搜档网
当前位置:搜档网 › 珩磨机的加工原理与加工特点

珩磨机的加工原理与加工特点

珩磨机的加工原理与加工特点

珩磨机是一种用来精加工物体表面的工具,主要用在一些制造业的工件加工上面。珩磨机的工作原理是:珩磨机配备有一个专门制作的珩磨头,珩磨头上面有一个珩磨油石,珩磨头在珩磨机的主轴带动下作旋转运动和往复循环运动,这一运动在膨胀收缩机构的作用下使得珩磨油石往外面伸出来,向需要加工的内孔的表面施加压力来作进给运动,达到珩磨工件的目的。珩磨机是一种慢速度打磨削割法,一般用在工件上的内孔表面的精加工。

珩磨机加工的特点有很多,下面简单的介绍几个:

1、珩磨机加工出来的工件表面变得平整了,提高了工件的质量。这是因为通过珩磨这一步骤,可以磨平一些粗糙的地方,并且在珩磨过的表面上留下了均匀交错的条纹线,有利于积累润滑油。

2、珩磨机加工出来的工件精度很高。珩磨以后的工件尺寸变得更精确了,可以修复一些内孔的形状误差。

3、珩磨机的工作效率高,可以同时使用很过条珩磨油石。

珩磨机的工作原理

珩磨机的工作原理 珩磨一般采用珩磨机,机床主轴与珩磨头一般是浮动联接;但为了提高纠正工件几何形状的能力,也可以 用刚性联接。 珩孔时,外周一般镶有2~10根油石,由机床主轴带动在孔内旋转,并同时作直线往复运动,这是 主运动;同时通过珩磨头中的弹簧或液压力控制油石均匀外涨,对被加工的孔壁作径向进给。珩磨头每分 钟往复次数与转数之比应取非整数,使磨料在工件表面形成的加工痕迹成为交叉的网纹而不相重复。图2 为单条油石在孔内珩磨时的运动轨迹。油石上下往复一次,工件回转一圈多。粗珩油石的磨料粒度为120 ~180,精珩用W28以下的细粒度油石。油石宽为3~20毫米,长度约为孔长的1/3~3/4。油石在孔内往复 移动时,两端超越孔外的长度不宜大于油石全长的1/3,否则易产生喇叭口;但超程小于油石长度1/4时,又 会使孔呈鼓形。外圆、平面的珩磨原理和操作要求与内圆珩磨相同。 余量一般不超过0.2毫米。珩磨的圆周速度,对钢材加工约为15~30米/分,对铸铁或有色金属加

工可提高到50米/分以上;珩磨的往复速度不宜超过15~20米/分。油石对孔壁的压力一般为0.3~0.5兆帕 ,粗珩时可达1兆帕左右,精珩可小于0.1兆帕。由于珩磨时油石与工件是面接触,每颗磨粒对工件表面的 垂直压力只有磨削时的1/50~1/100,加上珩磨速度低,故切削区的温度可保持在50~150℃范围内,有利于 减小加工表面的残余应力,提高表面质量。为了冲刷切屑,避免堵塞油石,同时降低切削区温度和降低表 面粗糙度,珩磨时采用的切削液要有一定的工作压力并经过滤。切削液大都采用煤油,或煤油加锭子油, 也有采用极压乳化液的。在没有专门珩磨机的情况下也可以将珩磨刀架安装在立式钻床上来实现珩磨内孔 的任务。

激光加工技术的原理及应用

激光加工技术 摘要 激光加工技术是利用激光束与物质相互作用的特性对材料(包括金属与非金属)进行切割、焊接、表面处理、打孔及微加工等的一种加工新技术,涉及到光、机、电、材料及检测等多门学科。由于激光加工热影响区域小,光束方向性好,几乎可以加工任何材料。常用来进行选择性加工,精密加工。由于激光加工的特殊特点,其发展前景广阔,目前已广泛应用于激光焊接、激光切割、表面改性、激光打标、切削加工,快速成形,激光钻孔和基板划片,半导体处理等。 关键词:原理、应用﹑新技术、精密加工、 引言 激光是本世纪的重大发明之一,具有巨大的技术潜力。专家们认为,现在是电子技术的全胜时期,其主角是计算机,下一代将是光技术时代,其主角是激光。激光因具有单色性、相干性和平行性三大特点,特别适用于材料加工。激光加工是激光应用最有发展前途的领域,国外已开发出20多种激光加工技术。激光的空间控制性和时间控制性很好,对加工对象的材质、形状、尺寸和加工环境的自由度都很大,特别适用于自动化加工。激光加工系统与计算机数控技术相结合可构成高效自动化加工设备,已成为企业实行适时生产的关键技术,为优质、高效和低成本的加工生产开辟了广阔的前景。 激光加工是指利用激光束投射到材料表面产生的热效应来完成加工过程,包括激光焊接、激光切割、表面改性、激光打标、激光钻孔和微加工等。用激光束对材料进行各种加工,如打孔、切割、划片、焊接、热处理等。激光能适应任何材料的加工制造,尤其在一些有特殊精度和要求、特别场合和特种材料的加工制造方面起着无可替代的作用。

正文 1﹑激光加工技术的原理及其特点 1.1激光加工的起源 早期的激光加工由于功率较小,大多用于打小孔和微型焊接。到20世纪70年代,随着大功率二氧化碳激光器、高重复频率钇铝石榴石激光器的出现,以及对激光加工机理和工艺的深入研究,激光加工技术有了很大进展,使用范围随之扩大。数千瓦的激光加工机已用于各种材料的高速切割、深熔焊接和材料热处理等方面。各种专用的激光加工设备竞相出现,并与光电跟踪、计算机数字控制、工业机器人等技术相结合,大大提高了激光加工机的自动化水平和使用功能。 1.2激光加工的原理 激光加工是以激光为热源对工件进行热加工。 激光加工是将激光束照射到工件的表面,以激光的高能量来切除、熔化材料以及改变物体表面性能。由于激光加工是无接触式加工,工具不会与工件的表面直接磨察产生阻力,所以激光加工的速度极快、加工对象受热影响的范围较小而且不会产生噪音。由于激光束的能量和光束的移动速度均可调节,因此激光加工可应用到不同层面和范围上。 从激光器输出的高强度激光经过透镜聚焦到工件上,其焦点处的功率密度高达107~1012瓦/厘米2,温度高达1万摄氏度以上,任何材料都会瞬时熔化、气化。激光加工就是利用这种光能的热效应对材料进行焊接、打孔和切割等加工的。通常用于加工的激光器主要是固体激光器(图1)和气体激光器(图2)。使用二氧化碳气体激光器切割时,一般在光束出口处装有喷嘴,用于喷吹氧、氮等辅助气体,以提高切割速度和切口质量。由于激光加工是无接触式加工,工具不会与工件的表面直接磨察产生阻力,所以激光加工的速度极快、加工对象受热影响的范围较小而且不会产生噪音。由于激光束的能量和光束的移动速度均可调节,因此激光加工可应用到不同层面和范围上。

珩磨机进给机构原理分析及改进方案探讨-1

论文 题目:珩磨机主要结构机构原理及数控改进方案探讨作者:郭均政 内容简介:本论文主要介绍了珩磨机主要结构如砂条进给、冲程控制 等机构的液压、机械原理,为了提高珩磨工件的表面质量 质量,经过对其工作原理进行了认真的分析,并根据实际 的加工跟踪情况,提出了改进方案,经过论证后现已实施, 效果良好,缸孔质量得到了很大的提高,完全满足了被加 工工件的工艺要求。

珩磨机进给机构原理及数控改进方案探讨 一、发动机缸体珩磨工艺要求 目前在汽车发动机行业的制造工艺中,发动机缸孔的精加工大都采用珩磨加工,这是因为缸孔的表面有严格并特殊的要求,发动机缸孔除了尺寸、几何精度比如圆度,柱度等一般要求外,还对表面质量有特殊的要求,为了能使发动机工作时能得到很好的润滑,表面要能够储存少量的润滑油以便建立良好的油膜,因而发动机表面要求有按一定方向有规律排列的网纹,同时还要有足够的支撑面积。依维柯发动机缸孔的表面质量要求:表面粗糙度Ra0.3-0.6;网纹角度45°-50°;网纹宽度L=0.03-0.05mm;网纹节距P=1.5mm,表面支撑面积TP值80%-95%。详细的要求见图1:珩磨工序工艺附图。从工艺图上我们知道,主轴孔的圆柱度要求为0.005mm,同轴度为0.03mm,为了保证缸孔的尺寸,缸孔要在孔的轴向分别为10mm、50mm、142mm 三个截面进行测量,在圆周方向要测量A、B两个方向,并且在三个截面当中,A向测量必须要保证:三个截面的的平均值与最小值的差要小于0.008mm,最大值与平均值的差小于0.008mm。在B向的测量值必须保证:三个截面的的平均值与最小值的差要小于0.008mm,最大值与平均值的差小于0.008mm。要达到以上的表面质量要求,当然选择合适的珩磨砂条是很重要的,但是网纹的角度、宽度、TP值等比较重要的指标光靠砂条是不能满足的,必须要有合适的珩磨冲程,冲程速度,珩磨主轴的回转速度以及砂条的进给精度,这些要素参数对于珩磨质量的保证起着至关重要的作用。

电火花加工原理和特点

电火花加工原理和特点 电火花加工是利用浸在工作液中的两极间脉冲放电时产生的电蚀作用蚀除导电材料的特种加 工方法,又称放电加工或电蚀加工,英文简称EDM。 1943年,苏联学者拉扎连科夫妇研究发明电火花加工,之后随着脉冲电源和控制系统的改进,而迅速发展起来。最初使用的脉冲电源是简单的电阻-电容回路。50年代初,改进为电阻-电感-电容等回路。同时,还采用脉冲发电机之类的所谓长脉冲电源,使蚀除效率提高,工具电极相对损耗降低。 随后又出现了大功率电子管、闸流管等高频脉冲电源,使在同样表面粗糙度条件下的生产率得以提高。60年代中期,出现了晶体管和可控硅脉冲电源,提高了能源利用效率和降低了工具电极损耗,并扩大了粗精加工的可调范围。 到70年代,出现了高低压复合脉冲、多回路脉冲、等幅脉冲和可调波形脉冲等电源,在加工表面粗糙度、加工精度和降低工具电极损耗等方面又有了新的进展。在控制系统方面,从最初简单地保持放电间隙,控制工具电极的进退,逐步发展到利用微型计算机,对电参数和非电参数等各种因素进行适时控制。 进行电火花加工时,工具电极和工件分别接脉冲电源的两极,并浸入工作液中,或将工作液充入放电间隙。通过间隙自动控制系统控制工具电极向工件进给,当两电极间的间隙达到一定距离时,两电极上施加的脉冲电压将工作液击穿,产生火花放电。 在放电的微细通道中瞬时集中大量的热能,温度可高达一万摄氏度以上,压力也有急剧变化,从而使这一点工作表面局部微量的金属材料立刻熔化、气化,并爆炸式地飞溅到工作液中,迅速冷凝,形成固体的金属微粒,被工作液带走。这时在工件表面上便留下一个微小的凹坑痕迹,放电短暂停歇,两电极间工作液恢复绝缘状态。 紧接着,下一个脉冲电压又在两电极相对接近的另一点处击穿,产生火花放电,重复上述过程。这样,虽然每个脉冲放电蚀除的金属量极少,但因每秒有成千上万次脉冲放电作用,就能蚀除较多的金属,具有一定的生产率。 在保持工具电极与工件之间恒定放电间隙的条件下,一边蚀除工件金属,一边使工具电极不断地向工件进给,最后便加工出与工具电极形状相对应的形状来。因此,只要改变工具电极的形状和工具电极与工件之间的相对运动方式,就能加工出各种复杂的型面。 工具电极常用导电性良好、熔点较高、易加工的耐电蚀材料,如铜、石墨、铜钨合金和钼等。在加工过程中,工具电极也有损耗,但小于工件金属的蚀除量,甚至接近于无损耗。 工作液作为放电介质,在加工过程中还起着冷却、排屑等作用。常用的工作液是粘度较低、闪点较高、性能稳定的介质,如煤油、去离子水和乳化液等。

激光焊接的工作原理及其主要工艺参数

激光焊接的工作原理及其主要工艺参数摘要:焊接技术主要应用在金属母材热加工上,常用的有电弧焊,电阻焊,钎焊, 电子束焊,激光焊等多种,本文详细介绍了激光焊接的工作原理与工艺参数,还讨论了激光焊接技术在现代工业中的应用,并与其他焊接方法进行对比。研究表明激光焊接技术将逐步得到广泛应用。 关键词:焊接技术;激光焊接;工作原理;工艺参数。 1. 引言 目前常用的焊接工艺有电弧焊、电阻焊、钎焊、电子束焊等。电弧焊是目前应用最广泛的焊接方法,它包括手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。但上述各种焊接方法都有各自的缺点,比如空间限制,对于精细器件不易操作等,而激光焊接不但不具有上述缺点,而且能进行精确的能量控制,可以实现精密微型器件的焊接。并且它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。 激光指在能量相应与两个能级能量差的光子作用下,诱导高能态的原子向低能态跃迁,并同时发射出相同能量的光子。激光具有方向性好、相干性好、单色性好、光脉冲窄等优点。激光焊接是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接,这种焊接通常有连续功率激光焊和脉冲功率激光焊。激光焊接从上世纪60年代激光器诞生不久就开始了研究,从开始的薄小零器件的焊接到目前大功率激光焊接在工业生产中的大量的应用,经历了近半个世纪的发展。由于激光焊接具有能量密度高、变形小、热影响区窄、焊接速度高、易实现自动控制、无后续加工的优点,近年来正成为金属材料加工与制造的重要手段,越来越广泛地应用在汽车、航空航天、造船等领域。虽然与传统的焊接方法相比,激光焊接尚存在设备昂贵、一次性投资大、技术要求高的问题,但激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线。 2. 激光焊接原理 2.1激光产生的基本原理和方法 光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子。微观粒子都具有一套特定的能级,任一时刻粒子只能处在与某一能级相对应的状态,物质与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h。爱因斯坦认为光和原子的相互作用过程包含原子的自发辐射跃迁、受激辐射跃迁和受激吸收跃迁三种过程。我们考虑原子的两个能级E1和E2,处于两个能级的原子数密度分别为N1和N2。构成黑体物质原子中的辐射场能量密度为ρ,并有E2 -E1=hν。 2.1.自发辐射 处于激发态的原子如果存在可以接纳粒子的较低能级,即使没有外界作用,粒子也有一定的概率自发地从高能级激发态(E2)向低能级基态(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率ν=(E2-E1)/h。这种辐射过程称为自发辐射。自发辐射发出的光,不具有相位、偏振态上的一致,是非相干光。 2.2.受激辐射 除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。当频率为ν=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,

机械加工工艺标准流程过程描述

机械加工工艺流程详解 1.机械加工工艺流程 机械加工工艺规程是规定零件机械加工工艺过程和操作方法等的工艺文件之一,它是在具体的生产条件下,把较为合理的工艺过程和操作方法,按照规定的形式书写成工艺文件,经审批后用来指导生产。机械加工工艺规程一般包括以下内容:工件加工的工艺路线、各工序的具体内容及所用的设备和工艺装备、工件的检验项目及检验方法、切削用量、时间定额等。 1.1 机械加工艺规程的作用 (1)是指导生产的重要技术文件 工艺规程是依据工艺学原理和工艺试验,经过生产验证而确定的,是科学技术和生产经验的结晶。所以,它是获得合格产品的技术保证,是指导企业生产活动的重要文件。正因为这样,在生产中必须遵守工艺规程,否则常常会引起产品质量的严重下降,生产率显著降低,甚至造成废品。但是,工艺规程也不是固定不变的,工艺人员应总结工人的革新创造,可以根据生产实际情况,及时地汲取国内外的先进工艺技术,对现行工艺不断地进行改进和完善,但必须要有严格的审批手续。 (2)是生产组织和生产准备工作的依据 生产计划的制订,产品投产前原材料和毛坯的供应、工艺装备的设计、制造与采购、机床负荷的调整、作业计划的编排、劳动力的组织、工时定额的制订以及成本的核算等,都是以工艺规程作为基本依据的。 (3)是新建和扩建工厂(车间)的技术依据 在新建和扩建工厂(车间)时,生产所需要的机床和其它设备的种类、数量和规格,车间的面积、机床的布置、生产工人的工种、技术等级及数量、辅助部门的安排等都是以工艺规程为基础,根据生产类型来确定。除此以外,先进的工艺规程也起着推广和交流先进经验的作用,典型工艺规程可指导同类产品的生产。 1.2 机械加工工艺规程制订的原则 工艺规程制订的原则是优质、高产和低成本,即在保证产品质量的前提下,争取最好的经济效益。在具体制定时,还应注意下列问题: 1)技术上的先进性在制订工艺规程时,要了解国内外本行业工艺技术的发展,通过必要的工艺试验,尽可能采用先进适用的工艺和工艺装备。 2)经济上的合理性在一定的生产条件下,可能会出现几种能够保证零件技术要求的工艺方案。此时应通过成本核算或相互对比,选择经济上最合理的方案,使产品生产成本最低。

机械加工工艺过程例子

例1:试提出小批生产下图所示零件的机械加工工艺过程(从工序到工步)。 [解答]:齿轮加工内容有两端面、内孔、四个小孔、键槽、齿等。为保证A、B面的平行度还需磨削,齿部还需高频淬火。 加工工艺过程 注意点:毛坯为型材,需要钻孔;调头车B面,不能保证B∥A,因此需要磨端面B; 如上例齿轮,若毛坯为模锻件,试提出小批、成批和大批大量生产其机械加工工艺过程(工序到工步)。 齿轮加工工序安排 若批量生产时毛坯为锻件,工序1变为两个工序。即,如果在加工端面A和外圆后,就将该工件卸下,换上另一工件,加工其端面A和外圆,一直到一批零件加工完,再调头加工端面B及另一部分外圆,这中间就有了间断,因此就是两个工序。对于大批大量生产,采用拉刀拉孔、多刀车床车外圆(复合工步)等先进工艺,可提高生产率。因此齿轮大量生产和小量生产其工艺有很大差别。 例2:试提出如右图所示小轴的小批、成批和大批大量生产的机械加工工艺规程,并分析每种方案的工艺过程组成。 表1 阶梯轴加工工艺过程(小批生产) 表2 阶梯轴加工工艺过程(成批生产)

表3 阶梯轴加工工艺过程(大批大量生产) 例3:如右图盘状零件,其机械加工工艺过程有如下两种方案,试分析每种方案工艺过程的组成。 1)在车床上粗车及精车端面C,粗镗及精镗φ60H9mm孔,内孔倒角,粗车及半精车φ200mm外圆。调头,粗、精车端面A,车φ96mm外圆及端面B,内孔倒 角。划线,在插床上按划线插键槽18D10。在钻床上按划线 钻6-φ20mm的孔。钳工去毛刺。 2)在车床上粗、精车一批零件的端面C,并粗、精镗φ 60H9mm孔,内孔倒角。然后在同一台车床上将工件安装在 可涨心轴上,粗车、半精车这批工件的φ200mm外圆,并车 φ96mm外圆及端面B,粗、精车端面A,内孔倒角。在拉床 上拉键槽。在钻床上用钻模钻出6-φ20mm的孔。钳工去毛 刺。 注意:φ20mm的孔无公差要求 盘状零件加工工艺过程 单件小批生产成批生产 例4试提出成批生产如图1-5所示零件的机械加工工艺过程(从工序到工步),并指出各工序的定位基准。注意:φ10mm的孔有精度要求,因此钻-扩-铰

电火花加工原理

电火花加工技术 学院:机械与汽车工 程学院 专业:材控10-2班 姓名:徐鹏

学号:201001021047 电火花加工技术 电火花是一种加工工艺,主要是利用具有特定几何形状的放电电极(EDM 电极)在金属(导电)部件上烧灼出电极的几何形状。电火花加工工艺常用于冲裁模和铸模的生产。 利用火花放电时产生的腐蚀现象对材料进行尺寸加工的方法,叫电火花加工。电火花加工是在较低的电压范围内,在液体介质中的火花放电。电火花 加工主要由机械厂完成。电火花是一种自激放电,其特点如下:火花放电 的两个电极间在放电前具较高的电压,当两电极接近时,其间介质被击穿后, 随即发生火花放电。伴随击穿过程,两电极间的电阻急剧变小,两极之间的电 压也随之急剧变低。火花通道必须在维持暂短的时间(通常为10-7-10-3s)后 及时熄灭,才可保持火花放电的“冷极”特性(即通道能量转换的热能来不及 传至电极纵深),使通道能量作用于极小范围。通道能量的作用,可使电极局 部被腐蚀。 工具电极和工件之间并不直接接触,而是有一个火花放电间隙0.1— 0.01mm,间隙中充满工作液。 加工过程中没有宏观切削力火花放电时,局部、瞬时爆炸力的平均值很小,不足以引起工件的变形和位移。可以“以柔克刚”由于电火花加工直接利用电 能和热能来去除金属材料,与工件材料的强度和硬度等关系不大,因此町以用 软的工具电极加工硬的工件,实现“以柔克刚”。可以加工任何难加工的金属 材料和导电材料 由于加工中材料的去除是靠放电时的电、热作用实现的,材料的可加工性主要取决于材料的导电性及热学特性,如熔点、沸点、比热容、导热系数、 电阻率等,而几乎与其力学性能(硬度、强度等)无关。这样可以突破传统切削 加工对刀具的限制,可以实现用软的工具加工硬、韧的工件甚至可以加工聚晶 金刚行、立方氮化硼一类的超硬材料。目前电极材料多采用紫铜或石墨,因此 工具电极较容易加工。可以加工形状复杂的表面 由于可以简单地将工具电极的形状复制到工件上,因此特别适用于复杂表面形状工件的加工,如复杂型腔模具加工等。特别是数控技术的采用,使得用 简单的电极加工复杂形状零件成为现实。 可以加工特殊要求的零件 可以加工薄壁、弹性、低刚度、微细小孔、异形小孔、深小孔等有特殊 要求的零件。由于加工中工具电极和工件不直接接触,没有机械加工的切削力,因此适宜加工低刚度工件及微细加工。

激光加工原理

激光加工原理 激光加工是将激光束照射到工件的表面,以激光的高能量来切除、熔化材料以及改变物体表面性能。由于激光加工是无接触式加工,工具不会与工件的表面直接磨察产生阻力,所以激光加工的速度极快、加工对象受热影响的范围较小而且不会产生噪音。由于激光束的能量和光束的移动速度均可调节,因此激光加工可应用到不同层面和范围上。 目前,公认的激光加工原理是两种:分别为激光热加工和光化学加工(又称冷加工)。 激光热加工指当激光束照射到物体表面时,引起快速加热,热力把对象的特性改变或把物料熔解蒸发。 热加工具有较高能量密度的激光束(它是集中的能量流),照射在被加工材料表面上,材料表面吸收激光能量,在照射区域内产生热激发过程,从而使材料表面(或涂层)温度上升,产生变态、熔融、烧蚀、蒸发等现象。 光化学加工指当激光束加于物体时,高密度能量光子引发或控制光化学反应的加工过程。 冷加工具有很高负荷能量的(紫外)光子,能够打断材料(特别是有机材料)或周围介质内的化学键,至使材料发生非热过程破坏。这种冷加工在激光标记加工中具有特殊的意义,因为它不是热烧蚀,而是不产生“热损伤”副作用的、打断化学键的冷剥离,因而对被加工表面的里层和附近区域不产生加热或热变形等作用。例如,电子工业中使用准分子激光器在基底材料上沉积化学物质薄膜,在半导体基片上开出狭窄的槽。

第一版激光加工简介 激光加工是激光系统最常用的应用。根据激光束与材料相互作用的机理,大体可将激光加工分为激光热加工和光化学反应加工两类。激光热加工是指利用激光束投射到材料表面产生的热效应来完成加工过程,包括激光焊接、激光切割、表面改性、激光打标、激光钻孔和微加工等;光化学反应加工是指激光束照射到物体,借助高密度高能光子引发或控制光化学反应的加工过程。包括光化学沉积、立体光刻、激光刻蚀等。 由于激光具有高亮度、高方向性、高单色性和高相干性四大特性,因此就给激光加工带来一些其它加工方法所不具备的特性。由于它是无接触加工,对工件无直接冲击,因此无机械变形;激光加工过程中无“刀具”磨损,无“切削力”作用于工件;激光加工过程中,激光束能量密度高,加工速度快,并且是局部加工,对非激光照射部位没有或影响极小。因此,其热影响的区小工件热变形小后续加工最小;由于激光束易于导向、聚焦、实现方向变换,极易与数控系统配合、对复杂工件进行加工因此它是一种极为灵活的加工方法;生产效率高,加工质量稳定可靠,经济效益和社会效益好。 激光加工作为先进制造技术已广泛应用于汽车、电子、电器、航空、冶金、机械制造等国民经济重要部门,对提高产品质量、劳动生产率、自动化、无污染、减少材料消耗等起到愈来愈重要的作用。 第二版激光加工原理 激光加工是将激光束照射到工件的表面,以激光的高能量来切除、熔化材料以及改变物体表面性能。由于激光加工是无接触式加工,工具不会与工件的表面直接磨察产生阻力,所以激光加工的速度极快、加工对象受热影响的范围较小而且不会产生噪音。由于激光束的能量和光束的移动速度均可调节,因此激光加工可应用到不同层面和范围上。 目前,公认的激光加工原理是两种:分别为激光热加工和光化学加工(又称冷加工)。 激光热加工指当激光束照射到物体表面时,引起快速加热,热力把对象的特性改变或把物料熔解蒸发。 热加工具有较高能量密度的激光束(它是集中的能量流),照射在被加工材料表面上,材料表面吸收激光能量,在照射区域内产生热激发过程,从而使材料表面(或涂层)温度上升,产生变态、熔融、烧蚀、蒸发等现象。

机械加工工艺说明书

机械加工工艺说明书 一、零件工艺性分析: (1)零件的功用:Cr12MoV用于制造要求高耐磨性的大型复杂 冷作模具,如冷切剪刀、切边模、拉丝模、搓丝板、 螺纹滚模、滚边模和要求高耐磨的冷冲模和冲头等。 (2)零件分析: A,材料:该加工零件的材料是Cr12MoV,具有较好 的机械加工性能。 B,零件的结构:该零件结构简单、对称;表面光度要 求高。 C,主要技术要求:热处理60~64HRC,修钝非轫口锐边; 端面粗糙度在Ra0.8um,并保证两端平行度, 其余按图纸技术要求加工零件。 结论:Cr12MoV的淬透性、淬火、回火的硬度,耐磨性、强度均比C r12高,具有高刃性,高耐磨性及良好的综合机械 性能。可制造形状复杂的冲孔凸凹模,滚边模、拉丝模 及标准量具等。 二、毛坯的选择 (1)毛坯种类的确定:由于该要加工工件为落料拉深凸凹模,,为了使零件材料内部组织细密、炭化物分布和流 线分布合理,从而提高模具的质量和使用寿命;所以选 择锻造方法来获得毛坯。

(2)毛坯尺寸、形状的确定: a,模具零件毛坯应考虑为模具加工提供方便应尽可能 根据所需的尺寸确定毛坯,以免浪费加工工时,提高模 具成本。 b,确定毛坯尺寸还应考虑毛坯在制造过程生产的各 种缺陷(如锻造夹层、裂纹、脱碳层、氧化皮等), 在加工时必须完全去除以免影响模具的质量。 c,毛坯形状应尽可能与模具零件形状一致,以减少 机械加工的工作量。 综上所述:选择空心锻造棒料并根据查表毛坯的锻造尺寸为如下: 主要外表面尺寸φ180mm、65mm 主要内表面φ100mm (3)安装方法: 加工大端面及内孔时,可直接采用三爪卡盘装夹, 粗加工小端可采用反爪大端,半精、精加工小端时, 则应配以心轴,以内孔φ109mm定位轴向夹紧工件, 型孔加工时,可采用分度头安装,将主轴上抬90度, 并采用直接分度法,保证2*φ8、4*ΦM10在零件圆 周上的均分度位置。 (4)表面加工方法: φ116φ176φ109.4φ140.4采用精度达到精度及

磨削加工原理

7.3.2珩磨 珩磨是磨削加工的 1 种特殊形式,属于光整加工。需要在磨削或精镗的基础上进行。珩磨加工范围比较广,特别是大批大量生产中采用专用珩磨机珩磨更为经济合理,对于某些零件,珩磨已成为典型的光整加工方法,如发动机的气缸套,连杆孔和液压缸筒等。 (1)珩磨原理 在一定压力下,珩磨头上的砂条(油石)与工件加工表面之间产生复杂的的相对运动,珩磨头上的磨粒起切削、刮擦和挤压作用,从加工表面上切下极薄的金属层。 (2)珩磨方法 珩磨所用的工具是由若干砂条 ( 油石 ) 组成的珩磨头,四周砂条能作径向张缩,并以一定的压力与孔表面接触,珩磨头上的砂条有 3 种运动 ( 如图 7.3 a ) ;即旋转运动、往复运动和加压力的径向运动。珩磨头与工件之间的旋转和往复运动,使砂条的磨粒在孔表面上的切削轨迹形成交叉而又不相重复的网纹。珩磨时磨条便从工件上切去极薄的一层材料,并在孔表面形成交叉而不重复的网纹切痕 ( 如图 7.3 b ), 这种交叉而不重复的网纹切痕有利于贮存润滑油,使零件表面之间易形成—层油膜,从而减少零件间的表面磨损。 (3)珩磨的特点 1)珩磨时砂条与工件孔壁的接触面积很大,磨粒的垂直负荷仅为磨削的 1/50~1/100 。此外,珩磨的切削速度较低,一般在 100m/min 以下,仅为普通磨削的 1/30~1/100 。在珩磨时,注入的大量切削液,可使脱落的磨粒及时冲走,还可使加工表面得到充分冷却,所以工件发热少,不易烧伤,而且变形层很薄,从而可获得较高的表面质量。 2)珩磨可达较高的尺寸精度、形状精度和较低的粗糙度,珩磨能获得的孔的精度为 IT6~IT7 级,表面粗糙度 Ra 为 0.2~0.025 。由于在珩模时,表面的突出部分总是先与沙条接触而先被磨去,直至砂条与工件表面完全接触,因而珩磨能对前道工序遗留的几何形状误差进行一定程度的修正,孔的形状误差一般小于 0.005mm 。 3)珩磨头与机床主轴采用浮动联接,珩磨头工作时,由工件孔壁作导向,沿预加工孔的中心线作往复运动,故珩磨加工不能修正孔的相对位置误差,因此,珩磨前在孔精加工工序中必须安排预加工以保证其位置精度。一般镗孔后的珩磨余量为 0.05~0.08mm ,铰孔后的珩磨余量为 0.02~0.04mm ,磨孔后珩磨余量为0.01~0.02mm 。余量较大时可分粗、精两次珩磨。 4)珩磨孔的生产率高,机动时间短,珩磨 1 个孔仅需要 2~3min ,加工质量高,加工范围大,可加工铸铁件、淬火和不淬火的钢件以及青铜件等,但不宜

电火花加工原理

电火花加工 电火花加工(Electrical Discharge Machining,简称EDM)是通过工件和工具电极间的放电而有控制地去除工件材料,以及使材料变形、改变性能的特种加工。其中成形加工适用于各种孔、槽模具,还可刻字、表面强化等;切割加工适用于各种冲模、粉末冶金模及工件,各种样板、磁钢及硅钢片的冲片,钼、钨、半导体或贵重金属。 一、电火花加工原理 电火花加工(Electrical Discharge Machining,简称EDM)是通过工具电极和工件之间产生脉冲性的火花放电,靠放电的瞬间产生局部高温把金属蚀除下来。由于在放电过程中可见到火花,故称之为电火花加工。电火花加工原理如图15-19所示。 图15-19 电火花加工原理示意图1-自动进给调节装置 2-工具 3-工作液 4-工件 5-工作液泵 6-脉冲电源 二、实现电火花加工的条件 1.工具电极和工件电极之间必须施加 60V~300V 的脉冲电压,同时还需维持合理的放电间隙。大于放电间隙,介质不能被击穿,无法形成火花放电;小于放电间隙,会导致积炭, 甚至发生电弧放电,无法继续加工。 2.两极间必须充放具有一定绝缘性能的液体介质。电火花成形加工一般用煤油做工作液。

3.输送到两极间的脉冲能量应足够大,放电通道间的电流密度,一般为104~109A/cm2。 4.放电必须是短时间的脉冲放电。一般放电时间为 1μs~1ms。这样才能使放电产生的热量来不及扩散,从而把能量作用局限在很小的范围内。 5.脉冲放电需要多次进行,并且在时间上和空间上是分散的,以避免发生局部烧伤。 6.脉冲放电后的电蚀产物应能及时排放至放电间隙之外,使重复性放电能顺利进行。 三、电火花加工的特点 1.适合于难切削材料的加工,能“以柔克刚” 。 2.工具电极与工件不接触,两者间作用力很小。 3.脉冲参数可调节,能在同一机床连续进行粗、半精、精加工,加工过程易于自动控制。 4.主要用于加工金属等导电材料,在一定条件下也可以加工半导体和非金属材料。 5.电极的耗损影响加工精度。 四、电火花加工的应用范围 1.加工各种金属及合金材料、特殊热敏感材料、半导体材料等; 2. 加工各种形状复杂的型腔和型孔,如各种模具的型腔、型孔,样板、成形刀具以及小孔(直径0.01mm)、异型孔等; 3.加工范围已达到小至十微米的孔、缝,大到几米的大型模具和零件

设备远程实时监测系统的研究

设备远程实时监测系统的研究 陈新宇1 周锋2 王丽华1 荀东升3 1.天津科技大学 2.天津电气传动设计研究所 3.天津普辰电子公司 摘要:论述了基于Internet的设备远程实时监测系统的实现方法,采用虚拟仪器技术,研究了以D ataSocket 和A ctiveX技术来实现远程设备运行状态参数的传输和显示,以德国进口的大型珩磨机为例,采用C lient2serv2 er(C S)模式,实现了设备的远程实时监测和简单的故障诊断。 关键词:远程监测 数据采集 C S模式 Study on Rea l-ti m e M on itor i ng Syste m for Re m ote Equ ip m en t Chen X inyu Zhou Feng W ang L ihua Xun Dongsheng Abstract:T he m ethods of real ti m e monito ring fo r remo te equi pm ent are discussed based on virtual instru2 m ents(V I).A new m ethod of data trans m issi on and disp lay of running status of the equi pm ent is studied by D ataSocket and A ctiveX techno logy.T ake ger m an i m po rted grinding m ach ine fo r examp le,the real2ti m e moni2 to ring system fo r the remo te equi pm ent is realized in client2server(C S)mode. Keywords:remo te monito ring data acquisiti on client2server(C S)mode 1 概述 网络测控是融合通信网络技术、自动化测控技术、计算机技术的一门前沿应用学科。实现测控技术网络化的实用意义至少有以下3点。 1)有利于降低测控系统的成本。利用网络技术将分散在不同地理位置不同功能的检测设备联系在一起,使昂贵的硬件、软件在网络内得以共享,减少设备的重复投资。 2)有利于实现远距离测量和控制。通过网络,一台计算机采集的数据可以立即传输到另一台计算机;操作人员也可以在另一台计算机控制这台计算机的采集及输出。 3)有利于实现设备的远距离诊断和维护。特别是进出口设备,如果能实现基于In ternet跨国的远程监测和诊断,将大大降低维修费用。因此,网络测控是当今测控技术发展的方向。 2 实现原理与构成 2.1 实现原理 设备远程监测的原理是:用户连接到网络上,通过远程访问的客户程序发送客户身份验证信息和与远程主机连接的要求,远程主机的服务器端程序验证客户身份,如果验证通过,就与客户建立连接,并向用户发送验证通过和已建立连接的信息。这时,用户便可以通过客户端程序监控或向远程主机发送要执行的指令,而服务器端程序则执行这些指令,然后把执行的结果传递给客户端,并在客户端按一定规则显示出来。远程控制软件一般为C S模式,即客户 服务器模式。这种模式包含2个部分:一个客户端程序,一个服务器端程序。使用前需要将客户端程序安装到主控端计算机上,将服务器程序安装到被控端计算机上。2.2 系统的硬件构成 设备远程监测系统根据被测设备的配制而异,通常系统组成如图1所示。有些设备本身具有联网能力,可以直接接入网络;而大多数设备不具备这样的接口,因此,一般须通过传感系统将被测设备运行状态转换成电量,信号调理单元将转换的电信号进行适当的处理(诸如放大、调制、滤波等),直到便于计算机数据采集和处理,服务器通过In ternet将信息传输到网上,并传输到远程监 84  电气传动 2005年 第35卷 第2期设备远程实时监测系统的研究

光纤激光切割原理

光纤激光切割原理 一般来说,激光切割质量可以由以下6个标准来衡量。 1.切割表面粗糙度Rz 2.切口挂渣尺寸 3.切边垂直度和斜度u 4.切割边缘圆角尺寸r 5.条纹后拖量n 6.平面度F 工作原理 激光是一种光,与自然界其它发光体一样,是由原子(分子或离子等)跃迁产生的,而且是自发辐射引起的。激光虽然是光,但它与普通光明显不同是激光仅在最初极短的时间内依赖于自发辐射,此后的过程完全由激辐射决定,因此激光具有非常纯正的颜色,几乎无发散的方向性,极高的发光强度。激光同时又具有高相干性、高强度性、高方向性,激光通过激光器产生后由反射镜传递并通过聚集镜照射到加工物品上,使加工物品(表面)受到强大的热能而温度急剧增加,使该点因高温而迅速的融化或者汽化,配合激光头的运行轨迹从而达到加工的目的。激光加工技术在广告行业的应用主要分为:激光切割、

激光雕刻两种工作方式,对于每一种工作方式,我们在操作流程中有一些不尽相同的地方。 激光雕刻:主要是在物体的表面进行,分为位图雕刻和矢量雕刻两种: 位图雕刻:我们先在PHOTOSHOP里将我们所需要雕刻的图形进行挂网处理并转化为单色BMP格式,而后在专用的激光雕刻切割软件中打开该图形文件。根据我们所加工的材料我们进行合适的参数设置就可以了,而后点击运行,激光雕刻机就会根据图形文件产生的点阵效果进行雕刻。 矢量雕刻:使用矢量软件如Coreldraw,AutoCad,Iluustrator 等排版设计,并将图形导出为PLT,DXF,AI格式,打标机,然后再用专用的激光切割雕刻软件打开该图形文件,传送到激光雕刻机里进行加工。 在广告行业主要适用于木板、双色板、有机玻璃、彩色纸等材料的加工。 激光切割:我们可以理解为是边缘的分离。对这样的加工目的,我们应该先在CORELDRAW、AUTOCAD里将图形做成矢量线条的形式,气动打标机,然后存为相应的PLT、DXF格式,用激光切割机操作软件打开该文件,根据我们所加工的材料进行能量和速度等参数的设置再运行即可。激光切割机在接到计算机的指令后会根据软件产生的飞

电火花加工原理

电火花加工时,脉冲电源的一极接工具电极,另一极接工件电极,两极均浸入具有一定绝缘度的液体介质(常用煤油或矿物油或去离子水)中。工具电极由自动进给调节装置控制,以保证工具与工件在正常加工时维持一很小的放电间隙(0.01~0.05mm)。当脉冲电压加到两极之间,便将当时条件下极间最近点的液体介质击穿,形成放电通道。由于通道的截面积很小,放电时间极短,致使能量高度集中(10~107W/mm),放电区域产生的瞬时高温足以使材料熔化甚至蒸发,以致形成一个小凹坑。第一次脉冲放电结束之后,经过很短的间隔时间,第二个脉冲又在另一极间最近点击穿放电。如此周而复始高频率地循环下去,工具电极不断地向工件进给,它的形状最终就复制在工件上,形成所需要的加工表面。与此同时,总能量的一小部分也释放到工具电极上,从而造成工具损耗。 从上看出,进行电火花加工必须具备三个条件:必须采用脉冲电源;必须采用自动进给调节装置,以保持工具电极与工件电极间微小的放电间隙;火花放电必须在具有一定绝缘强度(10~107Ω ·m)的液体介质中进行。 电火花加工具有如下特点:可以加工任何高强度、高硬度、高韧性、高脆性以及高纯度的导电材料;加工时无明显机械力,适用于低刚度工件和微细结构的加工:脉冲参数可依据需要调节,可在同一台机床上进行粗加工、半精加工和精加工;电火花加工后的表面呈现的凹坑,有利于贮油和降低噪声;生产效率低于切削加工;放电过程有部分能量消耗在工具电极上,导致电极损耗,影响成形精度。电火花加工的应用 电火花加工主要用于模具生产中的型孔、型腔加工,已成为模具制造业的主导加工方法,推动了模具行业的技术进步。电火花加工零件的数量在3000件以下时,比模具冲压零件在经济上更加合理。按工艺过程中工具与工件相对运动的特点和用途不同,电火花加工可大体分为:电火花成形加工、电火花线切割加工、电火花磨削加工、电火花展成加工、非金属电火花加工和电火花表面强化等。 (1)电火花成形加工该方法是通过工具电极相对于工件作进给运动,将工件电极的形状和尺寸复制在工件上,从而加工出所需要的零件。它包括电火花型腔加工和穿孔加工两种。电火花型腔加工主要用于加工各类热锻模、压铸模、挤压模、塑料模和胶木膜的型腔。电火花穿孔加工主要用于型孔(圆孔、方孔、多边形孔、异形孔)、曲线孔(弯孔、螺旋孔)、小孔和微孔的加工。近年来,为了解决小孔加工中电极截面小、易变形、孔的深径比大、排屑困难等问题,在电火花穿孔加工中发展了高速小孔加工,取得良好的社会经济效益。 (2)电火花线切割加工该方法是利用移动的细金属丝作工具电极,按预定的轨迹进行脉冲放电切割。按金属丝电极移动的速度大小分为高速走丝和低速走丝线切割。我国普通采用高速走丝线切割,近年来正在发展低速走丝线切割,高速走丝时,金属丝电极是直径为φ0.02~φ0.3mm的高强度钼丝,往复运动速度为8~10m/s。低速走丝时,多采用铜丝,线电极以小于0.2m/s的速度作单方向低速运动。线切割时,电极丝不断移动,其损耗很小,因而加工精度较高。其平均加工精度可达 0.0lmm,大大高于电火花成形加工。表面粗糙度Ra值可达1.6 或更小。

高精度珩磨机控制系统设计_陆永耕

第12卷第2期 2009年6月 上海电机学院学报 JO U RN A L O F SH A NG H AI DI AN JI U N IV ERSIT Y Vol.12No.2 Jun.2009 收稿日期:2009-04-17 作者简介:陆永耕(1963-),男,教授,博士,专业方向为工业自动化、超声电机控制及数字图象处理,E -mail:luyg @https://www.sodocs.net/doc/a94471078.html, 文章编号 1671-2730(2009)02-0095-04 高精度珩磨机控制系统设计 陆永耕 (上海电机学院电气学院,上海200240) 摘 要:根据珩磨车床加工工艺原理和控制要求,利用可编程控制PLC 技术,设计了珩磨车床控制系统。阐述了系统PLC 主控制器系统硬件组成和I/O 端口设计、控制参数设置及运行控制方式。 关键词:珩磨;控制系统;PLC 中图分类号:T G 589.023.5 文献标识码:A Design of the Control System for High Precision Honing Machines L U Yong geng (Scho ol of Electric,Shanghai Dianji University,Shanghai 200240,China) Abstract:The control system o f a ho ning machine based on the PLC techno logy is desig ned in this paper,accor ding to the pro cessing principle and the control requirements of the ho ning m achine.T he system hardw are construction o f PLC main contr oller,the I/O po rts and control param eter setting and m ode o f operation co ntro l are presented. Key words:honing;contr ol system;PLC 早期的珩磨实际上是一种摩擦工艺,最初生产的珩磨头装于钻床上珩磨,切削量非常小(最大为0.15mm )。现代珩磨可定义为一种切削金属的方法,实现对工件尺寸、圆度、直线度、位置度和表面粗糙度的要求。珩磨作为一种万能的孔加工方法,在粗珩工序上采用大切削的工艺,最大切削量可达0.70~1.00mm;并取消了传统的精镗、精磨工序,广泛地应用于油缸、气缸套和泵体缸孔等的加工作业[1]。 现代珩磨机大量采用高新控制、振动珩磨头制造、多种材质珩磨条制造和现代测量等技术,特别是随着珩磨工件要求的不断提高,对与之配套的刀具 材料也提出了越来越高的要求,由单一的油石向金刚石、刚玉、氮化硼、碳化硅发展,从而实现大加工余量的切削。同时,控制系统也由传统的机-电-液压控制系统,向数字控制、数字控制工艺参数的数控(CNC)车床方向发展 [2-4] 。 作为油缸加工的核心设备之一,珩磨机的研制开发成为许多精密加工厂家急需解决的问题。通过对国内外重点生产厂家同类产品的比较,在总结德 国格林、美国德隆、美国善能产品的基础上,结合油缸、喷嘴、异形工件等深孔产品的精加工特点和实际工作经验,制订了适合冷拔、镗孔等管坯加工使用的强力珩磨机设计方案,在满足加工工艺指标的前提

机械加工工艺过程例子

例1 :试提出小批生产下图所示零件的机械加工工艺过程(从工序到工步)。 [解答]:齿轮加工内容有两端面、内孔、四个小孔、键槽、齿等。为保证A、B面的平行度还需磨削,齿部还需高频淬火。 加工工艺过程 序号工序 安装或工 位 工步走刀 1车第一次安 装 1.粗车端 面A; 2.粗车外 圆; 3.钻孔; 4.粗镗 孔; 5.精镗 孔; 6.精车端 面A; 7.精车外 圆; 8.倒角。 1.两 次; 2.两 次; 4.两次;调头安装 1.粗车端面B; 2.精车端面B; 3.倒角 1.两 次 2钻工位1 工位2 工位3 工位4 钻φ12孔 钻φ12孔 钻φ12孔 钻φ12孔 3插安装一次插键槽若干次4磨平面安装一次磨端面B 5滚齿安装一次1.粗滚;2.精滚。 6齿面高淬火 如上例齿轮,若毛坯为模锻件,试提出小批、成批和大批大量生产其机械加工工艺过程(工序到 工步)。 齿轮加工工序安排 工 序号 1234567单车端面A、外圆和钻孔插键槽平面磨滚淬

件小批端面B、外圆、内孔齿火 成批车端面A、内孔车端面 B、 外圆 钻孔插键槽滚 齿 淬 火 大量钻五个孔(多轴 钻床) 拉孔、拉 键槽(拉床) 粗车外圆、 端面(多刀车床) 粗车外圆、 端面(多刀车床) 滚 齿 剃 齿 淬 火 若批量生产时毛坯为锻件,工序1变为两个工序。即,如果在加工端面A和外圆后,就将该工件卸下,换上另一工件,加工其端面A和外圆,一直到一批零件加工完,再调头加工端面B及另一部分外圆,这中间就有了间断,因此就是两个工序。对于大批大量生产,采用拉刀拉孔、多刀车床车外圆(复合工步)等先进工艺,可提高生产率。因此齿轮大量生产和小量生产其工艺有很大差别。 例2:试提出如右图所示小轴的小批、成批和大批大量生 产的机械加工工艺规程,并分析每种方案的工艺过程组成。 表1 阶梯轴加工工艺过程(小批生产) 工 序号 工序内容设备 1 车一端面,打中心孔;调头车另一端面,打中心孔车床 2 车大端外圆及倒角;车小端外圆及倒角车床 3 铣键槽;去毛刺。铣床 表2 阶梯轴加工工艺过程(成批生产) 工 序号 工序内容设备1车端面,打中心孔车床 2车另一端面,打中心孔车床 3车大端外圆及倒角车床 4车小端外圆及倒角车床 5铣键槽铣床 6去毛刺钳工台 表3 阶梯轴加工工艺过程(大批大量生产) 工 序号 工序内容设备 1铣端面,打中心孔铣端面打中心孔 机床 2车大端外圆及倒角车床 3车小端外圆及倒角车床 4铣键槽键槽铣床 5去毛刺钳工台 例3:如右图盘状零件,其机械加工工艺过程有如下两种方案,试分析每种方案工艺过程的组成。

相关主题