搜档网
当前位置:搜档网 › Physical characterization of EPS produced by Lactobacillus plantarum KF5 isolated from Tibet Kefir

Physical characterization of EPS produced by Lactobacillus plantarum KF5 isolated from Tibet Kefir

Physical characterization of EPS produced by Lactobacillus plantarum KF5 isolated from Tibet Kefir
Physical characterization of EPS produced by Lactobacillus plantarum KF5 isolated from Tibet Kefir

Carbohydrate Polymers 82 (2010) 895–903

Contents lists available at ScienceDirect

Carbohydrate

Polymers

j o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /c a r b p o

l

Physical characterization of exopolysaccharide produced by Lactobacillus plantarum KF5isolated from Tibet Ke?r

Yanping Wang ?,Chao Li,Peng Liu,Zaheer Ahmed,Ping Xiao,Xiaojia Bai

Key Laboratory of Food Nutrition and Safety (Tianjin University of Science &Technology),Ministry of Education,No.29,13th street at TEAD,Tianjin 300457,China

a r t i c l e i n f o Article history:

Received 16April 2010

Received in revised form 29May 2010Accepted 7June 2010

Available online 15 June 2010Keywords:

Physical characterization Exopolysaccharide

Lactobacillus plantarum KF5

a b s t r a c t

An exopolysaccharide producing strain KF5was isolated from Tibet Ke?r grains and identi?ed as Lactobacillus plantarum with morphology,physiological,biochemical and 16S rDNA tests.KF5exopolysac-charides (EPS)was revealed to have the carboxyl,hydroxyl,and amide groups by FT-IR spectroscopy.The GC analysis of KF5EPS revealed that it was composed of mannose,glucose and galactose in an approx-imate ratio of 1:4.99:6.90in nature.The micro-structure of KF5EPS under different concentration was observed with atomic force microscopy.The SEM images of KF5EPS showed smooth surfaces,exhibiting compact structure that showed plasticized ?lms characteristics.Its melting point is 86.35?C,which is lower than commercial gum.A degradation temperature (Td)of 279.59?C was determined from the TG curve.It suggested a bit higher degradation temperature than locust gum,but lower than xanthan gum.Physical characteristics of KF5EPS were different from other commercially available gums,which impart KF5EPS potential applications in food industry.

? 2010 Elsevier Ltd. All rights reserved.

1.Introduction

The gradually increasing demand of natural polymers for various industrial applications has led to exopolysaccharide devel-opment in recent years,which produced by microorganisms.Many microorganisms can synthesize extracellular polysaccharides and excrete them out of cell.These biopolymers generally include capsular and slime exopolysaccharides (EPS)(Sutherland,1972).Bacteria and microalgae have a better excreting ability than yeasts and fungi (Sutherland,1972,1977,1982,1985,1990).Lactic acid bacteria (LAB)are generally regarded as safe (GRAS).Thus the EPS excreted by LAB can be regarded as safe biology polymer and offer an alternative source of microbial polysaccharides for use in the food or other industries.Many researches showed that EPS amounts and properties are greatly dependent on the microorganisms and their culture conditions and media composi-tion (Cerning,Bouillanne,Landon,&Desmazeud,1992;Kim et al.,2008;Kimmel,Roberts,&Ziegler,1998;Looijesteijn &Hugenholtz,1999;Santivarangkna,Higl,&Foerst,2008;Sutherland,1998;Vijayendra,Palanivel,Mahadevamma,&Tharanathan,2008).Also,EPS,excreted by LAB,of relatively high molecular weight (MW)has been widely studied in the last decade (De Vuyst,De Vin,Vaningelgem,&Degeest,2001;Laws &Marshall,2001;Welman

?Corresponding author.Tel.:+862260601400;fax:+862260601478.E-mail address:ypwang40@https://www.sodocs.net/doc/ba11766504.html, (Y.Wang).&Maddox,2003).These EPS have special physiochemical and rheological properties,such as viscosifying,stabilizing,gelling or emulsifying which can make them as potential food additives (Jolly,Vincent,Duboc,&Neeser,2002;Kandler &Kunath,1983;Sutherland,1998).

Ke?r grains,the starter for obtaining the sour fermented milk ke?r,are gelatinous irregular masses,composed of proteins and polysaccharides that contain LAB,acetic acid bacteria and yeasts involved in the fermentation (Abraham &De Antoni,1999;Garrote,Abraham,&De Antoni,2001).Ke?r grains could produce an exopolysaccharide called ke?ran (Kooiman,1968)and L.plantarum KF5was isolated from Tibet ke?r,China.Although there are many reports about EPS produced by L.plantarum (Desai,Akolkar,Badhe,Tambe,&Lele,2006;Mostafa et al.,2006;Nagata et al.,2009;Tsuda,Hara,&Miyamoto,2008;Sanni,Onilude,Ogunbanwo,Fadahunsi,&Afolabi,2002),there is dearth of information on physical charac-teristics of EPS produced by L.plantarum .

In the current work,we aimed to preliminary analysis the phys-ical characterization of the EPS produced by strain KF5.Indeed,in a previous work we showed that strain KF5had the ability of cholesterol-reducing (Zhang,Xu,Xi,&Wang,2009).Furthermore,L.plantarum KF5has the capability of synthesis EPS.Therefore,the physicochemical characteristics of EPS synthesized by L.plantarum KF5was analyzed to establish a preliminary identi?cation of this biopolymer based on its functional group,monosaccharide compo-sition and physical properties.These characterizations could help us to identify potential application for dairy or other industry and

0144-8617/$–see front matter ? 2010 Elsevier Ltd. All rights reserved.doi:10.1016/j.carbpol.2010.06.013

896Y.Wang et al./Carbohydrate Polymers82 (2010) 895–903

provide some fundamental basis for correlating the intrinsic char-acteristics of EPS with its putative health bene?ts in future.

2.Experimental

2.1.Ke?r grain

Ke?r grain was taken from Tibet,China and was stored in our laboratory and propagated at25?C.

2.2.Screening of the isolates for EPS production and media used

Initially L.plantarum KF5and other strains were grown in 50mL liquid whey medium to screen the strains for EPS quanti?-cation.After incubation for24–48h,the broth was centrifuged at 10,000rpm at4?C for15min.After removing cell,the supernatant was dialyzed and EPS amount was determined by phenol sulphuric acid method using glucose as standard(Dubois,Gilles,Hamilton, Rebers,&Smith,1956).Results were expressed in mg equivalent of glucose per liter of growth medium.Strain with higher amount EPS productivity was screened out.Whey medium was prepared as described by Yokoi,Watanabe,Fujii,Toba,&Adachi(1990),with some modi?cation.Supplemented whey medium contained(per 100mL):1g lactose monohydrate,0.5g glucose,0.5g tryptone, 0.05g cysteine monohydrochloride,0.5g sodiumacetate,0.1mL Tween80,1mL mineral solution,and2g agar.Whey used in the liquid whey media was deproteinized by adjusting whey solution to pH5.5with6N HCl,heated for30min at l00?C,and centrifuged at 10,000rpm for15min.The supernatant was adjusted to pH6.8with 6N NaOH,heated for30min at l00?C,and centrifuged as mentioned above to obtain deprotenized whey.The mineral solution was com-posed of0.4g/L of MgSO4·7H2O,0.15of g/L MnSO4·4H2O,0.18g/L of FeSO4·7H2O,and0.1g/L of NaCl.The?nal pH of the whey media was adjusted to6.0and was subsequently autoclaved at115?C for 20min.Then the media was inoculated2%strains(v/v)and incu-bated at30?C for24h in an anaerobic incubator with a GasPack ?lled with gas mixture consisting of80%N2,10%CO2and10%H2 (v/v).

2.3.Identi?cation of strain KF5

The strain KF5was primarily identi?ed by Gram’s staining and catalase tests.Characteristics of strain KF5was further iden-ti?ed by morphological,biophysical and biochemical tests.The strain identi?cation was also con?rmed by partially sequencing 16S rDNA genes analysis.A primer pair,P1(5 -AGAGTTTGATCCTG-GCTCAG-3 )and P2(5 -AAGGAGGTGATCCAGCC-3 ),corresponding to positions8–28and542–549of the16S rDNA respectively,was used to amplify16S rDNA genes of target isolate.Total chromoso-mal DNA was extracted as described by Forsman and Alatossava (1994).DNA fragments were ampli?ed as follows:initial denat-uration at94?C for4min,followed by30cycles consisting of denaturation at94?C for30s,annealing at55?C for30s,exten-sion at72?C for1.5min and a10-min?nal extension step at 72?C(Zhang,2003).PCR product was checked with0.8%agarose gel electrophoresis.Puri?cation of ampli?ed products and ver-i?cation of the nucleotide sequence were?nished by Beijing AuGCT biotechnology Co.,ltd.The nucleotide sequences were com-pared with standard strains for the sequence similarity through BLAST(https://www.sodocs.net/doc/ba11766504.html,/blast).Moreover,percentage of sequence similarity was calculated.

2.4.Isolation and puri?cation of EPS

LAB strain KF5was inoculated into300mL optimized fermen-tation medium and grown at30?C for32h in anaerobic incubator with a GasPack?lled with gas mixture consisting of80%N2,10% CO2and10%H2(v/v).The culture was heated for30min at100?C to dissolve cell attached EPS and then centrifuged at10,000rpm for20min to separate the cells.Exopolysaccharide in the super-natant?uid was precipitated by adding three times volume of chilled95%ethanol(?20?C)and put at4?C for36h.The sample was then centrifuged at above given conditions and the pellet was retained.The sample was redissolved in distilled water and the chilled absolute ethanol precipitation and water dissolution treat-ment was repeated twice.The resulting EPS pellet was redissloved in distilled water and then encase in dialysis bag at4?C,against four changes of distilled water per day,to remove the small neutral sugars until no momo sugar could be detected outside.The solution in dialysis bag was freeze-dried and further puri?ed by dissolved in8%trichloroacetic acid(TCA)and stirred over night.Then the deposited protein was shifted by centrifugation at12,000rpm for 20min.The resulting supernatant was adjusted to pH7.0and EPS was precipitated by adding an equal volume of chilled ethanol at ?20?C.The pellet was dissolved in double distilled water and was lyphophilized.

2.5.Fourier transform-infrared(FT-IR)spectroscopy

The FT-IR spectrum of puri?ed EPS was detected using Fourier transformed-infrared spectroscopy.For FT-IR spectrum,KF5EPS was treated using KBr method.The pellets for FT-IR analysis were obtained by grinding a mixture of1.2mg of exopolysaccharide with150mg of dry KBr powder,followed by pressing the mixture into a mold.The Fourier transform-infrared spectra were recorded on a Bruker Vector22instrument(Germany)in the region of 4000–400cm?1,at a resolution of4cm?1and processed by Bruker OPUS software.

2.6.Sugar composition analysis

For sugar composition determinations,polysaccharides were hydrolyzed with2M tri?uoroacetic acid(TFA)at120?C for3h. After hydrolysis,water and TFA in the sample were removed by decompressing evaporation.The methanol was added into the dry sample and evaporated by decompression.This treatment repeated ?ve times to remove the residual TFA.The released sugars were converted to their alditol acetates and dissolved in chloroform. And then the samples were?ltered through“Supor”membrane (0.22?m)and used for identi?cation and quanti?cation of the monosaccharide by GC.The standard alditol acetates were gener-ated and analyzed as described by Kang and Qu(2006).

2.7.Atomic force micrograph(AFM)of KF5EPS

KF5EPS solution(1mg/mL)was prepared with distilled water. The aqueous solution was stirred for about1h at40?C in a sealed bottle under N2stream so that KF5EPS dissolved completely.After cooling to room temperature,the solution was continuously diluted to the?nal concentration of0.1mg/mL,0.01mg/mL.About5?L of diluted EPS solution was dropped on the surface of a mica sample carrier.And then absolute ethanol was drip on the sample to?x the EPS.The mica carrier was scoured to remove the unabsorbed residue by double distilled water and subsequently allowed to dry at room https://www.sodocs.net/doc/ba11766504.html,ter,the AFM images were obtained by scan-ning probe microscope(JEOL JSPM-5200,Japan)in tapping mode. The cantilever oscillated at its proper frequency(158kHz)and the driven amplitude was0.430V.

2.8.Scanning electron microscopy(SEM)analysis of KF5EPS

The microstructure and surface morphology of the copolymers was investigated by scanning electron microscopy(SEM,JEOL/EO,

Y.Wang et al./Carbohydrate Polymers 82 (2010) 895–903897

and model JSM-6380,Japan)at an accelerating voltage of 10kV.Samples for SEM analysis were glued onto aluminum stubs and gold-sputtered before SEM examination.2.9.Thermogram analysis (TGA)

The pyrolysis and combustion were carried out in Mettler Toledo TGA/SDTA 851e thermal analyzer operating at atmospheric pres-sure.The system was controlled by a compatible PC,which registers the temperature measured by a thermocouple placed in the cru-cible.The crucible was made of Al 2O 3.The 10mg EPS was placed in a platinum crucible and heated at a linear heating rate of 10?C/min over a temperature range 25–1000?C.The experiments were per-formed separately in air and nitrogen atmosphere at a ?ow rate of 50mL/min.Prior to the experiment,TGA/SDTA unit was calibrated for temperature reading using indium as melting standard.2.10.Analysis of thermal properties

The thermal properties of EPS were analyzed by using a differ-ential scanning calorimeter (DSC Model 141SETARAM Scienti?c &Industrial Equipment Co Ltd.,France).The 4.2mg of dried EPS sample was placed in an aluminum pan.Then it was sealed and ana-lyzed,using empty pan as a reference,for determining the melting point and enthalpy change.The heating rate was 10?C/min from 20to 300?C.

3.Results and discussion

3.1.Screening and identi?cation of KF5strain

Ke?r samples were taken from Tibet,China.Different media were used for measuring the amount of EPS produced by different strains,such as supplemented MRS,milk media and supplemented whey media.As a result,we found the supplemented whey media as the best both for screening and exopolysaccharide production.Initially the strains were screened on the basis of the morphol-ogy and colonies which have milky,smooth or ropy appearance.In the next step capability of strains to produce EPS was tested by phenol–sulphuric acid method.The strain KF5,which produced higher amount of EPS among screened strains,was selected for present study.Strain KF5was,Gram positive,catalase negative,nitrate reduction and gelatine liquefaction negative.This strain is brevibacterium (Fig.1),which can acidify and curd.This homofer-mentative pro?le along with the combination of sugar fermentation pattern suggests that strain KF5might belong to the L.plantarum species (Buchanan &Gibbons,1999;Du,1992;Ling &Dong,1999).

For further con?rmation,partial sequencing of variable regions of 16S rDNA genes was performed.About 1500base pair (bp)vari-able regions of 16S rDNA genes was ampli?ed and 1489bp were sequenced and the Genebank access number was FJ557107.The nucleotide sequences were used for the analysis of sequence sim-ilarity through BLAST (https://www.sodocs.net/doc/ba11766504.html,/blast )and it gave 100%similarity with L.plantarum EW-p,L.plantarum NRIC 1834,L.plantarum NRIC 1767,L.plantarum NRIC 1724,L.plantarum NRIC 0387,L.plantarum NRIC 0386,L.plantarum NRIC 0385,L.plan-tarum NRIC 0384,L.plantarum L3,L.plantarum WCFS1,L.plantarum WCFS1.So strain KF5was identi?ed and named as L.plantarum KF5.3.2.EPS production,isolation and quanti?cation

Initially L.plantarum KF5produced the superior EPS amount than other strains.So the KF5strain was chosen for further study-ing.The yield of strain KF5was determined as 75.57mg/L under initial incubation conditions.Effect of different kinds of fermen-tation conditions,such as incubation time,inoculated amount,and initial pH of culture medium on EPS production was studied in order to enhance EPS production.The optimized incubation conditions were culture for 30h,initial pH at 6.3,inoculation concentration of 3%,the amount of EPS produced by KF5could be up to 95.58mg/L,which increased 26.48%than that under initial fermenting con-ditions.Many researchers had reported that there are signi?cant relationships among medium composition,culture conditions and pH (Kim et al.,2008;Santivarangkna et al.,2008).The amount of EPS produced by L.plantarum and L.paraplantarum strains ranged from 140to 297mg/L cultivated in MRS broth containing maltose (Zotta,Piraino,Parente,Salzano,&Ricciardi,2008).

Heating treatment of the samples as the ?rst step in the polysac-charide isolation procedure is crucial for completing recovery of the EPS.Samples without this step gave lower polysaccharide extrac-tion than those including this treatment.But it should be used only where the exopolysaccharide is thermally stable (Kumar,Mody,&Jha,2007;Rimada &Abraham,2003).

3.3.Fourier transform-infrared (FT-IR)spectroscopy analysis

Fourier transform-infrared spectroscopy has been a useful tool in monitoring structural changes in biopolymers (Wilson,Goodfellow,&Belton,1998).The IR spectrum of the puri?ed KF5EPS is given in Fig.2,which shows more complex pattern of peaks from 3000to 1200cm ?1.Polysaccharides contain a signi?cant number of hydroxyl groups,which exhibit an intense broad stretch-ing peak around 3307cm ?1.The absorption in that region (Fig.2)has the rounded trait typical of hydroxyl groups (Howe,Ishida,&

Fig.1.(a)Micrograph (100×)of strain KF5,and (b)the colonial morphology of strain KF5.

898Y.Wang et al./Carbohydrate Polymers

82 (2010) 895–903

Fig.2.FT-IR spectrum of the exopolysaccharide produced by L.plantarum KF5.The FT-IR spectra were recorded on a Bruker Vector 22instrument (Germany)in the region of 4000–400cm ?1,at a resolution of 4cm ?1and processed by Bruker OPUS software.

Clark,2002)which suggests that the substance is polysaccharide.The IR spectra of L.

plantarum KF5EPS revealed functional charac-teristic such as a broad-stretching hydroxyl group at 3307cm ?1,two weak C–H stretching peaks at 2966and 2936cm ?1corre-sponding to methyl groups as well as methylene groups.Strong absorption at 1652cm ?1which corresponds to amide I >C O stretch and C–N bending of protein and peptide amines.And a peak at 1543cm ?1could be assigned to N–H bending of amides II of pro-tein (Lin et al.,2005).The peak at 1448cm ?1was corresponded to asymmetric deformation of CH 3and CH 2of proteins.Meanwhile the peak at 1404cm ?1could be assigned to >C O stretch of the COO ?groups and C–O bond from COO ?groups (Haxaire,Marechal,Milas,&Rinaudo,2003;Helm &Naumann,1995).There was no peak around 1700–1775cm ?1,suggesting that neither glucuronic acid nor diacyl ester was present in KF5EPS,and the peak around 1652cm ?1suggested the presence of the C–O group (Haxaire et al.,2003),which were consistent with results of Wang,et al.(Wang &Bi,2008).A broad stretch of C–O–C,C–O at 1000–1200cm ?1corre-sponds to the presence of carbohydrates (Bremer &Geesey,1991),so in the ?ngerprint region (region below 1500cm ?1where bands characterize the molecule as a whole),the strongest absorption band at 1075cm ?1is attributed to that substance is polysaccharide (Nataraj,Schomacker,Kraume,Mishra,&Drews,2008).The FT-IR

spectra of the polymer evidenced the presence of carboxyl groups,which may serve as binding sites for divalent cations (Bramhachari et al.,2007).Moreover,the spectrum showed the presence of carboxyl and hydroxyl,which are the preferred groups for the ?oc-culation process similar to that observed in polyelectrolyte (Zajic &Knetting,1970).Noticeably the exopolysaccharide differ from the EPS produced by Leuconostoc sp.CFR 2181and algal polysaccha-ride by having an additional peak at around 1240cm ?1region due to the presence of o -acetyl ester (Kazy,Sar,Singh,Sen,&Souza,2004).

https://www.sodocs.net/doc/ba11766504.html,position analysis of EPS

The sugar composition of the EPS was analyzed using GC (Fig.3).The results from present study are given which revealed that KF5EPS is composed of mannose,glucose and galactose in an approxi-mate ratio of 1:4.99:6.90.Galactose had the highest proportion than mannose or glucose.This result is in accord with some previous reports that in EPS from lactobacilli of food origin,galactose is often found at the same or a higher proportion than the other monosac-charides (Mozzi,Vaningelgem,&Hébert,2006;Ruas-Madiedo,Salazar,&De los Reyes-Gavilán,2009).The presence of different sugar moieties suggests that the exopolymer is a heteropolysaccha-ride.The similar result was reported by Skogen et al.(1974)that P.zeae P74produced an EPS composed of large amounts of mannose and lesser quantities of glucose and galactose.Salazar et al.(2009)reported the composition of EPS were only galactose and glucose (Monosaccharide ration 1:9,1:5,1:5,1:3,respectively),which pro-duced by human origin strains L.plantarum C64MRb,E112,G62,H2,respectively.It is well known that in microorganisms,the carbon source used for growth determines both the quality and quantity of polysaccharide formation (Bramhachari et al.,2007).It is reported by Grobben et al.(1997)that the polymer produced by L.bulgaricus strain NCFB 2772,grown in chemically de?ned media containing glucose and fructose,produced two EPS fractions,composed of galactose,glucose and rhamnose.The EPS produced by Lactobacil-lus ke?ranofaciens ZW3was only composed of glucose and galactose (Wang,Zaheer,Feng,Li,&Song,2008).And Marshall et al.(1995)reported the production of a phosphopolysaccharide by Lactococcus lactis subsp .cremoris LC330,which consisted of glucose,rham-nose,galactose and glucosamine in an approximate ratio of 6:5:4:1,respectively.Vijayendra et al.(2008)reported the exopolysaccha-ride produced by a non-ropy strain of Leuconostoc sp.CFR 2181was composed of glucose (91%),rhamnose and arabinose (1.8%each).

Fig.3.GC chromatography of alditol acetate derivative of (a)standard monosaccharide and (b)hydrolyzed exopolysaccharide from L.plantarum KF5.Polysaccharides were hydrolyzed with 2M tri?uoroacetic acid (TFA)at 120?C for 3h.After hydrolysis,water and TFA in the sample were removed by decompressing evaporation.The methanol was added into the dry sample and evaporated by decompression.This treatment repeated ?ve times to remove the residual TFA.

Y.Wang et al./Carbohydrate Polymers82 (2010) 895–903

899

Fig.4.Atomic force microscopy(AFM)planar(a and b)and cubic(c and d)images of molecular structure of KF5EPS.The concentration were10?g/mL(a and c)and 100?g/mL(b and d).The atomic force microscopy was a JEOL JSPM-5200instrument and was operated in the tapping-mode.The cantilever oscillated at its proper frequency (158kHz)and the driven amplitude was0.430V.

3.5.AFM analysis

The AFM-based single-molecule force spectroscopy (AFM–SMFS)technology is a powerful tool to characterize the force-induced conformational transitions,the dynamics,and super molecular structures of polysaccharides at the molecular level(Abu-lail&Camesano,2003;Giannotti,Rinaudo,&Vancso, 2007;Giannotti&Vancso,2007;Sletmoen,Maurstad,Sikorski, Paulsen,&Stokke,2003;Zhang&Marszalek,2006).AFM imaging of biopolymer as polysaccharides was generally conducted in air or under a liquid in order to avoid excessive dehydration.The typical sample preparation procedure consisted of spreading of a dilute(1–10?g/mL)polymer solution onto a freshly cleaved mica surface and successive air-drying under ambient pressure, temperature,and humidity(Feng,Gu,Jin,&Zhuang,2008).The conformation of polymers is thus detected under various envi-ronmentally controlled conditions,such as solvent,temperature, salt,and electrochemical potential(Haxaire et al.,2003).The topographical AFM images of KF5EPS were shown in Fig.4.KF5 EPS deposited from10?g/mL aqueous solution,roundness

lumps

Fig.5.The microstructure and surface morphology micrographs of KF5EPS observed by SEM.Magni?cation is indicated in the micrographs.Samples for SEM analysis were glued onto aluminum stubs and gold-sputtered and analyzed by scanning electron microscopy(SEM,JEOL/EO,and model JSM-6380,Japan)at an accelerating voltage of 10kV.

900Y.Wang et al./Carbohydrate Polymers

82 (2010) 895–903

Fig.6.TG curves of KF5EPS,xanthan gum,locust gum.(a)KF5EPS,(b)xanthan gum,(c)locust gum.The pyrolysis and combustion were carried out in Mettler Toledo TGA/SDTA 851e thermal analyzer with compatible PC operating at atmospheric pressure.The 10mg EPS was placed in a platinum crucible and heated at a linear heating rate of 10?C/min over a temperature range 25–1000?C.The experiments were performed separately in air and nitrogen atmosphere at a ?ow rate of 50mL/min.Prior to the experiment,TGA/SDTA unit was calibrated for temperature reading using indium as melting standard.

and chains can be seen (Fig.4a and c).The maximal height of lumps is 13nm.But the lumps and chains formed at an irregularly reticulation shape when the deposition was made at a higher concentration (100?g/mL).This result suggested that KF5EPS could combine water in the aqueous.Furthermore,it showed pseudoplastic behavior because the strong interaction between water molecules and the hydroxyl groups (?OH)of KF5EPS.A similar experiment was reported about an acidic polysaccharide

Y.Wang et al./Carbohydrate Polymers82 (2010) 895–903901

from Mesona blumes gum(Feng et al.,2008).The AFM images of Mesona blumes gum showed different shapes,spherical lumps and worm,respectively in low and high concentration.The reduction in viscosity could also be attributed to polymer degradation due to the cleavage of glycosidic bonds with in the polysaccharide structure(Ren,Ellis,Sutherland,&Ross-Murphy,2003).These results showed a potential choice for KF5EPS to be selected as biothickener and stabilizer agent.And strain KF5can be chosen as the starter to overcome the problem of syneresis in yoghurt industry.

3.6.SEM analysis

Scanning electron microscopy is a very powerful tool to study surface morphology of macromolecules which helps to know about its common physical properties.The microstructure and surface morphology micrographs of KF5EPS are shown in Fig.5.As observed by SEM,KF5EPS resembled sheets of polysaccharide over-laid,appeared as smooth surfaces under10,000×magni?cation, exhibiting compact structure which is characteristic of material used to make the plasticized?lms.So it is the potential chance for making such kind of?lms.

3.7.Thermogravimetric analysis(TGA)

The thermogravimetric analysis(TGA)of KF5EPS was carried out dynamically(weight loss versus temperature)and the experi-mental results are presented in Fig.6a.A degradation temperature (Td)of279.59?C was measured from the TGA curve for KF5EPS. The polymer showed an initial weight loss between40and100?C owing to a loss in moisture content.The initial moisture content in the sample is due to the increased level of carboxyl groups in the polysaccharide.This was attributed to the direct positive rela-tionship between the carboxyl contents and the af?nity of the polysaccharide for interaction with water(Parikh&Madamwar, 2006).The polymer breaks down above100?C and the weight was lost.The weight of polymer dramatically lost around300?C and gradually decreased.Fig.6b and c shows the TG analysis of xanthan gum and locust gum respectively as reference material.Degrada-tion temperature for xanthan gum is282.65?C,where for locust gum is278.46?C.Thus the EPS of KF5showed a bit higher degra-dation temperature than locust gum.These results may due to the different structure and composition among KF5EPS,locust gum and xanthan gum.The gum of the locust bean(LBG),Ceratonia sili-qua,is derived from the endosperm of the seeds after removal of the testa(seed coat),and the quality of the gum is dependent on the degree of separation achieved(K?k,Hill,&Mitchell,1999).Locust gum is a linear polysaccharides,which is composed of mannose and galactose.The average mannose to galactose ratio(M/G)in LBG is approximately3.5:1(Dakia,Blecker,Robert,Wathelet,&Paquot, 2008).Xanthan gum is an extracellular hetero-polysaccharide, which is produced by the aerobic fermentation of Xanthomonas campestris.Xanthan is composed of pentasaccharide repeating units,containing d-glucose,d-mannose,d-glucoronic acid(at a ratio2:2:1),acetal-linked pyruvic acid and d-acetyl groups(Baird, 1989).However,KF5EPS is an extracellular heteropolysaccharide, which produced by L.plantarum KF5.The composition of KF5EPS was mannose,glucose and galactose in an approximate ratio of 1:4.99:6.90.

3.8.Analysis of thermal properties

Besides chemical properties,applicability of polysaccharide is largely dependent on its thermal behaviour(Marinho-Soriano& Bourret,2005).As for the thermal characteristics of exopolysac-charides,heat absorption and emission are accompanied with the Table1

Thermal properties of KF5EPS,xanthan gum,guar gum and locust gum determined by differential scanning calorimetry(DSC).

Sample name Peak temperature(?C)Enthalpy(J g?1)

KF5EPS86.35133.5

Xanthan gum153.493.2

Guar gum490.1192.9

Locust gum109.1187.1

physical change by deformation of polymer structure or melting of crystalline polysaccharides.Energy level of the polysaccharide was scanned using a differential scanning calorimeter and was compared with xanthan gum,guar gum and locust gum used as standard.The melting temperature of KF5EPS,xanthan gum,guar gum and locust gum started at about86.35,153.4,490.1and 109.11?C,respectively,and the endothermic enthalpy change( H) required to melt1g of KF5EPS,xanthan gum,guar gum and locust gum were133.5,93.2,192.9and87.1J,respectively(Table1).The KF5EPS suggest the lowest melting points than other commer-cial gum and the enthalpy only lower than guar gum.Thus the KF5polysaccharide showed a different thermal behavior from xan-than gum,guar gum and locust gum.As for the earlier report that exopolysaccharides obtained from a mutant of Bacillus polymyxa, the melting point was183.25?C,and enthalpy was100.3cal/g (Kwon,Joo,&Oh,1992).And the measurement of the thermal characteristics of levan synthesized with levansucrase showed the highest melting point to be178.4?C with an enthalpy of1.66cal/g, which was similar to the thermal characteristics of the exopolysac-charides derived from legacy microorganisms(Jung,Song,Kim, Chun,&Rhee,1999).

4.Conclusion

The research on microbial exopolysaccharides is attracting increased attention.In this study,the EPS producing strains L. plantarum KF5was identi?ed,which also had cholesterol-reducing ability(Zhang et al.,2009).The KF5EPS was a typical heteropoly-meric polysaccharide,which composed of mannose,glucose and galactose in an approximate ratio of1:4.99:6.90in nature.It sug-gested from the SEM and AFM images that KF5EPS has potential ability to make the bio?lm.In addition,exopolymer showed a lower melting point and a higher degradation temperature.These char-acteristic of KF5EPS enhanced its potential uses,especially for food industry.Further work is needed to investigate the applications and function in vitro for this EPS.

Acknowledgments

This work was supported by Tianjin Municipal Science and Technology Commission Grant(No.08JCYBJC01900)and The Research Fund for the Doctoral Program of Higher Education(No. 20091208110001).

References

Abraham,A.G.,&De Antoni,G.L.(1999).Characterization of ke?r grains grow in cows’milk and in soya milk.Journal of Dairy Research,66,327–333.

Abu-lail,N.I.,&Camesano,T.A.(2003).Polysaccharide properties probed with atomic force microscopy.Journal of Microscopy,212,217–238.

Baird,J.K.(1989).Xanthan,in:Encyclopedia of Polymer Science.Engineering,17, 901–918.

Bramhachari,P.V.,Kishor,P.B.,Ramadevi,R.,Kumar,R.,Rao,B.R.,&Dubey,S.

K.(2007).Isolation and Characterization of Mucous Exopolysaccharide(EPS) Produced by Vibrio furnissii Strain VB0S3.Journal of Microbiology Biotechnology, 17(1),44–51.

Bremer,P.J.,&Geesey,G.G.(1991).An evaluation of bio?lm development uti-lizing non-destructive attenuated total re?ectance Fourier transform infrared spectroscopy.Biofouling,3,89–100.

902Y.Wang et al./Carbohydrate Polymers82 (2010) 895–903

Buchanan,R.E.,&Gibbons,N.E.(1999).Bergey’s Manual of Systemaic Bacteriology.

Beijing:Science press.,pp.101–193

Cerning,J.,Bouillanne,C.,Landon,M.,&Desmazeud,J.M.(1992).Isolation and char-acterization of exopolysaccharides from the slime-forming mesophilic lactic acid bacteria.Journal of Dairy Science,75,692–699.

Dakia,P.A.,Blecker,C.,Robert,C.,Wathelet,B.,&Paquot,M.(2008).Composition and physicochemical properties of locust bean gum extracted from whole seeds by acid or water dehulling pre-treatment.Food Hydrocolloids,22,807–818.

De Vuyst,L.,De Vin,F.,Vaningelgem,F.,&Degeest,B.(2001).Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria.International Dairy Journal,11,687–708.

Desai,K.M.,Akolkar,S.K.,Badhe,Y.P.,Tambe,S.S.,&Lele,S.S.(2006).Optimiza-tion of fermentation media for exopolysaccharide production from Lactobacillus plantarum using arti?cial intelligence-based techniques.Process Biochemistry, 41,1842–1848.

Du,L.L.(1992).Experimental Techniques of Industry Microbiology.Tianjin:Science and technology press.,pp.114–130.

Dubois,M.,Gilles,K.A.,Hamilton,J.K.,Rebers,P.A.,&Smith,F.(1956).Colorimetric method for determination of sugars and related substances.Analytical Chemistry, 28,350–356.

Feng,T.,Gu,Z.B.,Jin,Z.Y.,&Zhuang,H.N.(2008).Isolation and characterization of an acidic polysaccharide from Mesona Blumes gum.Carbohydrate Polymers,71, 159–169.

Forsman,P.,&Alatossava,T.(1994).Repeated sequences and the sites of genome rearrangements in bacteriophages of Lactobacillus delbrueckii https://www.sodocs.net/doc/ba11766504.html,ctis.

Archives of Virology,137,43–54.

Garrote,G.L.,Abraham,A.G.,&De Antoni,G.L.(2001).Chemical and microbiological characterisation of ke?r grains.Journal of Dairy Research,68(4),639–652. Giannotti,M.I.,Rinaudo,M.,&Vancso,G.J.(2007).Force spectroscopy of hyaluronan by atomic force microscopy:From hydrogen-bonded networks toward single-chain behavior.Biomacromolecules,8,2648–2652.

Giannotti,M.I.,&Vancso,G.J.(2007).Interrogation of single synthetic polymer chains and polysaccharides by AFM-based force spectroscopy.Chemical Physics Chemistry,8,2290–2307.

Grobben,G.J.,van Casteren,W.H.M.,Schols,H.A.,Oosterveld,A.,Sala,G.,Smith, M.R.,et al.(1997).Analysis of the exopolysaccharides produced by Lactobacillus delbrueckii subsp.bulgaricus NCFB2772grown in continuous culture on glucose and fructose.Applied Microbiology and Biotechnology.,48,516–521.

Haxaire,K.,Marechal,Y.,Milas,M.,&Rinaudo,M.(2003).Hydration of polysaccha-ride hyaluronan observed by IR spectrometry I.Preliminary experiments and band assignments.Biopolymers,72,10–20.

Helm,D.,&Naumann,D.(1995).Identi?cation of some bacterial cell components by FT-IR spectroscopy.FEMS Microbiology Letters,126,75–79.

Howe,K.J.,Ishida,K.P.,&Clark,M.M.(2002).Use of ATR/FT-IR spectrometry to study fouling of micro?ltration membranes by natural waters.Desalination,147, 251–255.

Jolly,L.,Vincent,S.J.F.,Duboc,P.,&Neeser,J.R.(2002).Exploiting exopolysaccha-rides from lactic acid bacteria.Antonie van Leeuwenhoek,82,367–374.

Jung,S.J.,Song,K.B.,Kim,B.Y.,Chun,U.H.,&Rhee,S.K.(1999).Viscosity and thermal characterization of levan.Food Engineering Progress,3,176–180.

Kandler,O.,&Kunath,P.(1983).Lactobacillus ke?r sp.nov.,a component of micro?ora of ke?r.Systematic and Applied Microbiology,4,286–294.

Kang,X.J.,&Qu,J.S.(2006).Analysis of Angelica dahurica polysaccharide by gas chromatography.Chinese Journal of Pharmaceutical Analysis,26,891–894. Kazy,S.K.,Sar,P.,Singh,S.P.,Sen,A.K.,&Souza,S.F.D.(2004).Extracellular polysac-charides of a copper-sensitive and a copper-resistant Pseudomonas aeruginosa strain:synthesis,chemical nature and copper binding.World Journal of Microbi-ology and Biotechnology,18,583–588.

Kim,Y.,Kim,J.U.,Oh,S.,Kim,Y.J.,Kim,M.,&Kim,S.H.(2008).Technical opti-mization of culture conditions for the production of exopolysaccharide(EPS)by Lactobacillus rhamnosus ATCC9595.Food Science and Biotechnology,17,587–593. Kimmel,S.A.,Roberts,R.F.,&Ziegler,G.R.(1998).Optimization of exopolysac-charide production by Lactobacillus delbrueckii subsp.bulgaricus RR grown in a semide?ned medium.Applied and Environmental Microbiology,64, 659–664.

K?k,M.S.,Hill,S.E.,&Mitchell,J.R.(1999).A comparison of the rheological behaviour of crude and re?ned locust bean gum preparation during thermal processing.Carbohydrate Polymers,38,261–265.

Kooiman,P.(1968).The chemical structure of ke?ran,the water-solube polysaccha-ride of the ke?r grain.Carbohydrate Research,7,220–221.

Kumar,A.S.,Mody,K.,&Jha,B.(2007).Bacterial exopolysaccharides-a perception.

Journal of Basic Microbiology,47,103–117.

Kwon,G.S.,Joo,H.K.,&Oh,T.K.(1992).Isolation of exopolysaccharide producing Bacillus polymyxa KS-1and some properties of exopolysaccharide.Korean Journal of Applied in Microbiology and Biothechnology,20,34–39.

Laws,A.P.,&Marshall,V.M.(2001).The relevance of exopolysaccharides to the rheological properties in milk fermented with ropy strains of lactic acid bacteria.

International Dairy Journal,11,709–721.

Lin,M.S.,Murad Al-Holy,Chang,S.S.,Huang,Y.Q.,Cavinato,A.G.,Kang,D.H.,et al.

(2005).Rapid discrimination of Alicyclobacillus strains in apple juice by Fourier transform infrared spectroscopy.International Journal of Food Microbiology,105, 369–376.

Ling,D.W.,&Dong,X.Z.(1999).Isolation,Identi?cation of Lactic Acid Bacterial and Experimental Methods.Beijing:China Light Industry Press.,pp.1–45. Looijesteijn,P.J.,&Hugenholtz,J.(1999).Uncoupling of growth and exopolysac-charide production by Lactobacillus lactis subsp.cremoris NIZO B40and

optimization of its synthesis.Journal of Bioscience and Bioengineering,88, 178–182.

Marinho-Soriano,E.,&Bourret,E.(2005).Polysaccharides from the red seaweed Gracilaria dura(Gracilariales,Rhodophyta).Bioresource Technology,96,379–382. Marshall,V.M.,Cowie,E.N.,&Moreton,R.S.(1995).Analysis and production of two exopolysaccharides from Lactococcus lactis subsp.cremoris LC330.Journal of Dairy Research,62,621–628.

Mostafa,H.,Daba, A.,&El-Mezawy, A.(2006).Screening of potential lacto-bacilli protein-bound exopolysaccharides.Deutsche Lebensmittel-Rundschau, 102,62–66.

Mozzi,F.,Vaningelgem,F.,Hébert,E.M.,Van der Meulen,R.,Foulquié-Moreno,M.

R.,Font de Valdez S G.,&De Vuyst,L.(2006).Diversity of heteropolysaccharide-producing lactic acid bacterium strains and their biopolymers.Applied and Environmental Microbiology,72,4431–4435.

Nagata,Y.,Hashiguchi,K.,Kamimura,Y.,Yoshida,M.,&Gomyo,T.(2009).The Gas-trointestinal Transit Tolerance of Lactobacillus plantarum Strain No.14Depended on the Carbon Source.Bioscience Biotechnology and Biochemistry,73,2650–2655. Nataraj,S.,Schomacker,R.,Kraume,M.,Mishra,M.I.,&Drews,A.(2008).Journal of the Membrance Science,308,152–161.

Parikh,A.,&Madamwar,D.(2006).Partial characterization of extracellular polysac-charides from cyanobacteria.Bioresource Technology,97,1822–1827.

Ren,Y.,Ellis,P.R.,Sutherland,I.W.,&Ross-Murphy,S.B.(2003).Dilute and semi-dilute solution properties of an exopolysaccharide from Escherichia coli strain S61.Carbohydrate Polymers,52,189–195.

Rimada,P.S.,&Abraham,A.G.(2003).Comparative study of different methodologies to determine the exopolysaccharide produced by ke?r grains in milk and whey.

Lait,83,79–87.

Ruas-Madiedo,P.,Salazar,N.,&De los Reyes-Gavilán,C.G.(2009).Biosynthesis and chemical composition of exopolysaccharides produced by lactic acid bacteria.

In Bacterial Polysaccharide.In M.Ullrich(Ed.),Current Innovations and Future Trends(pp.279–310).Norwich,UK:Caister Academic Press.

Salazar,N.,Prieto,A.,Leal,J.A.,Mayo,B.,Bada-Gancedo,J.C.,de los Reyes-Gavilan,

C.G.,et al.(2009).Production of exopolysaccharides by Lactobacillus and Bi?-

dobacterium strains of human origin,and metabolic activity of the producing bacteria in milk.Journal of Dairy Science,92,4158–4168.

Sanni,A.I,Onilude,A.A.,Ogunbanwo,S.T.,Fadahunsi,I.F.,&Afolabi,R.O.(2002).

Production of exopolysaccharides by lactic acid bacteria isolated from tradi-tional fermented foods in Nigeria.European Food Research and Technology,214, 405–407.

Santivarangkna,C.,Higl,B.,&Foerst,P.(2008).Protection mechanisms of sugars during different stages of preparation process of dried lactic acid starter cultures.

Food Microbiology,25,429–441.

Skogen,L.O.,Reinbold,G.W.,&Vedamuthu,E.R.(1974).Capsulation01propioni-bacterium.Journal of Milk and Food Technology,37,314–321.

Sletmoen,M.,Maurstad,G.,Sikorski,P.,Paulsen,B.S.,&Stokke,B.T.(2003).Charac-terisation of bacterial polysaccharides:steps towards singlemolecular studies.

Carbohydrate Research,338,2459–2475.

Sutherland,I.W.(1972).Bacterial exopolysaccharides.Advances in Microbial Physi-ology,8,143–213.

Sutherland,I.W.(1977).Microbial EPS synthesis.In:Surface Carbohydrates of the Prokaryotic Cell.London:Academic Press.,p.40.

Sutherland,I.W.(1982).Biosynthesis of microbial exopolysaccharides.Advances In Microbial Physiology,23,79–150.

Sutherland,I.W.(1985).Biosynthesis and composition of Gram-negative bacte-rial extracellular and wall polysaccharides.Annual Review of Microbiology,39, 243–270.

Sutherland,I.W.(1990).Biotechnology of Microbial Exopolysaccharides.Cambridge, UK:Cambridge University Press.,p.1.

Sutherland,I.W.(1998).Novel and established applications of microbial polysac-charide.Trends in Biotechnology,16,41–46.

Tsuda,H.,Hara,K.,&Miyamoto,T.(2008).Binding of Mutagens to Exopolysaccharide Produced by Lactobacillus plantarum Mutant Strain301102S.Journal of Dairy Science,91,2960–2966.

Vijayendra,S.V.N.,Palanivel,G.,Mahadevamma,S.,&Tharanathan,R.N.(2008).

Physico-chemical characterization of an exopolysaccharide produced by a non-ropy strain of Leuconostoc sp CFR2181isolated from dahi,an Indian traditional lactic fermented milk product.Carbohydrate Polymers,72,300–307.

Wang,M.,&Bi,J.(2008).Modi?cation of characteristics of ke?ran by changing the carbon source of Lactobacillus ke?ranofaciens.Journal of the Science of Food and Agriculture,88,763–769.

Wang,Y.P.,Zaheer,A.,Feng,W.,Li,C.,&Song,S.Y.(2008).Physicochemical proper-ties of exopolysaccharide produced by Lactobacillus ke?ranofaciens ZW3isolated from Tibet ke?r.International Journal of Biological Macromolecules,43,283–288.

Welman,A.D.,&Maddox,I.S.(2003).Exopolysaccharides from lactic acid bacteria: perspectives and challenges.Trends in Biotechnology,21,269.

Wilson,R.H.,Goodfellow,B.J.,&Belton,P.S.(1998).Fourier transform infrared spectroscopy for the study of food biohydrocoloids.Food Hydrocolloids,2, 169–178.

Yokoi,H.,Watanabe,T.,Fujii,Y.,Toba,T.,&Adachi,S.(1990).Isolation and character-ization of polysaccharide-producing bacteria from ke?r grains.Journal of Dairy Science,73,1684–1689.

Zajic,J.E.,&Knetting,E.(1970).Development in Industrial Microbiology.Washington,

D.C.:American Institute of Biological Science.,pp.87–98.

Zotta,T.,Piraino,P.,Parente,E.,Salzano,G.,&Ricciardi,A.(2008).Characteriza-tion of lactic acid bacteria isolated from sourdoughs for Cornetto,a traditional

Y.Wang et al./Carbohydrate Polymers82 (2010) 895–903903

bread produced in Basilicata(Southern Italy).World Journal of Microbiology and Biotechnology,24,1785–1795.

Zhang,B.,Xu,N.,Xi,A.D.,&Wang,Y.P.(2009).Screening and Identi?cation of Cholesterol-Reducing KF5Strain.Journal of Tianjin University of Science&Tech-nology,24,17–20.Zhang,Q.,&Marszalek,P.E.(2006).Identi?cation of sugar isomers by single-molecule force spectroscopy.Journal of the American Chemical Society,128, 5596–5597.

Zhang,W.M.(2003).Modern Empirical Manual of Molecular Biology.Beijing:Publish-ing House of Science and Technology.,pp.89–91.

框架合同

Scheduling Agreement and delivery schedule(计划协议及交货计划): 1.创建计划协议(Tcode:ME31L) Path:Logistics->Material Management->Purchasing->Outline Agreement->Scheduling Agreement ->Create->Vendor Known 前台->后勤->物料管理->采购->框架协议->计划协议->创建->ME31L-已知供应商 创建Scheduling Agreement也有很多的方式:Manual、Copy Document、Reference to PReq、Reference to RFQ、R eference to Contract。 Agreement Type:LP->手工创建Delivery Schedule LPA->MRP自动创建Delivery Schedule

输入“有效期限末”=2009-12-30,“付款条款”=0001,回车: 输入:物料:B-16MNR-10,目标数量:5000,工厂:1101,物料组:CR10,保存,系统提示:“计划协议在号550000 0002下被创建”,。 使用ME35L批准计划协议(否则不能做库存收货),

点击批准计划协议。。 2.维护交货计划Delivery Schedule(Tcode:ME38) Path:Logistics->Material Management->Purchasing->Outline Agreement->Scheduling Agreement ->Delivery Schedul e->Maintain 前台->后勤->物料管理->采购->框架协议->计划协议->交货计划->ME38-维护

AE特效中英文对照

1.1 55mm Color Grad(颜色渐变) 1.2 55mm Defocus (散焦) 1.3 55mm Faux Flim(模仿胶片效果) 1.4 55mm Fluorescent (荧光) 1.5 55mm Fog(雾) 1.6 55mm Infra-red (在红色下面) 1.7 55mm Mist(薄雾) 1.8 55mm ND Grad(渐变) 1.9 55mm Night Vision(夜视) 1.10 55mm Selective Soft Focus(选择性的软焦点) 1.11 55mm Skin Smoother(外表面平整) 1.12 55mm Tint(偏色) 1.13 55mm Warm/Cool(暖色/冷色) 第2章AEFlame(火焰) 第3章Boris 3.1 Boris Fire(火焰效果) 3.2 Boris FX 3 3.2.1 Boris Artist's Poster(艺术海报) 3.2.2 Boris Blur (模糊) 3.2.3 Boris Directional Blur (方向模糊) 3.2.4 Boris Gaussian Blur (高斯模糊) 3.2.5 Boris Unsharp Mask (锐利的遮罩) 3.2.6 Boris Brightness-Contrast (亮度-对比度) 3.2.7 Boris Color Balance (颜色平衡) 3.2.8 Boris Color Correction (颜色修正) 3.2.9 Boris Composite (合成) 3.2.10 Boris Correct Selected Color (修改选择的颜色)3.2.11 Boris Hue-Sat-Lightness (色调-饱和度-亮度)3.2.12 Boris Invert Solarize (反转曝光) 3.2.13 Boris Levels Gamma (标准的伽马值) 3.2.14 Boris MultiTone Mix (多通道混合) 3.2.15 Boris Posterize (多色调分色) 3.2.16 Boris RGB Blend (RGB混和) 3.2.17 Boris Tint-Tritone (以三种颜色替换) 3.2.18 Boris Bulge (凸出) 3.2.19 Boris Displacement Map (置换贴图) 3.2.20 Boris Fast Flipper (自动翻转) 3.2.21 Boris Polar Displacement (两极置换) 3.2.22 Boris Ripple (波纹) 3.2.23 Boris V ector Displacement (矢量置换) 3.2.24 Boris Wave (波浪)

销售框架协议(律师推荐版)

销售框架协议 甲、乙双方本着自愿、平等、公开、长期及密切的合作,以共同发展为原则,依据中华人民共和国的法律、法规,经双方友好协商,达成如下条款,以资共同遵守。本协议更改及修正须采用书面形式作出。除另有书面协议外,双方以任何方式不时进行的任何一笔买卖交易均适用本合同。 定义 货物:指甲方经产品厂家或供应商合法授权销售给乙方的产品,受国家法律保护。 信用额度:是指甲方根据乙方的资信情况,交易信用记录,授予乙方可在一定的金额范围内以赊销方式从甲方采购产品。甲、乙双方就信用额度另行签署《授信协议》。 订单:在本合同生效后,甲方和乙方之间所发生的传真订货、网上订货、口头订货、合同订货、价格确认单、采购单等一切要求甲方供货的行为。订单均视为乙方向甲方发出的不可撤销之要约行为,非经甲方同意撤销、变更,乙方必须按约履行,否则按本合同违约处理。 网上订货指甲方根据情况向乙方开通电子商务系统,乙方可以通过计算机网络向甲方下单。经过甲方确认后,订单生效。 乙方的关联企业:乙方有义务向甲方书面通报所有乙方的关联企业信息,乙方应对其关联企业与甲方合作期间所产生的债务承担连带责任。 凡有下列情形之一的,均属于乙方的关联企业: 都是由同一自然人作为法定代表人或控制人; 法定代表人或实际掌权人之间存在亲属关系的; 是总公司与分公司关系或母公司与子公司关系的; 重要管理人员是其他公司的法定代表人或实际经营人; 其它关联认定依国家税务总局相关正式发文为依据。 如被甲方确认为乙方关联企业后,该关联企业可使用甲方授予乙方的信用额度及账期。 乙方资质:甲乙双方进行交易之前,乙方有义务如实登记包括但不限于乙方的名称、住所等相关信息进行填写甲方提供之《客户档案资料表》,此表所有信

营销推广活动服务合同

编号:_______________本资料为word版本,可以直接编辑和打印,感谢您的下载 营销推广活动服务合同 甲方:___________________ 乙方:___________________ 日期:___________________

以下是关于《营销推广活动服务合同》,供大家学习参 考! 营销推广活动服务合同 合同编号: 委托方 承办方 依据《中华人民共和国合同法》、《中华人民共和国广告法》及相关法律、法规、规章的规定,甲、乙双方在平等、自愿的基础上,协商一致就甲方委托乙方承办活动推广事宜达成如下合同条款,以资共 ___________________________________________________ , 活动方案:执行方案及相关计划详见本合同“附件一 ”,由乙方根据甲方要求策划、设计并经甲方确

认后执行; 前期准备:乙方进场准备时限自至 完成准备;乙方完成准备后,甲方应当及时验收,若对相关质虽及数虽有异议,应当即提出;双方经核对活动方案及相关设计图纸后,如确有问题,乙方应该立即整改;如对活动效果产生不良影响,由乙方承担相关责任及损失,甲方有权按方案清单扣除相应费用。 其他约定 第二条:合同价款及付款方式 合同价款总额为:人民币元,即大写人民币 圆整。除了经过甲方书面确认的可增加的费用 外,本合同价款总额不因任何事由上浮,包括但不限于不可抗力、价格上涨等因素。 合同价款明细详见合同“附件二”。该 价款含人工费、道具费、场地费、交通费、政府报批收费、税金等一切乙方为了履行本合同项下委托事项所产生的费用。 本合同选择以下第种方式付款: A.推广活动全部完成并经甲方书面确认后,甲方一次性支付。乙方应于甲方付款前一周提供全额发票; B.合同签订后内,甲方支付合同价款的%计RMB ¥元;活动结束并经甲方确认后,支付合同价 款的%】计RM改元。

合同PR

采购合同模板 1.合同介绍 1.1甲方(采购方) 甲方名称: 通信地址: 联系人: 电话、传真: E-Mail: 1.2乙方(供应商) 乙方名称: 通信地址: 联系人: 电话、传真: E-Mail: 1.3合同目的 提示:说明甲方向乙方采购何种物品,经双方协商后确定本采购合同。 2.术语、关键词解释 物品: 系指供应商按合同要求,需向采购方提供的一切软件、硬件及相关的技术资料。 服务: 系指根据合同,供应商承担与供货有关的辅助服务,比如运输、保险以及其它的伴随服务,比如安装、调试、提供技术援助、培训等。 3.采购物品说明 3.1采购物品及说明 3.2技术指标和质量要求 4.合同价格和支付方式 4.1本合同总价格为(人民币大写): 4.2预付款。甲方于本合同签署之日起,在15日内,将合同总成交价的20%,即人民币(元),作为预付款支付给乙方。乙方在收到上述款项后,以传真向甲方确认。如甲方不按上述规定准时支付预付款,则交货期作相应的顺延。 4.3发货款。乙方按合同规定在发货时,将有关运输提单或自提单、商业发票、装箱单和质量证书,以可靠方式寄递给甲方。甲方收到以上单据的次日起15日内,将合同总成交价的40%,即人民币(元),作为发货款支付给乙方。乙方在收到上述款项后,以传真向甲方确认。 4.4验收款。在采购物品通过甲方的验收之后,甲方在15日内,将合同总成交价的40%,即人民币(元),作为验收款支付给乙方。乙方在收到上述款项后,以传真向甲方确认。 4.5甲方和乙方应以书面方式相互通知各方的开户银行、帐户名称、帐号。开户银行、帐户名称、帐号如有变更,变更一方应在合同规定的相关付款期限前二十天内以书面方式通知对方,如未按时通知或通知有误而影响结算者应负逾期付款的责任。 5.交货与交货方式 5.1乙方于本合同签署之日起,在30日内,将甲方采购的物品全部送达指定地点。 交货地点: 5.2乙方应在交货前7日内,以电话或传真向甲方提供交货计划(内容包括合同号、设备名称、型号规格、

销售框架合同

销售框架合同 买方:卖方: 指定联系人:指定联系人: 电话:电话: 住所:住所: 邮编:邮编: 开户银行:开户银行: 户名:户名: 帐号:帐号: 根据《中华人民共和国合同法》及其他有关法律、法规之规定,买卖双方经过平等协商,确认根据下列条款订立本合同,以资共同遵照执行。 一、货物清单及价格: 清单详见具体订货单 二、质量与技术标准和产品包装: 1、质量与技术标准:以符合货物说明书为准。 2、产品包装: (1)有原厂商包装的,按原厂商标准; (2)没有原厂商包装的,按卖方包装标准进行包装; 三、运输和运费承担: 根据工程进度表的约定,所有合同设备及技术文件将按买方要求分批发货。卖方负责从设备出厂到设备到达中国石油“分支机构”的全部步骤及所有费用。(分支机构定义:买方指定的地址) 卖方必须在到货前7天通知买方。 四、交货: 1、卖方于买方订货单下达后9周内交货 2、交货地点:详见附件二 (注:本合同未明确约定地址的,买方应提前十个工作日以盖章传真方式通知卖方;分批交货的或事先注明每次交货时间和地点,由买方每次以盖章传真方式提示;所有上述盖章传真件,买方均需将盖章原件于传真后邮寄至卖方)。 3、买方指定收货人:详细见具体订货单 联系方式:详细见具体订货单

护照号码:详细见具体订货单 买方指定收货人收货时必须携带护照,经货代核实身份后方可将货物交由指定收货人签收,并将指定收货人签署后的货物签收单原件交付卖方。货物签收单样本(附件三)将作为本合同附件附后。 在卖方交货过程中,买方提出变更收货人的,应提前十日书面通知卖方变更后的收货人姓名、联系方式(通讯地址、护照号码、联系电话和邮政编码等),卖方在收到前述买方书面通知之前有权向本合同所约定的收货人交货。 五、付款: 本合同项下货物的付款为指示性付款。即本合同的实际付款方为新加坡******股份有限公司香港分公司,买方在收到合同项下货物后向新加坡******股份有限公司香港分公司发出付款指示,由新加坡******股份有限公司香港分公司一次性付清。即新加坡******股份有限公司香港分公司仅为接收指示委托的付款方,本合同的全部实体权利义务仍买方和卖方实际享有。 付款: 1、指示性付款的条件:买方在签收货物之后十日内进行货物的开箱验收工作(买方需将货物验收单原件一份交付卖方),如无开箱即损(开箱即损要求按照***公司的规定执行)的情况发生,买方开箱验货后五日内向新加坡******股份有限公司香港分公司发出付款指示,即买方发出指示的最晚日期不得超过货物签收后的第十五日。 此外,关于***公司开箱即损的定义:开箱即损是指箱子外包装完好,但是开箱后发现设备本身有物理性损坏的,在出厂90天内可以向思科申请做开箱即损。物理性损坏一般指货物本身外观的损坏,而不是通电后的功能性损坏。 2、指示性付款的方式:买方向新加坡******股份有限公司香港分公司出具货物验收单和货物接受证明,同时将货物验收单和货物接受证明抄送卖方。货物验收单(附件五)和货物接受证明(附件六)样本将作为本合同附件附后。上述两文书的出具及送达视为买方要求新加坡******股份有限公司香港分公司向卖方付款的 指示。关于付款的详细约定见买方、卖方及新加坡******股份有限公司香港分公司签订的三方协议。 3、若无开箱即损的情况下,如在买方的指定收货人签收货物十五日后,买方无故不向新加坡******股份有限公司香港分公司发出付款指示,则本合同的付款方式由指示性付款自动变更为直接付款,即由买方直接向卖方付款。且卖方可按照本合同第八条的约定追究买方的违约责任。 4、若发现开箱即损的情况,按照本销售合同中的第六条第4款执行完成后,买方在收到货物的情况下,按照本销售合同和三方协议的要求履行付款责任。 此外,对于买、卖双方交接发票、结算票据事宜,双方一致认同:买方取得发票并不代表买方货款已付清。货款已付清以买方付款凭证时间为准,但该笔款项应在银行规定合理时间内到账。 六、设备验收和索赔: 1、卖方依据本协议交付的设备必须满足思科公司产品标准。 2、卖方应将思科公司出具的包括出厂前检验证明等原厂技术资料提供给买方。

premiere pro CS4中英文对照表

Adobe Premiere Pro CS4 千与千寻2011 页0 英文Absorption Additive Dissolve Adjust Time by Alpha blurriness Alpha Adjust Alpha Glow Alignment All premultiplied Amount 中文吸收附加溶解调整时间Alpha 模糊英文Audio Units Audio samples Audio option Audio Gain 中文音频单位音频采样音频设置音频增益音频交错自动颜色试听英文Balance Balance Magnitude Balance Gain Balance Black Angle Level 中文均衡平衡幅度平衡增益平衡角度黑电平蓝色灰度蓝色基准蓝色增益黑平衡带状擦除频带选择舱门弯曲贝济埃曲线with 黑色限制模糊混合混合模式混合原素材增加边界宽度边界颜色亮度烘托图层(纹理) 烘托通道Alpha 通道Audio Interleave 调整Alpha 通道Auto Color 辉光Audition 对齐全部预先做Auto Bezier 到Auto Contrast 数量Auto White level Automate To Sequence Axis Blue Gamma Blue Pedestal 自动贝济埃Blue Gain 曲线自动对比度Black Balance 自动对比度Band wipe Amount to 均化数量Equalize Ambience Intensity 强度Amount to decolor Amount to Tint Anchor Point Anchor point Angle Anti_aliasing Quality Anti_aliasing ForBest Quality Anti_alias Anti——flicker Attack Artihmetic Auto Amounts Auto Black Level 脱色数量着色数量缩放高度锚点角度抗锯齿质量自动匹配到Band select 序列Bard doors 轴Average Pixel 平均像素颜Bend Colors 色Audio mixer Bezier 调音台Apply Apply Style 采用采用样式Black Blur Apply Style With Font Size Style 抗锯齿最高Apply Color Only 质量Apply Style 抗锯齿Library Asprct 抗抖动发作算法自动效果自动黑电平Ambience Intensity Linght Color Asprct 采用样式和Blend 字号只采用样式Blend mode 中的颜色附加样式库Blend with original 体态纵横比Boost Broder width Broder Color Brightness 周围灯光颜Bump layer 色Bump channel Auto Contrast 自动对比度Black clip Blur Dimensions Blur Length Blurriness Block above Block below Blue Value Blend with layer 黑场部分模糊方向模糊长度模糊块在上块在下蓝色值混合图层Bulge Build form one Image Bump Basic Bevel Bevel Border Block Size Blue weighting Bottom 3D Alphe Edges 膨胀Calculations Blur View 运算模糊百分比相机视图垂直单元格水平单元格中心聚合中心剥落中心分割通道从一个图像Camera 组建Camera 撞击基础3D Cells Vertical 斜角Alpha Cells Horizontal 通道Center merge 斜角边缘边缘块尺寸蓝色分量底部块溶解块宽度块高度基线偏移倒角置于顶层Center peel Center split Channel Channel Checker Checker Chorus Clip Clipping Blur Board Wipe Bottom ringhtvertex 右下角Bottom Center Tangent Bottom ringt tangent Bottom left tangent Branching Branch Branch Branch Angle Seg-length width 底部中心通道模糊棋盘划格擦除合唱素材剪裁底部右侧切Block Dissolve 点左侧顶部切Block width 点Block Height 分支分支角度分支长度分支宽度Baseline shift Bevel Bring to Front Brightness&contrast 亮度& 对比Bring ward 度Broadcast Color 广播级色彩Browse Broadcast Locale Brush Position 本地广播指标笔触位置笔触硬度For 前移一层浏览Clip Result 剪辑效果数Values 值Color Correction 颜色修整Compressor Columns Contrast Constant Constan Gain Power 压缩列数对比度恒定增益恒定能量色彩校正色彩平衡使用合成合成于后退Brush Hardness Brush Spacing (ecs)笔触间隔时间Bruh Time 笔触时间属properties 性Brush Strokes 笔触Brush Angle Brush Brush length Strokes 笔触角度size 笔触尺寸Strokes 笔触长度Color correction Color balance Composite Using Composite In Back Composite Front In 合成于前进Comments Color Color Dodge only 注释颜色减淡只有颜色色彩平衡分离颜色Change color 改变颜色Color Tolerance Color Edges 颜色容差查找边缘色标颜色色标透不明度循环发散Change to 转换颜色color Channel Mixer 通道混合器Chroma Chroma Chroma Max Mix 色度最大色度最小色度棋盘色彩纯度键圆圈电影转换曲率of 球形中心材质核心堆存限制值Color stop color

营销推广活动服务合同

营销推广活动服务合同 以下是关于《营销推广活动服务合同》,供大家学习参考! 营销推广活动服务合同 合同编号: 委托方: ____________________________________________ 承办方: ____________________________________________ 依据《中华人民共和国合同法》、《中华人民共和国广告法》及相关法律、法规、规章的规定,甲、乙双方在平等、自愿的基础上,协商一致就甲方委托乙方承办_______________活动推广事宜达成如下合同条款,以资共同遵守。 条:推广活动概况 活动项目: _____________________________________________; 具体内容: _____________________________________________; 活动时间:; _____________________________________________ 活动地点:

_____________________________________________; 活动方案:执行方案及相关计划详见本合同“附件一 __________”,由乙方根据甲方要求策划、设计并经甲方确 认后执行; 前期准备:乙方进场准备时限自_____________至 _______________完成准备;乙方完成准备后,甲方应当及 时验收,若对相关质量及数量有异议,应当即提出;双方经核对活动方案及相关设计图纸后,如确有问题,乙方应该立即整改;如对活动效果产生不良影响,由乙方承担相关责任及损失,甲方有权按方案清单扣除相应费用。 其他约定 ________________________________________________。 第二条:合同价款及付款方式 合同价款总额为:人民币_________元,即大写人民币 __________圆整。除了经过甲方书面确认的可增加的费用外,本合同价款总额不因任何事由上浮,包括但不限于不可抗力、价格上涨等因素。 合同价款明细详见合同“附件二_____________”。该价款含人工费、道具费、场地费、交通费、政府报批收费、税金等一切乙方为了履行本合同项下委托事项所产生的费用。.本合同选择以下第_____种方式付款: A.推广活动全部完成并经甲方书面确认后,甲方一次性支

Sales Frame Contract框架合同

Sale Frame Contract / 销售框架合同 Contract No.合同编码: 卖方 Seller: 统一社会信用代码(Business License No.): 法人代表(Legal Representative): 地址: 买方 Buyer: 统一社会信用代码(Business License No.): 法人代表(Legal Representative): 地址: Article 1 Commodity, Type, Specifications and Quantity/ 商品,类型,规格和数量 The Buyer agrees to buy and the Seller agrees to sell the products, accessories and spare parts (as specified in the Appendix 1“Sales Order”hereinafter jointly refer red to as “Goods” or “Product”) subject to the terms and conditions of this Contract and its Appendices herein. 买方同意按照本合同及其附件规定的条款购买,并且卖方同意按照本合同及其附件规定的条款向买方销售产品, 配件和备件(简称“货物”或“产品”)。 Article 2 Price/ 价格 Unless as expressively agreed by both parties in the individual sales agreement by Seller and Buyer, the contract price hereunder (“Contract Price”) shall be the price Ex Warehouse of the Seller for the Goods as listed in the Sales Order, includingVAT and standard packaging costs. 除非买卖双方在作为本合同附件的单个协议中另有明确约定,货物价格(“合同价格”)为销售订单所定义的货物的卖方库房交货价格,包括增值税和标准包装成本。 Article 3Payment/ 付款 Unless as expressively agreed by both parties in the individual sales agreement by Seller and Buyer, the Buyer shall pay the total Contract Prices for the Goods to the Seller as per the following schedule:

AE菜单中英文对照表

AE菜单中英文对照表

AE效果中英文对照表 CC Ball Action(小球状粒子化,在Simulation菜单中出现) CC Bender(层卷曲效果,不错,在Distort菜单中出现) CC Bend It(区域卷曲效果,在Distort菜单中出现) CC Blobbylize(融化效果,在Distort菜单中出现) CC Bubbles(气泡效果,不错,在Simulation菜单中出现) CC Burnfilm(胶片烧灼效果,在Stylize菜单中出现) CC Color Offset(RGB色谱调节,在Image Control菜单中出现) 【 CC Composite(对自身进行混合模式处理,不错,在Channel菜单中出现) CC Cylineder(圆柱体贴图,在Perspective菜单中出现) CC Drizzle(雨打水面效果,在Simulation菜单中出现) CC Flo Motion(两点收缩变形,在Distort菜单中出现) CC Force MotionBlur(强力运动模糊,在Time菜单中出现) CC Glass(玻璃透视效果,好,在Stylize菜单中出现) CC GlassWipe(融化过渡,酷,在Transition菜单中出现) CC Glue Gun(喷胶效果,在Render菜单中出现) CC Griddler(网格状变形,在Distort菜单中出现) CC GridWipe(纺锤形网格过渡,在Transition菜单中出现) CC Hair(毛发生成器,较慢,在Simulation菜单中出现) ~ CC Image Wipe(亮度过渡,类似AE自带的Transition/Gradient Wipe,在Transition菜单中出现) CC Jaws(锯齿状过渡,在Transition菜单中出现) CC Kaleida(不错的万花筒效果,在Stylize菜单中出现) CC Lens(鱼眼镜头效果,不如Pan Lens Flare Pro,在Distort菜单中出现) CC Light Burst (光线缩放,好,在Render菜单中出现) CC Light Rays(光芒放射,加有变形效果,酷,在Render菜单中出现) CC Light Sweep(过光效果,很不错,在Render菜单中出现) CC LightWipe(边缘加光过渡,带有变形效果,好,在Transition菜单中出现) CC (模仿水银流动,在Simulation菜单中出现) CC Mr Smoothie(像素溶解运动,酷,在Image Control菜单中出现) CC Page Turn(卷页效果,好,在Distort菜单中出现) 、 CC Particle Systems II(不错的二维粒子运动,在Simulation菜单中出现) CC Particle World(三维粒子运动,大大优于AE自带的Simulation/ParticlePlayground,在Simulation 菜单中出现) CC Pixel Polly(画面破碎效果,好,在Simulation菜单中出现) CC Power Pin(带有透视效果的四角扯动工具,类似AE自带Distort/CornerPin,在Distort菜单中出现)CC PS Classic(利用通道形成的粒子系统,有模板,在Simulation菜单中出现) CC PS LE Classic(局域性的粒子系统,有模板,在Simulation菜单中出现) CC Radial Blur(螺旋模糊,在Blur & Sharpen菜单中出现) CC Radial Fast Blur(快速的放射模糊,好,在Blur & Sharpen菜单中出现) CC Radial Scale Wipe(带有边缘扭曲的圆孔过渡,在Transition菜单中出现) CC Rain(下雨效果,在Simulation菜单中出现) CC RepeTile(多种方式的叠印效果,好,在Stylize菜单中出现) 、 CC Ripple Pulse(扩散波纹变形,必需打关键帧才有效果,好,在Distort菜单中出现)

premiere pro 中英文对照

premiere pro菜单命令中英文对照(按字母顺序排列) 5.1 5.1环绕立体声 (channel)value 通道值 10/8 bit black point 黑点参数 10/8 bit white point 白点参数 3D glasses 三维眼镜 3D motion 3D过渡/三维运动转换 3D view 三维查看 4 color gradient 四色渐变 5.1 mixdown type 5.1混音类型 abort capture on dropped frames 丢失帧则中断采集 Absorption 吸收 action safe area 动作安全区域 activate 激活 Add 添加 add anchor point tool 添加节点工具 add track 添加轨道 add/remove keyframes 添加/删除关键帧 additive dissolve 附加溶解 adjust 调整 adobe bridge 媒体管理软件 adobe dynamic link Adobe 动态链接

adobe media encoder Adobe 媒体编码器 advanced gif options 高级选项 align objects 对齐对象 alignment 对齐选项 all marker 所有标记 all scopes 全部显示 alpha alpha 通道 alpha adjust alpha 调整 alpha blurriness alpha 通道模糊 alpha glow Alpha 辉光 alpha glow settings Alpha 辉光设置 alpha scale alpha 缩放 Amount 数量 amount of noise 噪点数量 amount to decolor 删除量 amount to equalize 重新分布亮度值的程度amount to tint 指定色彩化的数量amplitude 振幅 anchor 定位点 anchor 交叉 anchor point 定位点 Angle 角度 Antialias 抗锯齿 Antialiasing 反锯齿

项目合作框架标准协议书范本

编号:HZ-20219680 甲 方:______________________________ 乙 方:______________________________ 日 期:_________年________月_______日 项目合作框架标准协议书范本 The parties to a contract shall fully fulfill their obligations pursuant to the terms of the contract.

[标签: titlecontent] 甲方:XX 公司 住所地:XXXXXXXXXXXX____ 法定代表人:XXXXXXXXXXXX 联系电话:XXXXXXXXXXXX__ 乙方:XXX_电子信息技术有限公司项目合作框架协议住所地:XXXXXXXXXXXX____ 法定代表人:XXXXXXXXXXXX 联系电话:XXXXXXXXXXXX__ 鉴于乙方拥有XXXXXX_产品完整的所有权和知识产权、且至本协议签订之日未与任何他方就本产品、知识产权有任何形式的合作,乙方也未以任何方式生产和销售本产品;甲、乙双方经协商一致,在平等、自愿的基础上,就合作生产、销售由乙方自主研制的XXXXXX_产品项目达成本协议,以资共信守。 1.合作内容 本项目合作的内容为:生产、销售由乙方自主研制的XXXXXX_产品。首批生产XXX___套(其中XXX___系统XXX 套), 以后批产品生

产量根据市场销售情况待定。 2.合作期限 XXX___年____月____日到XXX___年____月____日,共XXX___年。 3.合作体制 在甲方框架内成立由乙方组建,甲方派员监督的XXX___产品项目部,其权限为负责本项目产品的生产、销售及售后服务。项目部设立独立帐户,实行独立核算。 4.知识产权的使用 4.1本项产品的生产、销售可使用乙方提供的中文:XXXXXX;英文:XXXXXX的注册商标。也可以使用甲方所提供的商标及冠名。 5.权益平衡 自本协议签订之日起,乙方不得独立或以任何方式与第三方合作生产、销售XXXXXX_产品。 甲方从合作之日起,按月向乙方提供资金XXXXXX万元,持续时间不超过XXX个月,且该资金纳入本项目产品的生产总成本。 6.甲方职责 6.1提供本合同项目生产、销售及售后服务的所需资金,前期投入不低于人民币XXXXXX万元(以后根据市情况待定)的基本运作资金,在本协议签订生效后的十个工作日内存入开列的XXX___项目部的独立帐户内,实行专款专用,保证该资金的投放与生产、销售及售后服务的进程同步,并即时派出财务人员管理并建立独立的帐目,及时制作月报及年报等财务文件交双方备案。

印刷供应商年度合作框架协议范文

合同编号:【】 印刷供应商合作框架协议 甲方:【】 法定地址:【】 法定代表人:【】 联系人:【】 办公地址:【】 电话:【】 传真:【】 邮政编码:【】 乙方:【】 法定地址:【】 法定代表人:【】 联系人:【】 办公地址:【】 电话:【】 传真:【】 邮政编码:【】

甲方:(以下简称“甲方”) 乙方:(以下简称“乙方”) 甲乙双方经过友好协商,在相互信任、相互尊重和互惠互利的原则基础上,在符合双方共同利益的前提下,就印刷业务合作问题,自愿结成战略合作伙伴关系;实现双方与客户方的多赢局面。合作条款如下: 第一条、合作期限: 甲方同意乙方作为甲方的年度合作供应商,从本协议签订之日起至XX 年XX月XX 日。在合同期内若乙方执行情况优良,乙方可在合同到期后同等企业竞争条件下享有优先续签合同权利。 第二条、甲方的权利和义务: 1、在此合作框架协议基础上,甲方可以随时根据需要以下生产工程单形式委派 乙方按时完成印刷任务;在同等条件下,甲方也应优先考虑下单给合作供应商; 2、对于乙方所提供的产品,如因乙方原因造成,甲方有向乙方退货、换货的权 利; 3、因特殊原因甲方可要求乙方加急印刷或加班印刷,乙方不得向甲方加收费 用; 4、因业务需要,甲方可以要求乙方提供样品或进行打样,乙方须优先免费协 助打样工作; 5、甲方须按结算付款时间按时支付乙方相应货款。

第三条、乙方的权利和义务: 1、作为合作伙伴关系,乙方在必要的时候(主要以甲方客户考察工厂等情况为 主)需以甲方自有工厂的身份协助甲方进行业务关系开展。 2、乙方须保证甲方客户信息不外泄,不得干扰和抢占甲方客户市场,否则视为 违约。 3、乙方须积极配合甲方供货,优先安排生产甲方产品,乙方保证在规定交货期 内完成其印刷工作(甲方要求的交货期是经乙方同意并确认的)。因乙方原因导致印刷品不能及时完成而又未经甲方同意的,乙方应承担相应损失;4、乙方须保证所提供的产品的质量和售后服务,保证按照甲方的要求(以单个 项目合同或生产工程单要求为准)完成其委派的印刷品,并保证印刷品以加工样板为准(包括纸张、颜色、工艺等),质量符合甲方要求和同类产品行业国家标准。如印刷品未达到甲方要求,甲方有权拒收货物并要求重新印刷; 5、乙方提供市内送货服务,在规定时间内,将印刷品送到指定地点。 6、合作期间乙方未经甲方许可,不得擅自将该产品供应给其他公司用于甲方竞 争之项目,其中包括采购信息的保密; 7、合作期间,乙方有义务向甲方提供跟甲方经营项目相关的商业信息,包括同 行业竞争的询价信息; 8、同等条件下乙方须保证提供产品的价格为同类市场价格最低,保证在印刷价 格方面给予甲方最大的优惠(参见本协议附件二:《印刷加工报价框架协议》)。当因市场行情变动,乙方要进行价格调整前应首先第一时间提前以书面形式通知甲方。若因乙方原因导致甲方的价格损失应由乙方承担; 9、乙方在双方合作过程中,保证所适用的技术、资料、图片等不侵犯他人的知

AE滤镜中英文对照表

3D Channel三维通道特效 --3d chanel extract 提取三维通道--depth matte深度蒙版 --depth of field场深度 --fog 3D雾化 --ID Matte ID蒙版 Audio音频特效 --backwards倒播 --bass & treble低音和高音 --delay延迟 --flange & chorus变调和合声 --high-low pass高低音过滤 --modulator调节器 --parametric EQ EQ参数 --reverb回声 --stero mixer 立体声混合 --tone音质 Blur & Sharpen模糊与锐化特效 --box blur方块模糊 --channel blur通道模糊 --compound blur混合模糊

--directional blur方向模糊 --fast blur快速模糊 --gaussuan blur高斯模糊 --lens blur镜头虚化模糊 --radial blur径向模糊 --reduce interlace flicker降低交错闪烁--sharpen锐化 --smart blur智能模糊 --unshart mask反遮罩锐化 Channel通道特效 --alpha levels Alpha色阶 --arithmetic通道运算 --blend混合 --calculations融合计算 --channel combiner复合计算 --invert反相 --minimax扩亮扩暗 --remove color matting删除蒙版颜色 --set channels设置通道 --set matte设置蒙版 --shift channels转换通道 --solid composite实体色融合

战略合作框架协议(最终版)

战略合作框架协议 ******- 甲方: 乙方: 鉴于甲方是以研发、制造、销售传统照明产品为主体的大型上市企业公司,在照明产品拥有完善的销售体系、网络和销售团队;乙方在LED产品或LED部件的研发、制造生产、品质控制及产品实现上拥有较强能力,能够为甲方提供较为雄厚的产品和技术支持。现甲乙双方经友好协商,秉着优势互补、共同发展、诚信合作的宗旨达成如下协议: 一、合作宗旨 1、双方在合作中建立的互信、惯例与默契是商业合作战略伙伴关系的基础,提高效率与共同发展是双方合作的目标和根本利益。 2、本协议的基本原则是自愿、双赢、互惠互利、相互促进、共同发展、保守秘密、保护协作市场。 3、充分发挥双方优势,优势互补,提高竞争力,合作互补开发、制造符合市场需求的产品。 4、本协议为框架协议,应是双方今后长期合作的指导性文件,也是双方签订相关合同的基础。 二、战略合作关系合作方式 1、战略合作方式 甲、乙双方各自建立专业的团队对合作内容进行不定期交流。乙

方通过甲方指定人员了解其所需LED产品或部件的市场信息、需求和有关资料信息,以及甲方以书面、口头或电子的形式提供给乙方的任何信息或数据,包括但不限于商业秘密、商业计划、客户信息、研究成果、技术诀窍、技术图纸、文件以及其它技术和商业信息,乙方对以上信息负严格保密责任。乙方向甲方提供乙方的产品信息(包括技术资料、技术图纸、技术更新和新产品信息)以及公司的产品动态和变化等相关情况。 2、双方合作内容 甲乙双方战略合作的具体内容(包括但不限于以下内容): (1)甲方根据其实际需求委托乙方开发和加工LED产品或部件。根据甲方的需求,乙方负责开发、制造或加工,同时确保品质质量、产量、交期及成本优势,所提供给甲方的产品是符合甲方要求并通过甲方标准验收的产品。双方将签订具体采购合同,对提供的时间、标准和要求进行确定。 (2)甲方根据不同客户实际情况,参加招投标和报价等。为顺利夺标和获得订单,根据竞争对手和投标以及订单实际情况,乙方根据自己的实际情况报出合理的价格和交货期,同时提供相关的技术资料和技术支持等,支持甲方投标和获得订单。乙方在报价有效期内确定的价格不得随意更改。甲方中标后,甲乙双方将根据实际标的另行签订产品买卖或定作合同,以确定双方的权利义务,合同付款方式以及其他条款应根据甲方与最终客户签订的合同条款确定,乙方保证付款方式以及其他条款应优于甲方最终与客户签订的合同,给予甲方足

相关主题