搜档网
当前位置:搜档网 › 简单说一下舰载机着舰的过程

简单说一下舰载机着舰的过程

简单说一下舰载机着舰的过程
简单说一下舰载机着舰的过程

简单说一下舰载机着舰的过程

为了保证舰载机能够正确的返航和着舰,一般航母都配备有战术空中导航系统、空中交通管制系统和着舰引导系统多个系统,对舰载机进行引导,在现代航母上,这些系统已经能够通过数据总线有机相接,形成综合导航和引导系统,同时还可以与航母编队指挥与战术数据处理系统进行联接,实现资源的共享和作战、归航等作业的更好的协调,一航而言,航母的战术空中导航系统在300公里左右为归航的舰载机提供指挥引导,到了距离母舰100公里处,由空管雷达接手,对返航的飞机进行编组,确定着舰的顺序,然后舰载机进入等待着舰阶段,舰载机按进场队形逆航母前进方向平行于航母的右舷飞行,然后转弯飞跃舰艏,转入顺风段,一直到距离航母大约30公里,在这个阶段由航母上的战术空中导航系统进行引导,到达距离母舰大约10公里处,由舰上的自动着舰系统开始引导,一直到距离母舰大约3公里处,进入舰上光学助降系统工作区域,然后据此着舰,由此可见舰载机着舰短短数分钟内,涉及到众多的系统、人员,要想相关系统和人员能够快速、熟练的工作,需要频繁的训练和演练。

舰载机着舰基本方式是目视方式,主要用于晴朗气象、能见度好的情况下,飞行员进入等待区后,由航母飞行指挥控制室引导,进入等待航线,这个航线是一个直径为5海里的逆时针圆形航线,不同的飞机等待高度不同,最低的等待高度大约在600米左右,舰载机每次经过航母上空的时候,与着舰指挥官进行联系,以便获得着舰许可,考虑到有些飞机执行任务回来后有可能燃料不足,所以在高空还安排了加油机给燃料不足的飞机进行空中加油,在接收到着舰的命令以后,舰载机在距离母舰10公里左右的地方脱离等待航线,高度下降到300米左右,航母后方5公里处进入着舰航线,然后根据着舰飞机的多少,以水平转弯曲或者盘旋动作进入下滑航线,进入下滑航母前,舰载机需要关闭武器系统,确认飞机的重量符合航母着舰的标准,然后打开减速板、放下拦阻钩及起落架等,表示要着舰,飞机在航母左侧一海里外,再次转弯,到达着舰中心延长线的后方,进入光学助降系统的工作范围,然后开始下滑降落。如果气象不佳,如云层高度较低,那么飞机在进入航母战术空中导航系统的作用范围后,由后者进行引导至距离航母大约15公里处,如果能够目视发现航母,则转入目视着舰方式,如果气侯条件恶化,则进入全自动着舰系统引导模式。在这个模式下,可以允许舰载机的方位与母舰有大约30度的偏离,等待航线飞行大约需要6分钟,其中两个180度转弯需要1分钟,两边飞行各需要2分钟,当飞机被航母精密跟踪转达截获以后,即

可转入全自动引导着舰模式。

自动着舰系统有多种工作模式,可以供飞行员或者着舰指挥官进行选择或者切换,其中模式1是全自动着舰模式,它是利用数据链联接航空母舰和舰载机,由后者根据前者传递来的信息进行自动着舰,需要指出的是航母自动着舰的控制信息不是由航母上的作战中心发出的,而是由航母空中交通控制中心负责,目前美国航母空中交通控制中心凭借数据链可以同时控制2架飞机在相隔30秒钟内相继在航母上着舰,需要指出的是美国航空自动着舰系统采用的数据链并不是现在美国海军和空军大量装备的LINK-16,而是上一代LINK-4A型数据链,并且在工作中中使用LINK-4A的单向通信模式,实际上美国研制数据链的最初目的就是为自动着舰配套,随着LINK-16数据链的完善和发展,预计2015年以后,LINK-4才会完全被LINK-16所替代。模块2与模式1基本上相同,只是在距离母舰1公里左右之后,舰载机开始接受光学助降系统的引导,模式3属于所谓的半自动着舰方式,在这种方式下,自动着舰系统与舰载机的自动着舰系统并不交联,而是通过仪表或者显示器向飞行进行显示相关数据,由飞行员根据这些信息操纵飞机下滑着舰,最后一种是人工方式,由着舰指挥官观察雷达显示屏,对舰载机位置进行确定,然后获得舰载机的方位和高低角误差,然后用语音告诉飞行员进行修正,直到转动光学助降系统的工作范围,进入新世纪美国海军对于自动着

舰系统进行进一步的发展和改进,包括引入高精度信标和GPS导系统,两者结合可以将舰载机的着舰定位精度进一步增加以2米左右,这样就大大提高了舰载机着舰的精确程度和安全性能,同时舰载机引入推力矢量技术,可以在近距离完成高准确度的机动飞行,以便更好、更安全的着舰。此外还研制了舰载机微波降落系统,它是采用微波扫描技术,为舰载机进入航空母舰的自动着舰系统和光学助降系统的工作区提供进场信号,同时也可为作为自动降落时的机上独立监控设备。它由航母两个发射机和舰载机接收系统组成,发射机发射相关的方位和高低信号,飞机接收后,在平视显示器上进行显示,以便引导飞机准确进入。

世界各国航母舰载机指挥手语图解

世界各国航母舰载机指挥手语图解 由于飞机起降时声音巨大,所有的口令都是通过手势来表达。在一个起落架次中,记者就看到了30多种手势。有关人士对各种手势的含义作了详细的解答。双臂上举,食指上指,做圆周运动。“这是命令偏流板升起。” 一条手臂从头顶垂直方向扫向水平方向,再回到头顶。“这是着舰区甲板引导员给出的甲板畅通手势。” 图为中国航母起飞助理的起飞手势,中国海军飞行助理的规范手势显然模仿了美军。 起飞助理对着飞行员向上伸出拇指。“这是示意飞行员检查完毕,一切正常。” 飞行助理下蹲屈身,右手臂迅速上扬,“这是示意放下止动轮挡和偏流板,飞机起飞。因其姿势酷似举枪射击,因此飞行助理又被戏称为‘射手’。” “飞行员头靠座椅后枕,抬起右手行礼,这是向起飞助理示意可以起飞。” 战斗机在航母上起飞,离不开航母特装人员的紧密配合。仅完成起飞动作,就需要65个流程,任何一个流程都容不得差错。在着舰起飞过程中,飞行员无法感知外界因素。“因此,

我们的手势要求及时、准确、规范。”有关人士称,“为了达到这个要求,大家都刻苦练习,经常累得手都抬不起来。” 图为俄罗斯海军舰载机起飞时,起飞助理的手势,请注意他只是站起身做了一个简单的手势。 图为美军舰载战斗机起飞,当飞行员敬礼表示准备妥当,弹射指挥官面向前面,再转身对着飞机,蹲下,手向前指,他的手按在甲版上的同时,发射员按下发射按钮,弹射器压力快速加大,扣在前起落架后面的扣子松开,飞机在剎那间向前冲。 舰载机准备着舰前,身着七种颜色服装的舰面人员排着紧密的两行队形,从飞行甲板一端走向另外一端反复检查甲板,如同七色彩虹在甲板上延伸。 在舰面上,各战位的人员都身着五颜六色的服装,这与传统军舰上统一颜色的着装要求产生了极大的差别。“你看,这些官兵头盔、马甲、长袖套衫的不同颜色以及他们背后不同的图案和符号,表明了他们的战位和职责,外行看起来,仿佛在甲板上看到了七彩的‘彩虹’,因此我们也称之为‘甲板彩虹服’。”李晓勇详细介绍了每一种颜色的含义,“紫色代表燃油

舰载机着舰训练

舰载机有固定翼飞机和旋翼飞机,这里要谈到的舰载机着舰是指固定翼飞机。大家知道,舰载飞机的起降主要以航空母舰为基地,那么它就需要适应航母这个海上“移动的陆地”。在此,拟通过对舰载飞机着舰过程与陆基飞机着陆过程的分析比较,一窥舰载机着舰的突出特点,以及整个着舰过程对各种主要相关结构、装置、设施的特殊要求。 “移动的陆地” 说到舰载机,我们不妨先简单谈淡航空母舰。航空母舰出勤时,是一个海上六自由度运动的平台,它不仅在海平面上作平面运动,而且在海浪的作用下还会产生纵向和横向的摇动以及升沉运动。航母上的大气紊流情况也比较复杂,除了陆地机场通常存在的大气紊流以外,由于航母庞大的舰体以及自身的运动还会在舰首产生上洗气流,并在舰尾处形成较强的公鸡尾状的尾流。另外还需要特别指出的是,航母虽然庞大,但是可供舰载机起飞、着舰的跑道长度是很有限的。目前世界上大型的航母甲板总长度也不过300多米,而能够提供舰载机起飞、着舰使用的只有其中的100米左右。如美国的“尼米兹”级航母首舰“尼米兹” 号航母,该舰长332.1米,宽40.8米;飞行甲板长338,8米,宽76.8米。 图集详情:舰载机着舰航母相当于每小时300公里坠毁在航母甲板上,每一次降落和起飞都是一次生命的挑战,都是对舰载战斗机飞行员从身体极限、飞行技术、意志品质、到心理素质的极端考验。航空母舰 (以下简称“航母”) 是一种巨大而复杂的海上作战平台, 是海上移动的机场。飞机着舰与着陆的物理环境有很大差别, 主要表现在甲板尺寸受限, 航母处于运动状态, 存在甲板风和舰尾气流以及驾驶员的视景受限。正是这些差别, 使得飞机着舰难度更大, 不安全因素更多, 撞机、撞舰、坠海事故时有发生。因此, 着舰安全一直是世界各国航母发展和使用中的重大课题。(来源:环球网) 危险性和复杂性 飞机的起飞着陆通常是事故多发状况,而舰载机的着舰比陆基飞机着陆还具危险性和复杂性。首先,舰载机着舰进场速度小,受舰上扰流因素影响相对较大,客观上使得舰载机轨迹稳定性变差。然而舰载机着舰条件要求反而相对苛刻(如前所述:着舰可用甲板长度有限,作为着舰平台的航母自身是六自由度运动体,以及出舰海上作战的技战术要求等),恰恰又要求飞机进舰下滑时的轨迹稳定性比陆基飞机还要高,这个矛盾对舰载机初期的发展形成了较大的制约。60年代以前,舰载机着舰的事故率是很高的,以后随着着舰下滑引导技术及其它辅助着舰技术的发展,事故率才有所下降,但相比陆基飞机着陆事故率仍然较高。舰载机在下滑着舰时,对垂直平面内下滑航迹控制要求很高,而气流、海面状况等一些客观不确定

舰载机着舰导航与定位技术

舰载机着舰导航与定位技术 郝帅,程咏梅,马旭,王小旭 (西北工业大学自动化学院,陕西西安710072) 摘要:首先介绍了舰载机的重要性及舰载机安全着舰的困难性、复杂性,并详细论述了早期舰载机所使用的着舰技术,其中包括人工着舰引导和光学助降技术。然后对舰载机安全着舰的关键技术——舰载机导航和定位技术进行了分析,其中主要包括舰载机捷联惯导传递对准、组合导航,以及舰载机相对航母雷达的跟踪定位、视觉辅助定位等技术,并总结了目前国内外对舰载机导航和定位技术的研究成果及动态。最后,指出了舰载机着舰导航与定位技术未来的研究方向。 关键词:舰载机;着舰技术;导航与定位;视觉导航;组合导航 中途分类号:U666.1 文献标识码:A Carrier-based Aircraft Landing Navigation and Positioning Technology HAO Shuai,CHENG Yong-mei,MA Xu,W ANG Xiao-xu (College of Automation, Northwestern Polytechnical University, 710072, Xi’an, China) ABSTRACT:First, the importance of carrier-based aircraft and difficulty, complexity of safe landing technology are introduced and the early landing technique is introduced in detail, including artificial landing guidance and optical auxiliary landing technology. Then carrier-based aircraft safe landing key technology is analyzed which includes carrier-based aircraft landing navigation and positioning technology. The research content mainly includes the strapdown inertial navigation transfer alignment technology of carrier-based aircraft, integrated navigation, tracking and location of carrier-based aircraft relative to aircraft carrier radar and visual auxiliary positioning. And research result and status of carrier-based aircraft navigation and positioning are concluded. Finally, carrier-based aircraft landing navigation and positioning technology in the future is pointed out. KEYWORDS:carrier-based aircraft; landing technology; navigation and positioning; vision-based navigation; integrated navigation 1 引言 航空母舰是当今世界上拥有最强大综合战斗力的海上“钢铁堡垒”,拥有全面的作战打击能力,凭借舰载机的强大作战能力可以使舰队的作战半径扩大到数百公里,对压制敌方空中和海上力量有着重要意义。舰载机飞行员被认为是从事世界上最危险的职业,当舰载机执行完作战、训练、侦查等任务后,安全顺利着舰是件惊心动魄的工作,在广袤无垠的大海上航空母舰犹如一片树叶,所以想在有限的空间内安全着舰对飞行员个人技术及生命都是巨大的挑战。与陆基飞机着陆相比,舰载飞机在甲板上着舰更为困难,这是因为航空母舰是一个长度有限的海上浮动平台,当舰载机下滑着舰时,对垂直平面内下滑航迹控制要求很高,而气流、海面状况等一些客观不确定因素,以及航母着舰引导、飞行员驾驶等也存在主观不确定因素,这些都可能导致航迹控制不当而未能在预定着舰点着舰,最终导致着舰失败,甚至引发严重事故。 舰载机着舰过程如图1所示。图中的着舰方式为目视着舰,能见度超过5千米以上。当舰载机进行着舰时,在航母上空按长方形航线进行左回旋飞行,此时的航母位于长方形的右边线的中心,记为PL1;第二、三、四个边线中心分别记为PL2、PL3和PL4。 图1 舰载机着舰示意图 基金项目:研究得到航空科学基金资助(项目编号:20100853010)。

一着惊海天——目击我国航母舰载战斗机首架次成功着舰 优秀教案

一着惊海天——目击我国航母舰载战斗机首架次成功着舰 【学情分析】 八年级的学生是第一次学习通讯,在教学中老师除了帮助学生了解新闻“六要素”以外,还需要求学生了解消息和通讯的区别,感受通讯独特的写作特点。同时八年级的学生已具备一定的阅读能力,所以要更进一步培养学生的阅读能力。 【教学目标】 ①能根据新闻的结构理清内容、层次,初步感知通讯语言的准确、简洁。 ②学习文章的写作方法,赏析文章的精彩语段。 ③培养学生的爱国热情和民族自豪感。 【教学重难点】 ①学习文章写作方法,赏析文章的精彩语段。 ②培养学生的爱国热情和民族自豪感。 【教学方法】 ①圈点勾划法:预习生字词,在文中圈点勾划重点词句。 ②查阅资料法:查阅有关辽宁舰的资料以及“航母战斗机英雄试飞员”戴明盟的资料。 ③讨论探究法:品味文章的语言特色时,运用自主、合作、探究的学习方式,来解决课堂教学中出现的教学重难点。 【教学过程】 (一)导入新课 1.老师展示辽宁舰舰载机起降视频和辽宁舰的相关图片资料。 2.同学们!在观看完我国“辽宁”舰航母舰载机首架次着舰成功的视频后,你们有什么感想呢?(学生讨论并发言) 分享完大家的感想后,老师想说我国“辽宁”舰航母舰载机首架次着舰成功的现场,记者亲身感受并记录了这一精彩感动的瞬间,让我们走进今天的课文《一着惊海天》,一起去感受我们祖国伟大的军事力量。 (二)整体感知 1.教师检查预习情况

(1)学生对重点字词的落实情况。 (2)学生对课文的预习效果以及相关资料的查阅情况。 2.学生快速浏览课文,用简明的语言概括本文的主要内容。 讨论并归纳:本文记叙了我国“辽宁”舰航母舰载战斗机首架次着舰试验并取得重大成功的过程。 3.能根据新闻的结构理清内容、层次,初步感知通讯语言的准确、简洁。 (1)(1—4):介绍了时间、地点及事件的重要意义和风险。 (1—2):检查甲板,做好着舰前最后一次准备。 (3—4):交代这次舰机着舰的重要意义和风险。 (2)(5—19):详细报道了舰载机成功着舰的过程。 (5—16):记叙了舰、机默契配合。 (17—19):展现了舰载机成功着舰。 (3)(20—27):描写了舰载机着舰成功的重大意义以及人们的激动喜悦心情。 (三)问题探究: 1.声如千骑疾,气卷万山来。惊心动魄的一幕出现了:9时08分,伴随震耳欲聋的喷气式发动机的轰鸣声,眨眼之间,舰载机的两个主轮触到航母甲板上,机腹后方的尾钩牢牢地挂住了第二道阻拦索。刹那间,疾如闪电的舰载机在阻拦索系统的作用下,滑行数十米后,稳稳地停了下来。(试从表达技巧和表达效果的角度来进行赏析) 答案示例: (1)运用细节描写,生动形象地描写舰载战斗机着舰时的情景。 (2)运用对偶和比喻的修辞手法,“声如千骑疾,气卷万山来”生动形象地表现了战斗机着舰时的浩大声势,同时增强文章气势,具有感染力。 思路解析:此句的解析可以从两个方面来进行分析:一是表达技巧,抓住本句的一些关键词进行赏析:从“震耳欲聋”、“轰鸣”、“眨眼之间”、“刹那间”、“疾如闪电”等可以看出作者主要运用了细节描写,从“声如千骑疾,气卷万山来”可以看出作者运用了对偶、比喻的修辞手法。二是分析其表达效果。细节描写的作用在于生动地展示,增强语言的感染力。对偶和比喻的运用在于增强文章气势和使描写生动形象。 2.某大国一名上将曾说:“我们可以把航空母舰送给你们,但是,十年之内,你们不可能让舰载机上舰!”(试从表达效果的角度分析此句在全文中的作用) 答案示例:运用引用的修辞,表现出某国上将对我国海军建设的歧视,暗示当时我国航母舰载机着舰面对的困难之大,同时这也更加激发了我国科研人员自主创新、为国争光的斗志,

研究报告飞机操纵起飞降落注意事项

研究报告飞机操纵起飞降落注意事项飞机的起飞 平飞、爬升和下降影响升降的是飞机的发动机推力,而不是推杆或拉杆。要使飞机由平飞状态转为稳定的爬升状态,必须增加发动机的推力(或拉力),而不仅仅是拉杆增大机翼迎角(AOA,angle of attack)。 如果发动机推力不变,拉杆只能上升一小段高度,实际上是将速度转化为高度(跃升),速度会不断减小,最终到达失速状态。 要匀速上升,首先增加发动机推力;要匀速下降,首先减少发动机推力。 但推力变化后,推力对重心作用的力矩也会变化,不得不对杆力稍作调整(幅度很少甚至为零)以维持原来的飞机姿态角,从而保持原飞行速度。 速度控制影响速度的是飞机的姿态角(Pitch),而不是发动机推力。 要增速,飞机必须推杆“低头”,要减速,飞机必须拉杆“抬头”。 当然,速度的增加会导致空气阻力的增大,若要大幅度增速,发动机推力还是需要增大一点的以平衡相应增加的阻力的。但在低速状态下由于空阻较少,仅需稍增油门,通常不增油门; 但在高速状态下,例如民航机的高亚音速飞行中,由于速度高,空气阻力极大,主要矛盾已经产生变化,上述理论虽仍然正确,但增速不仅首先要姿态角变化,还必须大大的加大推力以平衡因增速带来的阻力增加。 姿态角与迎角姿态角( pitch )是飞机或机翼与水平面的夹角,迎角(AOA,angle of attack,又称攻角)是机翼与空气来流的夹角。 一般情况下两者是相近的。但飞机上升或下降时,空气相对机翼不仅作水平运动,还作垂直方向上的运动时,姿态角就不等于迎角。

失速当机翼迎角(AOA)增大到所谓“临界点”时,机翼上翼面的气流分离,升力突然大减,阻力突然大增。这就是失速。注意,失的是升力。减速是因为阻力的增加。飞机速度越低,姿态角及迎角就自然越大,离“临界点”就越近,越容易失速。但事实上,飞机在任何情况下都可能失速,例如对正在高速飞行的特技飞机用机,突然猛拉操纵杆就很容易失速。或进入风切变区的飞机,由于气流作垂直运动,也可能导致迎角突然增大至超过“临界点”而失速(但这是姿态角是还没有来得及变化,仍然很小的)。 转弯要使飞机转弯,靠的是压坡度(bank)。向左(或右)压杆,使机翼向左(或右)倾斜,从而令机翼向上的升力产生一个向左(或右)的分力,这个分力就是使飞机作圆周运动转弯的向心力(中学物理课的知识用上了)。可见,转弯实质上是整架飞机作圆周运动,而不是靠蹬方向舵改变机头的偏转角度的。 由于升力向旁边“分了一个”,为使飞机作水平转弯而不掉高度,就必须稍拉杆使机翼迎角增大一点,增加升力以平衡重力。但拉杆会导致减速(一般减得很少),不想减速就要增加发动机推力了(一般不必)。 所压的坡度越大,需要增加的迎角就大,离失速就越近,所以在低空作大坡度转弯是危险的。 由于机翼倾斜了,左右翼的阻力是不同的,必须蹬方向舵来平衡这个力,以维持稳定的转弯率,并避免飞机出现侧滑。方向舵在转弯中的作用是“协调作用”,并不是转弯的原动力。 纵向平衡发动机推力的突然大幅度变化(如空中停车或开车,猛推拉油门杆) 会机头突然抬高或下沉,同样应有心理准备。 另外,收放襟翼、起落架、空气减速板(扰流器)也一样。应及时作杆力调整以维持飞机纵向平衡。

学习笔记——舰载机进舰着舰过程仿真建模_王延刚

舰载机进舰着舰过程仿真建模_王延刚 收稿日期:2007-07-17 修回日期:2008-11-24 第20 卷第24 期系统仿真学报 摘要:航母—舰载机—起落架,多体动力学系统,进舰着舰系统仿真模型,驾驶员和LSO 的行为特征,考虑风场扰动,海浪等因素。该模型不仅适于航母-舰载机适配性问题,还可研究进舰着舰任务中LSO 对驾驶员行为的影响。通过仿真示例验证该模型的合理性和可行性。引言:首先介绍舰载机进舰着舰的基本过程,并从飞行动力学的角度出发,阐述涉及的相关问题,然后对仿真系统各模块进行分析,并提出相应建模方法,最后给出数字仿真结果,以验证其合理性。 1、舰载机进舰着舰过程描述 ?菲涅尔透镜光学助降系统(Fresnel Lens Optical Landing System, FLOLS); ?舰载机沿下滑道保持大约-3.5°的航迹角下滑; ?平行于下滑道的5层光束,最中间为橙色,为理想航迹; ?LSO综合甲板运动、飞机特性、驾驶员技术要求调整飞行状态或者复飞。 ?常规飞机着陆:拉平;舰载机:助降系统引导,撞击式着舰,通过拦阻系统强制飞机在50——70m内减速止动,有时LSO警告驾驶员做逃逸机动。 2、建模方法 2.1航母运动建模 ?海上运动包括前向行驶运动和海浪造成的扰动运动,工程实践中,前者按定常直线运动处理,而后者采用平稳随机过程理论描述。 ?文献[10]提供一种拟合窄带平稳随机过程频谱的实用有效的工程方法——成形滤波器法,以白噪声输入一个拟合的航母运动近似传递函数,得到航母扰动运动,再叠加航母行驶运动最终得到用于仿真的舰船运动。 图1舰载机着舰示意图 2.2航母扰流建模 ?航空母舰扰流的模拟方式有频域法、数据库法和工程化方法三种,仿真模拟较为普遍采用的是第三种方法。 ?该方法主要是根据航母扰流的物理特性和成因建立模型,以美军标1797A推荐的模型较为完善,给出的航母舰尾流(包括稳态分量、自由紊流分量、周期性分量以及随机分量)扰动速度的空间分布,能满足工程需要。 ?航母舰尾流(包括稳态分量、自由紊流分量、周期性分量以及随机分量),同舰尾流对舰载机着舰轨迹和动态响应的影响研究_胡国才中舰尾流模型一致。

飞机起飞和降落时英语广播内容

飞机起飞和降落时广播(中英文对照) (1)飞行过程欢迎词 (2)欢迎词 (3)女士们,先生们: (4)欢迎你乘坐中国XX航空公司航班XX_____前往_____(中途降落_____)。_____至____的飞行距离是_______,预计空中飞行时间是________小时_______分。飞行高度______米,飞行速度平均每小时_______公里。Welcome Good morning (afternon, evening), Ladies and Gentlemen: Welcome aboard XX Airlines flight XX______to______(via______) The distance between______and_______is______kilometers. Our flight will take ________ hours and_______minutes. We will be flying at an altitude of________meters and the average speed is_______ kilometers per hour. 为了保障飞机导航通讯系统的正常工作,在飞机起飞和下降过程中请不要使用手提式电脑,在整个航程中请不要使用手提电话,遥控玩具,电子游戏机,激光唱机和电音频接收机等电子设备。 In order to ensure the normal operation of aircraft navigation and communication systems, passengers are toys, and other electronic devices throughout the flight and the laptop computers are not allowed to use during take-off and landing. 飞机很快就要起飞了,现在有客舱乘务员进行安全检查。请您坐好,系好安全带,收起座椅靠背和小桌板。请您确认您的手提物品是否妥善安放在头顶上方的行李架内或座椅下方。(本次航班全程禁烟,在飞行途中请不要吸烟。) We will take off immediately, Please be seated, fasten your seat belt, and make sure your seat back is straight up, your tray table is closed and your carry-on items are securely stowed in the overhead bin or under the seat in front of you. This is a non-smoking flight, please do not smoke on board. 本次航班的乘务长将协同机上_______名乘务员竭诚为为您提供及时周到的服务。 谢谢!

简单说一下舰载机着舰的过程

简单说一下舰载机着舰的过程 为了保证舰载机能够正确的返航和着舰,一般航母都配备有战术空中导航系统、空中交通管制系统和着舰引导系统多个系统,对舰载机进行引导,在现代航母上,这些系统已经能够通过数据总线有机相接,形成综合导航和引导系统,同时还可以与航母编队指挥与战术数据处理系统进行联接,实现资源的共享和作战、归航等作业的更好的协调,一航而言,航母的战术空中导航系统在300公里左右为归航的舰载机提供指挥引导,到了距离母舰100公里处,由空管雷达接手,对返航的飞机进行编组,确定着舰的顺序,然后舰载机进入等待着舰阶段,舰载机按进场队形逆航母前进方向平行于航母的右舷飞行,然后转弯飞跃舰艏,转入顺风段,一直到距离航母大约30公里,在这个阶段由航母上的战术空中导航系统进行引导,到达距离母舰大约10公里处,由舰上的自动着舰系统开始引导,一直到距离母舰大约3公里处,进入舰上光学助降系统工作区域,然后据此着舰,由此可见舰载机着舰短短数分钟内,涉及到众多的系统、人员,要想相关系统和人员能够快速、熟练的工作,需要频繁的训练和演练。 舰载机着舰基本方式是目视方式,主要用于晴朗气象、能见度好的情况下,飞行员进入等待区后,由航母飞行指挥控制室引导,进入等待航线,这个航线是一个直径为5海里的逆时针圆形航线,不同的飞机等待高度不同,最低的等待高度大约在600米左右,舰载机每次经过航母上空的时候,与着舰指挥官进行联系,以便获得着舰许可,考虑到有些飞机执行任务回来后有可能燃料不足,所以在高空还安排了加油机给燃料不足的飞机进行空中加油,在接收到着舰的命令以后,舰载机在距离母舰10公里左右的地方脱离等待航线,高度下降到300米左右,航母后方5公里处进入着舰航线,然后根据着舰飞机的多少,以水平转弯曲或者盘旋动作进入下滑航线,进入下滑航母前,舰载机需要关闭武器系统,确认飞机的重量符合航母着舰的标准,然后打开减速板、放下拦阻钩及起落架等,表示要着舰,飞机在航母左侧一海里外,再次转弯,到达着舰中心延长线的后方,进入光学助降系统的工作范围,然后开始下滑降落。如果气象不佳,如云层高度较低,那么飞机在进入航母战术空中导航系统的作用范围后,由后者进行引导至距离航母大约15公里处,如果能够目视发现航母,则转入目视着舰方式,如果气侯条件恶化,则进入全自动着舰系统引导模式。在这个模式下,可以允许舰载机的方位与母舰有大约30度的偏离,等待航线飞行大约需要6分钟,其中两个180度转弯需要1分钟,两边飞行各需要2分钟,当飞机被航母精密跟踪转达截获以后,即 可转入全自动引导着舰模式。 自动着舰系统有多种工作模式,可以供飞行员或者着舰指挥官进行选择或者切换,其中模式1是全自动着舰模式,它是利用数据链联接航空母舰和舰载机,由后者根据前者传递来的信息进行自动着舰,需要指出的是航母自动着舰的控制信息不是由航母上的作战中心发出的,而是由航母空中交通控制中心负责,目前美国航母空中交通控制中心凭借数据链可以同时控制2架飞机在相隔30秒钟内相继在航母上着舰,需要指出的是美国航空自动着舰系统采用的数据链并不是现在美国海军和空军大量装备的LINK-16,而是上一代LINK-4A型数据链,并且在工作中中使用LINK-4A的单向通信模式,实际上美国研制数据链的最初目的就是为自动着舰配套,随着LINK-16数据链的完善和发展,预计2015年以后,LINK-4才会完全被LINK-16所替代。模块2与模式1基本上相同,只是在距离母舰1公里左右之后,舰载机开始接受光学助降系统的引导,模式3属于所谓的半自动着舰方式,在这种方式下,自动着舰系统与舰载机的自动着舰系统并不交联,而是通过仪表或者显示器向飞行进行显示相关数据,由飞行员根据这些信息操纵飞机下滑着舰,最后一种是人工方式,由着舰指挥官观察雷达显示屏,对舰载机位置进行确定,然后获得舰载机的方位和高低角误差,然后用语音告诉飞行员进行修正,直到转动光学助降系统的工作范围,进入新世纪美国海军对于自动着

关于某飞机起飞降落地地理题

《飞机飞行与昼夜长短》专题训练 1.一飞机沿赤道以555km/小时的速度向西飞行,乘客感觉到的昼夜长短是( ) A 、 昼长约12小时,夜长约12小时 B 、昼长约9小时,夜长约15小时 C 、昼长约18小时,夜长约18小时 D 、昼长约18小时,夜长约6小时 北京时间3月21日12点,一架飞机从某机场(120oE ,66o34′N )起飞,沿北极圈向东作环球航行,12小时后返回原地,据此回答2~3题。 2.飞行员能观测到的日出、日落次数是( ) A .一次日出,一次日落 B .两次日落,一次日出 C .两次日出,一次日落 D .零次日出,一次日落 3.观察者在飞机上看到的昼夜更替时间为( ) A .6小时 B .8小时 C .12小时 D .24小时 4. (潍坊市四县(市)2004—2005学年度第一学期期中考试) 在30°N 纬线上,若飞机向东以15°/小时的速度飞行,那么飞机上的人将经历( ) A 、昼夜长短相等 B 、昼夜长度均增加了一倍 C 、昼夜长度均减小了一半 D 、太阳永不西落或东升 5.一飞机沿赤道以555km/小时的速度向西飞行,乘客感觉到的昼夜长短是( ) A 、昼长约12小时,夜长约12小时 B 、昼长约9小时,夜长约15小时 C 、昼长约18小时,夜长约18小时 D 、昼长约18小时,夜长约6小时 6.假设一探险者驾驶轻型飞机沿赤道以555千米/小时的速度向东环球飞行一周。探险者在飞行过程中感觉到的昼夜长短情况是( ) A .昼长约9小时,夜长约9小时 B .昼长约12小时,夜长约12小时 C. 昼长约10小时,夜长约11小时 D .昼长约18小时,夜长约18小时 7.(江苏省海安中学2005届高三年级调研考试)某飞机于2004年9月23日下午6时从北京机场起飞,自西向东环球一周,48小时后飞回北京机场。下列说法可信的是( ) A 、飞行员在飞行途中看到太阳一直在西边的地平线上 B 、在经过120°E 、120°W 和0°经线时都能看到日出 C 、在经过180°经线时看到了日落 D 、该飞机在飞行过程中经历了三个昼夜 有一架飞机在当地时间7月1日5时从 旭日东升的A 机场起飞,沿纬线向东飞行, 一路上阳光普照,降落到B 机场正值日落。 读下图完成8~9题。 8.降落到B 机场时,当地时间为( ) A .7月2日11时 B .7月1日21时 C .7月1日19时 D .6月30日19时 9.从A 机场飞行到B 机场经历的时间是( ) A .6小时 B .10小时 C .14小时 D .22小时 读“某地区等高线地形图”,假设一探险者驾驶轻型 飞机从图中的P 地出发,以555千米/小时的速度向东环 球飞行一周。读图完成10~11题。

舰载机如何着舰

原文载自《航空周刊》请勿随意转载,劲风收集制作 对舰载机飞行员来讲,在航母上着舰是能展示自己高超的驾驶技术并使大伙略英雄本色的最佳机会.因航母上的着舰难度极高,甚至有人说在航母上的着舰是"人为控制的坠落".现在每个舰载机驾驶员都以自己的着舰次数来作为证明自己过硬本领的依据.这里就对大家感到好奇的着舰方式进行详细的叙述. VF-154 在大海中驰骋的“跑道”上降落,比“登天”还难 对航母舰载机驶员来讲,弹射起飞并不难。因为弹射器的压力调整、弹射等几乎所有的操作是由飞行甲板上的弹射器小组来负责进行。难的是着舰.着舰时驾驶员需要从很远处发现航母,确认着舰装置的状态.并与其他着舰机相互进行飞行状态的沟通。随着航母的航行而时刻变动的飞行航线。不断摇晃的着舰甲板……,地上飞机驾驶员是无法想像飞行甲板上的着舰难度的。对飞行员来讲,远离陆上机场在一望无际的大海中进行的着舰是一个沉重的压力。

弹射起飞中的雄猫 着舰过程 根据离航母的距离可分为引导一待机一进场三个阶段。 着舰机从作战空域返回航母时,首先要接到来自E-2C预警机的指示。但是E-2C的主要任务是在作战空域里的警戒监视一旦E-2C忙于进行空中预警时,舰载机是无法受到E-2C的导航服务的,此时根据作战空域到航母的距离。增派一架E-2C预警机担当“导航参谋”的任务,以协助舰载机返航。舰载机从E-2C预警机得到的情报主要是离所属航母的位置和周边空中交通状况。 tomcat 如果舰载机驾驶员发现自己的飞机出现燃料不足或机械故障.可直接与航母通话.使航母调整着舰机的着舰顺序.另外还能根据情况的需要,接受空中加油或通过航母与陆上基地取得联系进行紧急着陆.在正常状态下着舰时,着舰机在离航母200海里(1海里=1.85千米)远处接受航空飞行管制中心的航行管制和指挥,航空飞行管制中心设置在着舰甲板的舰桥下方的战斗指挥所的一角.航空飞行管制中心操作台的显示器上的黄色标志,是通过雷达捕捉到的航母周围200海里半径内的画面.从这里直接向着舰机或其他的己方飞机提供情报.

飞机起降过程物理过程分析

飞机起降过程物理过程分析 摘要:随着经济的发展,人们生活水平的提高,越来越多的人选择方便快捷的飞机作为主要出行方式。中国低空领域的开放,将会进一步促进整个行业的大发展。人们的生活也越来越离不开飞机。飞机涉及到非常多的知识和原理。文章将对飞机的原理和相关的运行规定进行整理分析,以及理想情况下飞机降落过程的受力分析来展示飞机降落的整个过程。 关键词:飞机;着陆;起飞;标准降落;受力分析 1 起飞着陆具体过程 在飞机的整个飞行中起飞着陆是最复杂、最危险的阶段,在这一阶段发生事故的概率最高。 当飞机得到起飞命令以后,飞行员加大飞机的油门开始滑跑,当滑跑速度达到一定数值(离地速度)时,飞行员向后拉驾驶杆使飞机的迎角增加,这样飞机的升力就随着滑跑速度和迎角的增加而增大。当升力增加到大于飞机的重力时,飞机便开始离开地面。以后,飞机继续加速爬升,当飞机爬升到离地面10~15米时,飞行员便开始收起落架以减小飞行阻力。当飞机爬升到安全高度以后,起飞阶段就结束了。

飞机着陆过程是指飞机从安全高度以3度下降角下降,发动机慢车,飞机近似等速直线飞行。在离地6到12米时,开始将飞机拉平。飞机减速平飞,继续增加迎角接近护尾迎角,速度继续降低。当升力小于重力时,飞机飘落主轮接地后,保持两点滑跑,利用空气阻力减速到一定速度后,飞机前轮接地,三点滑跑并开始刹车直到停止。整个过程可概括为:下降、拉平、平飘、接地、滑跑。 2 升力产生的物理过程 空气在机翼迎风时的流向图。如图1所示。 空气在机翼上方要随机翼的形状走过更多的行程,于是机翼上方的流速小于机翼下方,根据气体性质,那么机翼上方的气体压强要小于机翼下方,于是形成了上下的气压差,飞机的升力本质上由此产生。 3 起飞性能参数 提高飞机起飞时的加速度,使它尽快地达到离地速度,以缩短起飞滑跑距离。飞机起飞是一个直线加速运动,它分两个阶段,即最大功率地面滑跑阶段,以及加速爬升阶段。飞机起跑速度继续增加到一定数值时,机翼的升力和重量大致相等,驾驶员拉杆向后,飞机抬起机头,前轮离地,这个速度称为抬前轮速度。这时飞机开始升空,起飞的第一阶段滑跑完成,转入第二阶段即飞机飞到规定的高度,起飞阶段结束。

【科技】归家的明灯——浅谈舰载机着舰下滑引导系统

【科技】归家的明灯——浅谈舰载机着舰下滑引导系统 14-01-25 作者:佚名编辑:石腾 从“辽宁”号服役至今,它的一举一动都是国人关注的焦点,然而本文先要把时间拉回到2012年11月24日这个历史性的时刻,在这一天,歼-15舰载机顺利完成了第一次拦 阻着舰,并在随后进行了滑跃起飞。我们知道,相比于滑跃起飞,着舰的意义更大。航母着舰引导系统这盏“归家明灯”的作用更是难以低估。 从“示牌进场”到镜面光学助降系统 1917年,英国把大型巡洋舰“暴怒”号改装成世界上第一艘简易航母。但由于舰上高耸的 塔式桅杆和烟囱的阻碍,飞机只能从舰上起飞而无法降落。1917年8月2日,英海军少校邓宁冒险驾驶“幼犬”战斗机进行着舰,他凭借高超的驾驶技术用侧滑着陆的方式艰难地将飞机降落在航行中的“暴怒”号前甲板上,这是人类第一次将飞机降落在航行中的军舰上。但在几天后的重复降落时,邓宁不幸遇难。从此舰载机在执行完作战、训练、侦察等任务后,着舰便成了一件惊心动魄的工作。承担着这项危险任务的飞行员需要从很远处发现航母平台,确认着舰装置的状态,并与其他着舰机互相进行飞行状态的沟通。另外,在跌宕起伏的大海上,航母时时刻刻的六自由度扰动(纵摇、横摇、首摇、起伏、纵荡和横荡)、异常复杂的大气紊流(海面无遮挡,海风往往较强,航母庞大的舰体以及自身运动的特点,还会在舰首产生上洗气流,并在舰尾处形成较强的公鸡尾状的尾流),以及极其有限的甲板长度等等(美国满载排水量近10万吨的核动力超级航母甲板总长度也不过300多米,而能够提供舰载机起飞、着舰使用的跑道只有其中点的100多米),这些都对舰载机着舰提出了更高的要求。舰载机着舰进场速度小。受舰上扰流因素影响相对较大,客观上使得舰载机轨迹稳定性变差。然而舰载机着舰条件要求反而相对苛刻、恰恰又要求飞机下滑时的轨迹稳定性比陆基飞机还要高,这一切使得舰载机着舰引导问题成为航母战斗力发挥的关键技术之一。舰载机要降落在航母的甲板上,必须依靠一系列完备的着舰辅助技术手段。除了早已有之的拦阻索和拦阻网外,着舰下滑引导系统是着舰降落中最为关键的重中之重。

飞机仪表和起飞流程

在进行完例行的飞行前外部检查之后,我和教练坐进了飞机驾驶舱。我坐在驾驶室左侧,教练坐在驾驶室右侧。飞机两个座位上各有一套操作系统,每个人各有一套刹车装置。 <刹车转向踏板和操纵杆> FAR要求在飞行中驾驶员必须系上安全带背带。然后调整座位和刹车位置,使得双脚可以直接将两个刹车同时踩到底。 在滑行起飞之前,我们得简要的介绍一下飞机驾驶舱内的各种操纵杆和仪表。 Sports cruiser有两种不同的操纵台,老式的依靠传统的皮托管和惯性导航系统显示,随着技术的推进,新式的飞机基本上都用传感器和液晶屏代替了老式的仪表。但是基于介绍基本的原理,我们还是从老式的仪表作为一个引子。

<六大仪表> 红色框里是飞行最基本的六大仪表。主要分成两类:皮托管仪表和惯性导航设备。 皮托管仪表 1.空速表(Air Speed Indicator) 第一排左起第一个设备是空速表。这个设备通过测量伸出机身的空速管处的总压与静压的压差,间接测出空速,也就是飞机在空气中的相对运动速度。仪表盘上的数字单位是Knots (nm/h,海里每小时、节) 。

外圈绿色的范围是飞机正常的巡航速度范围,高于这个速度,进入黄色告警区域或超过红色危险区域,飞机就有损坏和解体的危险。如果收起襟翼时,75节是飞机最小的巡航速度,低于这个速度 飞机就会失速。右侧67-120节白色的区域代表飞机打开襟翼时的安全飞行速度,飞机伸出襟翼(大 家在坐民航飞机起飞降落时很容易在机翼后端观察到),增大了机翼的面积,降低了失速速度,使 得飞机能在较小的速度下起飞和降落。如果飞机展开襟翼,低于67节,就有可能失速;如果大于120节,飞机襟翼就有被破坏的危险。 2.气压高度表(Altimeter) 左数第三个表是气压高度表。顾名思义,这个仪表显示飞机的气压高度。仪表有三根指针,分别表 示数字的万、千、百读数,这里单位是英尺。高度表右侧有一个小窗,里面数字29.9叫做高度表 拨正值。主要的作用就是在不同的大气条件下,把相应的海平面气压修正到标准大气条件下。这样,飞机在机场地面时,高度表应当显示机场海拔高度(场高)。高度表拨正值应当按照由空中交通管 制席位的要求或航图要求及时调整。如下图高度计显示当前高度为10,180英尺。 3.升降速度表(Vertical speed indicator) 第二排最右侧是升降速度表。这个设备就是显示爬升或者下降率,通过检测气压高度表变化的情况 给出指示数字,单位:百英尺每分钟

舰载机起飞与降落技术

舰载机起飞与降落技术 1.起飞 一、蒸汽弹射 使用一个平的甲板作为飞机跑道。起飞时一个蒸汽驱动的弹射装置带动飞机在两秒钟内达到起飞速度。目前只有美国具备生产这种蒸气弹射器的成熟技术。在工作原理上,蒸汽弹射器是以高压蒸汽推动活塞带动弹射轨道上的滑块,把与之相连的舰载机弹射出去的。它体积庞大,工作时要消耗大量蒸汽,功率浪费严重,只有约6%的蒸汽被利用。为制造和输送蒸汽,航母要备有海水淡化装置、大型锅炉和无数管线,工作维护量惊人。它的最大缺陷在于因为弹射功率太大而无法发射无人机,现役的无人机因为重量轻,在弹射时机体会被加速度扯碎。蒸汽弹射有两种弹射方式: (1)一种是前轮牵引式弹射,美国海军1964年试验成功。舰载机的前轮支架装上拖曳杆,前轮就直接挂在了滑块上,弹射时由滑块直接拉着飞机前轮加速起飞。这样就不用8-10甲板人员挂拖索和捡拖索了。弹射时间缩短,飞机的方向安全性好,但这种舰载机的前轮要专门设计。美国海军核动力航母都采用了这种起飞方式。 (2)另一种是拖索式弹射,顾名思义,就是用钢质拖索牵引飞机加速起飞,这种弹射方式比较老,各方面都不如前者好,目前只有法国的“克莱蒙梭”级航母使用。拖索式弹射时,甲板人员先用钢质拖索把飞机挂在滑块上,再用一根索引释放杆把其尾部与弹射器后端固定住。弹射时,猛力前冲的滑块拉断索引释放杆上的定力拉断栓,牵着飞机沿轨道迅速加速,在轨道末端把飞机加速到直起飞速度抛离甲板,拖索从飞机上脱落,滑块返回弹射器起点准备下一次工作。 二、斜板滑跳 有些航空母舰在其甲板前端有一个“跳台”帮助飞机起飞,即把甲板尽头做成斜坡上翘,舰载机起飞后沿着上翘的斜坡冲出甲板,形成斜抛运动。这种起飞方式不需要复杂的弹射装置,但是飞机起飞时的重量以及起飞的效率远不如蒸汽弹射技术。英国、意大利、印度和俄罗斯等国由于技术限制,无法研制真正在技术和工艺上过关的蒸汽弹射器,所以只能在本国航母上采用滑翘甲板。航空母舰都必须以20节(36公里/小时)以上的速度逆风航行,来帮助飞机起飞。

降落技巧

在以往的飞行中,我总是听到很多老飞们在讨论降落时两个重要的评价指数,那就是接地率和垂直过载,但我一直不明白概念的含义和其中的意义,所以我特地去网络上搜索和整理了一些资料来学习,现在和大家尤其是新飞友一起分享。 首先说一下什么是过载。 过载(g),即在飞行中,飞行员的身体必须承受的巨大的加速度。这些正或负的加速度通常以g的倍数来度量。过载分为正过载和负过载。 正过载,即在加速度的情况下,离心力从头部施加到脚,血液被推向身体下部分。在正过载的情况下,如果飞行员的肌肉结构不能很好地调整,则大脑就得不到适当的血液补充,飞行员易产生称为灰视或黑视的视觉问题。如压力持续,最终可导致飞行员昏迷。 负过载,指飞行员在负加速度下飞行时(例如倒飞),血液上升到头部,颅内压力增加,会产生不舒服甚至痛苦的感觉。 每人对加速度都有其承受的极限。适当的训练将允许飞行员承受大过载,在高级特技飞行竞赛中,飞行员承受的过载可达正负10g。现在的战斗机最多能达到正负9G,特殊情况下能有10多个G ,航天飞机上的人更惨,那个发射时都是有10多个G的 一个人平时承受的过载是一个g,一般人能承受2-3个g 战斗机飞行员能承受5-7个g,有的可承受9个g, 负的过载一般人只能承受-0.5g 一般飞行员也只能-1.5g

最多不能超过-3g,否则会引发脑血管破裂 危及人身安全 再说一下什么是接地率。 接地率就是飞机降落时机轮接地瞬间飞机的垂直速率,最通俗的解释就是飞机在接地时的轻重。 那它们两者有什么关系呢?我引用一位资深飞友的讲解,他做了一个形象的比喻: 桌面上有一个弹簧,你用手掌压下去. 接地率,是你的手接触弹簧时下降速度. 过载,是你的手在接触弹簧到把弹簧压紧之间,手的疼痛感. 接地率大,垂直过载小的情况是: 你快速压向弹簧,碰到后,迅速改为慢慢下压,手并不是很疼. 如果反过来,则手肯定会更疼. 如果整个过程,速度恒定,则接地率大,过载大.接地率小,过载小. 相信你已经理解一点了···················· 最后我再转载两篇飞友写的《大型涡轮飞机着陆技术的探讨》和《如何防止飞机大姿态接地》文章。 大型涡轮飞机着陆技术的探讨 做好着陆动作,是每一个飞行员的飞行生涯中非常注意研究的课

相关主题