搜档网
当前位置:搜档网 › (完整word版)幂的运算方法总结

(完整word版)幂的运算方法总结

(完整word版)幂的运算方法总结

?幂的运算方法总结

幂的运算的基本知识就四条性质,写作四个公式:

①a m×an=a m+n

②(a m)n=a mn

③(ab)m=a m b m

④a m÷an=a m-n

只要理解掌握公式的形状特点,熟悉其基本要义,直接应用一般都容易,即使运用公式求其中的未知指数难度也不大。

问题1、已知a7a m=a3a10,求m的值。

思路探索:用公式1计算等号左右两边,得到等底数的同幂形式,按指数也相等的规则即可得m的值。

方法思考:只要是符合公式形式的都可套用公式化简试一试。

方法原则:可用公式套一套。

但是,渗入幂的代换时,就有点难度了。

问题2、已知x n=2,y n=3,求(x2y)3n的值。

思路探索:(x2y)3n中没有x n和y n,但运用公式3就可将(x2y)3n化成含有x n 和y n的运算。

因此可简解为,(x2y)3n =x6n y3n=(x n)6(y n)3=26×33=1728

方法思考:已知幂和要求的代数式不一致,设法将代数式变形,变成已知幂的运算的形式即可代入求值。

方法原则:整体不同靠一靠。

然而,遇到求公式右边形式的代数式该怎么办呢?

问题3、已知a3=2,a m=3,a n=5,求a m+2n+6的值。

思路探索:试逆用公式,变形出与已知同形的幂即可代入了。

简解:a m+2n+6=a m a2n a6=a m(a n)2(a3)2=3×25×4=300

整数指数幂及其运算(1)

整数指数幂及其运算 主备人季春鸿 教学目标 1.理解负整数指数幂的概念,了解整式和分式在形式上的统一 2.掌握整数指数幂运算的性质,会用性质进行简单的整数指数幂的相关计算 3.体验由正整数指数幂到负整数指数幂的扩充过程,体验数学研究的一般方法:由特殊到一般及转化思想 教学重点与难点 1.负整数指数幂的概念 2.理解整数指数幂的运算性质;会运用性质进行相关的计算 教学过程 一.复习引入: 1.计算:27÷23=_____,a9÷a4=_____; (由学生用数学式子表示上述同底数幂的除法法则,并指出其中字母的规定,强调指数是正整数,底数不等于零) 2.思考:22÷25=______;a2÷a4=_____; 在学生独立思考的基础上,让学生猜测计算的结果,并请学生讲解计算的过程及依据,体验分数与除法的关系;然后进一步提出“如何用

幂的形式表示计算结果”的问题 222 12=-、331a a -= 二.学习新课:整数指数幂及其运算 1.负整数指数幂的概念:p p a 1a =-(a ≠0,p 是自然数) 2.整数指数幂:当a ≠0时,n a 就是整数指数幂,n 可以是正整数、负整数和零 将下列各式写成只含正整数指数幂的形式: 2210 110=-、551x x -= 变式训练1:221(10)(10)--= -、551(1)(1)x x --=- 变式训练2:13 2()23-=、2227()()72-= 通过变式训练2,学生同桌讨论当指数为负数,底数为分数时的情形,并总结出()()p p a b b a -= 判断正误: 02122 2271 (2)4 1(50)501 7729()34x x -----=-=-=- ==①②③④⑤

幂的运算方法总结

幂的运算方法总结 姓名:__________ 指导:__________ 日期:__________

作为整式乘除的前奏,幂的运算看似非常简单,实际运用起来却灵活多变。不过,只要熟悉运算的一些基本方法原则,问题就迎刃而解了。而且通过这些方法原则的学习,不但能使我们熟悉幂的运算,还可得到全面的思维训练,现在对此做一探索。

幂的运算的基本知识就四条性质,写作四个公式: ①am×an=am+n ②(am)n=amn ③(ab)m=ambm ④am÷an=am-n 只要理解掌握公式的形状特点,熟悉其基本要义,直接应用一般都容易,即使运用公式求其中的未知指数难度也不大。 问题1 已知a7am=a3a10,求m的值。 思路探索:用公式1计算等号左右两边,得到等底数的同幂形式,按指数也相等的规则即可得m的值。 方法思考:只要是符合公式形式的都可套用公式化简试一试。 方法原则:可用公式套一套。 但是,渗入幂的代换时,就有点难度了。 问题2 已知xn=2,yn=3,求(x2y)3n的值。 思路探索: (x2y)3n中没有xn和yn,但运用公式3就可将(x2y)3n化成含有xn和yn的运算。 因此可简解为,(x2y)3n=x6ny3n=(xn)6(yn)3=26×33=1728 方法思考:已知幂和要求的代数式不一致,设法将代数式变形,变成已知幂的运算的形式即可代入求值。 方法原则:整体不同靠一靠。 然而,遇到求公式右边形式的代数式该怎么办呢?

问题3 已知a3=2,am=3,an=5,求am+2n+6的值。 思路探索:试逆用公式,变形出与已知同形的幂即可代入了。 简解:am+2n+6=ama2na6=am(an)2(a3)2=3×25×4=300 方法思考:遇到公式右边的代数式时,通常倒过来逆用公式,把代数式展开,然后代入。 方法原则:逆用公式倒一倒。 当底数是常数时,会有更多的变化,如何思考呢? 问题4 已知22x+3-22x+1=48,求x的值。 思路探索:方程中未知数出现在两项的指数上,所以必须统一成一项,即用公式把它们变成同类项进行合并。由此,可考虑逆用公式1,把其中常数的整数指数幂,化作常数作为该项的系数。 简解: 22x+3-22x+1 =22x×23-22x×21 =8×22x-2×22x =6×22x=48 ∴22x=8 ∴2x=3∴x=1.5 方法思考:冪的底数是常数且指数中有常数也有未知数时,通常把常数的整数指数冪化成常数作为其它冪的系数,然后进行其它运算。 问题5

幂的运算与整式的乘除知识点复习

幂的运算与整式的乘除知识点 一、幂的运算: 1.同底数幂相乘文字语言:_________________________;符号语言____________. 例1.计算:(1)103×104; (2)a ? a 3 (3)a ? a 3?a 5 (4) x m ×x 3m+1 例2.计算:(1)(-5) (-5)2 (-5)3 (2)(a+b)3 (a+b)5 (3)-a·(-a)3 (4)-a 3·(-a)2 (5)(a-b)2·(a-b)3 (6)(a+1)2·(1+a)·(a+1)5 (7)x 3? x 5+x ? x 3?x 4 同底数幂法则逆用符号语言:_________________ 例1:(1) ( ) ( ) ( ) ( ) 222225?=?= (2) () ( ) ( ) ( ) ( ) ( ) 33333336 ?=?=?= 例2:(1)已知a m =3,a m =8,求a m+n 的值. (2)若3n+3=a ,请用含a 的式子表示3n 的值. 2.幂的乘方文字语言: ___________________________;符号语言____________. 例1.计算:(1)( );105 3 (2)()4 3b ; (3)()().3 553a a ? (4)()() () 2 443 22 32x x x x ?+? (5)()() ()()3 35 2 10 25 4 a a a a a -?-?-?-+)( (6)()[ ]()[]4 33 2y x y x +?+ (7)()()()[]2 2 n n m m n n m -?-- 幂的乘方逆用符号语言:_________________ 例1:(1)) () () (6 4 (2 3 (_____) (_____) (____) (___) 12 a a a a a ==== (2)) () ((_____) (______) a a a n m mn ===)((__)a m =)((___)a n (3) 3 9(____) 3=

整数指数幂的运算法则

整数指数幂的运算法则 教学目标:1、通过探索掌握整数指数幂的运算法则。 2、会熟练进行整数指数幂的运算。 3、让学生感受从特殊到一般的数学研究的一个重要方法。 重 点:整数指数幂的运算法则的推导和应用。 难 点:整数指数幂的运算法则的理解。 过 程: (一)课前检测 正整数指数幂运算法则: =?n m a a =n m a )( =?n b a )( =n m a a =n b a )( (二)新课预习 1、自主探究: 1)、阅读教材P41~42 2)、尝试完成下列练习,检查自学效果: 1、下列运算正确的是: A:632a a a =? B: 532a a --=)( C:22-a 412a --= D: 222a 3a a --=- 2、设a ≠0,b ≠0,计算下列各式: =?-25a a =-3-2a )( =-4-12b a b a )( =-33b 2a )( 3、计算下列各式: 23222x 3y x y -- 22 222 x 2()xy y x y --+- = = = = 3)、完成课后练习。 (三)、成果呈现 1)、抽查各小组预习答案,并请学生代表小组展示。 2)、其它小组质疑、辩论、点评。 3)、全班归纳总结本节知识。 (四):练习巩固:

A 1、计算 =?-38x x =--332y x )( =-3-24ab a )( =?-382-2)( =÷-2 35ab 2b -a )( =-+--2224x 4x 4x )( B 2、若27 13x =,则x= 3、一个分式含有x 的负整数指数幂,且当x=2时,分式没有意义,请你写出一个这样的分式 。 C 4、已知01132=++x x ,求1-+x x 与2 2-+x x 的值。 6、小结: 整数指数幂的运算法则: =?n m a a =n m a )( =?n b a )( =n m a a =n b a )( 错题更正:

(完整版)幂的运算(知识总结)

幂的四则运算(知识总结) 一、同底数幂的乘法 运算法则:同底数幂相乘,底数不变,指数相加。用式子表示为: n m n m a a a +=?(m 、n 是正整数) 二、同底数幂的除法 运算法则:同底数幂相除,底数不变,指数相减。用式子表示为:n m n m a a a -=÷。(0≠a 且m 、n 是正整数,m>n 。) 补充: 零次幂及负整数次幂的运算:任何一个不等于零的数的0次幂都等于1;任何不等于零的数的p -(p 是正整数) 次幂,等于这个数的p 次幂的倒数。用式子表示为:)0(10≠=a a ,p p a a 1=-(0≠a ,p 是正整数)。 三、幂的乘方 运算法则:幂的乘方,底数不变,指数相乘. 用式子表示为: ()n m mn a a =(m 、n 都是正整数) 注:把幂的乘方转化为同底数幂的乘法 练习: 1、计算: ①()()()()2452232222 x x x x -?-? ②()()()32 212m n m a a a a -?-? 补充: 同底数幂的乘法与幂的乘方性质比较: 幂的运算 指数运算种类 同底数幂乘法 乘法 加法 幂的乘方 乘方 乘法 四、积的乘方 运算法则:两底数积的乘方等于各自的乘方之积。用式子表示为:()n n n b a b a ?=?(n 是正整数) 扩展 p n m p n m a a a a -+=÷? ()np mp p n m b a b a = (m 、n 、p 是正整数) 提高训练 1.填空 (1) (1/10)5 ×(1/10)3 = (2) (-2 x 2 y 3) 2 = (3) (-2 x 2 ) 3 = (4) 0.5 -2 = (5) (-10)2 ×(-10)0 ×10-2 = 2.选择题 (1) 下列说法错误的是. A. (a -1)0 = 1 a ≠1 B. (-a )n = - a n n 是奇数 C. n 是偶数 , (- a n ) 3 = a 3n D. 若a ≠0 ,p 为正整数, 则a p =1/a -p (2) [(-x ) 3 ] 2 ·[(-x ) 2 ] 3 的结果是( ) A. x -10 B. - x -10 C. x -12 D. - x -12 (3) a m = 3 , a n = 2, 则a m-n 的值是( ) A. 1.5 B. 6 C. 9 D. 8 3.计算题

指数与指数幂的运算教案

指数与指数幂的运算 课题:指数与指数幂的运算 课型:新授课 教学方法:讲授法与探究法 教学媒体选择:多媒体教学 学习者分析: 1.需求分析:在研究指数函数前,学生应熟练掌握指数与指数幂的运算,通过本节内容将指数的取值范围扩充到实数,为学习指数函数打基础. 2.学情分析:在中学阶段已经接触过正数指数幂的运算,但是这对我们研究指数函数是远远不够的,通过本节课使学生对指数幂的运算和理解更加深入. 学习任务分析: 1.教材分析:本节的内容蕴含了许多重要的数学思想方法,如推广思想,逼近思想,教材充分关注与实际问题的联系,体现了本节内容的重要性和数学的实际应用价值. 2.教学重点:根式的概念及n次方根的性质;分数指数幂的意义及运算性质;分数指数幂与根式的互化. 3.教学难点:n次方根的性质;分数指数幂的意义及分数指数幂的运算. 教学目标阐明:

1.知识与技能:理解根式的概念及性质,掌握分数指数幂的运算,能够熟练的进行分数指数幂与根式的互化. 2.过程与方法:通过探究和思考,培养学生推广和逼近的数学思想方法,提高学生的知识迁移能力和主动参与能力. 3.情感态度和价值观:在教学过程中,让学生自主探索来加深对n 次方根和分数指数幂的理解,而具有探索能力是学习数学、理解数学、解决数学问题的重要方面. 教学流程图: 教学过程设计: 一.新课引入:

(一)本章知识结构介绍 (二)问题引入 1.问题:当生物体死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内含量P 与死亡年数t 之间的关系: (1)当生物死亡了5730年后,它体内的碳14含量P 的值为 (2)当生物死亡了5730×2年后,它体内的碳14含量P 的值为 (3) 当生物死亡了6000年后,它体内的碳14含量P 的值为 (4)当生物死亡了10000年后,它体内的碳14含量P 的值为 122 12?? ???6000 5730 12?? ???100005730 12?? ? ??

指数与指数幂的运算备课教案

2.1.1 指数与指数幂的运算(2课时) 第一课时根式 教学目标:1.理解n次方根、根式、分数指数幂的概念; 2.正确运用根式运算性质和有理指数幂的运算性质; 3.培养学生认识、接受新事物和用联系观点看问题的能力。教学重点:根式的概念、分数指数幂的概念和运算性质 教学难点:根式概念和分数指数幂概念的理解 教学方法:学导式 教学过程: (I)复习回顾 引例:填空 m n =(m,n∈Z); a+

(II )讲授新课 1.引入: (1)填空(1),(2)复习了整数指数幂的概念和运算性质(其中:因为m n a a ÷可看作m n a a -?,所以m n m n a a a -÷=可以归入性质m n m n a a a +?=;又因为n b a )(可看作 m n a a -?,所以n n n b a b a =)(可以归入性质()n n n ab a b =?(n ∈Z)),这是为下面学习分 数指数幂的概念和性质做准备。为了学习分数指数幂,先要学习n 次根式(*N n ∈)的概念。 (2)填空(3),(4)复习了平方根、立方根这两个概念。如: 分析:若22=4,则2叫4的平方根;若23=8,2叫做8的立方根;若25=32,则2叫做32的5次方根,类似地,若2n =a ,则2叫a 的n 次方根。由此,可有:

2.n 次方根的定义:(板书) 问题1:n 次方根的定义给出了,x 如何用a 表示呢?n a x =是否正确? 分析过程: 解:因为33=27,所以3是27的3次方根;因为5)2(-=-32,所以-2是-32的5次方根; 因为632a )a (=,所以a 2是a 6的3次方根。 结论1:当n 为奇数时(跟立方根一样),有下列性质:正数的n 次方根是正数,负数的n 次方根是负数,任何一个数的方根都是唯一的。此时,a 的n 次方根可表示为n a x =。 从而有:3273=,2325-=-,236a a = 解:因为4216=,16)2(4=-,所以2和-2是16的4次方根;

幂的运算方法总结

幂的运算方法总结 幂的运算的基本知识就四条性质,写作四个公式: ①a m×a n=a m+n ②(a m)n=a mn ③(ab)m=a m b m ④a m÷a n=a m-n 只要理解掌握公式的形状特点,熟悉其基本要义,直接应用一般都容易,即使运用公式求其中的未知指数难度也不大。 问题1、已知a7a m=a3a10,求m的值。 思路探索:用公式1计算等号左右两边,得到等底数的同幂形式,按指数也相等的规则即可得m的值。 方法思考:只要是符合公式形式的都可套用公式化简试一试。 方法原则:可用公式套一套。 但是,渗入幂的代换时,就有点难度了。 问题2、已知x n=2,y n=3,求(x2y)3n的值。 思路探索:(x2y)3n中没有x n和y n,但运用公式3就可将(x2y)3n化成含有x n 和y n的运算。 因此可简解为,(x2y)3n =x6n y3n=(x n)6(y n)3=26×33=1728 方法思考:已知幂和要求的代数式不一致,设法将代数式变形,变成已知幂的运算的形式即可代入求值。 方法原则:整体不同靠一靠。 然而,遇到求公式右边形式的代数式该怎么办呢? 问题3、已知a3=2,a m=3,a n=5,求a m+2n+6的值。 思路探索:试逆用公式,变形出与已知同形的幂即可代入了。 简解:a m+2n+6=a m a2n a6=a m(a n)2(a3)2=3×25×4=300

方法思考:遇到公式右边的代数式时,通常倒过来逆用公式,把代数式展开,然后代入。 方法原则:逆用公式倒一倒。 当底数是常数时,会有更多的变化,如何思考呢? 问题4、已知22x+3-22x+1=48,求x的值。 思路探索:方程中未知数出现在两项的指数上,所以必须统一成一项,即用公式把它们变成同类项进行合并。由此,可考虑逆用公式1,把其中常数的整数指数幂,化作常数作为该项的系数。 简解:22x+3-22x+1=22x×23-22x×21=8×22x-2×22x =6×22x=48 ∴22x=8 ∴2x=3 ∴x=1.5 方法思考:冪的底数是常数且指数中有常数也有未知数时,通常把常数的整数指数冪化成常数作为其它冪的系数,然后进行其它运算。 问题5、已知64m+1÷2n÷33m=81,求正整数m、n的值。 思路探索:幂的底数不一致使运算没法进行,怎样把它们变一致呢?把常数底数都变成质数底数就统一了。 简解:64m+1÷2n÷33m =24m+1×34m+1÷2n÷33m=24m+1-n×3m+1=81=34 ∵m、n是正整数∴m+1=4,4m+1-n=0 ∴m=3,n=13 方法思考:冪的底数是常数时,通常把它们分解质因数,然后按公式3展开,即可化成同底数冪了。 问题6、已知2a=3,2b=6,2c=12,求a、b、c的关系。 思路探索:求a、b、c的关系,关键看2a、2b、2c的关系,即3、6、12的关系。6是3的2倍,12是6的2倍,所以2c=2×2b=4×2a,由此可求。 简解:由题意知2c=2×2b=4×2a ∴2c=2b+1=2a+2 ∴c=b+1=a+2

幂的运算(知识总结)

学习必备 精品知识点 幂的四则运算(知识总结) 一、同底数幂的乘法 运算法则:同底数幂相乘,底数不变,指数相加。用式子表示为: n m n m a a a +=?(m 、n 是正整数) 二、同底数幂的除法 运算法则:同底数幂相除,底数不变,指数相减。用式子表示为:n m n m a a a -=÷。(0≠a 且m 、n 是正整数,m>n 。) 三、幂的乘方 运算法则:幂的乘方,底数不变,指数相乘. 用式子表示为: ()n m mn a a =(m 、n 都是正整数) 注:把幂的 乘方转化为同底数幂的乘法 练习: 1、计算: ①()()()()2 4 5 2 2 32222x x x x -?-? ②()()() 3 2 212m n m a a a a -?-? 补充: 同底数幂的乘法与幂的乘方性质比较: 幂的运算 指数运算种类 同底数幂乘法 乘法 加法 幂的乘方 乘方 乘法 四、积的乘方 运算法则:两底数积的乘方等于各自的乘方之积。用式子表示为: () n n n b a b a ?=?(n 是正整数) 扩展 p n m p n m a a a a -+=÷? () np mp p n m b a b a = (m 、n 、p 是正整数) 提高训练 1.填空 (1) (1/10)5 ×(1/10)3 = (2) (-2 x 2 y 3) 2 = (3) (-2 x 2 ) 3 = (4) 0.5 -2 = (5) (-10)2 ×(-10)0 ×10-2 = 2.选择题 (1) 下列说法错误的是. A. (a -1)0 = 1 a ≠1 B. (-a )n = - a n n 是奇数 C. n 是偶数 , (- a n ) 3 = a 3n D. 若a ≠0 ,p 为正整数, 则a p =1/a -p (2) [(-x ) 3 ] 2 ·[(-x ) 2 ] 3 的结果是( ) A. x -10 B. - x -10 C. x -12 D. - x -12 (3) a m = 3 , a n = 2, 则a m-n 的值是( ) A. 1.5 B. 6 C. 9 D. 8 3.计算题 (1) (-1/2 ) 2 ÷(-2) 3 ÷(-2) –2 ÷(∏-2005) 0 = = (2) (-2 a ) 3 ÷a -2 =

高中数学指数与指数幂的运算(一)

课题:指数与指数幂的运算(一) 课 型:新授课 教学目标: 了解指数函数模型背景及实用性必要性,了解根式的概念及表示方法. 理解根式的概念 教学重点:掌握n 次方根的求解. 教学难点:理解根式的概念,了解指数函数模型的应用背景 教学过程: 一、复习准备: 1、提问:正方形面积公式?正方体的体积公式?(2a 、3a ) 2、回顾初中根式的概念:如果一个数的平方等于a ,那么这个数叫做a 的平方根;如果一 个数的立方等于a ,那么这个数叫做a 的立方根. → 二. 讲授新课: 1. 教学指数函数模型应用背景: ① 探究下面实例,了解指数指数概念提出的背景,体会引入指数函数的必要性. 实例1.某市人口平均年增长率为1.25℅,1990年人口数为a 万,则x 年后人口数为多少万? 实例2. 给一张报纸,先实验最多可折多少次(8次) 计算:若报纸长50cm ,宽34cm ,厚0.01mm ,进行对折x 次后,问对折后的面积与厚度? ② 书P52 问题1. 国务院发展研究中心在2000年分析,我国未来20年GDP (国内生产总值)年平均增长率达7.3℅, 则x 年后GDP 为2000年的多少倍? 书P52 问题2. 生物死亡后,体内碳14每过5730年衰减一半(半衰期),则死亡t 年后 体内碳14的含量P 与死亡时碳14的关系为57301()2 t P =. 探究该式意义? ③小结:实践中存在着许多指数函数的应用模型,如人口问题、银行存款、生物变化、自然科学. 2. 教学根式的概念及运算: ① 复习实例蕴含的概念:2(2)4±=,2±就叫4的平方根;3327=,3就叫27的立方根. 探究:4(3)81±=,3±就叫做81的?次方根, 依此类推,若n x a =,那么x 叫做a 的n 次方根. ② 定义n 次方根:一般地,若n x a =,那么x 叫做a 的n 次方根.( n th root ),其中1n >,n *∈N 例如:328=2= ③ 讨论:当n 为奇数时, n 次方根情况如何?, 例如: 33-, 记:x 当n 为偶数时,正数的n 次方根情况? 例如: 4(3)81±=,81的4次方根就是3±, 记: 强调:负数没有偶次方根,0的任何次方根都是0, 即. 0= ④ 练习:4b a =,则a 的4次方根为 ; 3b a =, 则a 的3次方根为 . ⑤ radical ), 这里n 叫做根指数(radical exponent ), a 叫做被开方数(radicand ). ⑥ 计算2→ 探究: n 、n n a 的意义及结果? (特殊到一般) n a =. 当n 是奇数时,a a n n =;当n (0)||(0)a a a a a ≥?==?-

(完整版)幂的运算总结及方法归纳

幂的运算 一、知识网络归纳 二、学习重难点 学习本章需关注的几个问题: ●在运用n m n m a a a +=?(m 、n 为正整数),n m n m a a a -=÷(0≠a ,m 、n 为正整数且m >n ),mn n m a a =)((m 、n 为正整数),n n n b a ab =)((n 为正整数),)0(10≠=a a ,n n a a 1 = -(0≠a ,n 为正整数)时,要特别注意各式子成立的条件。 ◆上述各式子中的底数字母不仅仅表示一个数、一个字母,它还可以表示一个单项式,甚至还可以表示一个多项式。换句话说,将底数看作是一个“整体”即可。 ◆注意上述各式的逆向应用。如计算20052004425.0?,可先逆用同底数幂的乘法法则将20054写成442004?,再逆用积的乘方法则计算 11)425.0(425.02004200420042004==?=?,由此不难得到结果为1。 ◆通过对式子的变形,进一步领会转化的数学思想方法。如同底数幂的乘法

就是将乘法运算转化为指数的加法运算,同底数幂的除法就是将除法运算转化为指数的减法运算,幂的乘方就是将乘方运算转化为指数的乘法运算等。 ◆在经历上述各个式子的推导过程中,进一步领悟“通过观察、猜想、验证与发现法则、规律”这一重要的数学研究的方法,学习并体会从特殊到一般的归纳推理的数学思想方法。 一、同底数幂的乘法 1、同底数幂的乘法 同底数幂相乘,底数不变,指数相加. 公式表示为:()m n m n a a a m n +?=、为正整数 2、同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即 () m n p m m p a a a a m n p ++??=、、为正整数 注意点: (1) 同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数. (2) 在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算. 例题: 例1:计算列下列各题 (1) 34a a ?; (2) 23b b b ?? ; (3) ()()()2 4 c c c -?-?- 简单练习: 一、选择题 1. 下列计算正确的是( ) A.a2+a3=a5 B.a2·a3=a5 C.3m +2m =5m D.a2+a2=2a4 2. 下列计算错误的是( ) A.5x2-x2=4x2 B.am +am =2am C.3m +2m =5m D.x·x2m-1= x2m 3. 下列四个算式中①a3·a3=2a3 ②x3+x3=x6 ③b3·b·b2=b 5 ④ p 2+p 2+p 2=3p 2 正确的有( ) A.1个 B.2个 C.3个 D.4个 4. 下列各题中,计算结果写成底数为10的幂的形式,其中正确的是( ) A.100×102=103 B.1000×1010=103 C.100×103=105 D.100×1000=104 二、填空题 1. a4·a4=_______;a4+a4=_______。 2、 b 2·b ·b 7 =________。 3、103·_______=1010 4、(-a)2·(-a)3·a5 =__________。 5、a5·a( )=a2·( ) 4=a18 6、(a+1)2·(1+a)·(a+1)5 =__________。 中等练习: 1、 (-10)3·10+100·(-102 )的运算结果是( ) A.108 B.-2×104 C.0 D.-104

指数与指数幂的运算

指数与指数幂的运算 1、有理数指数幂的分类 (1)正整数指数幂()n n a a a a a n N *=????∈64748 L 个; (2)零指数幂)0(10≠=a a ; (3)负整数指数幂()10,n n a a n N a -* =≠∈ (4)0的正分数指数幂等于0, 0的负分数指数幂没有意义。 2、有理数指数幂的性质 (1)()0,,m n m n a a a a m n Q ==>∈ (2)()()0,,n m mn a a a m n Q =>∈ (3)() ()0,0,m m m ab a b a b m Q =>>∈ 知能点2:无理数指数幂 若a >0,P 是一个无理数,则p a 表示一个确定的实数,上述有理指数幂的运算性质,对于无理数指数幂都适用。 知能点3:根式 1、根式的定义:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中( )* ∈>N n n ,1, n a 叫做根式, n 叫做根指数,a 叫被开方数。 2 (1)n N ∈,且1n >; (2)当n 是奇数,则a a n n =;当n 是偶数,则???<-≥==0 0a a a a a a n n ; (3)负数没有偶次方根; (4)零的任何次方根都是零。 3、我们规定: (1))0,,,1m n a a m n N n * =>∈>; (2))10,,,1m n m n a a m n N n a -*= = >∈> 1、用根式的形式表示下列各式)0(>a (1)5 1a = (2)3 4 a = (3)35 a -= (4)32 a - = 2、用分数指数幂的形式表示下列各式: (1)3 4y x = (2))0(2>= m m m (3)85 - ?? = (4= (5= ; (6)a a a = ; (7) =?a a 2 (8)=?323a a (9)=a a (10) =35 6 q p 3、求下列各式的值 (1)2 38= ;(2)12 100- = ; (3)3 1()4 -= ;(4)3 416()81-= (5)3227= ;(6)23)4936(= ;(7)23)4 25 (-= ;(8)23 25= (9)12 2 [(] - = (10)(1 2 2 1?????? = (11)=3 264

(完整版)幂的知识点

幂的运算(基础) 【要点梳理】 要点一、同底数幂的乘法性质 +?=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加. 要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式. (2)三个或三个以上同底数幂相乘时,也具有这一性质, 即m n p m n p a a a a ++??=(,,m n p 都是正整数). (3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们 的指数之和等于原来的幂的指数。即m n m n a a a +=?(,m n 都是正整数). 要点二、幂的乘方法则 ()=m n mn a a (其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘. 要点诠释:(1)公式的推广:(())=m n p mnp a a (0≠a ,,,m n p 均为正整数) (2)逆用公式: ()()n m mn m n a a a ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从 而解决问题. 要点三、积的乘方法则 ()=?n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘. 要点诠释:(1)公式的推广:()=??n n n n abc a b c (n 为正整数). (2)逆用公式:()n n n a b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计 算更简便.如:1010 101122 1.22???? ?=?= ? ????? 要点四、注意事项 (1)底数可以是任意实数,也可以是单项式、多项式. (2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏. (3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加. (4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方. (5)灵活地双向应用运算性质,使运算更加方便、简洁. (6)带有负号的幂的运算,要养成先化简符号的习惯. 【典型例题】 类型一、同底数幂的乘法性质 1、计算: (1)2 3 4 444??;(2)3 4 5 2 6 22a a a a a a ?+?-?; (3)1 1211()()()()()n n m n m x y x y x y x y x y +-+-+?+?+++?+. 【答案与解析】 解:(1)原式23494 4++==. (2)原式3452617777 2222a a a a a a a +++=+-=+-=. (3)原式11 211222() ()()()2()n n m n m n m n m n m x y x y x y x y x y +++-++-+++=+++=+++=+. 【总结升华】(2)(3)小题都是混合运算,计算时要注意运算顺序,还要正确地运用相应的运算法则,并要注意区别 同底数幂的乘法与整式的加减法的运算法则.在第(2)小题中a 的指数是1.在第(3)小题中把x y +看成一个整体. 举一反三: 【变式】计算: (1)5 3 2 3(3)(3)?-?-; (2)221() ()p p p x x x +?-?-(p 为正整数); (3)232(2)(2)n ?-?-(n 为正整数). 【答案】 解:(1)原式5 3 2 5 3 2 532 103(3)333333++=?-?=-??=-=-. (2)原式22122151()p p p p p p p x x x x x +++++=??-=-=-. (3)原式525216222 (2)22n n n +++=??-=-=-.

(精品)初中数学讲义13整数指数幂及其运算(学生)

第13课时 整数指数幂及其运算 教学目标 理解整数指数幂的概念,掌握其运算法则. 知识精要 1.零指数 )0(10≠=a a 2.负整数指数 ).,0(1为正整数p a a a p p ≠=- 注意正整数幂的运算性质: n n n mn n m n m n m n m n m b a ab a a a a a a a a a ==≠=÷=?-+)(, )(), 0(, 可以推广到整数指数幂,也就是上述等式中的m 、 n 可以是0或负整数. 3. 用科学记数法表示绝对值大于0而小于1的数的方法: 绝对值大于0而小于1的数可以表示为:10n a -?(其中110,a n ≤<为正整数) 热身练习 1. 当x ________时,2(42)x -+有意义? 2. 将代数式22 2332b a ----化成不含负指数的形式_______. 3. 将235()x y --+写成只含有正整数幂的形式是_______. 4. 计算: (1)03211(0.5)()()22 ---÷-+ (2)2574x x x x x ÷÷?? (3)2222()()a b a b -----÷+ (4) 32 3()xy -

(5)02140)21()31()101()21()2(?++------ (6) 52332()()y y y ---÷? 5. 用小数表示下列各数 (1)610- (2)31.20810-? (3)59.0410--? 6. 用科学记数法表示下列各数 (1)34200 (2)0.0000543 (3)-0.000789 7. 计算:22(2)2----=_______. 8.自从扫描隧道显微镜发明后,世界上便诞生了一门新学科,这就是“纳米技术”.已知52个纳米的长度为0.000000052米,用科学记数法表示此数为_________米. 精解名题 1. 用负整数指数幂表示下列各式

最新指数与指数幂的运算练习题

2.1.1指数与指数幂的运算练习题 1、有理数指数幂的分类 (1)正整数指数幂()n n a a a a a n N *=????∈64748 L 个; (2)零指数幂)0(10≠=a a ; (3)负整数指数幂()10,n n a a n N a -* =≠∈ (4)0的正分数指数幂等于0, 0的负分数指数幂没有意义。 2、有理数指数幂的性质 (1)()0,,m n m n a a a a m n Q ==>∈ (2)()()0,,n m mn a a a m n Q =>∈ (3)() ()0,0,m m m ab a b a b m Q =>>∈ 知能点2:无理数指数幂 若a >0,P 是一个无理数,则p a 表示一个确定的实数,上述有理指数幂的运算性质,对于无理数指数幂都适用。 知能点3:根式 1、根式的定义:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中( )* ∈>N n n ,1, n a 叫做根式, n 叫做根指数,a 叫被开方数。 2 (1)n N ∈,且1n >; (2)当n 是奇数,则a a n n =;当n 是偶数,则???<-≥==0 0a a a a a a n n ; (3)负数没有偶次方根; (4)零的任何次方根都是零。 3、我们规定: (1))0,,,1m n a a m n N n * =>∈>; (2))10,,,1m n m n a a m n N n a -*= = >∈> 1、用根式的形式表示下列各式)0(>a (1)5 1a = (2)3 4 a = (3)35 a -= (4)32 a - = 2、用分数指数幂的形式表示下列各式: (1)3 4y x = (2))0(2>= m m m (3)85 - ?? = (4= (5= ; (6)a a a = ; (7) =?a a 2 (8)=?323a a (9)=a a (10) =35 6 q p 3、求下列各式的值 (1)2 38= ;(2)12 100- = ; (3)3 1()4 -= ;(4)3 416()81-= (5)3 227= ;(6)23)4936(= ;(7)2 3)4 25(-= ;(8)23 25= (9)12 2 [(]- = (10)(1 2 2 1?????? = (11)=3 264 4.化简

整数指数幂 优秀教案

整数指数幂 【教学目标】 1.了解负整数指数幂的意义; 2.了解整数指数幂的性质并能运用它进行计算; 3.会利用10的负整数次幂,用科学记数法表示一些小于1的正数。 【教学重难点】 让学生意识到有关幂的运算最终结果要化成正整数指数幂,学会负整数指数幂的意义的合理性和整数指数幂的性质应用。 【教学过程】 一、复习引入新课。 1.问题1:你们还记得正整数指数幂的意义吗?正整数指数幂有哪些运算性质呢? 追问:将正整数指数幂的运算性质中指数的取值范围由“正整数”扩大到“整数”,这些性质还适用吗? 师生活动:教师设疑,学生回忆,引出本节课的课题。 2.探索负整数指数幂的意义。 问题2:m a中指数m可以是负整数吗?如果可以,那么负整数指数幂m a表示什么? (1)根据分式的约分,当a≠0时,如何计算35 a a ÷? (2)如果把正整数指数幂的运算性质m n m n ÷=(a≠0,m,n是正整数,m>n)中 a a a- 的条件m>n去掉,即假设这个性质对于像35 ÷的情形也能使用,如何计算? a a 师生活动:教师提出问题,学生独立思考后,交流自己的做法,激发学生探究新知的欲望。 3.探索整数指数幂的性质。 问题3:引入负整数指数和0指数后,m n m n ÷=(m,n是正整数)这条性质能否推 a a a- 广到m,n是任意整数的情形? 师生活动:教师提出问题,引发学生思考。教师可以适当引导学生从特殊情形入手进行研究,然后再用其他整数指数验证这个规律是否仍然成立。 问题4:类似地,你可以用负整数指数幂或0指数幂对于其他正整数指数幂的运算性质进

0.00001= = 归纳:10n -= = 师生活动:师生共同探索,发现规律。 追问1:如何用科学记数法表示0.0035和0.0000982呢? 师生活动:教师提出问题,学生讲述方法,教师板书。 0.0035=3.5×0.001=-33.510?, 0.0000982=9.82×0.00001=-59.8210?。 追问2:观察这两个等式,你能发现10的指数与什么有关呢? 师生活动:学生独立思考后交流看法,师生共同寻找规律:对于一个小于1的正数,从小数点前的第一个0算起至小数点后第一个非0数字前有几个0,用科学计数法表示这个数时,10的指数就是负几。 例10:用科学记数法表示下列各数: (1)0.3;(2)0.00078;(3)0.00002009. 师生活动:教师提出问题,学生口述,教师板书。 例11:纳米(nm )是非常小的长度单位,1nm =-910m 。把13nm 的物体放到乒乓球上,就如同把乒乓球放到地球上。13mm 的空间可以放多少个13nm 的物体(物体之间的间隙忽略不计)? 师生活动:教师提出问题,由学生独立思考,并讲解解题思路。首先需要将1和13nm 的单位统一。由于1mm =-310m ,1nm =-910m ,所以13mm =()3-3103m ,13nm =()3-9310m ,再做除法即可求解。 二、练习。 1.用科学记数法表示下列各数: 000001,0.0012,0.000000345,0.0000000108。 师生活动:两名学生板书,其他学生在练习本上完成,教师巡视,及时给予指导,解题过程可由学生进行评价。 三、小结。 教师与学生一起回顾本节课所学习的主要内容,并请学生回答以下问题: (1)本节课学习了哪些主要内容? 3m m

幂的运算方法总结

幂的运算方法总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

?幂的运算方法总结 幂的运算的基本知识就四条性质,写作四个公式: ①a m×a n=a m+n ②(a m)n=a mn ③(ab)m=a m b m ④a m÷a n=a m-n 只要理解掌握公式的形状特点,熟悉其基本要义,直接应用一般都容易,即使运用公式求其中的未知指数难度也不大。 问题1、已知a7a m=a3a10,求m的值。 思路探索:用公式1计算等号左右两边,得到等底数的同幂形式,按指数也相等的规则即可得m的值。 方法思考:只要是符合公式形式的都可套用公式化简试一试。 方法原则:可用公式套一套。 但是,渗入幂的代换时,就有点难度了。 问题2、已知x n=2,y n=3,求(x2y)3n的值。 思路探索:(x2y)3n中没有x n和y n,但运用公式3就可将(x2y)3n化成含有x n 和y n的运算。 因此可简解为,(x2y)3n =x6n y3n=(x n)6(y n)3=26×33=1728 方法思考:已知幂和要求的代数式不一致,设法将代数式变形,变成已知幂的运算的形式即可代入求值。 方法原则:整体不同靠一靠。 然而,遇到求公式右边形式的代数式该怎么办呢? 问题3、已知a3=2,a m=3,a n=5,求a m+2n+6的值。 思路探索:试逆用公式,变形出与已知同形的幂即可代入了。

简解:a m+2n+6=a m a2n a6=a m(a n)2(a3)2=3×25×4=300 方法思考:遇到公式右边的代数式时,通常倒过来逆用公式,把代数式展开,然后代入。 方法原则:逆用公式倒一倒。 当底数是常数时,会有更多的变化,如何思考呢? 问题4、已知22x+3-22x+1=48,求x的值。 思路探索:方程中未知数出现在两项的指数上,所以必须统一成一项,即用公式把它们变成同类项进行合并。由此,可考虑逆用公式1,把其中常数的整数指数幂,化作常数作为该项的系数。 简解:22x+3-22x+1=22x×23-22x×21=8×22x-2×22x =6×22x=48 ∴22x=8 ∴2x=3 ∴x=1.5 方法思考:冪的底数是常数且指数中有常数也有未知数时,通常把常数的整数指数冪化成常数作为其它冪的系数,然后进行其它运算。 问题5、已知64m+1÷2n÷33m=81,求正整数m、n的值。 思路探索:幂的底数不一致使运算没法进行,怎样把它们变一致呢?把常数底数都变成质数底数就统一了。 简解:64m+1÷2n÷33m =24m+1×34m+1÷2n÷33m=24m+1-n×3m+1=81=34 ∵m、n是正整数∴m+1=4,4m+1-n=0 ∴m=3,n=13 方法思考:冪的底数是常数时,通常把它们分解质因数,然后按公式3展开,即可化成同底数冪了。 问题6、已知2a=3,2b=6,2c=12,求a、b、c的关系。 思路探索:求a、b、c的关系,关键看2a、2b、2c的关系,即3、6、12的关系。6是3的2倍,12是6的2倍,所以2c=2×2b=4×2a,由此可求。 简解:由题意知2c=2×2b=4×2a ∴2c=2b+1=2a+2

相关主题