搜档网
当前位置:搜档网 › 磁场参数计算公式2016.6.25

磁场参数计算公式2016.6.25

磁场参数计算公式2016.6.25
磁场参数计算公式2016.6.25

磁场参数计算公式

一、磁场强度与磁感应强度计算公式

1、磁场强度与磁感应强度定义

磁场强度是线圈安匝数的一个表征量,反映磁场的源强弱。磁感应强度则表示磁场源在特定环境下的效果。打个不恰当的比方,你用一个固定的力去移动一个物体,但实际对物体产生的效果并不一样,比如你是借助于工具的,也可能你使力的位置不同或方向不同.对你来说你用了一个确定的力.而对物体却有一个实际的感受,你作用的力好比磁场强度,而物体的实际感受好比磁感应强度。

2、磁场强度与磁感应强度区别

磁场强度和磁感应强度均为表征磁场性质(即磁场强弱和方向)的两个物理量。由于磁场是电流或者说运动电荷引起的,而磁介质(除超导体以外不存在磁绝缘的概念,故一切物质均为磁介质)在磁场中发生的磁化对源磁场也有影响(场的迭加原理)。因此,磁场的强弱可以有两种表示方法:在充满均匀磁介质的情况下,若包括介质因磁化而产生的磁场在内时,用磁感应强度B表示,其单位为特斯拉T,是一个基本物理量;单独由电流或者运动电荷所引起的磁场(不包括介质磁化而产生的磁场时)则用磁场强度H表示,其单位为A/m2,是一个辅助物理量。具体的,B决定了运动电荷所受到的洛仑兹力,因而,B 的概念叫H更形象一些。在工程中,B也被称作磁通密度(单位Wb/m2)。在各向同性的磁介质中,B与H的比值即介质的绝对磁导率μ。

3、磁场强度计算公式:H = N × I / Le

式中:H为磁场强度,单位为A/m;N为励磁线圈的匝数;

I为励磁电流(测量值),单位位A;

Le为测试样品的有效磁路长度,单位为m。

4、磁感应强度计算公式:B = Φ / (N × Ae)

式中:B为磁感应强度,单位为Wb/m^2;

Φ为感应磁通(测量值),单位为Wb;

N为感应线圈的匝数;

Ae为测试样品的有效截面积,单位为m^2。

二、磁通量与磁通密度相关公式:

1、Ф = B * S (1)

Ф:磁通(韦伯);

B :磁通密度(韦伯每平方米或高斯),1韦伯每平方米=104高斯

S:磁路的截面积(平方米)

2、B = H * μ(2)

μ:磁导率(无单位也叫无量纲);H:磁场强度(伏特每米)

3、H = I*N / l (3)

I:电流强度(安培);N:线圈匝数(圈T);l:磁路长路(米)

4、当电源电压做正弦变化时,主磁通也做正弦交变,设其瞬时值为:

msinwt 带入公式e Nd dt

d e N wN mcoswt dt

则感应电动势的有效值为:

E emwN m2fN m 4.44fN m 222

其中f为交流电频率,N为线圈匝数。

交变电流教学中应分清的几个概念

广东省汕尾市城区田家炳中学贾世芳

交变电流在日常生活中的应用非常广泛,它可以很方便地利用变压器进行升压或降压,从而进行远距离输电或满足使用不同电压的用电器的需要;它能够产生旋转磁场,从而制成结构简单、运行可靠的电动机,以满足工农业生产和入们生活的需要。因此,交变电流跟生产和生活实践有着密切的联系。在高中阶段,学生掌握一定的交变电流知识,不但有利于培养学生理论联系实践的能力,而且也会提高学生学习物理的兴趣。

交变电流这一部分的内容,一直都是高中物理教学的一个难点。学生在学习时普遍反映这一部分内容的概念多、公式多、各种关系复杂。笔者认为,如果在教学中能让学生分清下列几个概念,便可以取得良好的教学效果。

一、交变电流和恒定电流

交变电流是指大小和方向都随时间作周期性变化的电流,恒定电流是指强弱和方向都不随时间改变的电流。交变电流一般是由线圈在磁场中匀速转动或者磁场围绕线圈匀速转动产生的,恒定电流是由干电池、铅蓄电池或稳压电源提供的。在日常生活中,照明电路和动力电路中都使用的是交变电流。由于交变电流的大小和方向都随时间作周期性变化,所以要描述交变电流的特性,就不像恒定电流那样简单,需要用最大值、有效值、瞬时值、平均值、周期和频率等物理量。

例1 下列各图中表示交变电流的是()

分析与解:根据交变电流的定义,A、C、D,图中电流的大小和方向都随时间作周期性变化,是交变电流。B图中电流的大小随时间作周期性变化,但方向始终不变,是脉动直流,而不是交变电流。故正确答案选A、C、D。

二、最大值和有效值

交变电流的最大值是指交变电流在一个周期内所能达到的最大值,它可以用来表示交变电流的强弱或电压的高低。当矩形线圈在匀强磁场中匀速转动到与磁场方向平行时,产生的感应电动势具有最大值

大值,即,。此时电路中的电流强度及用电器两端的电压都具有最。但是,交变电流的最大值不能用来表示交变电流产生的效果,在实际应用中通常用有效值来表示交变电流产生的效果。

交变电流的有效值是根据电流的热效应来定义的,让交变电流和恒定电流通过相同阻值的电阻,如果在相同的时间内产生的热量相等,我们就把这一恒定电流的数值叫做这一交变电流的有效值。通过计算表明,正弦交变电流的有效值与最大值之间的关系为:

,,

第3 / 4页

在交变电流电路中,电流表、电压表、功率表等仪表测量的示数均为有效值。在没有特别指明的情况下,所给出的交变电流的数值都是指有效值。在日常生活中,使用交变电流的用电器铭牌上所标明的额定电压、额定电流也都是指有效值。在计算电功、电热、电功率等物理量时,均需要代入有效值进行计算。

例2 如图2所示,边长为a的n匝正方形线圈在磁感强度为B的匀强磁场中,以一条边为轴匀速转动,角速度为ω,转动轴与磁场方向垂直,若线圈电阻为R,则线圈从图示位置转动一周的过程中,线圈中产生的热量是多少?

分析与解:经分析可知,线圈在转动过程中,产生的感应电动势的最大值为,则线圈中产生的感应电流的最大值为

度的有效值为

根据焦耳定律,则线圈产生的热量

三、瞬时值和平均值

交变电流的瞬时值是指交变电流在某一时刻所具有的数值。若线圈从中性面开始转动计时,则t时刻的感应电动势瞬时值表达式为

,电路中用电器两端的电压瞬时值表达式为,感应电流瞬时值表达式为。。又因为线圈转过一周所需要的时间。,则电流强,若线圈从平行于磁场方向开始转动计时,则t

时刻的感应电动势瞬时值表达式为,感应电流瞬时值表达式为

表达式为。,电路中用电器两端的电压瞬时值交变电流的平均值是指在某一段时间内产生的交变电流对时间的平均值。要计算交变电流在某一段时间内的平均值,需要应用法拉第电磁感应定律,则感应电动势的平均值表达式为,感应电流的平均值表达式为。电路中用。在利用公式q=It计算t时间电器两端的电压平均值表达式为

内通过导体横截面的电量时,公式中的I必须代入平均值进行计算。

水文地质参数计算公式

8.1 一般规定 8.1.1 水文地质参数的计算,必须在分析勘察区水文地质条件的基础上,合理地选用公式(选用的公式应注明出处)。 8.1.2 本章所列潜水孔的计算公式,当采用观测孔资料时,其使用范围应限制在抽水孔水位下降漏斗坡度小于1/4处。 8.2 渗透系数 8.2.1 单孔稳定流抽水试验,当利用抽水孔的水位下降资料计算渗透系数时,可采用下列公式: 1 当Q~s(或Δh2)关系曲线呈直线时, 1)承压水完整孔: (8.2.1-1) 2)承压水非完整孔: 当M>150r,l/M>0.1时: (8.2.1-2) 或当过滤器位于含水层的顶部或底部时: (8.2.1-3)

3)潜水完整孔: (8.2.1-4) 4)潜水非完整孔: 当>150r,l>0.1时: (8.2.1-5) 或当过滤器位于含水层的顶部或底部时: (8.2.1-6)式中K——渗透系数(m/d); Q——出水量(m3/d); s——水位下降值(m); M——承压水含水层的厚度(m); H——自然情况下潜水含水层的厚度(m); h——潜水含水层在自然情况下和抽水试验时的厚度的平均值(m); h——潜水含水层在抽水试验时的厚度(m); l——过滤器的长度(m); r——抽水孔过滤器的半径(m);

R——影响半径(m)。 2 当Q~s(或Δh2)关系曲线呈曲线时,可采用插值法得出Q~s 代数多项式,即: s=a1Q+a2Q2+……a n Qn (8.2.1-7) 式中a1、a2……a n——待定系数。 注:a1宜按均差表求得后,可相应地将公式(8.2.1-1)、(8.2.1-2)、(8.2.1-3)中的 Q/s和公式(8.2.1-4)、(8.2.1-5)、(8.2.1-6)中的以1/a1代换,分别进行计算。 3 当s/Q (或Δh2/Q)~Q关系曲线呈直线时,可采用作图截距法求出a1后,按本条第二款代换,并计算。 8.2.2 单孔稳定流抽水试验,当利用观测孔中的水位下降资料计算渗透系数时,若观测孔中的值s(或Δh2)在s(或Δh2)~lgr关系曲线上能连成直线,可采用下列公式: 1 承压水完整孔: (8.2.2-1) 2 潜水完整孔: (8.2.2-2) 式中s1、s2——在s~lgr关系曲线的直线段上任意两点的纵坐标值(m); ——在Δh2~lgr关系曲线的直线段上任意两点的纵坐标值(m2); r1、r2———在s(或Δh2)~lgr关系曲线上纵坐标为s1、s2(或)的两点至抽水孔的距离(m)。

磁性材料基本参数详解

磁性材料基本参数详解 磁性是物质的基本属性之一,磁性现象与各种形式的电荷的运动相关联,物质内部电子的运动和自旋会产生一定大小的磁矩,因而产生磁性。 自然界物质按其磁性的不同可分为:顺磁性物质、抗磁性物质、铁磁性物、反铁磁性物质以及亚铁磁性物质,其中铁磁性物质和亚铁磁性物质属于强磁性物质,通常将这两类物质统称为“ 磁性材料” 。 铁氧体颗粒料: 是已经过配料、混合、预烧、粉碎和造粒等工序,可以直接用于成形加工的铁氧体料粒。顾客使用该料可直接压制成毛坯,经烧结、磨削后即可制成所需磁芯。本公司生产并销售高品质的铁氧体颗粒料,品种包括功率铁氧体JK 系列和高磁导率铁氧体JL 系列。 锰锌铁氧体: 主要分为高稳定性、高功率、高导铁氧体材料。它是以氧化铁、氧化锌为主要成分的复合氧化物。其工作频率在1kHz 至10MHz 之间。主要用着开关电源的主变压器用磁芯. 。 随着射频通讯的迅猛发展,高电阻率、高居里温度、低温度系数、低损耗、高频特性好(高电阻率ρ、低损耗角正切tg δ)的镍锌铁氧体得到重用,我司生产的Ni-Zn 系列磁芯,其初始磁导率可由10 到2500 ,使用频率由1KHz 到100MHz 。但主要应用于1MHz 以上的频段、磁导率范围在7-1300 之间的EMC 领域、谐振电路以及超高频功率电路中。磁粉芯: 磁环按材料分为五大类:即铁粉芯、铁镍钼、铁镍50 、铁硅铝、羰基铁。使用频率可达100KHZ ,甚至更高。但最适合于10KHZ 以下使用。 磁场强度H : 磁场“ 是传递运动电荷或者电流之间相互作用的物理物” 。 它可以由运动电荷或者电流产生,同时场中其它运动或者电流发生力的作用。 均匀磁场中,作用在单位长磁路的磁势叫磁场强度,用H 表示; 使一个物体产生磁力线的原动力叫磁势,用F 表示:H=NI/L, F = N I H 单位为安培/ 米(A/m ),即: 奥斯特Oe ;N 为匝数;I 为电流,单位安培(A ),磁路长度L 单位为米(m )。 在磁芯中,加正弦波电流,可用有效磁路长度Le 来计算磁场强度: 1 奥斯特= 80 安/ 米 磁通密度,磁极化强度,磁化强度 在磁性材料中,加强磁场H 时,引起磁通密度变化,其表现为: B= ц o H+J= ц o (H+M) B 为磁通密度( 磁感应强度) ,J 称磁极化强度,M 称磁化强度,ц o 为真空磁导率,其值为4 π× 10 ˉ 7 亨利/ 米(H/m ) B 、J 单位为特斯拉,H 、M 单位为A/m, 1 特斯拉=10000 高斯(Gs ) 在磁芯中可用有效面积Ae 来计算磁通密度:

磁法标本磁参数计算公式修改意见

关于地面高精度磁测规范磁性标本参数计算公式修 改意见 刘国栋1,王富群2 1河南省地矿局第二地质勘查院,许昌(461000) 2河南省地矿局第二地质勘查院许昌(461000) E-mail :liuuodong1985@https://www.sodocs.net/doc/ad9437307.html, 摘 要:本文主要阐述磁性标本的磁参数计算公式的理论推导及其单位换算,指出中华人民共和国地质矿产行业规范《地面高精度磁测技术规程》DZ/T 0071—93中给出的磁参数计算公式的不合理性,提出关于该公式修改意见。 关键词:磁参数计算公式 高斯 第一位置 第二位置 1.引言 我院在按照中华人民共和国地质矿产行业标准《地面高精度磁测技术规程》DZ/T 0071—93中规定的第一高斯位置法进行内蒙古标本磁参数测量并计算时碰到磁化率单位问题。 引用中华人民共和国地质矿产行业规范《地面高精度磁测技术规程》DZ/T 0071—93中附录C 的磁化率和剩磁计算公式[1]: 高斯第一位置磁化率: 3-6345612000051---1043222n n n n n n r n n n SI T V χπ?++?+??????=?++??? ? ? ???????????(κ) (1) 式中:r ——标本中心到探头中心的距离; V ——标本体积; 0T ——当地总磁场值; 高斯第一位置剩磁: 3-351 10/2r r I A m V =? (2) 用以上两个公式进行计算:按照该规范附录C 中叙述, r 选取单位cm ,V 选取单位cm 3,0T 与i n 选取单位nT ;计算结果χ值与现实不符,比实际小了约105倍,r I 值与现实相符。 重新选取单位:r 选取单位m ,V 选取单位m3,0T 与i n 选取单位T ;计算结果χ值与现实不符,比实际小了约105倍,r I 值与现实也不符,比实际小了约109倍。 由(1)式单位换算可以看出,r 3与V 的单位相消,0T 与i n 的单位相消,也就是说这四个参数的单位选择不会影响计算结果。 同理:(2)式中,3 r 与V 的单位相消,i n 的单位单独存在,影响到计算结果。 综上所述,个人认为是(1)式在推到中出现了错误,(2)式正确,i n 的单位应为nT 。 2.公式推导 约束条件: 高斯第一位置: 212n n +,432n n +,65 2n n + 0n ≥ 高斯第二位置:212n n +,432n n +,65 2 n n + 0n ≤ 2.1 高斯第一位置 根据磁偶极子模型,可得到标本在高斯第一位置产生磁场感应强度B 的大小[2]:

线路参数计算(公式)

参数计算(第一版) 1.线路参数计算内容 1.1已知量: 线路型号(导线材料、截面积mm 2 )、长度(km)、排列方式、线间距离(m)、外径(mm)、分裂数、分裂距(m)、电压等级(kV)、基准电压U B (kV, 母线电压作为基准电压)、基准容量S B (100MVA)。 1.2待计算量: 电阻R(Ω/km)、线电抗X(Ω/km)、零序电阻R0(Ω/km)、零序电抗X0(Ω/km)、对地电纳B(S/km)、对地零序电纳B0(S/km)。 1.3计算公式: 1.3.1线路电阻 R=ρ/S (Ω/km) R*=R 2B B U S 式中 ρ——导线材料的电阻率(Ω·mm 2 /km); S ——线路导线的额定面积(mm 2)。 1.3.2线路的电抗 X=0.1445lg eq m r D +n 0157 .0(Ω/km) X*=X 2B B U S 式中 m D ——几何均距,m D =ac bc ab D D D (mm 或cm,其单位应与eq r 的单位相同); eq r ——等值半径, eq r =n n m rD 1 (mm,其中r 为导线半径); n ——每个导线的分裂数。 1.3.3零序电阻 R0=R+3R g (Ω/km)

R0*=R0 2B B U S 式中 R g ——大地电阻, R g =π2×10-4×f =9.869×10-4 ×f (Ω/km)。在f =50Hz 时, R g =0.05Ω/km 。 1.3.4零序电抗 X0=0.4335lg s g D D (Ω/km) X0*=X0 2B B U S 式中 g D ——等值深度, g D = γ f 660,其中γ为土壤的电导率,S/m 。当土壤电导率不 明确时,在一般计算中可取g D =1000m 。 s D ——几何平均半径, s D =32 m D r '其中r '为导线的等值半径。若r 为单根导 线的实际半径,则对非铁磁材料的圆形实心线,r '=0.779r ;对铜或铝的绞线,r '与绞线股数有关,一般r '=0.724~0.771r ;纲芯铝线取 r '=0.95r ;若为分裂导线,r '应为导线的相应等值半径。m D 为几何均 距。 1.3.5对地电钠 B= 610lg 58 .7-?eq m r D (S/km) B*=B B B S U 2 式中 m D ——几何均距,m D =ac bc ab D D D (mm 或cm,其单位应与eq r 的单位相同); eq r ——等值半径, eq r =n n m rD 1 -(其中r 为导线半径);

永磁同步伺服电动机的磁场分析与参数计算

ISSN 100020054CN 1122223 N 清华大学学报(自然科学版)JT singhua U niv (Sci &Tech ),2004年第44卷第10期 2004,V o l .44,N o .106 36 131721320   永磁同步伺服电动机的磁场分析与参数计算 陶 果, 邱阿瑞, 柴建云, 肖 曦 (清华大学电机工程与应用电子技术系,北京100084) 收稿日期:2003208218 作者简介:陶果(19792),男(汉),安徽,博士研究生。 通讯联系人:邱阿瑞,教授,E 2m ail :qiuar @m ail .tsinghua .edu .cn 摘 要:为了更有效地对永磁同步伺服电动机进行设计和分析,需准确进行电机的磁场分析和参数计算。该文以一台定子为集中绕组、槽 极比为9 6、转子磁极为径向充磁圆筒形磁极等结构特点的永磁三相同步伺服电动机为例,分析了其磁场的分布情况,给出了电机的磁场分布图;对用电磁场数值计算来求解电机的空载反电动势进行了研究和分析;同时对如何求解电机的定子绕组电感进行了研究。计算结果与实验所测的结果吻合较好。该文提出的磁场分析和参数计算方法,对这类结构的永磁伺服电动机的设计和分析具有很好的参考价值。 关键词:永磁同步伺服电动机;磁场分析;电感计算中图分类号:TM 351 文献标识码:A 文章编号:100020054(2004)1021317204 Ana lysis of magnetic f ields i n permanen t magnet synchronous servo m otors TAO Guo ,Q I U A rui ,CHA I J ia nyun ,XI A O Xi (D epart men t of Electr ical Engi neer i ng and Applied Electron ic Technology ,Tsi nghua Un iversity , Be ij i ng 100084,Ch i na ) Abstract :A ccurateanalysis of the m agnetic field param eters is i m po rtant to the design of per m anent m agnet three 2phase synch ronous servo mo to rs .T h is paper describes the analysis of the m agnetic fields in a perm anent m agnet synchronous servo mo to r .T he stato r w indings are concentrated co ils wound around a single too th w ith a slo ts po les rati o of 9 6, w ith cylindrical surface 2mounted po les .T he m agnetic field distributi ons are given w ith a num erical m ethod to calculate the back E M F fo r no load conditi ons .T he stato r inductance w as also analyzed .T he calculated values agree w ell w ith m easured values . Key words :per m anentm agnetsynch ronous servo mo to r;analysis of m agnetic fields;inductance calculati on 近年来,永磁交流伺服系统具有逐步取代传统直流伺服系统的趋势,已成为现代伺服技术重要的 发展方向。正弦波驱动的稀土永磁同步伺服电动机,由于其体积小、效率高、转矩脉动小等优点,在伺服 系统中得到越来越广泛的应用。 在研制设计永磁同步伺服电动机时,在满足电机基本性能的条件下,如何使电机生产制造方便,并尽可能地减少制造成本,是研究与设计人员应当考虑的重要问题。本文以一台额定功率为400W 、额定转速为5000r m in 的小型永磁交流伺服电动机为研究对象,该电机采用了一些特殊的结构形式,如定子绕组采用集中绕组,线圈直接套在定子齿上;槽 极比(即定子槽与极数之比)为9 6;转子磁极采用径向充磁的圆筒形磁极,并直接套装在转轴上。针对这种特殊结构形式的永磁同步伺服电动机进行设计和分析,目前国内还没有成熟的方法。经文献检索国外也少见有此类研究论文发表[1]。 本文将采用电磁场有限元方法来进行电机的磁场分析与参数计算。 1 数学模型的建立 分析永磁同步伺服电动机的电磁场问题,用矢 量磁位A 来表征其磁场比较方便。由于电机磁场结构沿轴向是均匀对称的,因此可采用二维的电磁场分析方法。又因为转子极数与定子槽(齿)数不是整数倍关系,因此,在求解时宜采用整个电机为求解对象。电机的二维电磁场计算模型如图1所示。求解电机磁场的有限元模型及边界条件为[2]: 99x 1Λ9A 9x +99y 1Λ9A 9y =-?, (1)1Λ19A 9n L - 1Λ29A 9n L =J c =H c L ,(2)A A B CD =0. (3) 其中:?为外加电流密度,Λ为材料的导磁率;Λ1、 Λ2分别为永磁体外和内的导磁率,L 为永磁体表面;n 为永磁体表面的外法线,J c =H c 为等效永磁

磁场公式大全

十四、磁场 一、知识网络 二、画龙点睛 概念 1、磁场 (1)磁场的来源 ①磁体的周围存在磁场 ②电流的周围存在磁场:丹麦物理学家奥斯特首先发现电流周围也存 在着磁场。 把一条导线平行地放在小磁针的上方,给导线中通入电流。当导线中 通入电流,导线下方的小磁针发生转动。 (2)磁体与电流间的相互作用通过磁场来完成 (3)磁场 ①磁场:磁体和电流周围,运动电荷周围存在的一种特殊物质,叫磁场。 ②磁场的基本性质:对处于其中的磁极或电流有力的作用。

③磁场的物质性:虽然磁场看不见摸不着,对于我们初学者感到很抽象,其实磁场和电场一样是客观存在的,是物质存在的一种特殊形式。 2、磁场的方向 磁感线 (1)磁场的方向:物理学规定,在磁场中的任一点,小磁针北极受力的方向,亦即小磁针静止时北极所指的方向,就是该点的磁场方向。 (2)磁感线: ①磁感线所谓磁感线,是在磁场中画出的一些有方向的曲线,在这些曲线上,每一点的切线方向都在该点的磁场方向上。 ②磁感线的可以用实验来模拟 (3)几种典型磁体周围的磁感线分布 ①条形磁铁磁场的磁感线 ②条形磁铁磁场的磁感线 ③直线电流磁场的磁感线 直线电流磁场的磁感线是一些以导线上各点为圆心的同心圆,这些同心圆都在跟导线垂直的平面上。 直线电流的方向和磁感线方向之间的关系可用安培定则(也叫右手螺旋定则)来判定:用右手握住导线,让伸直的大拇指所指的方向跟电流的方向一致,弯曲的四指所指的方向就是磁感线的环绕方向。 ④环形电流磁场的磁感线 环形电流磁场的磁感线是一些围绕环形导线的闭合曲线。在环形导线的中心轴线上,磁感线和环形导线的平面垂直。 A C B

磁场公式

计算两圆柱形磁铁间力的公式 F x =πμ04 M 2R 4 1x +1 x+2t +2 x+t (1) 永久磁铁磁场 B r =μ 4πr [3 μ?r r ?μ](2) 磁偶极子磁场强度计算公式 B m ,r = μ04π||r ||3 [3 m ?r r ?m ](3) r 是单位向量:( x ||r || i + y ||r || j + z ||r || k ) r 是从磁铁位置至场位置的位移矢量 m 是磁铁的磁转矩(0.0,m) 由于只需要关心z 方向的磁场强度 所以由(3)式推导如下 B z =μ04π||r ||[3 m ?z ||r ||k z ||r ||k ?m ](注:任何单位向量的平方均为1,不同单位向量相乘为0) 由于单位向量k =z ||r ||(注:单位向量等于对应轴的坐标值除以所求的点到原点的距离) (注:向量点积计算公式 (axi+ayj+azk).(bxi+byj+bzk)=(axbx+ayby+azb)=|a||b|cos(zita) 其中zita 为向量a 与向量b 的夹角) 所以B z = μ04π||r || 3[3 m z r z r ?m ](4) =μ03m 3 z 2?1 3| r |2 r 2 将(4)式写成圆柱坐标系形式(r,z ) B z (m,γ,z)= μ0 4π(z 2+γ2)32 γ22 γ22 ?m (5) = μ0m 4π(z 2+γ2)3 2 ( 3z 2γ+z ?1)(6) (6)式即为一个磁偶极子的磁感应强度公式

将(4)式写成空间中任意点(x 0,y 0,z 0)处的磁偶极子在空间中(x,y,z)点处B z 的平面直角坐标系形式 B z m ,x ,y ,z ,x 0y 0,z 0 = μ0m 4π 3 z?z 0 2?[(x?x 0)2+(y?y 0)2+(z?z 0)2][(x?x 0)2+(y?y 0)2+(z?z 0)2]5 2 (7) 根据(7)式,计算圆柱形磁铁在空间任意点处磁场强度公式 将圆柱形磁铁看成是无数个磁偶极子的集合,其磁化强度为M ,由公式m=MV 得:dm=MdV B z m ,x ,y ,z ,x 0y 0,z 0 =μ0m 3 z ?z 0 2?[ x ?x 0 2+(y ?y 0)2+(z ?z 0)2] [ x ?x 0 2+(y ?y 0 )2+(z ?z 0 )2]5 V 圆柱 = 3 z?z 0 2?[ x?x 0 2+(y?y 0)2+(z?z 0)2][ x?x 0 2+(y?y 0)2+(z?z 0)2]5 2 R 2?y 222dx dy dz R ?R 0?H (8) 3 z ?z 0 2?[ x ?x 0 2+(y ?y 0)2+(z ?z 0)2] [ x ?x 0 2+(y ?y 0)2+(z ?z 0)2] 5 2 R 2?y 2 ? R 2?y 2 dx =

高中物理磁场公式总结

高中物理磁场公式总结 导读:我根据大家的需要整理了一份关于《高中物理磁场公式总结》的内容,具体内容:在高中物理中,磁场是学习的重点和难点。学生需要学会记忆并运用磁场公式。下面我给大家带来高中物理磁场公式,希望对你有帮助。高中物理磁场公式1.磁感应强度是用来表示磁场的强... 在高中物理中,磁场是学习的重点和难点。学生需要学会记忆并运用磁场公式。下面我给大家带来高中物理磁场公式,希望对你有帮助。 高中物理磁场公式 1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A m 2.安培力F=BIL;(注:LB) {B:磁感应强度(T),F:安培力(F),I:电流强度 (A),L:导线长度(m)} 3.洛仑兹力f=qVB(注VB);质谱仪 {f:洛仑兹力(N),q:带电粒子电量 (C),V:带电粒子速度(m/s)} 4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种): (1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0 (2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F 向=f洛=mV2/r=m2r=mr(2/T)2=qVB;r=mV/qB;T=2m/qB;(b)运动周期与圆周运动的半径和线速度无关,

洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。 注: (1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负; (2)磁感线的特点及其常见磁场的磁感线分布要掌握;(3)其它相关内容:地磁场/磁电式电表原理/回旋加速器/磁性材料 高中物理磁场知识点 一、磁场 磁极和磁极之间的相互作用是通过磁场发生的。 电流在周围空间产生磁场,小磁针在该磁场中受到力的作用。磁极和电流之间的相互作用也是通过磁场发生的。 电流和电流之间的相互作用也是通过磁场产生的 磁场是存在于磁体、电流和运动电荷周围空间的一种特殊形态的物质,磁极或电流在自己的周围空间产生磁场,而磁场的基本性质就是对放入其中的磁极或电流有力的作用。 二、磁现象的电本质 1.罗兰实验 正电荷随绝缘橡胶圆盘高速旋转,发现小磁针发生偏转,说明运动的电荷产生了磁场,小磁针受到磁场力的作用而发生偏转。 2.安培分子电流假说 法国学者安培提出,在原子、分子等物质微粒内部,存在一种环形电流

电磁场理论复习提纲

电磁场理论复习提纲 一、矢量分析与场论基础 主要内容与问题: ①矢量及矢量的基本运算; ②场的概念、矢量场和标量场; ③源的概念、场与源的关系; ④标量函数的梯度,梯度的意义; ⑤正交曲线坐标系的变换,拉梅系数; ⑥矢量场的散度,散度的意义与性质; ⑦矢量函数的旋度,旋度的意义与性质 ⑧正交曲线坐标系中散度的计算公式; ⑨矢量场的构成,Helmholtz定理; ⑩正交曲线坐标系中散度的计算公式。 二、宏观电磁场实验定律 主要内容与问题: ①库仑定律,电场的定义,电场的力线; ②静电场的性质(静电场的散度、旋度及电位概念); ③Ampere定律;磁感应强度矢量的定义,磁场的力线; ④恒定电流磁场的性质(磁场的散度、旋度和矢势概念);

⑤Faraday电磁感应定律,电磁感应定律的意义; ⑥电流连续原理(或称为电荷守恒定律) ⑦电磁场与带电粒子的相互作用力,Lorentz力公式。 三、介质的电磁性质 主要内容与问题: ①电磁场与介质的相互作用的物理过程; ②介质极化,磁化、传导的宏观现象及其特点; ③介质的极化现象及其描述方法,电位移矢量; ④介质的磁化现象及其描述方法,磁场矢量; ⑤介质的传导现象及其描述方法,欧姆定律; ⑥介质的基本分类方法及电磁特性参数与物质本构方程; ⑦极化电流、磁化电流与传导电流产生原因及其异同点; ⑧介质的色散及其产生的原因,色散在通信中带来的问题; 四、宏观Maxwell方程组 主要内容与问题: ①静态电磁场与电流连续性原理的矛盾; ②位移电流概念及其意义; ③宏观电磁场运动的Maxwell方程组; ④Maxwell方程组的物理意义; ⑤宏观Maxwell的微分形式、积分形式、边界条件;

电磁场数值计算方法的发展及应用

电磁场数值计算方法地发展及应用 专业:电气工程 姓名:毛煜杰 学号: 一、电磁场数值计算方法产生和发展地必然性 麦克斯韦尔通过对以往科学家们对电磁现象研究地总结,认为原来地研究工作缺乏严格地数学形式,并认为应把电流地规律与电场和磁场地规律统一起来.为此,他引入了位移电流和涡旋场地概念,于年提出了电磁场普遍规律地数学描述—电磁场基本方程组,即麦克斯韦尔方程组.它定量地刻画了电磁场地转化和电磁波地传播规律.麦克斯韦尔地理论奠定了经典地电磁场理论,揭示了电、磁和光地统一性.资料个人收集整理,勿做商业用途 但是,在电磁场计算地方法中,诸如直接求解场地基本方程—拉普拉斯方程和泊松方程地方法、镜象法、复变函数法以及其它种种解析方法,其应用甚为局限,基本上不能用于求解边界情况复杂地、三维空间地实际问题.至于图解法又欠准确.因此,这些电磁场地计算方法在较复杂地电磁系统地设计计算中,实际上长期未能得到有效地采用.于是,人们开始采用磁路地计算方法,在相当长地时期内它可以说是唯一实用地方法.它地依据是磁系统中磁通绝大部分是沿着以铁磁材料为主体地“路径”—磁路“流通”.这种计算方法与电路地解法极其相似,易于掌握和理解,并得以沿用至今.然而,众所周知,对于磁通是无绝缘体可言地,所以磁路实际上是一种分布参数性质地“路”.为了将磁路逼近实际情况,当磁系统结构复杂、铁磁材料饱和时,其计算十分复杂.资料个人收集整理,勿做商业用途 现代工业地飞速发展使得电器产品地结构越来越复杂,特殊使用场合越来趁多.电机和变压器地单机容量越来越大,现代超导电机和磁流体发电机必须用场地观点和方法去解决设计问题.由于现代物理学地发展,许多高精度地电磁铁、波导管和谐振腔应用到有关设备中,它们不仅要赋与带电粒子能量,并且要有特殊地型场去控制带电粒子地轨迹.这些都对电磁系统地设计和制造提出了新地要求,传统地分析计算方法越来越感到不足,这就促使人们发展经典地电磁场理论,促使人们用场地观点、数值计算地方法进行定量研究.资料个人收集整理,勿做商业用途 电子计算机地出现为数值计算方法地迅速发展创造了必不可少地条件.即使采用“路”地方法来计算,由于计算速度地加快和新地算法地应用,不仅使得计算精度得到了很大地提高,而且使得工程设计人员能从繁重地计算工作中解脱出来.从“场”地计算方面来看,由于很多求解偏微分方程地数值方法,诸如有限差分法、有限元法、积分方程法等等地运用,使得大量工程电磁场问题有可能利用数值计算地方法获得符合工程精度要求地解答,它使电磁系纯地设计计算地面貌焕然一新.电磁场地各种数值计算方法正是在计算机地发展、计算数学地前进和工程实际问题不断地提出地情况下取得一系列进展地.资料个人收集整理,勿做商业用途 二、电磁场数值计算方法地发展历史 电磁场数值计算已发展了许多方法,主要可分为积分法(积分方程法、边界积分法和边界元法)、微分法(有限差分法、有限元法和网络图论法等)及微分积分法地混合法.资料个人收集整理,勿做商业用途 年,利用向量位,采用有限差分法离散,求解了二维非线性磁场问题.随后和用该程序设计了同步加速器磁铁,并把它发展成为软件包.此后,采用有限差分法计算线性和非线性二维场地程序如雨后春笋般地在美国和西欧出现.有限差分法不仅能求解均匀线性媒质中地位场,还能解决非线性媒质中地场;它不仅能求解恒定场和似稳场,还能求解时变场.在边值问题地数位方法中,此法是相当简便地.在计算机存储容量许可地情况下,采取较精细地网格,使离散化模型较精确地逼近真实问题,可以获得足够精度地数值解.但是, 当场城几何特

线路参数计算(公式)培训资料

线路参数计算(公式)

参数计算(第一版) 1.线路参数计算内容 1.1已知量: 线路型号(导线材料、截面积mm 2)、长度(km)、排列方式、线间距离(m)、外径(mm)、分裂数、分裂距(m)、电压等级(kV)、基准电压U B (kV, 母线电压作为基准电压)、基准容量S B (100MVA)。 1.2待计算量: 电阻R(Ω/km)、线电抗X(Ω/km)、零序电阻R0(Ω/km)、零序电抗X0(Ω/km)、对地电纳B(S/km)、对地零序电纳B0(S/km)。 1.3计算公式: 1.3.1线路电阻 R=ρ/S (Ω/km) R*=R 2B B U S 式中 ρ——导线材料的电阻率(Ω·mm 2/km); S ——线路导线的额定面积(mm 2)。 1.3.2线路的电抗 X=0.1445lg eq m r D +n 0157.0(Ω/km) X*=X 2B B U S 式中

m D ——几何均距,m D =ac bc ab D D D (mm 或cm,其单位应与eq r 的单位 相同); eq r ——等值半径, eq r =n n m rD 1-(mm,其中r 为导线半径); n ——每个导线的分裂数。 1.3.3零序电阻 R0=R+3R g (Ω/km) R0*=R0 2B B U S 式中 R g ——大地电阻, R g =π2×10-4×f =9.869×10-4×f (Ω/km)。在f =50Hz 时,R g =0.05Ω/km 。 1.3.4零序电抗 X0=0.4335lg s g D D (Ω/km) X0*=X0 2B B U S 式中 g D ——等值深度, g D =γf 660 ,其中γ为土壤的电导率,S/m 。当土壤电 导率不明确时,在一般计算中可取g D =1000m 。 s D ——几何平均半径, s D =32m D r '其中r '为导线的等值半径。若r 为单根导线的实际半径,则对非铁磁材料的圆形实心线,r '=0.779r ;对铜或铝的绞线,r '与绞线股数有关,一般

电磁场与电磁波公式总结

电磁场与电磁波复习 第一部分 知识点归纳 第一章 矢量分析 1、三种常用的坐标系 (1)直角坐标系 微分线元:dz a dy a dx a R d z y x → → → → ++= 面积元:?????===dxdy dS dxdz dS dydz dS z y x ,体积元:dxdydz d =τ (2)柱坐标系 长度元:?????===dz dl rd dl dr dl z r ??,面积元??? ??======rdrdz dl dl dS drdz dl dl dS dz rd dl dl dS z z z r z r ????,体积元:dz rdrd d ?τ= (3)球坐标系 长度元:?????===?θθ?θd r dl rd dl dr dl r sin ,面积元:??? ??======θ ?θ? θθθ??θθ?rdrd dl dl dS drd r dl dl dS d d r dl dl dS r r r sin sin 2,体积元: ?θθτd drd r d sin 2= 2、三种坐标系的坐标变量之间的关系 (1)直角坐标系与柱坐标系的关系 ?? ? ? ? ??==+=?????===z z x y y x r z z r y r x arctan ,sin cos 2 2??? (2)直角坐标系与球坐标系的关系 ? ?? ? ?? ??? =++=++=?????===z y z y x z z y x r r z r y r x arctan arccos ,cos sin sin cos sin 2 22 2 22?θθ?θ?θ (3)柱坐标系与球坐标系的关系 ?? ? ? ???=+=+=?????===??θθ??θ2 2 '2 2''arccos ,cos sin z r z z r r r z r r 3、梯度

(完整版)岩土参数计算

n 1 1i m i n ??==∑ 根据《岩土工程勘察规范》(GB50021-2001),表征岩土工程性质的主要参数的特征值: ⑴ 岩土参数的算术平均值: 根据公式:∑=Φ=Φn i i n m 1 1 (3-1) ⑵ 岩土参数的标准差: 根据公式:???????????? ??--= ∑∑=n i i i f n n 122111φφσ (3-2) ⑶ 岩土参数的变异系数: 根据公式:m f φσδ= (3-3) 上几式中: Φm -算术平均值,σf -标准差,δ-变异系数 Φi ——岩土的物理力学指标数据;n-参加统计的数据个数。 ① 先用公式(3-1)和《物理力学指标统计表》求含水比αw 、液塑比Ir 的平均值a w 、I r ; ② 根据a w ,I r 查《建筑地基基础设计规范》(GB50007-2002)(用线性插值法) 得f 0; ③ 根据公式(3-2)和(3-3)分别求w a , Ir 的标准差f σ和变异系数δ; ④ 求综合变异系数δ和回归修正系数f ψ,查表得第二指标的折算系数ξ,根据公式:21ξδδδ+=得δ,根据公式:δψ???? ??+-=2918.7884.21n n f 得f ψ。 ④ 根据公式: f ak f f ψ?=0求承载力ak f 。

预估单桩竖向承载力如下: ⑴ 静压预制桩:据勘察成果,按预制桩规格为450mm ×450mm 的方桩,桩端进入圆砾⑥层2m 。取ZK10号钻孔估算静压预制桩单桩竖向极限承载力Q u =4651.3kN (《高层建筑岩土工程勘察规程》(JGJ72—2004)中式 D.0.1 p ps i sis u A q l q u Q ?+?=∑s β) 。 单桩竖向承载力特征值R a = Q u /K=2326kN (K=2) 最终单桩竖向承载力应通过现场静载荷试验确定。 ⑵ 钻(冲)孔灌注桩:据勘察成果,桩径按2000mm ,桩端进入泥岩⑦层1.5m 。取ZK10号钻孔估算单桩竖向极限承载力Q u =195722kN (《高层建筑岩土工程勘察 规程》(JGJ72—2004)中8.3.12条∑∑==++=n i n i p pr ri sir r i sis s A q h q u l q u Q 11u )。 单桩竖向承载力特征值R a = Q u /K=9786kN (K=2) 根据压缩试验结果,计算各级压力下的ei ,计算压缩系数和压缩模量。 根据剪切试验结果,绘制τ-σ曲线,直接求得内摩擦角φ、粘聚力C 直剪试验:用直接剪切仪来测定土的抗剪强度的试验,直剪仪一般分为:应力式和应变式,一般我们国家应用较多的都是应变式的。根据加荷的速率的快慢将直剪试验划分为:1、快剪,本方法适用于渗透系数小于10的-6次方的细粒土,试验时在施加垂直力以后,拔去固定销钉,立即以0.8mm/min 的剪切速度进行剪切,使试样3~5分钟剪破,试样每产生0.2~0.4mm 剪切位移时,记录测力计和位移读数,直到出现峰值或者剪切位移达到4mm 记录破坏值,试样得的抗剪强度为快剪强度。2、固结快剪,本方法适用于渗透系数小于10的-6次方的细粒土,试验时在施加垂直力后,每小时读一次变形,直至固结稳定,然后拔去销钉,进行与快剪同样的剪切过程,所得抗剪强度为固结快剪强度。慢剪:试验时加垂直力后,待固结稳定后,再拔去销钉,以小于0.2mm/min 的速度使试样充分在排水条件下剪切,得到的是慢剪强度。对于三种试验所得结果:粘聚力快剪>固快>慢剪,内摩擦角快剪<固快<慢剪 三轴试验:直接量测的是试样在不同恒定围压下的抗压强度,然后根据摩尔库伦原理推求土的抗剪强度。三轴根据固结和排水条件分为:不固结不排水(uu )固结不排水(Cu )固结排水(CD ),在进行三种不同方法试验时,都要先使试样在一定的围压下固结稳定,若是UU 就是在不排水条件下围压增加一个增量,然后在不允许水进出的条件下逐渐施加轴向力q 直至试样破坏;若是CU 在允许排水条件下围压增加一个增量固结稳定,然后再不允许水进出的条件下逐渐施加轴向力直至试样破坏;若是CD 在允许排水条件下围压增加一个增量固结稳定,然后在排水条件下逐渐施加轴向力直至试样破坏。所以固结不固结是相对于围压增量来说的,排水不排水是相对于轴向力来说的。 根据压缩试验结果,计算各级压力下的ei ,计算压缩系数和压缩模量 压缩系数:a= (e1-e2)/(p2-p1) 压缩模量:ES1-2=(1+e1/a

高中物理磁场万能公式

高中物理磁场万能公式 高中物理磁场公式 1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T,1T=1N/Am2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}3.洛仑兹力f=qVB(注V⊥B);质谱仪{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下(a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。 强调:(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;(2)磁感线的特点及其常见磁场的磁感线分布要掌握;(3)其它相关内容:地磁场/磁电式电表原理、回旋加速器、磁性材料高中物理磁场知识点一、磁场磁极和磁极之间的相互作用是通过磁场发生的。 电流在周围空间产生磁场,小磁针在该磁场中受到力的作用。 磁极和电流之间的相互作用也是通过磁场发生的。 电流和电流之间的相互作用也是通过磁场产生的磁场是存在于磁体、电流和运动电荷周围空间的一种特殊形态的物质,磁极或电流在

自己的周围空间产生磁场,而磁场的基本性质就是对放入其中的磁极或电流有力的作用。 二、磁现象的电本质1.罗兰实验正电荷随绝缘橡胶圆盘高速旋转,发现小磁针发生偏转,说明运动的电荷产生了磁场,小磁针受到磁场力的作用而发生偏转。 2.安培分子电流假说法国学者安培提出,在原子、分子等物质微粒内部,存在一种环形电流-分子电流,分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极。 安培是最早揭示磁现象的电本质的。 一根未被磁化的铁棒,各分子电流的取向是杂乱无章的,它们的磁场互相抵消,对外不显磁性;当铁棒被磁化后各分子电流的取向大致相同,两端对外显示较强的磁性,形成磁极;注意,当磁体受到高温或猛烈敲击会失去磁性。 3.磁现象的电本质运动的电荷(电流)产生磁场,磁场对运动电荷(电流)有磁场力的作用,所有的磁现象都可以归结为运动电荷(电流)通过磁场而发生相互作用。 三、磁场的方向规定:在磁场中任意一点小磁针北极受力的方向亦即小磁针静止时北极所指的方向就是那一点的磁场方向。 四、磁感线1.磁感线的概念:在磁场中画出一系列有方向的曲线,在这些曲线上,每一点切线方向都跟该点磁场方向一致。 2.磁感线的特点(1)在磁体外部磁感线由N极到S极,在磁体内部

齿轮地基本全参数和计算公式

87一基本参数 表示;齿顶圆:轮齿齿顶所对应的圆称为齿顶圆,其直径用d 齿根圆:齿轮的齿槽底部所对应的圆称为齿根圆,直径用df表示。 齿厚:任意直径dk的圆周上,轮齿两侧齿廓间的弧长称为该圆上的齿厚,用sk表示;齿槽宽:任意直径dk的圆周上,齿槽两侧齿廓间的弧长称为该圆上的齿槽宽,用ek表示;齿距:相邻两齿同侧齿廓间的弧长称为该圆上的齿距,用表示。设z为齿数,则根据齿距定义可,故。 齿轮不同直径的圆周上,比值不同,而且其中还包含无理数;p k也是不等的。又由渐开线特性可知,在不同直径的圆周上,齿廓各点的压力角 分度圆:为了便于设计、制造及互换,我们把齿轮某一圆周上的比值规定为标准值(整数或较完整的有理数),并使该圆上的压力角也为标准值,这个圆称为分度圆,其直径以d 表示。 表示,我国国家标准规定的标准压力角为20°压力角:分度圆上的压力角简称为压力角,以 模数:分度圆上的齿距p对p的比值称为模数,用m表示,单位为mm,即。模数是齿轮的主要参数之一,齿轮的主要几何尺寸都与模数成正比,m越大,则p越大,轮齿就越大,轮齿的抗弯能力就越强,所以模数m又是轮齿抗弯能力的标志。 顶隙:顶隙c=c*m是指一对齿轮啮合时,一个齿轮的齿顶圆到另一个齿轮的齿根圆的径向距离。顶隙有利于润滑油的流动。 表示;齿顶高:轮齿上介于齿顶圆和分度之间的部分称为齿顶,其径向高度称为齿顶高,用h 齿根高:轮齿上介于齿根圆和分度之间的部分称为齿根,其径向高度称为齿根高,用hf 表示 标准齿轮: 标准齿轮:分度圆上齿厚与齿槽宽相等,且齿顶高和齿根高为标准值的齿轮为标准齿轮。因此,对于标准齿轮有

模数和齿数是齿轮最主要的参数。 在齿数不变的情况下,模数越大则轮齿越大,抗折断的能力越强,当然齿轮轮坯也越大,空间尺寸越大; 模数不变的情况下,齿数越大则渐开线越平缓,齿顶圆齿厚、齿根圆齿厚相应地越厚; 齿轮计算公式 节圆柱上的螺旋角:L d /tan 00?=πβ 基圆柱上的螺旋角:n g αββcos sin sin 0?= 齿厚中心车角:Z θ/ 90?= 销子直径:m 728.1dp ?= 中心距离增加系数:)1cos /(cos )2/)((y b 021-?+=ααZ Z

磁场公式大全

十四、磁 场 1、磁场 (1)磁场的来源 ①磁体的周围存在磁场 ②电流的周围存在磁场:丹麦物理学家奥斯特首先发现电流周围也存 在着磁场。 把一条导线平行地放在小磁针的上方,给导线中通入电流。当导线中 通入电流,导线下方的小磁针发生转动。 (2)磁体与电流间的相互作用通过磁场来完成 (3)磁场 ①磁场:磁体和电流周围,运动电荷周围存在的一种特殊物质,叫磁场。 ②磁场的基本性质:对处于其中的磁极或电流有力的作用。 一、知识网络 二、画龙点睛 概念

③磁场的物质性:虽然磁场看不见摸不着,对于我们初学者感到很抽象,其实磁场和电场一样是客观存在的,是物质存在的一种特殊形式。 2、磁场的方向 磁感线 (1)磁场的方向:物理学规定,在磁场中的任一点,小磁针北极受力的方向,亦即小磁针静止时北极所指的方向,就是该点的磁场方向。 (2)磁感线: ①磁感线所谓磁感线,是在磁场中画出的一些有方向的曲线,在这些曲线上,每一点的切线方向都在该点的磁场方向上。 ②磁感线的可以用实验来模拟 (3)几种典型磁体周围的磁感线分布 ①条形磁铁磁场的磁感线 ②条形磁铁磁场的磁感线 ③直线电流磁场的磁感线 直线电流磁场的磁感线是一些以导线上各点为圆心的同心圆,这些同心圆都在跟导线垂直的平面上。 直线电流的方向和磁感线方向之间的关系可用安培定则(也叫右手螺旋定则)来判定:用右手握住导线,让伸直的大拇指所指的方向跟电流的方向一致,弯曲的四指所指的方向就是磁感线的环绕方向。 ④环形电流磁场的磁感线 环形电流磁场的磁感线是一些围绕环形导线的闭合曲线。在环形导线的中心轴线上,磁感线和环形导线的平面垂直。

相关主题