搜档网
当前位置:搜档网 › 人源葡萄糖转运蛋白GLUT的晶体结构解读

人源葡萄糖转运蛋白GLUT的晶体结构解读

人源葡萄糖转运蛋白GLUT的晶体结构解读
人源葡萄糖转运蛋白GLUT的晶体结构解读

葡萄糖转运蛋白GLUT1的晶体结构

宏观评述

一、背景介绍:

葡萄糖(D-glucose)是地球上包括从细菌到人类各种生物已知最重要、最基本的能量来源,也是人脑和神经系统最主要的供能物质;大脑平均每天消耗约120克葡萄糖,占人体葡萄糖总消耗量的一半以上。葡萄糖代谢的第一步就是进入细胞:亲水的葡萄糖作为一种有机大分子不能自由穿透疏水的脂质双层结构细胞膜进入细胞,其进出细胞需要通过镶嵌于细胞膜上的葡萄糖转运蛋白(glucose transporters)简称葡萄糖转运体(GLUT)转运功能才能得以实现。其中一类属于主要协同转运蛋白超家族(Major Facilitator Superfamily,简称MFS)的转运蛋白是大脑、神经系统、肌肉、红细胞等组织器官中最重要的葡萄糖转运蛋白(glucose transporters,简称GLUTs)。在人体的14个GLUTs中,GLUT1、2、3、4这四种蛋白生理功能最重要,研究最广泛,GLUT1几乎存在于人体每一个细胞中,是红细胞和血脑屏障等上

皮细胞的主要葡萄糖转运蛋白,对于维持血糖浓度的稳定和大脑供能起关键作用。在已知的人类遗传疾病中,G L U T 1 功能完全缺失将致死,功能部分缺失会使细胞对葡萄糖吸收不足而导致大脑萎缩、智力低下、发育迟缓、癫痫等一系列疾病(GLUT1 Deficiency syndrome,又称De Vivo syndrome)同时也会因葡萄糖不能及时为人体利用消耗而导致血糖浓度的异常升高。另一方面,当发生癌变时,葡萄糖是肿瘤细胞最主要的能量来源,但是肿瘤细胞由于缺乏氧气供应而只能对

葡萄糖进行无氧代谢,同质量葡萄糖所提供的能量不到正常细胞的10%,因而对葡萄糖的需求剧增(这是被称为Warburg Effect的肿瘤

细胞代谢现象),在很多种类的肿瘤细胞中都观察到GLUT1的超量表达,以大量摄入葡萄糖维持肿瘤细胞的生长扩增,这使得GLUT1的表达量

可能作为检测癌变的一个指标。GLUT1–4是一种类胰岛素敏感型葡萄糖运输载体,它与2型糖尿病密切相关,细胞中GLUT1–4表达的减少

以及其转位的障碍都是引发糖尿病的重要因素。

二、研究介绍:

他们首先获得了GLUT1-4在大肠杆菌中的同源蛋白,XylE的结构。XylE在肠杆菌中负责将D-木糖以质子依赖的方式同向转运进入细胞。它与人的GLUT1-4蛋白有着高达50%的序列相似性,进化上高度保守。细菌GLUT1–4同源物XylE分别与D-木糖、D-葡萄糖和6-溴-6-脱氧-d-葡萄糖构成的三种复合物的晶体结构,分辨率分别为2.8、2.9 和2.6埃。其三维晶体结构中包含一个典型的由12个跨膜片段和一个独特的四螺旋结构域构成的主要协同转运蛋白超家族(Major Facilitator Superfamily,MFS)折叠。XylE被捕获在一个面向外(outward-facing)、部分闭合的构象中。

XylE蛋白的三维晶体结构呈现出典型的MFS家族折叠方式——由12个跨膜螺旋组成N端和C端两个以假两次轴对称的结构域。与已知结构的MFS超家族其它成员不同,XylE呈现出一种向细胞外侧开放、部分封闭的全新构象,并且具有一个独特的由4个α螺旋组成的胞内结构域。颜宁研究组获得了XylE与底物D-木糖,抑制剂D-葡萄糖,

以及一种葡萄糖衍生物的3个复合物的结构,找到了与底物结合的重要氨基酸残基,并通过生化实验分析,验证了这些残基在底物识别与转运过程中起到的作用。尤为重要的是,序列比对显示这些残基在GLUT1-4中完全保守,从而第一次揭示出GLUT1-4识别底物的分子基础。

在研究这些同家族糖转运蛋白的结构与机理过程中,她们对于MFS家族的工作机理有了深入了解,分析出GLUT1结晶的瓶颈在于高度动态、结构不稳定。针对这一问题,她们寻找可以将GLUT1锁定于某一构象的致病突变体,同时利用低温结晶进一步稳定蛋白构象,终于克服了GLUT1重组表达、纯化结晶的一系列技术障碍,获得了GLUT1的晶体结构。

三、价值意义:

1、提供的结构和生物化学信息可为了解葡糖糖转运蛋白和糖转运蛋白的功能和机制提供重要的框架。

2、这一结构模型由于是以具有高度同源的XylE蛋白的晶体结构为基础,比以往研究报道的结果更为准确。利用GLUT1的晶体结构可以精确地定位与疾病相关的突变氨基酸,揭示其致病机理。分析显示,三十余个突变氨基酸基本集中于三个区域:底物结合区域、胞外门控区、胞内门控区,它们的突变或者影响了底物识别,或者影响转运蛋白的构象变化。晶体结构使得理解这些致病突变的机理一目了然。与之前获得的向胞外半开口的XylE晶体结构比较揭示出ICH在GLUT1的构

象变化中起关键作用。鉴于ICH在糖转运蛋白亚家族的保守性,这一发现可能适用于该亚家族所有成员。

3、在人类攻克癌症、糖尿病等重大疾病的探索道路上迈出了极为重要的一步。如果我们能研究清楚GLUT1 的组成结构和工作机理,就有可能通过调控它实现葡萄糖转运的人工干预。这样既可以增加正常细胞的葡萄糖供应,达到治疗相关疾病的目的,也可以通过阻断葡萄糖供应“饿死”癌细胞。

重点分析

一、结构特征

MFS 超家族转运蛋白的结构特征MFS超家族的成员蛋白大多由

400~600个氨基酸残基组成, N和C端都位于胞内. 蛋白二级结构预测提示其大多具有12次 -螺旋跨膜结构域, 其他一些具有14或者24次 -螺旋的则可能是进化过程中以12次跨膜 -螺旋为基础产生的. 这种独特的折叠方式也被命名为“MFS fold”. 在“MFS fold”中, 12次 螺旋可以分为2个结构域: N端结构域和C端结构域. 每个结构域都由6个 -螺旋组成, 虽然2个结构域中氨基酸序列只有很低的序列同源性, 但从结构上观察2个结构域呈现二次赝对称(two-fold psudosymmetry).同时MFS超家族蛋白的结构和序列分析提示可能存在3次跨膜重复构成的特性, 结构和功能分析都支持MFS蛋白每个结构域都是以3+3反转重复(inverted 3+3 repeats)的组成. 更有意思的是, 研究发现一类只有3次跨膜结

MFS 超家族蛋白结构特征. 图中显示的是属于MFS 蛋白家族的XylE 的结构. XlyE 具有经

典的12 跨膜螺旋的MFS fold. 其中跨膜螺旋TM1-3 和TM4-6 形成“3+3”反转重复, 构成

了XylE 的N 端结构域; 跨膜螺旋TM7-9 和TM10-12 也具有类似反转重复特性, 它们构成了XylE 的C 端结构域; 部分MFS 家族转运蛋白像XylE 一样还存在胞内结构域

构域的糖转运蛋白SemiSWEET, 它们在细胞膜上可能形成多聚体行使功能. 可能从进化上来讲, MFS超家族蛋白是由3次跨膜蛋白融合形成.除了跨膜结构域外, 部分MFS超家族蛋白还具有胞内结构域. 以XylE和GLUT1为例, 在胞内区域还存在几个由-螺旋组成的胞内结构域.螺旋中的多个带电荷氨基酸残基会与跨膜结构域上的氨基酸残基产生相互作用, 底物转运实验也已经证实这些位置上的突变会影响

转运. 进行序列比对发现, 这些氨基酸残基在所有的糖转运蛋白中

都十分保守, 说明这个结构域在该家族中保守, 并发挥重要功能GLUT1的三维晶体结构呈现经典的MFS家族折叠方式----12个跨膜螺旋组成N端和C端两个结构域。两个结构域之间的腔孔朝向胞内区,即该结构呈现向内开放构象。而在结晶中用到的去污剂头部恰好是葡萄糖苷,其结合位点与此前XylE中观测到的葡萄糖结合位点基本重合,证实了MFS家族具有单一结合位点。有趣的是,GLUT1在胞内可溶区还具有一个由4个α螺旋组成的结构域(简称ICH),这一序列只在MFS中的糖转运蛋白亚家族中(Sugar Porter subfamily)观察到,因此ICH是属于该家族蛋白的特有结构特征。

二、转运机制

MFS超家族转运蛋白包含共转运蛋白(co-transporter)和协助转运蛋

白(facilitator). 共转运蛋白(co-transporter)在转运底物过程中

需要借助其他物质的参与, 其中质子共转运蛋白的转运机制的研究

较为透彻. 比如LacY, FucP, XylE都是共转运蛋白, 它们在转运乳糖、岩藻糖和木糖的过程中都需要利用膜两侧的质子浓度梯度所提供的

势能驱动, 完成底物在胞内的积累. 因此, 质子在转运过程中起到

了非常重要的作用.在对LacY进行的大量生物化学研究中表明, 质子

的协同运输过程中, 一些重要的氨基酸残基参与了质子传递的过程. LacY中第269位的谷氨酸(Glu269)在LacY处在向胞外开放构象下被质

子化, 然后乳糖分子会结合到蛋白上的底物结合位点,诱导Glu269上

的质子发生传递, 使其转移到第325位谷氨酸(Glu325)上. 与此同时, 这一过程驱动蛋白发生构像变化, 使蛋白呈现向胞内开放状态, 底

物释放后Glu325上的质子也随之释放, 蛋白在这种状态下不稳定,

随即恢复到面向胞外状态, 完成一个转运循环.在对另一个质子同向

转运蛋白FucP的研究过程中发现, 位于转运通道中两个酸性氨基酸Asp46以及Glu135可能与LacY中的2个酸性氨基酸一样, 在底物转运

过程中可以被质子化和去质子化, 引起蛋白的构象变化, 完成底物

转运.XylE蛋白需要质子进行共转运的机制则可能有所不同. 研究发现, XylE 中第27 位的天冬氨酸(Asp27)与质子协助转运有关. 将

Asp27突变成天冬酰胺Asn或者丙氨酸Ala后, 并不会对底物的逆流转

运实验(counterflow assay)产生影响, 但在活细胞中突变体蛋白不

能完成底物转运. 有意思的是在XylE的高分辨率晶体结构中, Asp27

与第133位精氨酸(Arg133)形成静电相互作用, 如果将Arg133突变成

组氨酸His、亮氨酸Leu、色氨酸Trp都会影响XylE的转运活性. 而

Asp27侧链的质子化可能会造成其局部的构象变化, 使其与Arg133不

适合形成氢键除了共转运蛋白, MFS超家族还存在一类协助转运蛋白. 我们近期完成结构解析的人源葡萄糖转运蛋白GLUT1正是最重要的协

助转运蛋白之一. 由于GLUT1与XylE具有较高的序列同源性, GLUT1

的N端结构域和C端结构域与来自XylE的2个结构域都十分相似. 2个

结构上相似的蛋白却以2种不同的方式进行转运, 这对我们研究和认

识质子共转运的机制有很大帮助. 在GLUT1的序列中与XylE序列中第27位的天冬氨酸(Asp27)对应的第29位氨基酸被天冬酰胺取代, 这个

突变刚好可以模拟天冬氨酸(Asp)质子化的状态.Asn29没有与

Arg126(对应XylE的Arg133)形成氢键. 这就释放了Arg126, 其与来

自C端结构域的Try292形成阳离子- 键相互作用

(cation- interaction).目前, 我们认为XylE的转运过程是: 当XylE处在向胞外开放时, Asp27很容易被质子化, 质子化的天冬氨酸

会引起与它相互作用的氨基酸残基侧链发生构象变化, 与此同时,

底物分子(木糖)可以进入底物结合位点; 与蛋白结合的底物分子可

以诱导蛋白发生较大构象变化, 使蛋白从向胞外开放变成向胞内开放; 随后底物从蛋白上结合位点脱离, Asp27也去质子化, 此时构象

变得不稳定, 蛋白恢复向胞外开放状态. 如果Asp27不能去质子化,

即使底物从蛋白脱离也不能使蛋白完成空转, 将稳定在向胞内开放

状态.而GLUT1是一个协助转运蛋白(uniporter/facilitator),它就

像一直处于质子化状态下的质子共转运蛋白. 底物结合和释放已经可以起到诱导蛋白构象变化的作用, 不需要质子参与. 这其中的原因可能是GLUT1各种不同构象之间的能垒都较低, 自由热运动就足以完成构象变化, 即使没有底物存在,GLUT1也处在一个高度动态的状况下, 底物的出现便能够诱导整个过程.GLUT1的生理功能是维持细胞膜两侧的葡萄糖

浓度平衡. 当两侧葡萄糖浓度等同时, GLUT1同样可能对葡萄糖分子进行转运, 完成类似交换. 而从进化上讲, 对于哺乳动物这样的多细胞生物来说, 更多的是需要整个生命体内部的稳态和平衡, 像GLUT1这样的协助转运蛋白更有利于个体的生存; 而对于大肠杆菌这样的单细胞来说, 它们的生存环境本身充满了严酷的竞争, 像XylE 这样的共转运蛋白可以帮助他们从贫乏的外界摄取更多的营养物质.

读书的好处1、行万里路,读万卷书。

2、书山有路勤为径,学海无涯苦作舟。

3、读书破万卷,下笔如有神。

4、我所学到的任何有价值的知识都是由自学中得来的。——达尔文

5、少壮不努力,老大徒悲伤。

6、黑发不知勤学早,白首方悔读书迟。——颜真卿

7、宝剑锋从磨砺出,梅花香自苦寒来。

8、读书要三到:心到、眼到、口到

9、玉不琢、不成器,人不学、不知义。

10、一日无书,百事荒废。——陈寿

11、书是人类进步的阶梯。

12、一日不读口生,一日不写手生。

13、我扑在书上,就像饥饿的人扑在面包上。——高尔基

14、书到用时方恨少、事非经过不知难。——陆游

15、读一本好书,就如同和一个高尚的人在交谈——歌德

16、读一切好书,就是和许多高尚的人谈话。——笛卡儿

17、学习永远不晚。——高尔基

18、少而好学,如日出之阳;壮而好学,如日中之光;志而好学,如炳烛之光。——刘向

19、学而不思则惘,思而不学则殆。——孔子

20、读书给人以快乐、给人以光彩、给人以才干。——培根

2019年执业药师继续教育 创新机制–肾脏钠葡萄糖共转运蛋白2 SGLT-2抑制剂-达格列净...考试

创新机制–肾脏钠葡萄糖共转运蛋白2 SGLT-2抑制剂-达格列净...考试 返回上一级 单选题(共10 题,每题10 分) 1 . 最近统计中国糖尿病患病率在成人中达到() ? A.11.6% ? B.9.8% ? C.6.6% ? D.4.5% 我的答案: A 参考答案:A 答案解析:暂无 2 . 由于人口的原因世界上患糖尿病人数最多的国家是() ? A.美国 ? B.中国 ? C.印度 ? D.日本 我的答案: B 参考答案:B 答案解析:暂无 3 . 肾脏葡萄糖转运:SGLT2负责()肾脏葡萄糖的重吸收 ? A.90% ? B.80% ? C.70% ? D.60% 我的答案: A 参考答案:A 答案解析:暂无 4 . 糖尿病是代谢综合征的一部分表现,型糖尿病患者合并高血压和(或)脂代谢紊乱的达到() ? A.70% ? B.68% ? C.60% ? D.55% 我的答案: C 参考答案:C 答案解析:暂无 5 . 第一个SGLT-2抑制剂来源于() ? A.草根 ? B.苹果树皮 ? C.苹果树叶 ? D.以上都是

我的答案: B 参考答案:B 答案解析:暂无 6 . SGLT2抑制剂肾脏保护的间接获益包括() ? A.改善血糖控制 ? B.降低血压 ? C.降低体重 ? D.以上都是 我的答案: D 参考答案:D 答案解析:暂无 7 . 与二甲双胍联合用药长期控制血糖非常好的药物是() ? A.安慰剂 ? B.二甲双胍 ? C.达格列净 ? D.都可以 我的答案: C 参考答案:C 答案解析:暂无 8 . 达格列净减重作用主要源于() ? A.体内脂肪减少 ? B.体内肌肉的减少 ? C.体内脂肪增加 ? D.体内脂肪增加 我的答案: A 参考答案:A 答案解析:暂无 9 . 达格列净初始单药治疗低血糖风险与安慰剂相比() ? A.相当 ? B.略高 ? C.高出很多 ? D.以上都对 我的答案: A 参考答案:A 答案解析:暂无 10 . 达格列净多重获益优势为糖尿病综合管理带来新的希望包括()? A.不增加心血管事件风险 ? B.减少肾病风险 ? C.快速、强效、持久的血糖控制,低血糖风险低 ? D.以上都是 我的答案: D 参考答案:D 答案解析:暂无

胰岛素调控葡萄糖转运蛋白4转位的研究进展_于海佳

DOI:10.3969/cmba.j.issn.1673-713X.2015.01.011· 综述·胰岛素调控葡萄糖转运蛋白4转位的 研究进展 于海佳 胰岛素抵抗和糖代谢异常是 II 型糖尿病的主要病理特征。机体在正常情况下通过胰岛素等相关激素能够非常精准地调控血液中的葡萄糖。伴随着能量摄入,升高的血糖水平会刺激胰岛β细胞分泌胰岛素。血液中过量的葡萄糖被快速地转运至细胞内,从而使机体维持正常的血糖水平。胰岛素调控葡萄糖摄取主要是通过葡萄糖转运蛋白4(glucose transporter 4,GLUT4)从细胞内转位到质膜上来实现的。有关胰岛素是如何介导 GLUT4 转位和葡萄糖摄取的研究对于治疗糖尿病和发展疾病早期诊断方法具有重要的意义。本文综述了近年来在胰岛素信号调控下 GLUT4 转位方面的相关研究进展。 1 GLUT4 与糖稳态调控 GLUT4 是由 SLC2A4 基因编码的糖转运蛋白,能够以不依赖于 ATP、协助运输的方式运送葡萄糖穿过细胞质膜。GLUT4 具有 12 次跨膜蛋白结构域,广泛分布于骨骼肌和脂肪组织等胰岛素响应性组织中[1-2]。除了 GLUT4 外,这些组织还表达其他的一些糖转运蛋白,例如 GLUT1。与其他糖转运蛋白不同的是,GLUT4 在细胞内的分布受到胰岛素的调控。GLUT1 等其他糖转运蛋白主要在基础状态(血糖水平低)下介导细胞对葡萄糖的摄取,而 GLUT4 在基础状态主要存在于胞内的各种膜结构中,只有少于 5% 的 GLUT4 位于细胞膜上。当机体进食后血糖水平快速升高,葡萄糖会促进胰岛素分泌增加。胰岛素促使 GLUT4 从胞内膜结构转移到细胞膜表面上,细胞表面上的 GLUT4 浓度在胰岛素的刺激下可以增加到其在基础状态时的 5 ~ 30 倍[3]。GLUT4 通过摄取和清除血液中的葡萄糖来维持血糖平衡。当胰岛素浓度降低时,GLUT4 通过胞吞作用回到细胞内,细胞表面的 GLUT4 重新恢复到基础状态时的水平。 GLUT4 在机体糖稳态调控过程中发挥着重要作用,在II 型糖尿病患者的脂肪组织中,GLUT4 在 mRNA 和蛋白质表达水平上都有明显减少[4]。在小鼠模型中,GLUT4 蛋白表达水平降低使小鼠产生胰岛素抵抗和糖尿病[5]。GLUT4 在肌肉组织和脂肪组织中过量表达可以改善小鼠的血糖控制和糖耐受不良[6-7]。在细胞水平上,肌肉组织和脂肪组织中减少 GLUT4 的表达会引起肌肉细胞和脂肪细胞对葡萄糖的摄取减少并产生胰岛素抵抗[8]。2 胰岛素调控 GLUT4 转位的信号通路 对于胰岛素调控骨骼肌和脂肪组织的葡萄糖摄取,目前研究者们认为主要是通过磷酸肌醇 3 激酶(PI3K)信号通路来实现的(图1)。胰岛素从胰岛β细胞分泌后,首先结合细胞表面上的跨膜胰岛素受体(IR)并激活胰岛素受体酪氨酸激酶。这会促使胰岛素受体底物蛋白(IRS)酪氨酸磷酸化,激活 PI3K。PI3K 与二磷酸肌醇(PIP2)发生作用,使 PIP2 转化为三磷酸肌醇(PIP3)[9]。PIP3 的水平升高激活了含有 PH 结构域的丝氨酸/苏氨酸激酶 PDK1 和mTORC2,并随后激活蛋白激酶 AKT。 AKT 有 3 个异构体,但是只有 AKT2 在胰岛素刺激GLUT4 转运过程中起关键作用。George 等[10]报道在胰岛素抵抗和糖尿病中发现了 AKT2 突变。AS160(又称为TBC1D4,分子量 160 kD)是 AKT2 的一个重要底物,在脂肪和肌肉组织中过量表达 AS160 磷酸化位点突变体能抑制胰岛素依赖的 GLUT4 转位和葡萄糖摄取,敲除 AS160 和其类似功能蛋白 TBC1D1,可显著减少胰岛素刺激的葡萄糖运输[11]。一份最新的报道发现格陵兰人近年来持续升高的 II 型糖尿病发生率正是由于 AS160 发生了突变。研究人员证实了在 2575 个调查个体中有 17% 的 AS160 等位基因存在 p.Arg684Ter 突变,同时伴随有胰岛素抵抗和血糖升高[12]。AS160 含有一个 GTP 酶激活蛋白(GAP)结构域,其能特异地作用于 G 蛋白 Rab。Rab 是一类能促进囊泡运输的 GTP 结合蛋白,通过与 GDP 结合的失活状态向其活化状态转化来催化膜运输。作为一个负调控因子,AS160 在基础状态下处于去磷酸化状态,能通过 GTP 酶将 GTP 转化成 GDP。这使 Rab 蛋白处于失活状态,从而抑制了 GLUT4 囊泡在细胞内的运输。在胰岛素刺激下,AS160 的五个氨基酸残基 Ser318、Ser570、Ser588、Thr642 和 Ser751 被 AKT2 磷酸化而丧失了 GAP 活性[13],使Rab 蛋白可以与 GTP 结合,促进 GLUT4 囊泡运输和GLUT4 的膜转位。在基础状态下的脂肪细胞中敲低 AS160 的表达,会使部分 GLUT4 囊泡运输至细胞表面,从而增加了细胞表面的 GLUT4 水平[14]。Rab10 是 AS160 一个重要下游结合 Rab 蛋白。在脂肪细胞中敲低 Rab10 的表达会抑制胰岛素引起的 GLUT4 转位。在敲低 AS160 的同 作者单位:80309 美国,科罗拉多大学博尔德分校分子细胞发育生物学系,Email:haijia@https://www.sodocs.net/doc/af8969570.html, 收稿日期:2014-08-18

物质跨膜运输方式教案

第四章细胞的物质输出和输入 第3节物质跨膜运输的方式 一、教学目标 知识方面:说明物质进出细胞的方式;简述主动运输对细胞生命活动的意义。 能力方面:进行图表数据的解读。 情感态度价值观:强调积极主动思考。 二、教学重点、难点及解决方法 1、教学重点:物质进出细胞的方式。 解决方法: (1)介绍扩散现象,列举氧和二氧化碳进出细胞的现象,总结出自由扩散的概念。 (2)葡萄糖不能通过无蛋白质的脂双层,却能通过细胞膜,总结协助扩散的概念。 (3)列举逆浓度梯度跨膜运输现象,总结出主动运输的概念。 2、教学难点:主动运输 解决方法:通过列举逆浓度梯度跨膜运输的现象,播放相关的多媒体动画,讲清主动运输的概念及特点。 三、课时安排:1课时 四、教学方法:直观教学法、讲授法。 五、教具准备:课件 六、学生活动 指导学生,阅读教材,回答相关问题。 七、教学程序 [问题探讨]给学生呈现P70图,提出下列讨论题: 1、什么样的分子能够通过脂双层?什么样的分子不能通过? 2、葡萄糖不能通过无蛋白质的脂双层,但是小肠上皮细胞能大量吸收葡萄糖,对此该如何解释? 学生讨论后回答。 讲述 (一)小分子或离子的跨膜运输 1.物质顺浓度梯度的扩散进出细胞,这种扩散统称为被动运输。 类型:自由扩散,协助扩散 (1)自由扩散 往清水中滴一滴蓝墨水,清水很快变为蓝色,这就是扩散。物质通过简单的扩散作用进出细胞,叫做自由扩散。不需要载体蛋白,也不需要消耗能量,只能顺浓度梯度运输,如O2、CO2、甘油、乙醇等。 特点:(1)物质转移方向是高浓度到低浓度 (2)不需要载体蛋白的协助 (3)不需要消耗能量

(2)协助扩散 葡萄糖不能通过无蛋白质的脂双层,却能通过细胞膜,是因为镶嵌在膜上的一些特有的蛋白质,能协助葡萄糖等物质顺梯度跨膜运输,进出细胞的物质借助载体蛋白的扩散,叫做协助扩散。不需要消耗能量。自由扩散和协助扩散统称为被动运输。 特点:(1)物质转移方向是高浓度到低浓度 (2)需要载体蛋白的协助 (3)不需要消耗能量 总结自由扩散,协助扩散的异同。 2.主动运输 从低浓度一侧运输到高浓度一侧,需要载体蛋白的协助,同时还需要消耗细胞内化学反应所释放的能量,这种方式叫做主动运输。如Na+、K+、Ca2+的吸收。 特点:(1)物质转移方向是低浓度到高浓度 (2)需要载体蛋白的协助 (3)需要消耗能量

葡萄糖转运蛋白与肺癌

!!作者单位" #,"""#杭州#浙江大学医学院附属第一医院呼吸科葡萄糖转运蛋白与肺癌 钟秀君!周建英 !!肿瘤细胞无法调控的增殖是肿瘤细胞最主要特征#而细胞数的增多导致细胞耗氧量不断增加#造成肿瘤缺氧#这在人实体瘤中表现尤其明显’肿瘤在适应缺氧时#葡萄糖摄入增多以提供所需的能量#此方式通过葡萄糖转运蛋白%@?I 9<;237/:;T <7327#[?I 3&合成增加来实现’[?I 3是介导细胞葡萄糖摄取的主要载体#与正常细胞$组织及良性病变相比#恶性肿瘤细胞对葡萄糖的代谢率增加’而糖代谢的增高与[?I 3及基因的异常表达有关’本文就[?I 3及其同肿瘤的关系作一综述’ !!H ;<9的分类和在组织中的分布细胞不能通过简单的弥散方式吸收葡萄糖#它必须借助一种特殊蛋白质#即葡萄糖转运蛋白’由于不同组织对葡萄糖需求不同#故可能有不同的葡萄糖转运蛋白’目前用基因探针方法# 已发现了’种不同的葡萄糖转运蛋白%[?I 3,\-$[?I 3*\0& ’[?I 3,在人类所有组织中均存在#它对葡萄糖具有很高的亲和力#可调节葡萄糖摄取’[?I 3!出现在能释放葡萄糖入血的器官中#如肠$肝$肾$及胰腺的/细胞#对葡萄糖亲和力极低#似乎仅在血浆葡萄糖水平相对较高时才作为转运体发挥载体功能’[?I 3#在脑神经元中被发现# 存在于人类所有组织中’对葡萄糖分子也有高亲和性’[?I 3(是肌肉和脂肪细胞主要的转运蛋白# 一般情况下#不能起转运葡萄糖的作用#仅在胰岛素的信号刺激下#能促进饭后葡萄糖进入上述组织中储存起来’[?I 3-主要存在于小肠及肾脏#主要作为果糖转运体’[?I 3.基因是一个假基因#不在蛋白水平表达’[?I 3*是肝微粒体[?I 3#与[?I 3!有.’)序列一致性’[?I 3’是主要表达于睾丸及受胰岛素调控的组织中’[?I 30在脾$外周白细胞$脑组织中表达’这’种葡萄糖转运蛋白转运葡萄糖都是按浓度梯度进行的’还有一种是钠离子依赖的协同转运蛋白%$[&H &#它逆浓度主动转运葡萄糖#是耗能过程#有$[&H ,%在小肠中表达明显#肾$肝$肺中少量表达&和$[&H !%肾中表达高#小肠中少&两种’ -!H ;<9与肿瘤 -"!![?I 3表达与肿瘤的生物学行为!各种葡萄糖转运蛋白在不同类型肿瘤中作用可能各不相同#[?I 3,可能是大多数肿瘤中表达的主要角色’其在 各部位肿瘤中表达(, )大致如下’头颈部"见于基底上皮细胞癌和口腔癌*胰腺"和G Q [%!\脱氧氟代\Q \葡萄糖&表达正相关*结肠"增强的表达与不良的预后有关*阴茎"在增生的病变处表达增强*胃食道"胃中高度表达#与M /77233食管有关*肾$膀胱"高度表达但与肿瘤分级无关*甲状腺"仅在恶性肿瘤中表达*肺"仅在恶性肿瘤中表达#在肿瘤中心表达更高#是非小细胞肺癌的预兆*乳腺"过度表达但与肿瘤大小$受体$淋巴结状态无关*脑"[?I 3,比[?I 3#表达低#且与星形细胞瘤分级相关*卵巢"过度表达#且与 肿瘤分级有关*皮肤"表达提示增生性病变’国外( !)亦有报道[?I 3,在肺癌$结直肠癌$乳腺癌等多种肿瘤中均有过度表达#而且其表达水平与肺癌及结直肠癌的临床分期$ 转移和预后密切相关’-"!"!![?I 3表达与癌发生的关系!在一些恶性肿 瘤中[?I 3表达与癌的形成无关#如在胃癌(# )中用免疫组织化学方法检测发现胃腺瘤$ 癌前病变$早期胃癌中检测不到[?I 3,表达#而只在易浸润$发生转移的胃癌中检测到#[?I 3,表达并不随着胃癌的发展而 逐渐增高’而对胆囊癌(()的免疫组织化学实验发 现#[?I 3,的表达与胆囊癌的形成及进展高度相关’-"!"-![?I 3异常表达与癌分化程度的关系! Y

《物质跨膜运输的方式》教案

《第三节物质跨膜运输的方式》教学设计 开课教师:蔡文春开课级别:县级 开课时间:2017-12-8 开课班级:高一(4)班 一、设计思路 教材分析: 本节为《普通高中课程标准实验教科书生物1必修分子与细胞》(人民教育出版社)第四章《细胞的物质输入和输出》中第3节内容。课程标准的要求是说明物质进出细胞的方式。和图表数据的解读。本节课在第一节《物质跨膜运输的实例》和《细胞膜流动镶嵌模型》的基础上,从微观层面介绍了不同物质通过细胞膜的机制,体现生命物质性观点,强调了生命活动具有的物质基础,帮助学生树立辩证唯物主义观点,同时体现了生物体结构和功能的统一性。 教材先介绍了小分子物质跨膜运输的不同方式,之后又简单介绍了大分子物质进出细胞膜的方式,完整呈现了物质通过细胞膜的各种方式。并通过图形、文字结合的方式,将微观问题宏观呈现、抽象问题具体呈现,有利于学生对内容的理解,又提供给授课教师较大的发挥空间,使授课教师可以根据教学对象的学习能力来进行有针对性的呈现、梳理和提升知识。本节教材有较多的图表,教师可以充分利用这些图表,培养学生的观察能力、图表转换能力、逻辑分析能力和表达能力。本节课主动运输方式需要能量,这能量来自哪里为后续课程《细胞的能量“通货”—ATP》的学习埋下伏笔,因此本节课的教学在学生知识体系建构中起到承上启下的作用。 学情分析: 学生通过前面三章和本章前两节课的学习,已经明白细胞膜是一种选择透过性膜,通过细胞膜模型的建构过程,学生初步建立结构与功能相适应的观点,因此对生物膜结构和功能有一定的知识贮备。本班学生中等生较多,对生物有钻研的偏少,因此对主动运输的特点及意义以及对图表数据的分析和转换能力及探究能力偏弱,需要利用本节课加强训练。 教学策略: 如何将这些抽象的、学生肉眼难以观察到的知识在学生脑海里建构出来,是本节课设计的难点。在教学过程中,本人充分利用教学图片、动画和实验数据等,采用提问、设计问题串、讨论等教学方法,使学生主动接近物质通过细胞膜的运输方式。 本人首先通过生活实例导入本节课题,引发学生兴趣,继而通过对细胞膜结构的的简单复习,让知识复现,为理解本节内容做铺垫。通过扩散的概念将生命现象引入到对生命的物质本质的讨论,然后引入自由扩散和协助扩散的教学,教学过程中通过两组实验数据的讨论,让学生理解这两种方式的异同。怎样让学生理解难以肉眼看见的主动运输对于生命的意义,是本节课的教学难点。本节课通过创设学生熟悉的生活情景:①木材(或竹捆)从河的上游随水漂到下游;②船装白糖(或食盐、化肥)从河的上游漂到下游(不开发动机);③船装

对葡萄糖转运蛋白的讨论

对葡萄糖转运蛋白的讨论 关键词:葡萄糖转运蛋白糖尿病胰岛素释放障碍胰岛素抵抗 葡萄糖转运蛋白是细胞转运葡萄糖的 载体。研究发现,葡萄糖转运蛋白是一个蛋白家族,包括多种蛋白,它们在体内的公布以及与葡萄糖分子的亲合力差异显着。其中GLUT2和GLUT4尤为重要。GLUT2是胰岛B 细胞膜上的转运蛋白,在血糖浓度升高时,促进GLUT2对葡萄糖的转运功能,继而刺激胰岛素释放。GLUT4在脂肪细胞和肌细胞中表达,胰岛素刺激GLUT4在脂肪细胞和肌细胞或表达,胰岛素刺激GLUT4分子转移到细胞膜上,促进葡萄糖分子的转运过程。GLUT2和GLUT4分子的研究对于糖尿病的胰岛素释放障碍和胰岛素抵抗有重要意义。 1GLUT的分类 除了肾和肠道有能量依赖性的钠-葡萄糖协同转运外,其它大多数细胞都有非能量依赖的转运体存在。它们将葡萄糖分子从高

浓度向低浓度载过细胞膜。现已发现至少存在五种这样的转运蛋白,它们对葡萄糖的转运有各自不同的特点,分为GLUT1、GLUT2、GLUT3、GLUT4和GLUT5。 GLUT1分子在人类所有组织中均存在, 它调节葡萄糖摄取。它对葡萄糖分子有很高的亲合力,因此在相对低浓度葡萄糖的状态下也能转运葡萄糖分子。由于这个原因,GLUT1是一种重要的脑血管系统成分,保证 足够血浆葡萄糖分子转运进入中枢神经系统。 与GLUT1不同,GLUT2分子对葡萄糖亲合力极低,似乎仅在血浆葡萄糖水平相对较高时才作为转运体发挥载体功能。例如饭后,胰岛B细胞和肝细胞中起葡萄糖转运功能的分子就是GLUT2。这种生理功能抑制了正常状态或饥饿条件下肝脏对葡萄糖分子的摄 取和胰岛素不正常分泌。OgawaY等人研究发现,对于Ⅱ型、Ⅰ型早期糖尿病人和胰腺移植失败的病人,在血糖浓度升高时,普通B 细胞中GLUT2分子的表达有所下降。因此他们得出结论:对于上述病人,高血糖通过对

物质跨膜运输的方式

物质跨膜运输的方式(学案) 一、学习目标: (1)举例说明物质跨膜运输方式的类型及特点。 (2)说出被动运输与主动运输方式的异同点,用表格的方式进行总结归纳。 (3)阐述主动运输对细胞生活的意义。 (4)正确解读坐标数据图表。 重点:物质进出细胞膜的方式。 难点:主动运输 二、学习活动 (一)、自主学习,完成下列内容。 离子和小分子物质跨膜运输方式: 物质进出细胞的方式: 大分子物质的通过方式: (二)、小组讨论,合作探究 探究活动一 下面的物质分别是通过何种方式进出细胞的?请归类,并在相应的位置画出其跨膜运输的示意图。 氧气,二氧化碳,甘油,氮气,苯,维生素D,性激素,乙醇,葡萄糖,钾离子,碘,氯离子 (1)自由扩散(2)协助扩散(3)主动运输。

探究活动二:探究影响细胞物质跨膜运输速率的因素 (一)下表为自由扩散实验的数据,请分析数据,绘出物质运输的速率与浓度关系的坐标曲线。 结论:物质的运输速度与物质浓度差成_____关系, 自由扩散过程受________影响。 (二)下表为协助扩散实验的数据,请分析数据,绘出物质运输的速率与浓度关系的坐标曲线。 结论:在一定浓度范围内, 物质的运输速率 与物质浓度成____关系,协助扩散过程中物 质运输速率受________________限制。 (三)下表为胡萝卜在不同氧分压情况下从KNO 3溶液中吸收K +与 NO 3— 的数据,请根据数据绘出K +与 NO 3— 吸收速率与氧分压的坐标曲线。 结论:在一定范围内,物质的运输速率与________________和_________有关。 探究活动三:按照表格归纳出三种跨膜运输的方式。小组合作填写。 运输方式 概念 运输方向(浓度梯 是否需要载体 是否需要能量 举例 影响 因素 被动运输 自由扩散 协助扩散 主动运输 浓度差(mmol/L ) 5 10 15 20 25 30 运输速度(离子/秒) 2.4 4.7 7.3 9.5 12.2 14.4 浓度差(mmol/L ) 1.5 3 4.5 6 7.5 9 运输速度(离子/秒) 8 15 24 30 31 31 氧分压 0 2 4 6 8 10 K + 20 25 40 41 42 42 NO 3— 30 35 40 50 52 52 氧分压

对葡萄糖转运蛋白的讨论

关键词:葡萄糖转运蛋白糖尿病胰岛素释放障碍胰岛素抵抗葡萄糖转运蛋白是细胞转运葡萄糖的载体。研究发现,葡萄糖转运蛋白(后简称GLUT)是一个蛋白家族,包括多种蛋白,它们在体内的公布以及与葡萄糖分子的亲合力差异显著。其中GLUT2和GLUT4尤为重要。GLUT2是胰岛B细胞膜上的转运蛋白,在血糖浓度升高时,促进GLUT2对葡萄糖的转运功能,继而刺激胰岛素释放。GLUT4在脂肪细胞和肌细胞中表达,胰岛素刺激GLUT4在脂肪细胞和肌细胞或表达,胰岛素刺激GLUT4分子转移到细胞膜上,促进葡萄糖分子的转运过程。GLUT2和GLUT4分子的研究对于糖尿病的胰岛素释放障碍和胰岛素抵抗有重要意义。1GLUT的分类除了肾和肠道有能量依赖性的钠-葡萄糖协同转运外,其它大多数细胞都有非能量依赖的转运体存在。它们将葡萄糖分子从高浓度向低浓度载过细胞膜。现已发现至少存在五种这样的转运蛋白,它们对葡萄糖的转运有各自不同的特点,分为GLUT1、GLUT2、GLUT3、GLUT4和GLUT5。GLUT1分子在人类所有组织中均存在,它调节葡萄糖摄取。它对葡萄糖分子有很高的亲合力,因此在相对低浓度葡萄糖的状态下也能转运葡萄糖分子。由于这个原因,GLUT1是一种重要的脑血管系统成分,保证足够血浆葡萄糖分子转运进入中枢神经系统。与GLUT1不同,GLUT2分子对葡萄糖亲合力极低,似乎仅在血浆葡萄糖水平相对较高时才作为转运体发挥载体功能。例如饭后,胰岛B细胞和肝细胞中起葡萄糖转运功能的分子就是GLUT2。这种生理功能抑制了正常状态或饥饿条件下肝脏对葡萄糖分子的摄取和胰岛素不正常分泌。OgawaY等人研究发现,对于Ⅱ型、Ⅰ型早期糖尿病人和胰腺移植失败的病人,在血糖浓度升高时,普通B细胞中GLUT2分子的表达有所下降。因此他们得出结论:对于上述病人,高血糖通过对GLUT2的下调作用减少葡萄糖诱导的胰岛分泌,加重病情。虽然,GLUT2分子是葡萄糖刺激胰岛素分泌的一个关键因子,但其他环节如糖激酶异常,ADP-核糖生成障碍等均与胰岛素分泌障碍有关,因此上述实验只能说明GLUT2分子在胰岛B细胞的葡萄糖转运中起着重要作用,其它结论还有待研究。GLUT3分子在所有组织中均已发现,主要作为神经元表面的葡萄糖转运体,它对葡萄糖分子也有高亲合性,负责将葡萄糖从脑脊液转运至神经元细胞。GLUT4主要存在于骨骼肌、脂肪细胞的胞浆中,一般情况下,不能起转运葡萄糖的作用,仅在胰岛素的信号刺激下,才能通过易位作用转运到细胞膜上,促进饭后葡萄进入上述组织中储存起来。GLUT5在人类小肠刷状缘上表达,主要作为果糖转运体,在肝脏也高度表达。2GLUT4分子是研究的一个热点糖尿病的发病机制归纳而言无外乎两个方面,一是胰岛素分泌不足,二是胰岛素抵抗。胰岛素抵抗的结果,血浆中胰岛素水平虽高,但血糖浓度还是比正常情况高。葡萄糖转运机制障碍是胰岛素抵抗的一个重要方面,也是现今研究的一个热点。在骨骼肌和脂肪细胞,胰岛素刺激葡萄糖转运过程如下:首先胰岛素与细胞膜上的受体结合,然后通过至今仍不明确的信号传递过程使含有GLUT4分子的囊泡从胞内池移动到细胞膜,然后与膜融合,将GLUT4分子固定在细胞膜上,从而发挥转运葡萄糖等C1-C3位置有相同结构的其它糖分子(如L-阿拉伯糖、D-木糖、半乳糖)的作用。 [!--empirenews.page--] 胰岛素抵抗虽然包括GLUT4转运活性的下降,但这种缺陷是否是GLUT4分子数量不足引起的呢?GarveywT等人研究证实,无论是在糖尿病人还是非糖尿病患者,只要存在胰岛素抵抗,GLUT4的数量并无明显减少,但GLUT4的易位作用发生了障碍,它们在高密度膜区异常积累,但不能转移到细胞膜上。这种现象在骨骼肌细胞和脂肪细胞中均已被发现。所以胰岛素抵抗的机制之一可能是GLUT4分子易位障碍,而不是合成、释放不足。既然GLUT4分子在葡萄糖转运过程中如此重要,它是如何发挥作用的呢?GLUT4分子镶嵌在细胞膜的脂质分子双层中,通过构象改变将葡萄糖分子运进细胞内,而不是借助蛋白本身的运动。即所谓的“ping pong”机制。这种构象改变可能与GLUT4分子的磷酸化、去磷酸化有关。JE-Reusch等人在脂肪细胞培养液中加入PTH,发现GLUT4磷酸化程度明显增加,而胰岛素刺激的去磷酸化作用显著降低。同时,PTH对GLUT4分子在细胞内分布没有影响。磷酸化的GLUT4分子在内在活性明显降低,可能与其构象改变障碍有

钠-葡萄糖共转运蛋白2抑制剂对糖尿病肾病保护作用的研究进展

[15]TSUBAMOTO H ,KANAZAWA R ,INOUE K ,et al.Fertility ?sparing management for bulky cervical cancer using neoadjuvant transuterine arterialchemotherapy followed by vaginal trachelectomy[J].Int J Gynecol Cancer ,2012,22(6):1057?1062. [16]TSUJI N ,BUTSUHARA Y ,YOSHIKAWA H ,et al.Pregnancy after neoadjuvant chemotherapy followed by abdominal radical trachelectomy in stage ⅠB2cervical cancer :a case report[J].Gynecol Oncol Case Rep ,2012,4:13?15. [17]SATO S ,AOKI D ,KOBAYASHI H ,et al.Questionnaire survey of the current status of radical trachelectomy in Japan[J].Int J Clin Oncol , 2011,16(2):141?144. [18]ROBOVA H ,PLUTA M ,HREHORCAK M ,et al.High ?dose density chemotherapy followed by simple trachelectomy :full?term pregnancy[J].Int J Gynecol Cancer ,2009,18(6):1367?1371. [19]LANOWSKA M ,MANGLER M ,SPEISER D ,et al.Radical vaginal trachelectomy after laparoscopic staging and neoadjuvant chemotherapy in women with early?stage cervical cancer over 2cm :oncologic ,fertility ,and neonatal outcome in a series of 20patients[J].Int J Gynecol Cancer ,2014,24(3):586?593. [20]姚婷婷,陈勍,林仲秋.早期宫颈癌行经腹根治性宫颈切除后成功妊 娠2例报道[J].现代妇产科进展,2011,20(10):822?823. [21]DARGENT D ,FRANZOSI F ,ANSQUER Y ,et al.Extended trachelecto? my relapse :plea for patient involvement in the medical decision[J].Bull Cancer ,2002,89(12):1027?1030.[22]SCHLAERTH JB ,SPIRTOS NM.Radical trachelectomy and pelvic lymphadenectomy with uterine preservation in the treatment of cervical cancer[J].Am J Obstet Gynecol ,2003,188(1):29?34. (收稿日期:2017?11?04) 钠?葡萄糖共转运蛋白2抑制剂对糖尿病肾病保护作用的 研究进展 雷明静综述,钟 玲△审校(重庆医科大学附属第二医院肾内科,重庆400010) 【关键词】糖尿病肾病;钠;葡萄糖;载体蛋白质类;肾;血流动力学;综述 DOI :10.3969/j.issn.1009?5519.2018.12.022文献标识码:A 文章编号:1009?5519(2018)12?1839?03 钠?葡萄糖共转运蛋白2(SGLT2)抑制剂为一种新型降糖药,有降糖、降压、降尿蛋白、减轻体重、降尿酸、改善肾小球高滤过等作用。目前有研究提示,SGLT2抑制剂对糖尿病肾病(DN )患者降糖与降尿白蛋白作用不平行,提示其可能通过非糖依赖途径发挥肾脏保护作用。本文对SGLT2抑制剂对DN 保护作用、肾血流动力学、尿钠排泄、降尿白蛋白肌酐比等机制做一综述。1SGLT2抑制剂与DN 的关系 DN 为糖尿病患者的微血管重要并发症之一,其发病机制复杂,涉及的因素繁多,主要危险因素有糖尿病病程长、血糖控制不佳、肥胖、系统性高血压、脂质代谢紊乱等,单独的血糖升高不能完全解释其发生、发展,尽管改善生活方式和药物的使用[(降糖、降脂、降压,尤其是肾素?血管紧张素?醛固酮系统阻断剂(RAASi )]可以有效地控制这些危险因素,但DN 的发病率仍然居高不下,而且一旦出现肾功能异常,其进展速度要远快于非糖尿病性慢性肾脏病。在过去的20年里,一些新型的治疗策略,如双重或三重RASSi 用来减缓DN 患者肾功能进展,但是这些方案的效果有限,且其安全性受到质疑,迄今仍不推荐双重或三重RASSi 治疗DN [1]。因此,对于能够控制多种危险因素和可以保护肾脏结局的新疗法成为研究热点。 一种新型非胰岛素依赖途径的降糖药——SGLT2 抑制剂,其阻断近端小管中钠离子、葡萄糖重吸收,增加肾脏尿糖排泄并降低血糖[2]。研究发现,SGLT2抑制剂除降糖作用外,还有降低糖尿病患者血压、减轻体重、降低尿酸水平、改善肾小球高滤过、减少蛋白尿、增加尿钠离子排泄等作用。目前,美国食品和药品监督管理局(FDA )和欧洲药物管理局(EMA )批准了3种口服SGLT2抑制剂(坎格列净、达格列净、恩格列净),作为肾小球滤过率(eGFR )>30mL/(min·1.73m 2)的2型糖尿病患者可选择的二线或三线降糖治疗药物。2SGLT2抑制剂的肾脏保护作用独立于降糖效应 近年来,已有多项研究表明,SGLT2抑制剂肾脏保护作用可能通过非糖依赖途径,独立于其降糖作用。HEERSPINK 等[3]对1450例2型糖尿病患者分别使用坎格列净100、300mg 并与格列美脲6~8mg 进行对照,1年后,患者糖化血红蛋白(HbA1c )分别下降0.81%、0.82%、0.93%,2年后HbA1c 分别下降0.55%、0.65%、0.74%,而估计eGFR 分别降低3.3、0.5、0.9mL/(min×1.73m 2·年)(P <0.01)。对于尿白蛋白/肌酐(UACR )≥30mg/g 的患者,坎格列净300、100mg 对UACR 下降作用均优于格列美脲,提示坎格列净能延缓2型糖尿病患者肾功能下降,其肾脏保护作用独立于降糖作用。 PETRYKIV 等[4]对超过4000例2型糖尿病患者参与的为期24周的11个3期临床试验进行总结,发现 △ 通信作者,E?mail :536576113@https://www.sodocs.net/doc/af8969570.html, 现代医药卫生2018年6月第34卷第12期J Mod Med Health ,June 2018,Vol.34,No.12· ·1839

细胞生物学(翟中和)物质的跨膜运输

第五章物质的跨膜运输 物质跨膜转运主要有3种途径:被动运输、主动运输、胞吞与胞吐作用(膜泡运输)。 第一节膜转运蛋白与小分子物质的跨膜运输 一、脂双层的不透性和膜转运蛋白 细胞膜上存在2类主要的转运蛋白,即:载体蛋白(carrier protein)和通道蛋白(channel protein)。 载体蛋白和通道蛋白识别转运物质的方式不同:载体蛋白只允许与其结合部位相适合的溶质分子通过,而且每次转运都发生自身构象的改变;通道蛋白主要根据溶质大小和电荷进行辨别,通道开放时,足够小和带适当电荷的溶质就能通过。 (一)载体蛋白及其功能 载体蛋白为多次跨膜蛋白,又称做载体(carrier)、通透酶和转运器(transporter),能够与特定溶质结合,通过自身构象的变化,将与它结合的溶质转移到膜的另一侧。 载体蛋白既可以执行被动运输、也可执行主动运输的功能。 (二)通道蛋白及其功能 通道蛋白有3种类型:离子通道、孔蛋白、水孔蛋白(AQP)。 只介导被动运输。 1. 选择性离子通道,具有如下显著特征: 离子选择性(相对的) 转运离子速率高没有饱和值 大多数具门控性 分为:电压门通道、配体门通道、应力激活通道 电位门通道举例: 电位门通道(voltage gated channel)是对细胞内或细胞外特异离子浓度发生变化时,或对其他刺激引起膜电位变化时,致使其构象变化,“门”打开。 如:神经肌肉接点由Ach门控通道开放而出现终板电位时,这个电位改变可使相邻的肌细胞膜中存在的电位门Na+通道和K+通道相继激活(即通道开放),引起肌细胞动作电位;动作电位传至肌质网,Ca2+通道打开引起Ca2+外流,引发肌肉收缩。 配体门通道举例——乙酰胆碱门通道 N型乙酰胆碱受体是目前了解较多的一类配体门通道。它是由4种不同的亚单位组成的5聚体,总分子量约为290kd。亚单位通过氢键等非共价键,形成一个结构为α2βγδ的梅花状通道样结构,其中的两个α亚单位是同两分子Ach相结合的部位。 Ach(乙酰胆碱)门通道具有具有3种状态:开启、关闭和失活。当受体的两个α亚单位结合Ach时,引起通道构象改变,通道瞬间开启,膜外Na+内流,膜内K+外流。使该处膜内外电位差接

人源葡萄糖转运蛋白GLUT1的晶体结构(中文翻译)

人源葡萄糖转运蛋白GLUT1的晶体结构 摘要: 葡萄糖转运蛋白GLUT1主要促进葡萄糖扩散进入红细胞,并负责葡萄糖供应到大脑和其他器官。不正常的基因突变可能导致GLUT1缺陷综合症,其中GLUT1的过度表达是癌症的预示指标。尽管经过几十年的调查, GLUT1的结构尚不清楚。在这里,我们报告的人GLUT1的晶体结构在3.2 ?分辨率的状态。一种被捕获的具有典型的向内折叠构象的全长蛋白。这种结构可以实现对精确映射和疾病相关的基因突变中GLUT1的潜在机理的解释。这些突变基因结构提供了一个洞察GLUT1和糖搬运工亚家族的其他成员的交流访问机制的途径。在单向转运GLUT1与质子耦合木糖转运体XylE的结构比较中,可以检验被动推动者和积极转运的转运机制。 GLUT1 由SLC2A1编码,介导的细胞将基底水平葡萄糖的摄取到许多组织中。特别是,它负责通过促进葡萄糖的扩散,使成红细胞常数摄取保持在约5毫米的血液浓度。GLUT1在血液组织屏障的内皮细胞内具有使葡萄糖供应到大脑和其他器官中的核心作用。 GLUT1的失活突变,将导致血糖运输活动受损,而这是与疾病相关联的缺乏能源供应到大脑不足相关联的。 GLUT1缺陷综合征(又称德活体综合征)的特点是症状包括早发性癫痫,小头畸形和发育迟缓的频谱。癌细胞需要增强葡萄糖的供应,部分是通过无氧糖酵解( Warburg效应)的效率较低的能源产生。确定GLUT1的水平将作为肿瘤预后的重要指标。因为它的基本生理和病理意义,GLUT1一直是功能研究及结构测定的重点。 GLUT1属于MFS ,其中规模最大最普遍存在的二次转运蛋白超家族之一的糖搬运工亚科。 MFS转运共享一个保守的核心,其包括由两个离散地折叠的结构,即在氨基和羧基末端结构域12个跨膜片段。在每个领域,连续六次跨膜段折叠成一对“3+3 ”反向重复的片段。已知的的实验证据表明,三螺旋束可以表示其基本结构和功能单位。所有MFS转运蛋白被认为是利用交流访问机制,其中由底物结合位点是从两侧通过转运蛋白的构象变化交替访问OFTHE膜运输衬底。 细菌GLUT1同系物,在D -木糖的结构:从大肠杆菌和葡萄糖H+转运体XylE (参28 ,29 )或从表皮葡萄球菌获得的H+转运体GLCP(参见30 )已有报道。值得注意的是, XylE的结构约束着GLUT1 (参见28 )以托德 - 木糖ORD -葡萄糖启用同源性为基础的建模。然而,无论XylE和GLCP都是作为GLUT1一个催化葡萄糖向下穿过膜的浓度梯度单向转运质子驱动转运体。人类GLUT1的原子结构对理解它的运输和疾病机制至关重要。 GLUT1的结构测定

钠-葡萄糖共转运蛋白2抑制剂(SGLT2i)在治疗2型糖尿病中的有效性和安全性

钠-葡萄糖共转运蛋白2抑制剂(SGLT2i)在治疗2型糖 尿病中的有效性和安全性 张波;杨文英 【期刊名称】《中华内分泌代谢杂志》 【年(卷),期】2016(000)002 【摘要】[Summary] As of 2014, an estimated 387 million people have diabetes mellitus ( DM) worldwide, which represents 8.3%of the adult population.China Noncommunicable Disease Surveillance in 2010 shows that the overall prevalence of DM is estimated to be 11.6%(approximately 113.9 million) in the Chinese adult population, with the prevalence among men of 12.1%and women of 11.0%, respectively.Control of blood glucose is fundamental to DM management.Despite the availability of several antihyperglycemic agents, only 53%of patients with DM achieve the recommended goals for DM care of HbA1C<7.0%.According to the National Health and Nutrition Examination Survey and the Behavioral Risk Factor Surveillance System Survey during the period of 10 years in the United States, 33.4%to 48.7%of persons with DM still have not met the targets for glycemic control, blood pressure or lipid level.In order to improve glycemic control, there is a need for new therapeutic options with innovative mechanisms of action and acceptable safety profiles.As a newly developed class of oral antidiabetic drugs, sodium-glucose co-

葡萄糖转运蛋白

2014年5月18日,清华大学医学院教授颜宁研究组在Nature在线发表了题为“Crystal structure of the human glucose transporter GLUT1”的研究论文,在世界上首次报道了人源葡萄糖转运蛋白GLUT1的晶体结构,初步揭示其工作机制以及相关疾病的致病机理。 葡萄糖(D-glucose)是地球上包括从细菌到人类各种生物已知最重要、最基本的能量来源。葡萄糖代谢的第一步就是进入细胞:亲水的葡萄糖不能自由穿透疏水的细胞膜,其进出细胞需要通过镶嵌于细胞膜上的葡萄糖转运蛋白完成。其中一类属于主要协同转运蛋白超家族(Major Facilitator Superfamily,简称MFS)的转运蛋白是大脑、神经系统、肌肉、红细胞等组织器官中最重要的葡萄糖转运蛋白(glucose transporters,简称GLUTs)。在人体的14个GLUTs中, GLUT1、2、3、4这四种蛋白生理功能最重要,研究最广泛,其中GLUT1因发现最早而得名。 GLUT1几乎存在于人体每一个细胞中,是红细胞和血脑屏障等上皮细胞的主要葡萄糖转运蛋白,对于维持血糖浓度的稳定和大脑供能起关键作用。在已知的人类遗传疾病中,导致GLUT1功能异常的突变会影响葡萄糖的正常吸收,导致大脑萎缩、智力低下、发育迟缓、癫痫等一系列疾病。另一方面,当发生癌变时,葡萄糖是肿瘤细胞最主要的能量来源,但是肿瘤细胞由于缺乏氧气供应而只能对葡萄糖进行无氧代谢,同质量葡萄糖所提供的能量不到正常细胞的10%,因而对葡萄糖的需求剧增,在很多种类的肿瘤细胞中都观察到GLUT1的超量表达,以大量摄入葡萄糖维持肿瘤细胞的生长扩增,这使得GLUT1的表达量可能作为检测癌变的一个指标。 自从获得了大量生理、病理、细胞、生化信息之后,获取GLUT1的三维结构就变成了该领域最期待的下一个突破。颜宁研究组在2012年首次解析了GLUTs的大肠杆菌同源蛋白XylE与葡萄糖结合的高分辨率晶体结构,并利用同源建模预测了GLUT1-4的三维结构;时至今日,人源GLUT1蛋白的晶体结构的捕获为理解这个具有历史研究意义的转运蛋白掀开了新的一章。 利用上海光源生物大分子晶体学线站(BL17U1)颜宁研究组最终解析了GLUT1的三维晶体结构。GLUT1呈现经典的MFS家族折叠方式——12个跨膜螺旋组成N端和C端两个结构域。两个结构域之间的腔孔朝向胞内区,即该结构呈现向内开放构象。而在结晶中用到的去污剂头部恰好是葡萄糖苷,其结合位点与此前XylE中观测到的葡萄糖结合位点基本重合,证实了MFS家族具有单一结合位点。有趣的是,GLUT1在胞内可溶区还具有一个由4个α螺旋组成的结构域(简称ICH),这一序列只在MFS中的糖转运蛋白亚家族中(Sugar Porter subfamily)观察到,因此ICH是属于该家族蛋白的特有结构特征。 利用GLUT1的晶体结构可以精确地定位与疾病相关的突变氨基酸,揭示其致病机理。分析显示,三十余个突变氨基酸基本集中于三个区域:底物结合区域、胞外门控区、胞内门控区,它们的突变或者影响了底物识别,或者影响转运蛋白的构象变化。晶体结构使得理解这些致病突变的机理一目了然。与之前获得的向胞外半开口的XylE晶体结构比较揭示出

相关主题