搜档网
当前位置:搜档网 › Cv值与Kv值的定义及计算方法

Cv值与Kv值的定义及计算方法

Cv值与Kv值的定义及计算方法
Cv值与Kv值的定义及计算方法

Cv值与Kv值的定义及计算方法

Cv值与Kv值的定义及计算方法是调压阀的选型过程中非常重要的依据,我们可以根据Cv值或Kv值来算出某个减压阀能达到的最大流量,也可以根据需要的流量来选择特定Cv/Kv值的调节阀。

Cv值和Kv值不是某个单位,它们是经过公式得出的流量系数,和阀前和阀后的压力,流量,介质的种类、比重,这几个参数紧密相关的。

目前国际上在北美地区比较习惯使用Cv值,在欧洲国家和中国则大多使用Kv值。Kv值与Cv值之间有一个简单的关系:Cv=1.167Kv,但这个关系是在某一特定条件时得出的结果,在实际工况中有出入,为尽可能地提高准确度及减少因选型失误带来的麻烦,请尽量不使用简单的换算方式。

以下即为Cv值与Kv值的定义及计算方法:

Cv值

Cv:表示设备在全开状态流量的调节阀和阀门流量系数。对于液体,该系数被定义为在60℉,压力将为1psig是的水流,单位为加仑/分钟。对于气体,该系数被定义为标准条件下每1psig入口压力的空气流量,单位为标准立方英尺/分钟。

SL:液体相对于水在标准温度60℉的比重。(水比重=1.0@60℉)

Sg:气体相对于空气的比重;等于气体分子量与空气分子量的比率。(空气比重=1.0@60℉)Psia:绝对压力,为压力表压力(psig)加上14.7(大气压力)。

P:管道压力(psia)

P1:入口压力 psia

P2:出口压力 psia

ΔP:压差(P1-P2)

QL:液体流量加仑/分钟。(GPM)

Qg:气体流量标准立方英尺/分(SCFM)。(在60℉和14.7psia标准条件下)

Cv液流公式

示例:在以下条件确定通过调节阀的液体流量(假设水),单位为加仑/分:

假设:P1=1000pisa P2=600psia SL=1.0 Cv=0.8

Cv气体流量公式

a).当P1≥2×P2时,为超临界流量,

b).当P1<2×P2时,为次临界流量,

示例:

假设:P1=1000psia P2=400psia Qg=400 SCFM Sg=1.0(假设本示例中为空气)

Kv值

Kv值的定义:是指阀前与阀后压差为1bar(ΔP=1bar),温度在20℃大气压为760毫米汞柱(一个大气压),空气的比重是1.25时,或液体水的比重是1.0时的流量系数,单位是立方米/小时。

A

符号含义备注单位Q 流量l/min

Kv 流量系数在前后压差△P=1bar 和γ=1 或 1.25的情况下m3/h

P 相对压力bar

Pabs 绝对压力1+P bar 绝对压力P1 入口压力bar

P2 出口压力bar

△P 压差P1-P2 bar

T 绝对温度273+℃(在 20℃时绝对温度=293℃)K

γL气体比重空气:1.25 温度20℃/68°F和760mm Hg N/m3

γA液体比重水:1.0 N/dm3

υL 气体流速空气最大 100m/s,建议50m/s(50%) m/s

υA液体流速水最大 4.5m/s,建议3m/s(60%) m/s

F 截面孔面积管开口处cm2

介质/一般公式简化公式 *1 建议值*2 单位

B 次临界状态△P﹤0.5x(1+P1) 超临界状态△P﹥0.5x(1+P1)

C 根据Kv值算流量:

气体,次临界△P﹤0.5x(1+P1) Qx0.6

l/min

根据Kv值算流量:

气体,超临界△P﹥0.5x(1+P1)

Qx0.6

l/min 根据Kv值算流量:

液体:

Qx0.6

l/min

D 根据气体流速算流量:

Q=560xFx(1+P2)

Qx0.5

l/min

根据液体流速算流量:

Q=27xF

Qx0.6

l/min

E 截面孔接口G1/8 1/4 3/8 1/2 3/4 1 1-1/2 2 2-1/2 F(CM2)0.08 0.31 0.71 1.27 2.85 5.06 11.4 20.2 31.5

*1 C组的简化公式是建立在默认值温度为20℃,气体比重γL=1.25或液体比重γA=1的基础上的。

D组的简化公式是建立在默认值温度为20℃,气体流速为最大100m/s或液体流速最大4.5m/s的基础上的。以上两组的简化公式中,凡是与默认值不同的,都不能使用简化公式,请使用一般公式。

*2 经过公式算出的值仅为理论值,保险起见,请将得出的值按上表中的建议值相乘或相除。

示例

例1: 计算减压阀 R230-02B用于压缩空气时的流量(Kv=0.7m3/h)

入口压力P1=3bar, 出口压力P2=2.5bar.

a) 在P1=3bar 和P2=2.5bar →次临界压力状态

b)

例2: 以例1为例, 但入口压力P1=7bar

a) 在P1=7bar 和P2=2.5bar →超临界压力状态

b)

例3: 计算减压阀 R25-02BK 用于水时的流量(Kv=0.38 m3/h)

入口压力P1=4bar, 出口压力P2=2bar. 接口G1/4 (0.31 cm2)

a)

b) Q=27xF = 27x0.31= 8.4 l/min

计算b)只是做核对。建议流量:8.9 l/min x0.6 = 5.3 l/min

阀门的流量特性指的是阀门的流通能力Kv的百分比与开度百分比之间的关系,线性流量特性指的是Kv%与开度%之间成线性关系。

等百分比流量特性指的是Kv%与开度%之间的比值等于开度%。

阀门做成不同的流量特性是与自动控制分不开的,例如等百分比流量特性在小开度下控制精确,在大开度下控制迅速。快开的流量特性一般用于截至阀。

假如一个阀门的行程是10mm,它的最大流量是10m3/h.

对于线性流量特性的阀,当阀门开到2mm(20%)时它的流量是2m3/h(20%).开到8mm(80%)时,它的流量是8m3/h(80%),

对于等百分比流量特性的阀,当阀门开到2mm时它的流量应该是10X20%X20%=0.4m3/h,当阀门开到8mm时它的流量就是10X80%X80%=6.4m3/h.

等百分比在小开度下行程变化1mm流量变化比线性的小,在大开度下行程变化1mm流量变化比线性的大,你可以对比一下他们的流量特性图。

主要是从调节的要求来考虑的

等百分比流量特性的特点是,在调节流量的时候,不管什么开度和流量,调节量和流量成正比

而线性特性,调节量和流量无关

就是一个相对调节量不变,一个绝对调节量不变

变异系数实例

年份平均值标准差变异系数 1966-1970-4.8213.35-2.77 下表给出了某气象台站五年的月平均气温, (1)试计算每一个年度的变异系数(注:结果是五个变异系数) (2)把1966—1970年各月的月平均气温数据,尾首相接后产生一个新 的时间序列,再计算变异系数(注:结果是一个变异系数) (3)如果把摄氏温度转化为华氏温度,再计算变异系数;那么结果与 用摄氏温度的数据计算的结果,相同吗?如果不同,究竟哪种答案是正 确的,产生的原因是什么? 某气象台站五年的月平均气温(单位:摄氏度)年份一月二月三月四月五月六月七月八月 1966-21.6-21.7-13.1-3.1 3.09.710.011.5 1967-35.2-26.9-12.40.9 6.59.59.88.9 1968-24.0-24.6-5.50.0 6.38.310.49.3 1969-26.0-23.6-8.1 1.0 5.68.810.79.3 1970-28.2-21.9-10.10.9 5.18.28.29.6 (1)(3)根据变异系数公式计算每一年的变异系数如下: 年份变异系数(摄氏温 度)变异系数(华氏温度) 1966-2.76 1.02 1967-2.62 1.33 1968-2.77 1.08 1969-3.400.92 1970-2.90 1.07 (2)把1966—1970年各月的月平均气温数据,尾首相接后产生一个新的时间序列,再计算变异系数为: 分析结果:

通过查阅相关资料可知变异系数和极差、标准差和方差一样,都是反映数据离散程度的绝对值。其数据大小不仅受变量值离散程度的影响,而且还受变量值平均水平大小的影响。从上面的图表可以看出摄氏温度计算出来的变异系数都为负值,而通过华氏温度计算出来的变异系数都为正值,两者处理结果不同主要是将摄氏温度转换为华氏温度并不是一个比例变换。我认为两者方法都可取。

KV值计算新公式

4 KV值计算新公式 目前,调节阀计算技术国外发展很快,就KV值计算公式而言,早在20世纪70年代初ISA(国际标准协会标准)就规定了新的计算公式,国际电工委员会IEC也正在制定常用介质的计算公式。下面介绍一种在平均重度法公式基础上加以修正的新公式。 4.1 原公式推导中存在的问题 在前节的KV值计算公式推导中,我们可以看出原公式推导中存在如下问题:(1)把调节阀模拟为简单形式来推导后,未考虑与不同阀结构实际流动之间的修正问题。 (2)在饱和状态下,阻塞流动(即流量不再随压差的增加)的差压条件为△P/P=0.5 ,同样未考虑不同阀结构对该临界点的影响问题。 (3)未考虑低雷诺数和安装条件的影响。 4.2 压力恢复系数 FL 由P1在原公式的推导中,认为调节阀节流处由P1直接下降到P2,见图2 -3中虚线所示。但实际上,压力变化曲线如图2-3中实线所示,存在差压力 恢复的情况。不同结构的阀,压力恢复的情况不同。阻力越小的阀,恢复越厉害,越偏离原推导公式的压力曲线,原公式计算的结果与实际误差越大。因此,引入一个表示阀压力恢复程度的系数FL来对原公式进行修正。FL称为压力恢复系数(Pressure reecvery factor),其表达式为: (9) 式中,、表示产生闪蒸时的缩流处压差和阀前后 压差。 图2-3 阀内的压力恢复关键是FL的试验问题。用透明阀体试验,将会发现当节流处产生闪蒸,即在节流处产生气泡群时,Q就基本上不随着△P的增加而增加。这个试验说明:产生闪蒸的临界压差就是产生阻塞流的临界压差,故FL又称临界流量系数(Critical flow factor),因此FL既可表示不同阀结构造成的压力恢复,以修正不同阀结构造成的流量系数计算误差,又可用于对正常流动,阻塞流动的差别,即FL定义公式(9)中的压差△Pc就是该试验阀产生阻塞流动的临界压差。这样,当△P<△Pc时为正常流动,当△P≥△Pc时为阻塞流动。从(9)公式中我们即可解出液体介质的△Pc为:△Pc = FL(P1-Pv) (10) 由试验确定的各类阀的FL值见表2-3。 4.3 梅索尼兰公司的公式——FL修正法 1)对流体计算公式的修正 当△P<△PC时,为正常流动,仍采用原公式(4);当△P≥△Pc时,因△P 增加Q基本不增加,故以△Pc值而不是△P值代入公式(4)计算即可。当 △Pv≥0.5P1时,意味差有较大的闪蒸,此时△Pc还应修正,由试验获得:

调节阀KV值计算 Microsoft Word 文档

调节阀的计算、选型方法 调节阀根据驱动方式分类,一般分为气动调节阀、电动调节阀、液动调节阀、自力式调节阀等。根据结构可分为单座调节阀、双座调节阀、套筒调节阀、角式调节阀、球阀、蝶阀等九大类。调节阀的计算选型是指在选用调节阀时,通过对流经阀门介质的参数进行计算,确定阀门的流通能力,选择正确的阀门型式、规格等参数,包括公称通径,阀座直径,公称压力等,正确的计算选型是确保调节阀使用效果的重要环节。 1.调节阀流量系数计算公式 1.1 流量系数符号: Cv—英制单位的流量系数,其定义为:温度60°F(15.6℃)的水,在16/in2(7KPa)压降下,每分钟流过调节阀的美加仑数。 Kv—国际单位制(SI制)的流量系数,其定义为:温度5~40℃的水,在105Pa压降下,每小时流过调节阀的立方米数。 注:Cv≈1.16 Kv 1.2不可压缩流体(液体)Kv值计算公式 1.2.1 一般液体的Kv值计算 非阻塞流阻塞流 流动工况 判别式△P<FL2(P1-FFPv) △P≥FL2(P1-FFPv) 计算公式 备注: # 式中:P1—阀入口绝对压力KPa 2—阀出口绝对压力KPa QL—液体流量m3/h ρ—液体密度g/cm3

FL—压力恢复系数,与调节阀阀型有关,附后 FF—流体临界压力比系数, PV—阀入口温度下,介质的饱和蒸汽压(绝对压力KPa) PC—物质热力学临界压力(绝对压力KPa) 注:如果需要,本公司可提供部分介质的PV值和PC值 1.2.2 高粘度液体Kv值计算 当液体粘度过高时,按一般液体公式计算出的Kv值误差过大,必须进行修正,修正后的流量系数为 式中:K′V —修正后的流量系数 KV —不考虑粘度修正时计算的流量系数 FR—粘度修正系数(FR值从FR~Rev关系曲线图中确定) 计算雷诺数Rev公式如下: 对于只有一个流路的调节阀,如单座阀、套筒阀、球阀等: 对于有二个平行流路的调节阀,如双座阀,蝶阀,偏心旋转阀等: 1.3可压缩流体—气体的KV值计算 P2>0.5P1 P2≤0.5P1 判别式 计算公式 式中:P1—阀入口绝对压力KPa P2—阀出口绝对压力KPa Qg—气体流量 Nm3/h G—气体比重(空气=1)

阀门系数Cv值确定

阀门系数Cv 值的确定 概述: 通常测定阀门的方法是阀门系数(Cv ),时,使用阀门系数确定阀门尺寸,该阀门可在工艺流体稳定的控制下,能够通过所需要的流量。阀门制造商通常公布各种类型阀门的Cv 值,它是近似值,并能按照管线结构或阀座制造而变动上调10%。 如一个阀门不能正确计算Cv ,通常将削弱在两个方面之一的阀门性能:如果Cv 对所需要的工艺而言太小,则阀门本身或阀内的阀芯尺寸不够,会使工艺系统流量不够。此外,因为阀门的节流会导致上游压力增加,并在阀门导致上游泵或其他上游设备损坏之前产生高的背压。尺寸不够的Cv 也会产生阀内的较高阻力降,它将导致空穴现象或闪蒸。 如果Cv 计算值比系统需要的过高,通常选用一个大的超过尺寸的阀门。显然,一个大尺寸阀门的造价、尺寸及重量是主要的缺点。除此之外,如果阀门是节流操作,控制问题明显会发生。通常闭合元件,如旋塞或阀盘,正位于阀座之外,它有可能产生高压力降和较快流速而产生气穴现象及闪蒸,或阀芯零件的磨损。此外,如果闭合元件在阀座上闭合而操作器又不能够控制在该位置,它将被吸入到阀座。这种现象被称为溶缸闭锁效应。 1. Cv 的定义 一个美国加仑(3.8L )的水在60°F (16℃)时流过阀门,在一分钟内产生1.0psi (0.07bar )的压力降。 2. Cv 值的计算方法 3.1 液体 3.11 基本液体确定尺寸公式 1) 当?P <?Pc=F L 2 (P1-Pv):一般流动 Cv=Q P Sg ? 2) ?P ≥?Pc :阻塞流动 当Pv <0.5P1时 ?Pc=F L 2(P1-Pv) 当Pv ≥0.5P1时 ?Pc= F L 2[P-(0.96-0.28 Pc P 1 )Pv ] Cv=Q Pc Sg ? 式中 Cv----阀门流动系数; Q------流量,gal/min ; Sg-----流体比重(流动温度时); ?P----压力降,psia ?Pc---阻塞压力降 psia F L -------压力恢复系数 见表1

平均数、标准差与变异系数

第三章 平均数、标准差与变异系数 本章重点介绍平均数(mean )、标准差(standard deviation )与变异系数(variation coefficient )三个常用统计量,前者用于反映资料的集中性,即观测值以某一数值为中心而分布的性质;后两者用于反映资料的离散性,即观测值离中分散变异的性质。 第一节 平均数 平均数是统计学中最常用的统计量,用来表明资料中各观测值相对集中较多的中心位置。在畜牧业、水产业生产实践和科学研究中,平均数被广泛用来描述或比较各种技术措施的效果、畜禽某些数量性状的指标等等。平均数主要包括有算术平均数(arithmetic mean )、中位数(median )、众数(mode )、几何平均数(geometric mean )及调和平均数(harmonic mean ),现分别介绍如下。 一、算术平均数 算术平均数是指资料中各观测值的总和除以观测值个数所得的商,简称平均数或均数,记为x 。算术平均数可根据样本大小及分组情况而采用直接法或加权法计算。 (一)直接法 主要用于样本含量n ≤30以下、未经分组资料平均数的计算。 设某一资料包含n 个观测值:x 1、x 2、…、x n ,则样本平均数x 可通过下式计算: n x n x x x x n i i n ∑== +++=1 21Λ (3-1) 其中,Σ为总和符号; ∑=n i i x 1表示从第一个观测值x 1 累加到第n 个观测值x n 。当∑=n i i x 1 在意义上已明确时,可简写为Σx ,(3-1)式即可改写为: n x x ∑= 【例3.1】 某种公牛站测得10头成年公牛的体重分别为500、520、535、560、585、 600、480、510、505、490(kg ),求其平均体重。 由于Σx =500+520+535+560+585+600+480+510+505+490=5285,n =10 代入(3—1)式得: .5(kg)52810 5285∑=== n x x 即10头种公牛平均体重为528.5 kg 。 (二)加权法 对于样本含量n ≥30以上且已分组的资料,可以在次数分布表的基础上采用加权法计算平均数,计算公式为:

变异系数计算法

全区可采:全部或基本全部可采; 大部分可采:局部可采~全区可采; 局部可采:有1/3左右分布比较集中的面积。 零星可采:面积很小,或分布零星,不便或不能被开发利用。 厚度:全层厚度、纯煤厚度、采用厚度(即估算厚度)。 全层厚度:包括夹矸,但不包括岩浆岩。用于研究煤层沉积环境、赋存规律、煤层对比。 采用厚度:即估算厚度,用于煤层可采程度评价(全区可采、大部分可采、局部可采)和估算资源储量。

钻孔控制可采、局部可采煤层情况一览表表4-2-3

一、采用厚度与全层厚度的区别 采用厚度主要用于煤层可采程度评价和估算煤层的资源量。 在研究煤层的沉积环境、赋存规律、煤层对比时,以考虑煤层的全层厚度为宜。 二、含煤系数: 含煤系数= 各煤层平均煤厚之和 ×100% 地层总厚度 三、可采煤层的煤厚与平均煤厚: 可采煤层的煤厚与平均煤厚应包括夹矸在内,因为在研究煤层的沉积环境、赋存规律、煤层对比时,以考虑煤层的全层厚度为宜。沉缺点、冲刷点、火侵点煤厚为0,当有岩浆岩夹矸时,应将岩浆岩夹矸扣除在外。 三、可采煤层的可采性指数(Km 为小数,一般取小数点后两位): 可采性指数(Km )= 可采点数(n ′) 见煤点数(n ) n ——井田内参与煤厚评价的见煤点总数(不包括沉缺、冲刷、火侵,要求分布均匀,有代表性) n ′——煤层采用厚度≥最低可采厚度的见煤点数 注:沉缺点、冲刷点、火侵点为非见煤点,不参与统计 四、可采煤层的煤厚变异系数(r 为百分数,一般取不保留小数): (注:这里用的煤厚是指的煤层全厚度) %100?=M S r M ——井田内的平均煤厚 S ——均方差 煤层平均厚度公式 n M M M M M n ++++= 321 1 ) (1 2 --= ∑=n M M S n i i

变异系数_层次分析_各种权重求解法

二、权重的确定方法 在统计理论和实践中,权重是表明各个评价指标(或者评价项目)重要性的权数,表示各个评价指标在总体中所起的不同作用。权重有不同的种类,各种类别的权重有着不同的数学特点和经济含义,一般有以下几种权重。 按照权重的表现形式的不同,可分为绝对数权重和相对数权重。相对数权重也称比重权数,能更加直观地反映权重在评价中的作用。 按照权重的形成方式划分,可分为人工权重和自然权重。自然权重是由于变换统计资料的表现形式和统计指标的合成方式而得到的权重,也称为客观权重。人工权重是根据研究目的和评价指标的内涵状况,主观地分析、判断来确定的反映各个指标重要程度的权数,也称为主观权重。 按照权重形成的数量特点的不同划分,可分为定性赋权和定量赋权。如果在统计综合评价时,采取定性赋权和定量赋权的方法相结合,获得的效果更好。 按照权重与待评价的各个指标之间相关程度划分,可分为独立权重和相关权重。 独立权重是指评价指标的权重与该指标数值的大小无关,在综合评价中较多地使用独立权重,以此权重建立的综合评价模型称为“定权综合”模型。 相关权重是指评价指标的权重与该指标的数值具有函数关系,例如,当某一评价的指标数值达到一定水平时,该指标的重要性相应的减弱;或者当某一评价指标的数值达到另一定水平时,该指标的重要性相应地增加。相关权重适用于评价指标的重要性随着指标取值的不同而发生变化的条件下,基于相关权重建立的综合评价模型被称为“变权模型”。比如评估环境质量多采用“变权综合”模型。 确定权重的方法较多,这里介绍统计平均法、变异系数法和层次分析法,这些也是实际工作种常用的方法。 (一) 统计平均法 统计平均数法(Statistical average method)是根据所选择的各位专家对各项评价指标所赋予的相对重要性系数分别求其算术平均值,计算出的平均数作为各项指标的权重。其基本步骤是: 第一步,确定专家。一般选择本行业或本领域中既有实际工作经验、又有扎实的理论基础、并公平公正道德高尚的专家; 第二步,专家初评。将待定权数的指标提交给各位专家,并请专家在不受外界干扰的前提下独立的给出各项指标的权数值; 第三步,回收专家意见。将各位专家的数据收回,并计算各项指标的权数均值和标准差;

调节阀的流量计算

调节阀的流量计算 调节阀的流量系数Kv,是调节阀的重要参数,它反映调节阀通过流体的能力,也就是调节阀的容量。根据调节阀流量系数Kv的计算,就可以确定选择调节阀的口径。为了正确选择调节阀的口径,必须正确计算出调节阀的额定流量系数Kv值。调节阀额定流量系数Kv的定义是:在规定条件下,即阀的两端压差为10Pa,流体的密度为lg/cm,额定行程时流经调节阀以m/h或t/h的流量数。 1.一般液体的Kv值计算 a.非阻塞流 判别式:△P<FL(P1-FFPV) 计算公式:Kv=10QL 式中: FL-压力恢复系数,见附表 FF-流体临界压力比系数,FF=0.96-0.28 PV-阀入口温度下,介质的饱和蒸汽压(绝对压力),kPa PC-流体热力学临界压力(绝对压力),kPa QL-液体流量m/h ρ-液体密度g/cm P1-阀前压力(绝对压力)kPa P2-阀后压力(绝对压力)kPa b.阻塞流 判别式:△P≥FL(P1-FFPV) 计算公式:Kv=10QL 式中:各字符含义及单位同前 2.气体的Kv值计算 a.一般气体 当P2>0.5P1时 当P2≤0.5P1时 式中: Qg-标准状态下气体流量Nm/h Pm-(P1+P2)/2(P1、P2为绝对压力)kPa △P=P1-P2 G -气体比重(空气G=1) t -气体温度℃ b.高压气体(PN>10MPa) 当P2>0.5P1时

当P2≤0.5P1时 式中:Z-气体压缩系数,可查GB/T 2624-81《流量测量节流装置的设计安装和使用》 3.低雷诺数修正(高粘度液体KV值的计算) 液体粘度过高或流速过低时,由于雷诺数下降,改变了流经调节阀流体的流动状态,在Rev<2300时流体处于低速层流,这样按原来公式计算出的KV值,误差较大,必须进行修正。此时计算公式应为: 式中:Φ―粘度修正系数,由Rev查FR-Rev曲线求得;QL-液体流量m/h 对于单座阀、套筒阀、角阀等只有一个流路的阀 对于双座阀、蝶阀等具有二个平行流路的阀 式中:Kv′―不考虑粘度修正时计算的流量系 ν ―流体运动粘度mm/s FR -Rev关系曲线 FR-Rev关系图 4.水蒸气的Kv值的计算 a.饱和蒸汽 当P2>0.5P1时 当P2≤0.5P1时 式中:G―蒸汽流量kg/h,P1、P2含义及单位同前,K-蒸汽修正系数,部分蒸汽的K值如下:水蒸汽:K=19.4;氨蒸汽:K=25;氟里昂11:K=68.5;甲烷、乙烯蒸汽:K=37;丙烷、丙烯蒸汽:K=41.5;丁烷、异丁烷蒸汽:K=43.5。 b.过热水蒸汽 当P2>0.5P1时 当P2≤0.5P1时 式中:△t―水蒸汽过热度℃,Gs、P1、P2含义及单位同前。

调节阀的流通能力Kv值计算

调节阀的流通能力Kv值,是调节阀的重要参数,它反映流体通过调节阀的能力,也就是调节阀的容量。根据调节阀流通能力Kv值的计算,就可以确定选择调节阀的口径。为了正确选择调节阀的尺寸,必须准确计算调节阀的额定流量系数Kv值。 调节阀额定流量系数的定义是:在规定条件下,即控制阀的两端压差为105Pa,流体的密度为1g/cm3,额定行程时流经调节阀以m3/h或t/h的流量数。 1.一般液体的Kv值计算 a.非阻塞流 式中:FL—压力恢复系数,查表1。 FF—液体临界压力比系数,F=0.96-0.28 Pv—调节阀入口温度下,液体的饱和蒸汽压(绝对压力),查表4~表10。 Pc—物质热力学临界压力,查表2和表3。 QL—液体流量m3/h。 ρ—液体密度g/cm3 P1—阀前压力(绝对压力)KPa. P2—阀后压力(绝对压力)KPa. b.阻塞流

式中:各字母含义及单位同前。 2.低雷诺数修正(高粘度液体Kv值的计算) 液体粘度过高时,由于雷诺数下降,改变了流体的流动状态,在Re<2300时流体处于低速层流,这样按原来公式计算出的Kv值,误差较大,必须进行修正。此时计算公式为: 式中:φ—粘度修正系数,由Re查图求得。 对于单座调节阀、套筒调节阀、角形阀等只有一个流路的调节阀: Re=70000 对于双座调节阀、蝶阀等具有二个平行流路的阀门: Re=49600 式中:K''v—不考虑粘度修正时计算的流通能力。 γ—流体运动粘度mm2/s。 雷诺数Re 粘度修正曲线 3.气体的Kv值的计算: a.一般气体 当P2>0.5P1时 当P2≤0.5P1时

式中:Qg—标准状态下气体流量m3/h, Pm—(P1、P2为绝对压力)KPa, △P=P1-P2 G—气体比重(空气G=1), t—气体温度℃ b.高压气体(PN>10MPa) 当P2>0.5P1时, 当P2≤0.5P1时, 式中:Z—气体压缩系数,可查GB2624-81《流量测量节流装置的设计安装和使用》。 4.蒸汽的Kv值的计算 a.饱和蒸汽 当P2>0.5P1时, 当P2≤0.5P1时 式中:Gs—蒸汽流量Kg/h P1、P2含义及单位同前 K—蒸汽修正系数 部分蒸汽的K值如下:

变异系数

变异系数 变异系数又称“标准差率”,是衡量资料中各观测值变异程度的另一个统计量。当进行两个或多个资料变异程度的比较时,如果度量单位与平均数相同,可以直接利用标准差来比较。如果单位和(或)平均数不同时,比较其变异程度就不能采用标准差,而需采用标准差与平均数的比值(相对值)来比较。 标准差与平均数的比值称为变异系数,记为C.V 。变异系数可以消除单位和(或)平均数不同对两个或多个资料变异程度比较的影响。 标准变异系数是一组数据的变异指标与其平均指标之比,它是一个相对变异指标。 变异系数有全距系数、平均差系数和标准差系数等。常用的是标准差系数,用C V(Coefficient of Variance)表示。 CV(Coefficient of Variance):标准差与均值的比率。 用公式表示为:CV =σ/μ 作用:反映单位均值上的离散程度,常用在两个总体均值不等的离散程度的比较上。若两个总体的均值相等,则比较标准差系数与比较标准差是等价的。 变异系数又称离散系数。 cpa 中也叫“变形系数” 1.标准差是用来反映各个数据值与数据均值的偏离程度的。标准差可以用来评价同一指标的各数据与这一指标数据平均值的偏离程度,即数据是否集中。标准差的值越大,就说明各个数据偏离均值的程度越大,那么均值对所有数据的代表程度越小。反之,标准差的值越小,就说明各个数据偏离均值的程度越小,那么均值对所有数据的代表程度越大。 标准差的计算: 假设标准差为S 。 对于未分组的原始数据,其标准差的计算公式为: n ) X X (S 2 n 1i i ∑-==(n>=30) 1n ) X X (S 2i -∑-=(n<30)

调节阀Kv值计算

调节阀Kv 计算 上期简述控制阀选型,本期主要介绍调节阀Kv 计算。 一、调节阀Kv 值计算 1) 一般液体的Kv 值计算 a 、 非阻塞流 判别式:()21L F V p F P F P <- ; 计算公式:Kv = 或 Kv = b 、 阻塞流 判别式:()21L F V p F P F P ≥- ; 计算公式: Kv = 或 Kv = 式中: F L ——压力恢复系数 X T ——压差比系数 F F ——流体临界压力比系数,0.96F F =-P V ——入口温度下,介质的饱和蒸汽压(绝对压力),MPa P C ——流体热力学临界压力(绝对压力),MPa Q ——体积流量m3/h W ——质量流量T/h P1——阀前压力(绝对),MPa (A ) P2——阀前压力(绝对),MPa (A )

△P ——阀入口和出口间的压差,即(P1-P2),MPa ; ρ——介质密度,Kg/m 3 2) 低雷诺数修正(高粘度液体KV 值的计算) 当流经阀门的介质为高粘度、低流速或相当低的压差液体时,此时流体在阀门处于低雷诺数(层流)状态,(流经调节阀流体雷诺数Rev 小于104),需对Kv 值进行粘度修正。 计算公式:'/V V R K K F = 在求得雷诺数Rev 值后可查曲线图得F R 值。 计算调节阀雷诺数Rev 公式如下: 对于单座阀、套筒阀、角阀、球阀等只有一个流路的阀 Re v =

图1 式中: Kv ’——粘度修正后的计算Kv 值 F R ——雷诺数系数,根据ReV 值可计算出 ν——运动粘度,10-5m 2/s 3) 气体的Kv 值计算 a 、 一般气体 I 判别式:210.5P P >; 计算公式:Kv = ; II 判别式:210.5P P ≤; 计算公式:Kv =式中: Q N ——标准状态下气体流量,Nm 3/h ρN ——标准状态下气体密度,Kgf/Nm 3 P1——阀前压力(绝对),KPa (A )

excel变异系数函数的计算方法

excel变异系数函数的计算方法 在Excel中经常会利用到函数进行数据的统计计算,虽然变异很少求到,但也会用到,下面是小编带来的关于excel变异系数函数的计算方法的内容,欢迎阅读! excel变异系数函数的计算方法 变异系数(Coefficient of Variation)又称标准差率,是衡量资料中各观测值变异程度的另一个统计量。当进行两个或多个资料变异程度的比较时,如果度量单位与平均数相同,可以直接利用标准差来比较。如果单位和(或)平均数不同时,比较其变异程度就不能采用标准差,而需采用标准差与平均数的比值(相对值)来比较。 标准差与平均数的比值称为变异系数,记为C.V。变异系数可以消除单位和(或)平均数不同对两个或多个资料变异程度比较的影响. 变异系数越小,变异(偏离)程度越小,风险也就越小;反之,变异系数越大,变异(偏离)程度越大,风险也就越大。 变异系数的计算公式为:变异系数CV =标准偏差/ 平均值 如表:为某公司的用户使用的连续3个月的使用流量状况,如何求各用户的变异系数? 用户T-3月流量T-2月流量T-1月流量A0001283.3320.5273.3A0002102.1140.4180.3A000320.512.33 4.6A0004800.81029.8980.3A0005502.8321.3325.5A0006245.8

278.9296.4 A:主要解法如下: excel变异系数函数的计算方法1:首先使用AVERAGE函数求均值: =AVERAGE(B2:D2) excel变异系数函数的计算方法2:然后使用STDEV函数求标准差: =STDEV(B2:D2) excel变异系数函数的计算方法3:最后得到变异系数:CV=标准差/均值 最终结果如图所示: 用户T-3月流量T-2月流量T-1月流量均值标准差变异系数A0001283.3320.5273.3292.3724.870.085A0002102.1140.4180. 3140.9339.100.277A000320.512.334.622.4711.280.502A00048 00.81029.8980.3936.97120.490.129A0005502.8321.3325.5383. 20103.600.270A0006245.8278.9296.4273.7025.700.094看了excel变异系数函数的计算方法还看了:1.浅谈小麦产量构成因素的相关性分析 2.阿莫西林的研究进展 3.论中国地区工业发展态势及政策导向

调节阀一般参数计算公式

调节阀一般参数计算公式 调节阀的流量系数Kv,是调节阀的重要参数,它反映调节阀通过流体的能力,也就是调节阀的容量。根据调节阀流量系数Kv的计算,就可以确定选择调节阀的口径。为了正确选择调节阀的口径,必须正确计算出调节阀的额定流量系数Kv值。调节阀额定流量系数Kv的定义是:在规定条件下,即阀的两端压差为10Pa,流体的密度为lg/cm,额定行程时流经调节阀以m/h或t/h的流量数。 一般液体的Kv值计算 a.非阻塞流 判别式:△P0.5P1时 当P2≤0.5P1时 式中:Qg-标准状态下气体流量Nm/h Pm-(P1+P2)/2(P1、P2为绝对压力)kPa △P=P1-P2 G -气体比重(空气G=1) t -气体温度℃ b.高压气体(PN>10MPa)

当P2>0.5P1时 当P2≤0.5P1时 式中:Z-气体压缩系数,可查GB/T 2624-81《流量测量节流装置的设计安装和使用》 低雷诺数修正(高粘度液体KV值的计算) 液体粘度过高或流速过低时,由于雷诺数下降,改变了流经调节阀流体的流动状态,在Rev<2300时流体处于低速层流,这样按原来公式计算出的KV值,误差较大,必须进行修正。此时计算公式应为: 式中:Φ―粘度修正系数,由Rev查FR-Rev曲线求得;QL-液体流量 m/h 对于单座阀、套筒阀、角阀等只有一个流路的阀 对于双座阀、蝶阀等具有二个平行流路的阀 式中:Kv′―不考虑粘度修正时计算的流量系 ν―流体运动粘度mm/s FR -Rev关系曲线 FR-Rev关系图 水蒸气的Kv值的计算 a.饱和蒸汽 当P2>0.5P1时 当P2≤0.5P1时 式中:G―蒸汽流量kg/h,P1、P2含义及单位同前,K-蒸汽修正系数,部分蒸汽的K值如下:水蒸汽:K=19.4;氨蒸汽:K=25;氟里昂11:K=68.5;甲烷、乙烯蒸汽:K=37;丙烷、丙烯蒸汽:K=41.5;丁烷、异丁烷蒸汽:K=43.5。 b.过热水蒸汽 当P2>0.5P1时 当P2≤0.5P1时 式中:△t―水蒸汽过热度℃,Gs、P1、P2含义及单位同前。 上海富日阀门制造有限公司 https://www.sodocs.net/doc/b111871580.html, 调节阀制造厂商 2012/5/7

Cv值与Kv值的定义及计算方法

Cv值与Kv值的定义及计算方法 Cv值与Kv值的定义及计算方法是调压阀的选型过程中非常重要的依据,我们可以根据Cv值或Kv值来算出某个减压阀能达到的最大流量,也可以根据需要的流量来选择特定Cv/Kv值的调节阀。 Cv值和Kv值不是某个单位,它们是经过公式得出的流量系数,和阀前和阀后的压力,流量,介质的种类、比重,这几个参数紧密相关的。 目前国际上在北美地区比较习惯使用Cv值,在欧洲国家和中国则大多使用Kv值。Kv值与Cv值之间有一个简单的关系:Cv=1.167Kv,但这个关系是在某一特定条件时得出的结果,在实际工况中有出入,为尽可能地提高准确度及减少因选型失误带来的麻烦,请尽量不使用简单的换算方式。 以下即为Cv值与Kv值的定义及计算方法: Cv值 Cv:表示设备在全开状态流量的调节阀和阀门流量系数。对于液体,该系数被定义为在60℉,压力将为1psig是的水流,单位为加仑/分钟。对于气体,该系数被定义为标准条件下每1psig入口压力的空气流量,单位为标准立方英尺/分钟。 SL:液体相对于水在标准温度60℉的比重。(水比重=1.0@60℉) Sg:气体相对于空气的比重;等于气体分子量与空气分子量的比率。(空气比重=1.0@60℉)Psia:绝对压力,为压力表压力(psig)加上14.7(大气压力)。 P:管道压力(psia) P1:入口压力 psia P2:出口压力 psia ΔP:压差(P1-P2) QL:液体流量加仑/分钟。(GPM) Qg:气体流量标准立方英尺/分(SCFM)。(在60℉和14.7psia标准条件下) Cv液流公式

示例:在以下条件确定通过调节阀的液体流量(假设水),单位为加仑/分: 假设:P1=1000pisa P2=600psia SL=1.0 Cv=0.8 Cv气体流量公式 a).当P1≥2×P2时,为超临界流量, b).当P1<2×P2时,为次临界流量, 示例: 假设:P1=1000psia P2=400psia Qg=400 SCFM Sg=1.0(假设本示例中为空气) Kv值 Kv值的定义:是指阀前与阀后压差为1bar(ΔP=1bar),温度在20℃大气压为760毫米汞柱(一个大气压),空气的比重是1.25时,或液体水的比重是1.0时的流量系数,单位是立方米/小时。 A 符号含义备注单位Q 流量l/min Kv 流量系数在前后压差△P=1bar 和γ=1 或 1.25的情况下m3/h P 相对压力bar Pabs 绝对压力1+P bar 绝对压力P1 入口压力bar P2 出口压力bar △P 压差P1-P2 bar T 绝对温度273+℃(在 20℃时绝对温度=293℃)K γL气体比重空气:1.25 温度20℃/68°F和760mm Hg N/m3 γA液体比重水:1.0 N/dm3

变异系数的意义

变异系数的意义 变异系数(又称离散系数)是概率分布离散程度的一个归一化量度。 变异系数只在平均值不为零时有定义,而且一般适用于平均值大于零的情况。变异系数也被称为标准离差率或单位风险。 变异系数只对由比率标量计算出来的数值有意义。举例来说,对于一个气温的分布,使用开尔文或摄氏度来计算的话并不会改变标准差的值,但是温度的平均值会改变,因此使用不同的温标的话得出的变异系数是不同的。也就是说,使用区间标量得到的变异系数是没有意义的。 在概率论和统计学中,变异系数,又称“离散系数”(英文:coefficient of variation),是概率分布离散程度的一个归一化量度,其定义为标准差与平均值之比: 变异系数(coefficient of variation)只在平均值不为零时有定义,而且一般适用于平均值大于零的情况。变异系数也被称为标准离差率或单位风险。 变异系数只对由比率标量计算出来的数值有意义。举例来说,对于一个气温的分布,使用开尔文或摄氏度来计算的话并不会改变标准差的值,但是温度的平均值会改变,因此使用不同的温标的话得出的变异

系数是不同的。也就是说,使用区间标量得到的变异系数是没有意义的。 2基本含义 变异系数 一般来说,变量值平均水平高,其离散程度的测度值越大,反之越小。 变异系数是衡量资料中各观测值变异程度的另一个统计量。当进行两个或多个资料变异程度的比较时,如果度量单位与平均数相同,可以直接利用标准差来比较。如果单位和(或)平均数不同时,比较其变异程度就不能采用标准差,而需采用标准差与平均数的比值(相对值)来比较。标准差与平均数的比值称为变异系数,记为C·V。变异系数可以消除单位和(或)平均数不同对两个或多个资料变异程度比较的影响。 变异系数的计算公式为:变异系数C·V =(标准偏差SD / 平均值Mean )× 100% 在进行数据统计分析时,如果变异系数大于15%,则要考虑该数据可能不正常,应该剔除。 3举例

阀门Kv和调节阀的流通能力计算

阀门Kv和调节阀的流通能力计算 标签: 杂谈 Kv值的定义:Kv值是表示阀门流量特性的一个参数和表示方法。 Kv值的测定:被测元件全开,元件两端压差△p.==0.1MPa,流体密度ρ=1g/cm时;通过元件的流量为qv(m/h),则流通能力Kv值为 Kv值的计算:Kv=qv*[ρ*△p0/(ρ0*△p)]^0.5 式中: Kv:流通能力,m3/h; ρ:实测流体密度,g/cm3; △p.=p1-p2。p1和p2是被测元件上下游的压力差,MPa。 Kv值与Cv值之间的关系:Cv=1.167Kv 调节阀的流通能力计算方式: 调节阀的流通能力Kv值,是调节阀的重要参数,它反映流体通过调节阀的能力,也就是调节阀的容量。根据调节阀流通能力Kv值的计算,就可以确定选择调节阀的口径。为了正确选择调节阀的尺寸,必须准确计算调节阀的额定流量系数Kv值。调节阀额定流量系数的定义是:在规定条件下,即阀的两端压差为105Pa,流体的密度为1g/cm3,额定行程时流经调节阀以m3/h或t/h的流量数。 Kv —所需阀门设计流通能力(m3/h); Q —阀门设计流量(m3/h); Kvs —阀门最大流通能力(m3/h); Kvr —系统最小流量时阀门流通能力(m3/h)。 Kvs值表示调节阀的最大开度时的Kv值。 1.一般液体的Kv值计算 a.非阻塞流式中:FL—压力恢复系数,查表1。FF—液体临界压力比系数,F=0.96-0.28 Pv—阀入口温度下,液体的饱和蒸汽压(绝对 压力),查表4~表10。Pc—物质热力学临界压力,查表2和表3。QL—液体流量m3/h。ρ—液体密度g/cm3 P1—阀前压力(绝对压力)KPa. P2—阀后压力(绝对压力)KPa. b.阻塞流 式中:各字母含义及单位同前。 2.低雷诺数修正(高粘度液体Kv值的计算) 液体粘度过高时,由于雷诺数下降,改变了流体的流动状态,在Re<2300时流体处于低速层流,这样 按原来公式计算出的Kv值,误差较大,必须进行修正。此时计算公式为:式中:φ—粘度修正系数,由Re查图求得。对于单座阀、套筒阀、角阀等只有一个流路的阀: Re=70000对于双座阀、蝶阀等具有二个平行流路的阀:Re=49600式中:

阀门kv值

阀门的KV值和阀门选型有很大影响吗?蒸汽阀选型有什么注意的吗? 现遇到个项目,用的是蒸汽阀,选阀门的时候只是根据阀门口径对应选型,结果调试的时候精度达不到要求,每调1%,温度升高几十度,有人说可能是阀门选型的时候没选对,要对应KV值来选,现在不知道该如何解决这个问题了,求专业的人士帮忙解答,谢谢! 阀门Kv的定义是在单位的压力降下通过阀门的液体或气体的标准体积数。再简单一点说就是阀门流通能力的指标。相同的口径下,较高的Kv值意味着在相同的流量下,其压力损失较小。所以在相同口径下,大kv值的阀门都是流道简单的阀门,如蝶阀,球阀等。但有利就有弊,大Kv的阀门的控制性能也会较差。 在选择阀门的时候,阀门的流通能力要和管道设计的流通能力相匹配。若阀门的流通能力太小,则管道的流量上不去。若阀门的流通能力太大,则阀门稍微开一点就达到了管道所设计的最大流通能力,这样阀门就在一个很窄的范围进行调节,其调节的精度可想而知。一般选择阀门的流通能力稍大于管道所设计的最大流量。这样既保证了流通能力,又有较好的控制性能。一般管道的最大流量为阀门流通能力的85%左右,你就按这个选吧,应该没有问题,除非其提供的设计数据有问题。 希望对你有所帮助。 调节阀的流通能力Kv值,是调节阀的重要参数,它反映流体通过调节阀的能力,也就调节阀的容量。根据调节阀流通能力Kv值的计算,就可以确定选择调节阀的口径。为了正确选择调节阀的尺寸,必须准确计算调节阀的额定流量系数Kv 值。 调节阀额定流量系数的定义是:在规定条件下即阀的两端压差为105Pa流体的密度为1g/cm3,额定行程时流经调节阀以m3/h或t/h的流量数。 1、一般液体的Kv值计算 a.非阻塞流 计算公式: b.阻塞流 计算公式: 2、低雷诺数修正(高粘度液体Kv值的计算) 液体粘度过高时,由于雷诺数下降,改变了流体的流动状态,在Re<2300时流体处于低速层流,这样按原来公式计算出的Kv值,误差较大,必须进行修正。此时计算公式为: 式中:――粘度修正系数,由Re查图求得。

相关主题