈的功用,是用来保证压缩压缩弹簧在工作时轴线垂直于支承端面,但并不参加弹簧工作。因此,压缩弹簧的两端至少各要3/4圈拼紧,并磨平作为支承面。磨薄后的钢丝厚度约为1/4d,尾部和工作圈贴紧。 重要的压缩弹簧,两端的结束点要在相反的两边,以使受力均匀。所以一般压缩弹簧的总圈 数多带有半圈的,如623圈、10 12圈等。 压缩弹簧的工作圈是从按计算的螺旋角卷制时算起,而拉伸弹簧是从钩的弯曲处开始计算。压缩弹簧必须有支承圈,扭簧和拉伸簧由于两端有腿或钩环,所以没有支承圈。选择压缩弹簧工作圈的要点是:必须考虑到安装地位的限制和稳定性,圈数不要太多,同时也要考虑到受力均匀和能耐冲击疲劳,因此圈数也不能太少。在一般情况下,压缩弹簧工作圈数选择是: 在不重要的静负荷作用下,n >2.5圈,经常受负荷或要求受力均匀时n》4圈,而安全阀弹簧对受力均匀的要求很严格,所以n》6圈。至于受动负荷如排气阀弹簧,也要求n》6 圈。 n》7圈的弹簧,两头的支承圈数要适当加多,但每边不超过 1 14圈。因此,总圈数为:n1 =n 1.5~ 2.5。 8 ?刚度与弹簧指数、圈数的关系

《机械设计》习题库(计算题点讲)

西南科技大学 《机械设计》习题库 四、计算题 1、图示,螺栓刚度为c 1,被联接件刚度为c 2,已知c 2=8c 1,预紧力F '=1000N ,轴向工作载荷F =1100N 。 试求; ⑴螺栓所受的总拉力F 0; ⑵被联接件中的剩余预紧力F ” 。 F F F ' F ' 2、图示,为一对正安装的圆锥滚子轴承。已知:作用在轴上的外载荷为M =450kN ·mm ,F R =3000N , F A =1000N ,方向如图所示。 试求:⑴在插图二上,标出两轴承所受的派生轴向力S 1 和S 2的方向; ⑵求出派生轴向力S 1 和S 2的大小; ⑶计算轴承所受的实际轴向力A 1和A 2。 (提示:派生轴向力S 与轴承所受的径向支反力R 的关系为:S =0.25R )

3、夹紧联接如插图一所示,已知夹紧联接柄承受载荷Q =600N ,螺栓个数Z =2,联接柄长度L =300mm , 轴直径d =60mm ,夹紧结合面摩擦系数f =0.15,螺栓的许用拉应力[σ]=58.97MPa 。 试求; ⑴计算所需要的预紧力F ’ ⑵确定螺栓的直径 (提示:“粗牙普通螺纹基本尺寸”见表) 表 粗牙普通螺纹基本尺寸 (GB196-81) mm 4、如图所示,某轴用一对反装的7211AC 轴承所支承,已知作用在轴上的径向外载荷F R =3000N, 作用在轴上的轴向外载荷F A =500N,方向如图所示。载荷系数f p =1.2。 试求: ⑴安装轴承处的轴颈直径是多少? ⑵标出两轴承各自的派生轴向力S 1、S 2的方向。 ⑶计算出两轴承各自的派生轴向力S 1、S 2的大小。 ⑷计算出两轴承所受的实际轴向力A 1、A 2的大小。 ⑸两轴承各自所受的当量动负荷P 1、P 2的大小。 提示:派生轴向力S 与轴承所受的径向支反力R 的关系为:S=0.7R ; e=0.7;当A/R ≤e 时,X=1,Y=0;当A/R >e 时,X=0.41,Y=0.87。 当量动负荷计算公式为:P=f p(XR+YA) F R L L 3 ① ② F A

圆柱弹簧的设计计算.

圆柱弹簧的设计计算 (一)几何参数计算 普通圆柱螺旋弹簧的主要几何尺寸有:外径D、中径D2、内径D1、节距p、螺旋升角α及弹簧丝直径d。由下图圆柱螺旋弹簧的几何尺寸参数图可知,它们的关系为: 式中弹簧的螺旋升角α,对圆柱螺旋压缩弹簧一般应在5°~9°范围内选取。弹簧的旋向可以是右旋或左旋,但无特殊要求时,一般都用右旋。 圆柱螺旋弹簧的几何尺寸参数 普通圆柱螺旋压缩及拉伸弹簧的结构尺寸计算公式见表(普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式)。 普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式

(二)特性曲线

弹簧应具有经久不变的弹 性,且不允许产生永久变形。因 此在设计弹簧时,务必使其工作 应力在弹性极限范围内。在这个 范围内工作的压缩弹簧,当承 受轴向载荷P时,弹簧将产生 相应的弹性变形,如右图a所 示。为了表示弹簧的载荷与变形 的关系,取纵坐标表示弹簧承受 的载荷,横坐标表示弹簧的变 形,通常载荷和变形成直线关系 (右图b)。这种表示载荷与变 形的关系的曲线称为弹簧的特 性曲线。对拉伸弹簧,如图<圆 柱螺旋拉伸弹簧的特性曲线> 所示,图b为无预应力的拉伸 弹簧的特性曲线;图c为有预 应力的拉伸弹簧的特性曲线。 右图a中的H0是压缩弹簧 在没有承受外力时的自由长度。 弹簧在安装时,通常预加一个压 力 Fmin,使它可靠地稳定在安 装位置上。Fmin称为弹簧的最 小载荷(安装载荷)。在它的作 用下,弹簧的长度被压缩到H1 其压缩变形量为λmin。Fmax 为弹簧承受的最大工作载荷。在 Fmax作用下,弹簧长度减到 H2,其压缩变形量增到λmax。 圆柱螺旋压缩弹簧的特性曲线λmax与λmin的差即为弹簧的 工作行程h,h=λmax-λmin。 Flim为弹簧的极限载荷。在该 力的作用下,弹簧丝内的应力达 到了材料的弹性极限。与Flim 对应的弹簧长度为H3,压缩变 形量为λlim。

螺栓组受力分析与计算

螺栓组受力分析与计算 螺栓组联接的设计 设计步骤: 1. 螺栓组结构设计 2. 螺栓受力分析 3. 确定螺栓直径 4. 校核螺栓组联接接合面的工作能力 5. 校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。 "1.螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形, 三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接 合面的形心重合,从而保证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。 塾〉不令 接合面受弯矩或转矩时螺栓的布置

3)螺栓排列应有合理的间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的 最小距离,应根 据扳手所需活动空间的大小来决定。扳手空间的尺寸(下图)可查阅有关标 准。对于压力容器等紧密性要求较高的重要联接, 螺栓的间距to 不得大于下表所推荐的数值 扳手空间尺寸 螺栓间距t o 注:表中d 为螺纹公称直径。 4) 分布在同一圆周上的螺栓数目,应取成 4, 6, 8等偶数,以便在圆周上钻孔时的分度和画 线。同一螺栓 组中螺栓的材料,直径和长度均应相同。 5) 避免螺栓承受附加的弯曲载荷。除了要在结构上设法保证载荷不偏心外,还应在工艺上保 证被联接件,螺 母和螺栓头部的支承面平整,并与螺栓轴线相垂直。对于在铸,锻件等的粗 糙表面上应安装螺栓时,应制成凸台或沉头座(下图 1)。当支承面为倾斜表面时,应采用 斜面垫圈(下图2)等。 1 ? 6*-4 4* 10 10* 1? 14-20 3W

螺栓联接实验指导书机械设计实验指导书

《机械设计实验指导书》 徐双满洪建平编 王青温审 机械工程实验教学中心 2011年 2月

螺栓联接实验指导书 一.实验目的 1.掌握测试受轴向工作载荷的紧螺栓联接的受力和变形曲线(即变形协调图)。 2.掌握求联接件(螺栓)刚度C 1、被联接件刚度C 2、相对刚度C 1/C 1+C 2。 3.了解试验预紧力和相对刚度对应力幅的影响,以考察对螺栓疲劳的影响。 二.实验设备 图1—1为螺栓联接实验机结构组成示意图,手轮1相当于螺母,与螺栓杆2相连。套筒3相当于被联接件,拧紧手轮1就可将联接副预紧,并且联接件受拉力作用,被联接件受压力作用。在螺栓杆和套筒上均贴有电阻应变片,用电阻应变仪测量它们的应变来求受力和变形量。测力环4是用来间接的指示轴向工作载荷的。拧紧加载手轮(螺母)6使拉杆5产生轴向拉力,经过测力环4将轴向力作用到螺杆上。测力环上的百分表读数正比于轴向载荷的大小。 1.螺栓联接实验机的主要实验参数如下: 1).螺栓材料为45号钢,弹性模量E 1=2.06×105N/mm 2,螺栓杆直径d=10mm ,有效变形计算长度L 1=130mm 。 2).套筒材料为45号钢,弹性模量E 2=2.06×105N/mm 2,两件套筒外径分别为D=31和32,径为D 1=27.5mm ,有效变形计算长度L 2=130mm.。 2.仪器 1)YJ-26型数字电阻应变仪。 2)YJ-26型数字电阻应变仪。 3)PR10-26型预调平衡箱。

ΔF Dn λb λm λ λm ’ θn λ F θ0 D0 Q p F Q p Q 图4-3 力-变形协调图 图4-2 LBX-84型实验机结构图 1-加载手轮 2-拉杆 3-测力计百分表 4-测力环 5-套筒 6- 电阻应变片 7-螺栓 8-背紧手轮 9-予紧手轮 三.实验原理 1.力与变形协调关系 在螺栓联接中,当联接副受轴向载荷后,螺栓受拉力,产生拉伸变形;被联接件受压力,产生压缩变形,根据螺栓(联接件)和被联接件预紧力相等,可把二者的力和变形图线画在一个坐标系中,如4-3所示。当联接副受工作载荷后,螺栓因受轴 向工作载荷F 作用,其拉力由预紧力Qp 增加到总拉力Q ,被联接件的压紧力Q p 减少到剩余预紧力Q ˊp ,这时,螺栓伸长变形的增量Δλ1,等于被联接件压缩变形的恢复Δλ2,即Δλ1=Δλ2=λ,也就是说变形的关系是协调的。因此,又称为变形协调图。 知道了力和变形的大小便可计算出连接副的刚度的大小,即力与变形之比Q/λ称

弹簧设计规范(全)

弹簧设计规范 一、弹簧的功能 弹簧是一种弹性元件,由于材料的弹性和弹簧的结构特点,它具有多次重复地随外栽荷的大小而做相应的弹性变形,卸载后立即恢复原状的特性。很多机械正是利用弹簧的这一特点来满足特殊要求的。其主要功能有: ⑴、减振和缓冲,如车辆的悬挂弹簧,各种缓冲器和弹性联轴器中的弹簧等。 ⑵、测力,如测力器和弹簧秤的弹簧等。 ⑶、储存及输出能量,如钟表弹簧,枪栓弹簧,仪表和自动控制机构上的原动弹簧等。 ⑷、控制运动,如控制弹簧门关闭的弹簧,离合器、制动器上的弹簧,控制内燃机气缸阀门开启的弹簧等。 二、弹簧的类型、特点和应用 弹簧的分类方法很多,按照所承受的载荷的不同,弹簧可分为拉伸弹簧、压缩弹簧、扭转弹簧和弯曲弹簧等四种;按照形状的不同,弹簧可分为螺旋弹簧、碟形弹簧、环形弹簧、盘形弹簧和板弹簧等;按照使用材料的不同,弹簧可分为金属弹簧和非金属弹簧。各种弹簧的特点、应用见表1。 法。

三、弹簧使用的材料及其用途 弹簧钢的的主要性能要求是高强度和高屈服极限和疲劳极限,所以弹簧钢材用较高的含碳量。但是碳素钢的淬透性较差,所以在对于截面较大的弹簧必须使用合金钢。合金弹簧钢中的主要合金元素是硅和锰,他们可以增强钢的淬透性和屈强比。 弹簧材料使用最广者是弹簧钢(SUP)。碳素钢用于直径较小的弹簧,工艺多为冷拔成型,如:65#,75#,85#。直径稍大,需用热成型工艺生产的弹簧多采用60Si2Mn,如汽车板簧,铁路车辆的缓冲簧。对于高应力的重要弹簧可采用50CrV,常用于高级轿车板簧,发动机气门弹簧等。其他弹簧钢材料还有:65Mn, 50CrMn, 30W4Cr2V等。 a、碳钢及合金钢:制造弹簧时,常加矽、锰、铬、钒及钼等金属元素于钢中,以增加弹簧之弹性及疲劳限度,且使其耐冲击。 b、大型弹簧多用热作加工,即弹簧材料高温轧成棒,再高温加工成形后,淬火于780度~850度左右之油或水中,再施以400度~500度的温度回火。 c、小型弹簧,先经退火,再用冷作加工,捲成后再经硬化回火,如钢丝、琴钢丝或钢带。 d、琴钢丝是属高炭钢材(0.65~0.95%)制造,杂质少,直径常小于1/4时经过轫化处理后在常温抽成线,其机械性质佳,抗拉强度及轫性大,为优良的螺旋弹簧材料。 e、不锈钢丝用于易受腐蚀处,承受高温可用高速钢及不锈钢。 f、油回火线含碳量0.6~0.7%应含锰,0.6~1.0%常用于螺圈弹簧。 g、板弹簧常用0.9~1.0%之普通钢,其较高级者则使用铬钒钢及矽锰钢。 弹簧常在变载荷和冲击载荷作用下工作,而且要求在受极大应力的情况下,不产生塑性变形,因此要求弹簧材料具有较高的抗拉强度极限、弹性极限和疲劳强度极限,不易松弛。同时要求有较高的冲击韧性,良好的热处理性能等。常见的弹簧材料有优质碳素钢、合金钢和铜合金。几种主要弹簧材料的使用性能和许用应力见表2。

机械设计螺纹连接计算题

【例1】 图示方形盖板用四个螺钉与箱体连接,盖板中心O 点的吊环受拉力F Σ=8kN 。试完成:(1)取残余预紧力F 1为工作拉力的0.8倍,求螺钉的总拉力F 2;(2)如果已知M6螺钉的d 1=4.917mm , [σ]=260MPa ,试校核螺钉组的强度。 F ∑ 4-M6 200 600 解:(1)求各螺钉的工作拉力:F=F Σ/n =8/4=2kN (2)求各螺钉的残余预紧力:F 1=0.8F =1.6kN (3)求各螺钉的总拉力:F 2=F 1+F =3.6kN (4)校核螺钉的强度:[]σπσ<=??== 246.59MPa 917 .414.300362.55.22212d F 该螺钉组满足强度条件

【例2】 如图所示,两根梁用8个5.6级普通螺栓与两块钢盖板相联接。梁受到拉力F =32kN ,摩擦系数f =0.2,安全系数S =1.5,防滑系数K S =1.2,控制预紧力,试确定所需螺栓的小径。 F F 解:(1)求螺栓的预紧力:N 240002 42.0320002.10=???=≥ fzi F K F s (2)求螺栓的许用拉应力 屈服极限:MPa s 3001006.05=??=σ 许用拉应力:[]200MPa 5.1/300/===S S σσ (3)求螺栓的小径 []mm 1.14200 14.3240002.52.50 1=??=≥σπF d

【例3】 起重卷筒与大齿轮用6个普通螺栓连接在一起,如图所示。已知卷筒直径D =600mm ,螺栓分布圆直径D 0=800mm ,接合面间的摩擦系数f =0.15,防滑系数K s =1.2,起重钢索拉力Q =40kN ,螺栓材料的许用拉应力[σ]=80Mpa ,试求螺栓小径。 解:(1)求起重卷筒传递的扭矩:T =QD /2=40000×600/2=1.2×106 N.mm (2)求预紧力:N 4000400 615.0102.12.16s 0=????=≥fzr T K F (3)求螺栓直径:[]mm 1.912014.340002.52.50 1=??=≥σπF d Q D 0 D

弹簧设计计算

弹簧设计计算 弹簧在材料选定后,设计时需要计算出弹簧刚度F、中径D、钢丝直径d、有效圈数n、变形量f。 以下面弹簧设计为例; 1.计算弹簧受力: 假设弹簧端克服1个标准大气压,即推动钢球,则弹簧受力为: F=PA=1×10错误!N/mm错误!×πd1错误!/4 其中d1——钢球通道直径 弹簧还须克服钢球下降重力: G=mρV=m×4ρπR错误!/3 其中R——钢球半径 弹簧受合力: F合=F+G 考虑制造加工因素,增加1.2倍系数 F′=1.2F合 2.选材料:(一般选用碳素弹簧钢丝65Mn或琴钢丝) 以65Mn为例,钢丝直径d=1.4mm 3.查表计算许用应力: 查弹簧手册8-10表中Ⅰ类载荷的弹簧考虑(根据阀弹簧受力情况而言) 材料的抗拉强度σb与钢丝直径d有关 查表2-30(选用D组): σb=2150~2450Mpa 安全系数K=1.1~1.3, 可取K=1.2, 则σb=1791.7~2041.7

Mpa 因此σb=1791.7Mpa(下限值) 查表2-103,取切变模量G=78.8×10错误!Mpa 查表8-10,取许用切应力τs==0.5σb=0.3×1791.7=537.51Mpa4.选择弹簧旋绕比C: 根据表8-4初步选取C=10 5.计算钢丝直径:d≥1.6√KFC/[τ] 其中K——曲度系数,取K=1.1~1.3 F——弹簧受力 6.计算弹簧中径: D=Cd 7.计算弹簧有效圈数: n=Gd错误!f/8FD错误!则总圈数n总=n+n1(查表8-6) 8.计算试验载荷: Fs=πd错误!τs/8D 9.自由高度: H0=nt+1.5d 其中:t——初步估计节距t=d+f/n+δ1(δ1=0.1d) 查表8-7系列值H0取整数 10.节距计算: t=(H0-1.5d)/n 11.弹簧螺旋角:(此值一般符合=5°~9°)

螺栓组受力分析与计算

螺栓组受力分析与计算 一.螺栓组联接的设计 设计步骤: 1.螺栓组结构设计 2.螺栓受力分析 3.确定螺栓直径 4.校核螺栓组联接接合面的工作能力 5.校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。 1. 螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。

2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。 接合面受弯矩或转矩时螺栓的布置 3)螺栓排列应有合理的间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。扳手空间的尺寸(下图)可查阅有关标准。对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。 扳手空间尺寸

机械设计 螺栓计算题

dFˊ=20000N,预紧力M16普通螺栓,小径轴向工作=14.376mm, 1. 用于紧联接的一个1FCC=4×10N/mm,10N/mm,载荷被联接件刚度=10000N,螺栓刚度螺栓材料=1 ×66mb的许用应力[σ]=150N/mm。2F 1)计算螺栓所受的总拉力((2)校核螺栓工作时的强度。 6101?C b??0.2) 1. 解(1610)?1?4C?C(mb C??b FF??FF???F 0C?C mb………………(5分)=20000+0.2×10000=22000N 1.3F1.3?22000?0?? (2)??ca??22376.?d14 ???………………(5=176.2N/mm>分)2 2.图c所示为一托架,20kN的载荷作用在托架144 宽度方向的对称线上,用四个螺栓将托架连接在一钢制横梁上,螺栓的相对刚度为0.3,螺栓组连接采用普通螺栓连接形式,假设被连接件都不会被压溃,试计算: F′该螺栓组连接的接合面不出现间隙所需的螺栓预紧力至少应大于多少?(接合面的1) 抗弯剖面模量W=12.71×10mm)(7分)36F′′要保证6956N,计算该螺栓所需预紧力2)若受力最大螺栓处接合面间的残余预紧力F ′F。(3、所受的总拉力分)0

(1)、螺栓组联接受力分析:将托架受力情况分解成下图所示的受轴向载荷Q和受倾覆力矩M的两种基本螺栓组连接情况分别考虑。 1分):((2)计算受力最大螺栓的工作载荷F20000Q)(5000:使每个螺栓所受的轴向载荷均等,为Q NF???14Z使左侧两个螺栓工作拉力减小;使右侧两个螺栓工作拉力增加,值为:M倾覆力矩6Ml?227.5?610max?6593.?41(?FN)2 ?l i1?i 245.227?42

jgj8291 钢结构高强度螺栓连接的设计、施工及验收规程

钢结构高强度螺栓连接的设计、施工及验收规程JGJ82-91 目录 第一章总则 第二章连接设计 第一节一般规定 第二节摩擦型连接的计算 第三节承压型连接的计算 第四节接头设计 第五节连接构造要求 第三章施工及验收 第一节高强度螺栓连接副的储运和保管 第二节高强度螺栓连接构件的制作 第三节高强度螺栓连接副和摩擦面的抗滑移系数检验 第四节高强度螺栓连接副的安装 第五节高强度螺栓连接副的施工质量检查和验收 第六节油漆 附录一非法定计量单位与法定 附录二本规程用词说明 附加说明 主编单位:湖北省建筑工程总公司 批准部门:中华人民共和国建设部 施行日期:1992年11月1日 关于发布行业标准《钢结构高强度螺栓连接的设计、施工及验收规程》的通知 建标〔1992〕231号 各省、自治区、直辖市建委(建设厅),计划单列市建委,国务院有关部、委: 根据原国家建工总局(82)建工科字第14号文的要求,由湖北省建筑工程总公司主编的《钢结构高强度螺栓连接设计、施工及验收规程》,业经审查,现批准为行业标准,编号JGJ82-91,自一九九二年十一月一日起施行。 本标准由建设部建筑工程标准技术归口单位中国建筑科学研究院归口管理,其具体解释等工作由湖北省建筑工程总公司负责。 本标准由建设部标准定额研究所组织出版。 中华人民共和国建设部 一九九二年四月十六日 主要符号 作用和作用效应 F——集中荷载; M——弯矩; N——轴心力; P——高强度螺栓的预拉力; V——剪力。 计算指标

——每个高强度螺栓的受拉、受剪和承压承载力设计值; f——钢材的抗拉、抗压和抗弯强度设计值; ——高强度螺栓的抗拉、抗剪和承压强度设计值; σ——正应力。 几何参数 A——毛截面面积; An——净截面面积; I——毛截面惯性矩; S——毛截面面积矩; α——间距; D——直径; D0——孔径; L——长度; Lz——集中荷载在腹板计算高度边缘上的假定分布长度。 计算系数及其它 n——高强度螺栓的数目; n1——所计算截面上高强度螺栓的数目; nf——高强度螺栓传力摩擦面数目; μ——高强度螺栓摩擦面的抗滑移系数; Ψ——集中荷载的增大系数。 第一章总则 第1.0.1条为使在钢结构工程中,高强度螺栓连接的设计、施工做到技术先进、经济合理、安全适用、确保质量,制定本规程。 第1.0.2条本规程适用于工业与民用建筑钢结构工程中高强度螺栓连接的设计、施工与验收。 第1.0.3条高强度螺栓连接的设计、施工及验收,除按本规程的规定执行外,尚应符合《钢结构设计规范》(GBJ17)、《冷弯薄壁型钢结构技术规范》(GBJ18)及《钢结构工程施工及验收规范》(GBJ205)的有关规定。 设计在特殊环境(如高温或腐蚀作用)中应用的高强度螺栓连接时,尚应符合现行有关专门标准的要求。 第1.0.4条本规程采用的高强度螺栓连接副,应分别符合《钢结构用大六角头螺栓》(GB1228)、《钢结构用高强度大六角螺母型式与尺寸》(GB1229)、《钢结构用高强度垫圈型式与尺寸》(GB1230)、《钢结构用高强度大六角头螺栓、大六角螺母、垫圈技术条件》(GB1231)或《钢结构用扭剪型高强度螺栓连接副形式尺寸》(GB3632)和《钢结构用扭剪型高强度螺栓连接副技术条件》(GB3633)的规定。 第1.0.5条在设计图、施工图中均应注明所用高强度螺栓连接副的性能等级、规格、连接型式、预拉力、摩擦面抗滑移系数以及连接后的防锈要求。当设计中选用两种或两种以上直径的高强度螺栓时,还应注明所选定的需进行抗滑移系数检验的螺栓直径。 第1.0.6条在高强度螺栓施拧、构件摩擦面处理及安装过程中,应遵守国家劳动保护和安全技术等有关规定。 第二章连接设计 第一节一般规定

弹簧设计计算过程

弹簧设计计算过程 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

弹簧设计计算 已知条件: 弹簧自由长度H0= 弹簧安装长度L1=411mm 弹簧工作长度L2=227mm 弹簧中径D= 弹簧直径d= 弹簧螺距P=12mm 弹簧有效圈数n=66 弹簧实际圈数n1=68 计算步骤: (1)初步考虑采用油淬火-回火硅锰弹簧钢丝60Si2MnA C 类,抗拉强度1716-1863MPa ,切变模量G=79GPa ,弹性模量E=206GPa 。 取b σ=1716MPa 。 (2)压缩弹簧许用切应力 p τ=~ b σ=~*1716MPa=~ 取p τ=。 (3)由于弹簧刚度尚未可知,但是弹簧的中径、直径、有效圈数都已知。

2 .33.22==d D C =(计算值在5~8之间) 6.9688 615.046.9688416.96884615.04414+-?-?=+--=C C C K = 弹簧的最大工作压缩量Fn=795-227=568mm 由公式348D P F Gd n n n =可得最大工作载荷34343.226685682.3798????==nD F Gd P n n = 弹簧刚度663.2282.379834 34' ???==n D Gd P =mm 节距t=66 2.35.1795)2~1(0?-=-n d H =≈12 计算出来的自由高度H0=nt+=66*12+*= 压并高度Hb=(n+d=(66+*=216mm 弹簧最小工作载荷时的压缩量F1=795-411=384mm 则最小工作载荷3 431413.226683842.3798????==nD F Gd P = 螺旋角α=arctan(t/πD)=arctan(12/*)= 弧度= ° 弹簧展开长度L=1696 .0cos 683.22cos 1??=παπDn = ≈4833mm 弹簧压并高度H b ≤n 1*d max =68*(+)=,取值216mm 弹簧压并时的变形量为= 弹簧压并时的载荷为Fa=*= (4)螺旋弹簧的稳定性、强度和共振的验算 高径比b=H0/D==> n B c P H P C P >=0' 不稳定系数C B = ==0'H P C P B c **=

高强度螺栓连接的设计计算.

第39卷第1期建筑结构2009年1月 高强度螺栓连接的设计计算 蔡益燕 (中国建筑标准设计研究院,北京100044) 1高强度螺栓连接的应用 高强度螺栓连接分为摩擦型和承压型。《钢结构 (G设计规范》B50017—2003)(简称钢规)指出“目前制 造厂生产供应的高强度螺栓并无用于摩擦型和承压型连接之分”“,因高强度螺栓承压型连接的剪切变形比摩擦型的大,所以只适用于承受静力荷载和间接承受动力荷载的结构”。因为承压型连接的承载力取决于钉杆剪断或同一受力方向的钢板被压坏,其承载力较之摩擦型要高出很多。最近有人提出,摩擦面滑移量不大,因螺栓孔隙仅为115~2mm,而且不可能都偏向一侧,可以用承压型连接的承载力代替摩擦型连接的,对结构构件定位影响不大,可以节省很多螺栓,这算一项技术创新。下面谈谈对于这个问题的认识。 在抗震设计中,一律采用摩擦型;第二阶,摩擦型连接成为承压型连接,要求连接的极限承载力大于构件的塑性承载力,其最终目标是保证房屋大震不倒。如果在设计内力下就按承压型连接设计,虽然螺栓用量省了,但是设计荷载下承载力已用尽。如果来地震,螺栓连接注定要破坏,房屋将不再成为整体,势必倒塌。虽然大部分地区的设防烈度很低,但地震的发生目前仍无法准确预报,低烈度区发生较高烈度地震的概率虽然不多,但不能排除。而且钢结构的尺寸是以mm计的,现代技术设备要求精度极高,超高层建筑的安装精度要求也很高,结构按弹性设计允许摩擦面滑移,简直不可思议,只有摩擦型连接才能准确地控制结构尺寸。总体说来,笔者对上述建议很难认同。2高强度螺栓连接设计的新进展 钢规的715节“连接节点板的计算”中,提出了支撑和次梁端部高强度螺栓连接处板件受拉引起的剪切破坏形式(图1),类似破坏形式也常见于节点板连接,是对传统连接计算只考虑螺栓杆抗剪和钉孔处板件承压破坏的重要补充。 1994年美国加州北岭地震和1995年日本兵库县南部地震,是两次地震烈度很高的强震,引起大量钢框架梁柱连接的破坏,受到国际钢结构界的广泛关注。

机械设计习题集(3)

第1章机械设计概论 思考题 1. 什么是部件?什么是零件?什么是构件?什么是通用零件?什么是专用零件?机械设计课程研究的是哪 类零件?从哪几个方面来研究这类零件? 2. 机械设计应满足哪些基本要求?机械零件设计应满足哪些基本要求? 3. 机械设计的一般步骤是怎样的? 第2章机械零件的工作能力和计算准则填空题 1. 在压力作用下,以点、线相接触的两物体在接触处产生的应力称为应力。 2. 零件在变应力作用下的强度计算属于强度计算,它不同于静强度计算。 3. 零件的计算载荷与名义载荷的关系是。 4. 零件的名义载荷是指载荷。 5. 零件的实际载荷与计算载荷的差异对零件的强度影响,将在中考虑。 二、简答与思考题 1. 解释下列名词:静载荷、变载荷、稳定循环变载荷、动载荷、工作载荷、额定载荷、计算载荷、静应 力、变应力、疲劳及疲劳极限。静载荷是否一定产生静应力?变载荷是否一定产生变应力? 2. 什么是变应力的循环特性r?对于静应力、脉动循环变应力和对称循环变应力,其r值各等于多少? 3. 在一定的循环特性r下工作的金属试件,其应力循环次数与疲劳极限之间有怎样的内在联系?怎样区分 试件的无限工作寿命和有限工作寿命?怎样计算在有限寿命下工作的试件的疲劳极限? 4. 两个曲面形状的金属零件相互压紧,其表面接触应力的大小由哪些因素确定?如果这两个零件的材料、 尺寸都不同,其相互接触的各点上彼此的接触应力值是否相等? 三、计算题 1. 图示为对心直动滚子从动件凸轮机构。从动件顶端承受压力F=12kN。当压力角α达到最大值αmax=250 时,相应的凸轮轮廓在接触点上的曲率半径为R=75mm。已知:滚子半径r=15mm,凸轮与滚子的宽度b=20mm;两者材料的弹性模量和泊松比均为E=2.1×105Mpa和μ=0.3;许用接触应力[σ]H=1500Mpa。试校核凸轮与滚子的表面接触强度。

弹簧设计计算过程

弹簧设计计算 已知条件: 弹簧自由长度H0=796.8mm 弹簧安装长度L1=411mm 弹簧工作长度L2=227mm 弹簧中径D=22.3mm 弹簧直径d=3.2mm 弹簧螺距P=12mm 弹簧有效圈数n=66 弹簧实际圈数n1=68 计算步骤: (1)初步考虑采用油淬火-回火硅锰弹簧钢丝60Si2MnA C 类,抗拉强度1716-1863MPa ,切变模量G=79GPa ,弹性模量E=206GPa 。 取b σ=1716MPa 。 (2)压缩弹簧许用切应力 p τ=(0.4~0.47) b σ=(0.4~0.47)*1716MPa=686.4~806.52MPa 取p τ=686.4MPa 。 (3)由于弹簧刚度尚未可知,但是弹簧的中径、直径、有效圈数都已知。 2 .33.22==d D C =6.9688(计算值在5~8之间) 6.9688 615.046.9688416.96884615.04414+-?-?=+--=C C C K =1.2139 弹簧的最大工作压缩量Fn=795-227=568mm 由公式348D P F Gd n n n =可得最大工作载荷34343.226685682.3798????==nD F Gd P n n = 803.5758N 弹簧刚度663.2282.379834 34' ???==n D Gd P =1.4147N/mm 节距t= 66 2.35.1795)2~1(0?-=-n d H =11.9727≈12 计算出来的自由高度H0=nt+1.5d=66*12+1.5* 3.2=796.8mm 压并高度Hb=(n+1.5)d=(66+1.5)*3.2=216mm

机械设计螺栓计算题

1. 用于紧联接的一个M16普通螺栓,小径d 1=14.376mm, 预紧力F ˊ=20000N,轴向工作载荷F =10000N,螺栓刚度C b =1 ×106N/mm,被联接件刚度C m =4×106N/mm,螺栓材料的许用应力[σ]=150N/mm 2; (1)计算螺栓所受的总拉力F (2)校核螺栓工作时的强度。 1. 解 (1) 2.010)41(1016 6 =?+?=+m b b C C C =20000+0.2×10000=22000N ………………(5分) (2) () 2210 376.144220003.143.1??==ππ σd F ca =176.2N/mm 2>[]σ ………………(5分) 2.图c 所示为一托架,20kN 的载荷作用在托架宽度方向的对称线上,用四个螺栓将托架连接在一钢制横梁上,螺栓的相对刚度为0.3,螺栓组连接采用普通螺栓连接形式,假设被连接件都不会被压溃,试计算: 1) 该螺栓组连接的接合面不出现间隙所需的螺栓预紧力F′ 至少应大于多少?(接合面的抗弯剖面模量W=12.71×106mm 3)(7分) 2)若受力最大螺栓处接合面间的残余预紧力F ′′ 要保证6956N , 计算该螺栓所需预紧力F ′ 、所受的总拉力F 0。(3分) (1)、螺栓组联接受力分析:将托架受力 情况分解成下图所示的受轴向载荷Q 和受倾覆力矩M 的两种基本螺栓组连接情况分别考虑。 (2)计算受力最大螺栓的工作载荷F :(1分) Q 使每个螺栓所受的轴向载荷均等,为:)(50004 200001N Z Q F === 倾覆力矩M 使左侧两个螺栓工作拉力减小;使右侧两个螺栓工作拉力增加,值为:)(41.65935.22745.22710626412 max 2N l Ml F i i =???==∑= 显然,轴线右侧两个螺栓所受轴向工作载荷最大,均为: (3)根据接合面间不出现间隙条件确定螺栓所需的预紧力F ’:

螺栓连接设计步骤1

步骤: 1.受力分析;2.强度计算 普通螺栓 一、当螺栓同时受预紧力和工作拉力时 1.受力分析 计算初拉力0F 和工作拉力z F F ∑= 2.计算螺栓总拉力 F C C C F F m b b ++=02 3.螺栓危险截面拉伸强度条件 []σπσ≤=2124 3.1d F ca 二、当螺栓同时受横向载荷和转矩时 1.受力分析 将力向形心简化以找出受力最大的螺栓及其所受的力; 由横向载荷z F F ∑=1max ,由转矩∑==z i i S r f T K F 1 2max (即防滑条件),求得最大的受力αcos 22max 1max 22max 21max 0max F F F F F ++= 2.螺栓危险截面拉伸强度条件 []σπ σ≤=2 10 43.1d F ca 说明: 1.上述2种情况较简单,请思考普通螺栓受力的组合形式下螺栓设计分析方法,如①轴向载荷+倾覆力矩;②横向载荷+倾覆力矩;③轴向载荷+横向载荷+倾覆力矩(教材P92例题);④以上三种情况中分别再增加旋转力矩又如何? 2.切记不要对受力分析公式死记硬背,应侧重理解。如课堂上讲过公式5-9和5-10中结合面数i 的使用。

铰制孔用螺栓 一、当螺栓受横向载荷和转矩时 1.受力分析 将力向形心简化以找出受力最大的螺栓及其所受的力; 由横向载荷z F F ∑=1max ,由转矩∑==z i i r Tr F 1 2 max 2max ,求得最大的受力αcos 22max 1max 22max 21max max F F F F F ++= 2.螺栓危险截面挤压强度条件 [] p p L d F σσ≤=min 0max 3.螺栓危险截面剪切强度条件 []τπ τ≤=2 0max 4d F 说明: 因铰制孔螺栓连接仅能承受横向载荷(包括旋转力矩、横向载荷+旋转力矩),它的设计分析方法相比普通螺栓连接要简单得多。

8、弹簧设计和计算

电力设备电气绝缘国家重点实验室 Xi ’an Jiaotong University, China 弹簧设计和计算

1、弹簧在断路器中的应用 2、弹簧的分类

EE 弹簧是一种利用弹性来工作的机械零件。在载荷作用下能够产生变形,卸载时释放能量恢复原形,加载变形过程遵循一定的规律,可以用来控制机件的运动、缓和冲击或震动、贮蓄能量、测量力的大小等 保证动作力:如操作机构的作用力、触头压力、电磁系统的反

EE 这类弹簧多数由圆形截面材料制成,当同样空间条 件下需要更大的刚度时,可选用矩形截面的材料 圆柱形螺旋压缩弹簧圆柱形螺旋压缩弹簧圆柱形螺旋压缩弹簧 结构简单,制造方便,特性接近于直线型,刚度值较稳

EE 2013-04-02 5 (2)变径螺旋弹簧 ?圆锥形螺旋弹簧 这类弹簧的特点是稳定性好,结构紧凑,其特性线开始是直线,随着载荷的增加,逐渐变成渐增型,有利于缓和冲击和共振,接触器弹簧的主弹簧常选用圆锥形弹簧。 ?中凸和中凹形弹簧 这类弹簧的特性相当于圆锥形弹簧,中凸形弹簧在某些场合可替代圆锥形弹簧使用,中凹形弹簧主要用作坐垫 和床垫。 (3)碟形弹簧 加载与卸载特性不重合,在工作过程中有能量消耗,缓冲和减震能力强,蝶形 弹簧常用于中、高压产品中。

EE 2013-04-02 6这类弹簧圈数多,变形角大,储存能量大,多用在仪器和钟表中 这类弹簧由薄片材料制成,结构形状繁多,主要用于仪表及低压元器按照不同使用条件和承受负荷的情况,弹簧又分成4大类 第1类:承受静负荷,或变换次数甚少并不带冲击性负荷的弹簧。第2类:承受具有一定次数的变换,但冲击并不强烈的弹簧。第3类:承受高速变换次数,但并不太强烈的冲击负荷的弹簧。

机械设计螺纹计算题答案

1、一方形盖板用四个螺栓与箱体连接,其结构尺寸如图所示。盖板中心O 点的吊环受拉力F Q =20000N ,设剩余预紧力F ″=0.6F, F 为螺栓所受的轴向工作载荷。试求: (1)螺栓所受的总拉力F 。,并计算确定螺栓直径(螺栓材料为45号钢,性能等级为6.8级)。(2)如因制造误差,吊环由O 点移到O ′点,且 OO ′=52mm,求受力最大螺栓所受的总拉力F 。,并校核(1)中确定的螺栓的强度。 解题要点: (1)吊环中心在O 点时: 此螺栓的受力属于既受预紧力F ′作用又受轴向 工作载荷F 作用的情况。根据题给条件,可求出 螺栓的总拉力: F 0=F ″+F=0.6F+F=1.6F 而轴向工作载荷F 是由轴向载荷F Q 引起的,故有: 题15—7图 N N F F Q 50004 20000 4 == = ∴N N F F 800050006.16.10=?== 螺栓材料45号钢、性能等级为6.8级时,MPa s 480=σ ,查表11—5a 取S=3,则 σσ=][s /S=480/3MPa=160MPa ,故 [] mm mm F d 097.9160 8000 3.143.140 1=???= ?≥ πσπ 查GB196-81,取M 12(d 1=10.106mm >9.097mm )。 (2)吊环中心移至O′点时: 首先将载荷F Q 向O 点简化,得一轴向载荷F Q 和一翻转力矩M 。M 使盖板有绕螺栓1和3中心连线翻转的趋势。 mm N mm N O O M F Q ?=??='?= 4.1414212520000 显然螺栓4受力最大,其轴向工作载荷为 N N r M F F F F Q M Q 550010010024.14142142000024 4 22=??? ? ??++=+ = += ∴ N N F F 880055006.16.10=?== ∴ []MPa MPa MPa d F e 1606.1424 /106.108800 3.14 /3.12210 =<=??= = σππσ 故吊环中心偏移至O ′点后,螺栓强度仍足够。 分析与思考: (1)紧螺栓连接的工作拉力为脉动变化时,螺栓总拉力是如何变化的?试画出其受力变形图,并加以说明。 答:总拉力F F F C C C F F +''=++ '=2 11 ,受力变形图见主教材图11-16。

相关主题