搜档网
当前位置:搜档网 › 统计学第5-6章 正态分布 统计量其抽样分布

统计学第5-6章 正态分布 统计量其抽样分布

统计学第5-6章 正态分布 统计量其抽样分布
统计学第5-6章 正态分布 统计量其抽样分布

第5-6章 统计量及其抽样分布

5.1正态分布

5.1.1定义:当一个变量受到大量微小的、独立的随机因素影响时,这个变量一般服从正态分布或近似服从正态分布。

概率密度曲线图

例如:某个地区同年龄组儿童的发育特征:身高、体重、肺活量等 某一条件下产品的质量

如果随机变量X 的概率密度为

22

()21

(),2x f x e

x μσπσ

--=-∞<<∞

则称X 服从正态分布。

记做

2

(,)X N μσ:,读作:随机变量X 服从均值为μ,方差为2

σ的正态分布 其中,

μ-∞<<∞,是随机变量X 的均值,0σ>是是随机变量X

的标准差

5.1.2正态密度函数f(x)的一些特点:

()0f x ≥,即整个概率密度曲线都在x 轴的上方。

曲线

()f x 相对于x μ=对称,并在

x μ=处达到最大值,

1

()

2

πσ

=

1

μ<

2

μ<

3

μ

曲线的陡缓程度由

σ

决定:σ越大,曲线越平缓;σ越小,曲线越陡峭当

x

趋于无穷时,曲线以x轴为其渐近线。

标准正态分布

0,1

μσ

==

时,

2

2

1

()

2

x

f x e

π

-

=

x

-∞<<∞

(0,1)

N

为标准正态分布。

标准正态分布的概率密度函数:

()x ?

标准正态分布的分布函数:

()x Φ

任何一个正态分布都可以通过线性变换转化为标准正态分布

2

(,)

X Nμσ

:

,则

(0,1)

X

Z N

μ

σ

-

=:

变量

2

11

(,)

X Nμσ

:与变量2

22

(,)

Y Nμσ

:相互独立,则有

22

1212

+(+,+) X Y Nμμσσ

:

5.1.3 正态分布表:可以查的正态分布的概率值()1()

x x

Φ-=-Φ

例:设

(0,1)

X N

:,求以下概率

(1)

( 1.5) P X<

(2)

(2) P X>

(3)

(13) P X

-<≤

(4)

(2)P X ≤

解:

(1) 1.5

( 1.5)()(1.5)0.9332P X t dt ?-∞<==Φ=?

(2)

(2)1(2)1210.97730.0227

P X P X >=-≤=-Φ=-=() (3)

(13)(3)(1)(3)(1)

(3)(1(1))0.9987(10.8413)0.84

P X P X P X -<≤=≤-≤-=Φ-Φ-=Φ--Φ=--= (4)

(2)(22)(2)(2)

(2)(1(2))2(2)10.9545

P X P X ≤=-≤≤=Φ-Φ-=Φ--Φ=Φ-=

一般,若

(0,1)X N :,则有

()()()P a X b b a <≤=Φ-Φ

()2()1P X a a ≤=Φ-

例 设2

(5,3)X N :,求以下概率

(1)(10)P X ≤

(2)

(210)P X <<

(3)

(28)P X ≤≤

(4)

(56)P X -≤

(5)

(59)P X -≤

解:由2

(5,3)X N :,

5

(0,1)3

X N -: (1)

1.675105

(10)()

33

5( 1.67)

3()(1.67)0.9522

X P X P X P t dt ?-∞

--≤=≤-=≤==Φ=?

(2)

255105

(210)()

333

5

(1 1.67)

3(1.67)(1)0.7938

X P X P X P ---<<=<<-=-<<=Φ-Φ-=

(3)

25585

(28)()

333

5

(11)

32(1)120.841310.6826

X P X P X P ---≤≤=≤≤-=-≤≤=Φ-=?-=

(4)

56

(56)()

33

5(2)

32(2)120.977210.9544

X P X P X P --≤=≤-=≤=Φ-=?-=

(5)

5

(59)(

3)

3

2(3)120.998710.9974

X P X P --≤=≤=Φ-=?-=

一般,若

2

(,)X N μσ:,则有 ()()()b a P a X b μμ

σσ

--<≤=Φ-Φ

5.1.4 3σ

准则

(0,1)X N :,则有

(1)2(1)10.6826P X ≤=Φ-=

(2)2(2)10.9545P X ≤=Φ-=

(3)2(3)10.9973P X ≤=Φ-=

即,X 的取值几乎全部集中在[]3,3-区间内,超出这个范围的可能不到0.3%

至一般正态总体,即

2

(,)X N μσ:,有

()0.6826P X μσ-≤=

(2)0.9545P X μσ-≤=

(3)0.9973P X μσ-≤=

显然(3)P X μσ->的概率很小,因此可以认为X 的值几乎一定落在区

间(3,3)μσμσ-+内——统计学的“3σ准则”

5.1.5 正态分布函数的一个重要性质

设变量211(,)X N μσ:,222(,)Y N μσ~,X 与Y 相互独立,则有

2

21212

+(+,+)X Y N μμσσ:221212

-(-,+)X Y N μμσσ:

5.1.6 求分位数

Z α

()0,1X N :

()()Z P X Z x dx α

α?α∞≥==?

1-=-Z Z αα

常用的几个Z 分位数:

0.050.0251.64, 1.96Z Z ==

0.950.975-1.64,-1.96Z Z ==

5.2 由正态分布导出的几个重要分布

三大分布:

2

,,t F χ分布

5.2.12χ分布

1 定义:设随机变量

12,,,n

X X X L 相互独立,且

(0,1)

i X N :(1,2,,)i n =L ,则它们的平方和服从自由度为

n 的

2

x

分布。

记做,2

2

()i X

n χ∑:

2

2x 分布的密度函数图形

图形特点:

(1)

2

x

分布的变量值始终为正。

(2)

2

x

分布的形状取决于其自由度n 的大小,通常为不对称的右偏分布,

随着自由度的增大逐渐趋于对称。 (3)

2

x

分布的期望为2

()E n χ

=,方差为2

()2D n χ

=(n 为自由

度)。 (4)

2

x

分布具有可加性。

X Y

与是相互独立的随机变量,

21~(),X x n 22~()Y x n ,则它

们的和服从于自由度为

12

n n +的

2

x

分布,即

212~()X Y x n n ++。

3

2

x

分布临界值表的使用,求得2

x 分布的分位数

2

x

分布临界值表中给出的是概率为

α

时,

2

x α的取值,k 是自由度。

22

2

()()x P x x f x dx α

αα+∞

≥==?

x α

例如,若随机变量

2

(10)X χ:, 则查表可得2

0.05(10) 3.94χ=,2

0.95(10)18.307χ=,

5.2.2 t 分布(student 分布)

设随机变量

,X Y

互相独立,

2

~(0,1),~()X N Y x n ,则随机变量

~()

X

t t n

=

——自由度为n的t分布

t分布概率密度函数图

特点:

①关于y轴对称,与标准正态分布的密度函数的图像非常相似。

②厚尾:当

x→∞时,t分布的密度函数趋于0的速度要比标准正态分布密度函数慢,所以t分布的密度函数的尾部要比

(0,1)

N

密度的尾部厚些。

③当自由度n无限增大时,t分布将趋近于标准正态分布。

所以,当n很大时,t分布可以用标准正态分布近似。记

()

t n

α为分布

()

t n

的α分位数。

在实际使用中,当30

n≥,就近似有()

t n Z

αα

α

由于t分布密度曲线的对称性,可得

1()()t n t n αα-=-

例如,若随机变量(15)T t :,查表可得,0.05(15) 1.7531t =,

而0.95

0.05(15)(15) 1.76531t

t =-=-

0.05(40) 1.6839t =,0.05(45) 1.6794t = 0.95 1.645Z =

可见随着自由度n 的增大,t 分位数与z 分位数越来越接近。 5.2.3 F 分布

设随机变量X 与Y 相互独立且分别服从自由度为m 和n 的2

χ分布。则随机变量//X m

F Y n

=

服从第一自由度为

m

第二自由度为

n

的F 分布。

记为

()F F m n :,

x

F 分布的概率密度函数的图

设随机变量

(,)F F m n :,

(,)F m n α表示分布(,)F m n 的α

分位数,

α

可以证明

11

(,)(,)

F m n F n m αα-=

例如查表得

0.95F (8,9)=3.23,

则0.050.950.31F F =11

(9,8)==(8,9) 3.23

5.6 小概率原理

指发生概率很小的随机事件在一次实验中几乎不可能出现。

6.1 统计量

定义:设

12,,,n X X X L 是从总体X

中抽取的容量为

n

的一个样本,

如果由此样本构造一个不依赖于任何未知参数的函数

12(,,,)n T X X X L ,则称函数12(,,,)n T X X X L 是一个统计量。

特点:

由样本构造而得,是样本的函数 不含任何未知的参数

当获得样本的一组具体观测值

12(,,,)n x x x L ,带入T

,计算出

12(,,,)n T x x x L 的数值,称为统计量的值

常用的统计量

2,X S

6.2 抽样分布

抽样分布:统计量的分布 随机变量X

渐近分布:难以得到精确分布时,借助于极限工具,求得抽样分布的近似分布,称为渐近分布。

定理1:

设()12,,,n X X X L 是取自总体X

的一个样本,记

()i E X μ

=,

2()i D X σ=,那么

①()E X μ=,2

()D X n

σ=

②2

2

()E s

σ

=,2

2

1()n

n E s n

σ-= ③ 当n →∞时,

P

X μ??→ lim ()1n P X με→∞

-<=

④ 当n →∞时,22

P s σ??

→, 2

2P n s σ??→

定理2:

设()12,,,n X X X L 是取自正态总体

2

(,)N μσ的一个样本 ①2

(,)X N n σμ:

,或等价地(0,1)X N μ

-:

② 2

22

22

2

2

()(1)(1)i

n X X ns

n s

n χσσ

σ--=

=

-∑:

③ X

2

s

相互独立

推论1:

设()

12

,,,

n

X X X

L

是取自正态总体

2

(,)

Nμσ

的一个样本,那么

(1)

X

t n

μ

-

-

:

简要证明:

2

(,)

X Nμσ

:(0,1)

X

N

-

?:

2

2

2

(1)

(1)

n s

n

χ

σ

-

-

:

(1)

X

t n

μ

-

?-

:

独立(t分布的定义)

(1)

X

t n

μ

-

-

:

推论2

()

12

,,,

m

X X X

L

是取自正态总体

2

11

(,)

Nμσ

的一个样本,()

12

,,,

n

Y Y Y

L

是取自正态总体

2

22

(,)

Nμσ

的一个样本,

X与Y相互独立,那么

()()

(0,1)

X Y N μμ---:

简要证明:

211

(,)

X N μσ:21

1(,

)

X N m

σ

μ?:

222

(,)

Y N μσ:22

2(,

)

Y N n

σ

μ?:

独立,

221

2

12(,

)

X Y N m

n

σ

σ

μμ--+

:

()()

(0,1)

X Y N μμ---:

推论3:

设()12,,,m X X X L 是取自正态总体21(,)N μσ的一个样本,

()12,,,n Y Y Y L 是取自正态总体2

2

(,)

N μσ

的一个样本,

X 与Y 相互独立,那么

()()

(2)

X Y t m n μμ---+-:

其中,

222

12

(1)(1)(2)p

m s n s s m n -+-=

+-

简要证明:

2

1(,)X N μσ:2

1(,

)X N m

σ

μ?:

2

2(,)

Y N μσ:2

2(,

)

Y N n

σ

μ?:

独立,

2

2

12(,

)

X Y N m

n

σ

σ

μμ--+

:

22

1

2

(1)(1)

m s

m χσ

--:

222

2

(1)(1)n s

n χσ

--:

可加性

222

12

2

2

(1)(1)(2)

m s

n s

m n χσ

σ

--+

+-:

()()

(2)

X Y t m n μμ---?

+-:

整理得

()()(2)

X Y t m n μμ---?

+-:

设2221

2

(1)(1)(2)

p

m s n s s m n -+-=+-

即()()

(2)

X Y t m n μμ---+-:

推论4:

设()12,,,m X X X L 是取自正态总体

2

11(,)N μσ的一个样本, ()12,,,n Y Y Y L 是取自正态总体222(,)N μσ的一个样本,

X

Y 相互独立,那么

22112222

/(1,1)

/s F m n s σ

σ

--: 简要证明:

正态

211

(,)X N μσ:221

21

(1)(1)m s

m χσ

-?

-:

222

(,)

Y N μσ:2

22

22

(1)(1)n s n χσ-?

-:

21

21

22

22

(1)/(1)

(1,1)

(1)/(1)

m s m F m n n s

n σ

σ

--?

----:

2211222

2

/(1,1)/s F m n s σ

σ

--:

非正态总体的情形

定理:设

()

12,,,n X X X L 是取自总体

X

的一个样本,当

n 较大

时,近似地有

(0,1)

X N μ

-:

(0,1)

X N μ

-:

统计学第5-6章 正态分布、 统计量及其抽样分布知识分享

统计学第5-6章正态分布、统计量及其 抽样分布

第5-6章统计量及其抽样分布 5.1正态分布 5.1.1定义:当一个变量受到大量微小的、独立的随机因素影响时,这个变量一般服从正态分布或近似服从正态分布。 概率密度曲线图 例如:某个地区同年龄组儿童的发育特征:身高、体重、肺活量等某一条件下产品的质量 如果随机变量X的概率密度为 2 2 () 2 1 (), 2 x f x e x μ σ πσ -- =-∞<<∞ 则称X服从正态分布。 记做 2 (,) X Nμσ : ,读作:随机变量X服从均值为 μ ,方差为2 σ的正态分布 其中, μ -∞<<∞ ,是随机变量X的均值,0 σ>是是随机变量X 的标准差

5.1.2正态密度函数f(x)的一些特点: ()0 f x≥, 即整个概率密度曲线都在x轴的上方。 曲线 () f x相对于xμ =对称,并在xμ = 处达到最大值, 1 () 2 fμ πσ = 。 1 μ< 2 μ< 3 μ 曲线的陡缓程度由 σ 决定: σ 越大,曲线越平缓;σ越小,曲线越陡峭当 x 趋于无穷时,曲线以 x轴为其渐近线。 标准正态分布

当 0,1 μσ == 时, 2 2 1 () 2 x f x e π - = , x -∞<<∞ 称 (0,1) N 为标准正态分布。 标准正态分布的概率密度函数: ()x ? 标准正态分布的分布函数: ()x Φ 任何一个正态分布都可以通过线性变换转化为标准正态分布 设 2 (,) X Nμσ : ,则 (0,1) X Z N μ σ - =: 变量 2 11 (,) X Nμσ :与变量2 22 (,) Y Nμσ :相互独立,则有 22 1212 +(+,+) X Y Nμμσσ : 5.1.3 正态分布表:可以查的正态分布的概率值 ()1() x x Φ-=-Φ

统计学抽样与抽样分布练习题

第6章 抽样与抽样分布 练习题 6.1 从均值为200、标准差为50的总体中,抽取100=n 的简单随机样本,用样本均值x 估计总体均值。 (1) x 的数学期望是多少? (2) x 的标准差是多少? (3) x 的抽样分布是什么? (4) 样本方差2 s 的抽样分布是什么? 6.2 假定总体共有1000个单位,均值32=μ,标准差5=σ。从中抽取一个样本量为30的简单随机样本用于获得总体信息。 (1)x 的数学期望是多少? (2)x 的标准差是多少? 6.3 从一个标准差为5的总体中抽出一个样本量为40的样本,样本均值为25。样本均值的抽样标准差x σ等于多少? 6.4 设总体均值17=μ,标准差10=σ。从该总体中抽取一个样本量为25的随机样本,其均值为25x ;同样,抽取一个样本量为100的随机样本,样本均值为100x 。 (1)描述25x 的抽样分布。 (2)描述100x 的抽样分布。 6.5 从10=σ的总体中抽取样本量为50的随机样本,求样本均值的抽样标准差: (1)重复抽样。 (2)不重复抽样,总体单位数分别为50000、5000、500。 6.6 从4.0=π的总体中,抽取一个样本量为100的简单随机样本。 (1)p 的数学期望是多少? (2)p 的标准差是多少? (3)p 的分布是什么? 6.7 假定总体比例为55.0=π,从该总体中分别抽取样本量为100、200、500和1000的样本。

(1) 分别计算样本比例的标准差p σ。 (2) 当样本量增大时,样本比例的标准差有何变化? 6.8 假定顾客在超市一次性购物的平均消费是85元,标准差是9元。从中随机抽取40个顾 客,每个顾客消费金额大于87元的概率是多少? 6.9 在校大学生每月的平均支出是448元,标准差是21元。随机抽取49名学生,样本均值 在441~446之间的概率是多少? 6.10 假设一个总体共有8个数值:54,55,59,63,64,68,69,70。从该总体中按重复 抽样方式抽取2=n 的随机样本。 (1) 计算出总体的均值和标准差。 (2) 一共有多少个可能的样本? (3) 抽出所有可能的样本,并计算出每个样本的均值。 (4) 画出样本均值的抽样分布的直方图,说明样本均值分布的特征。 (5) 计算所有样本均值的平均数和标准差,并与总体的均值和标准差进行比较,得 到的结论是什么? 6.11 从均值为5.4=μ,方差为25.82=σ的总体中,抽取50个由5=n 个观测值组成的 随机样本,结果见Book6.11。 (1) 计算每一个样本的均值。 (2) 构造50个样本均值的相对频数分布,以此代表样本均值x 的抽样分布。 (3) 计算50个样本均值的平均值和标准差x σ。 6.12 来自一个样本的50个观察值见Book6.12。 (1) 用组距为10构建频数分布表,并画出直方图。 (2) 这组数据大概是什么分布?

spss教程常用的数据描述统计:频数分布表等统计学

第二节常用的数据描述统计 本节拟讲述如何通过SPSS菜单或命令获得常用的统计量、频数分布表等。 1.数据 这部分所用数据为第一章例1中学生成绩的数据,这里我们加入描述学生性别的变量“sex”和班级的变量“class”,前几个数据显示如下(图2-2),将数据保存到名为“2-6-1.sav”的文件中。 图2-2:数据输入格式示例 1.Frequencies语句 (1)操作 打开数据文件“2-6-1.sav”,单击主菜单Analyze /Descriptive Statistics / F requencies…,出现频数分布表对话框如图2-3所示。 图2-3:Frequencies定义窗口 把score变量从左边变量表列中选到右边,并请注意选中下方的Display frequency table复选框(要求

显示频数分布表)。如果您只要求得到一个频数分布表,那么就可以点OK按钮了。如果您想同时获得一些统计量,及统计图表,还需要进一步设置。 ①Statistics选项 单击Statistics按钮,打开对话框,请按图2-4自行设置。有关说明如下: (ⅰ)在定义百分位值(percentile value)的矩形框中,选择想要输出的各种分位数,SPSS提供的选项有: ●Quartiles四分位数,即显示25%、50%、75%的百分位数。 ●Cut points equal 把数据平均分为几份。如本例中要求平均分为3份。 Percentile显示用户指定的百分位数,可重复多次操作。本例中要求15%、50%、85%的百分位数。(ⅱ) 在定义输出集中趋势(Central Tendency)的矩形框中,选择想要输出的集中统计量,常用的选项有: ●Mean 算术平均数 ●Median 中数 ●Mode 众数 ●Sum 算术和 (ⅲ)在定义输出离散统计量(Dispersion)的矩形框中,选择想要输出的离散统计量,常用的选项有: ●Std. Deviation 标准差 ●Variance 方差 ●Range 全距 ●Minimum 最小值 ●Maximum 最大值 ●S.E. mean 平均数的标准误 (ⅳ)描述数据分布(Distribution)的统计量 ●Skewness 偏度,非对称分布指数。 ●Kurtosis 峰度,CASE围绕中心点的扩展程度。 另外,频数过程(Frequence)除了能够提供上面常用的统计量外,还可以对分组数据计算百分位数和中数(Values are group midpoints),即对于已经分组的数据,并且数据中的原始数据表示的是组中数的数据计算百分位数的值和中位数。

统计学习题答案 第4章 抽样与抽样分布

统计学习题答案第4章抽样与抽样分布

第4章抽样与抽样分布——练习题(全免) 1. 一个具有64 n个观察值的随机样本抽自于均 = 值等于20、标准差等于16的总体。 ⑴给出x的抽样分布(重复抽样)的均值和标 准差 ⑵描述x的抽样分布的形状。你的回答依赖于 样本容量吗? ⑶计算标准正态z统计量对应于5.15 = x的值。 ⑷计算标准正态z统计量对应于23 x的值。 = 解: 已知n=64,为大样本,μ=20,σ=16, ⑴在重复抽样情况下,x的抽样分布的均值为 a. 20, 2 b. 近似正态 c. -2.25 d. 1.50 2 . 参考练习4.1求概率。 ⑴x<16;⑵x>23;⑶x>25;⑷.x落在16和22之间;⑸x<14。 解: a. 0.0228 b. 0.0668 c. 0.0062 d. 0.8185 e. 0.0013 3. 一个具有100 n个观察值的随机样本选自于 = μ、16=σ的总体。试求下列概率的近似值:30 =

解: a. 0.8944 b. 0.0228 c. 0.1292 d. 0.9699 4. 一个具有900=n 个观察值的随机样本选自于100=μ和10=σ的总体。 ⑴ 你预计x 的最大值和最小值是什么? ⑵ 你认为x 至多偏离μ多么远? ⑶ 为了回答b 你必须要知道μ吗?请解释。 解:a. 101, 99 b. 1 c. 不必 5. 考虑一个包含x 的值等于0,1,2,…,97,98,99的总体。假设x 的取值的可能性是相同的。则运用计算机对下面的每一个n 值产生500个随机样本,并对于每一个样本计算x 。对于每一个样本容量,构造x 的500个值的相对频率直方图。当n 值增加时在直方图上会发生什么变化?存在什么相似性?这里30,10,5,2====n n n n 和50=n 。 解:趋向正态 6. 美国汽车联合会(AAA )是一个拥有90个俱 乐部的非营利联盟,它对其成员提供旅行、

统计学 第六章 抽样与参数估计

《统计学》 第六章 抽样与参数估计 1、某市劳动和社会保障局想调查下岗职工中女性所占的比重,随机抽取300个下岗职工,发现其中195个为女性职工。试以95.45%的概率保证程度,估计该市下岗职工中女性比重的区间范围。 解: 已知n=300,概率保证程度95.45%,Z 0.0455/2 =2 P=300195=65% 区间范围P n )1(2 p p -Z ±α=0.65300 ) 65.01(65.02-±=0.65±0.055 该市下岗职工中女性比重的区间范围为59.5%~70.5之间 2、某灯管厂生产10万只日光灯管,现采用简单随机重复抽样方式抽取1‰灯管进行质量检验,测试结果如下表所示: 耐用时间(小时) 灯管数(只) 800以下 10 800-900 15 900-1000 35 1000-1100 25 1100以上 15 合计 100 根据上述资料: (1)试计算抽样总体灯管的平均耐用时间 (2)在99.73%的概率保证程度下,估计10万只灯管平均耐用时间的区间范围。 (3)按质量规定,凡耐用时间不及800小时的灯管为不合格品,试计算抽样总体灯管的合格率,并按95%的概率保证程度下,估计10万只灯管的合格率区间范围。 (4)若上述条件不变,只是抽样极限误差可放宽到40小时,在99.73%的概率保证程度下,作下一次抽样调查,需抽多少只灯管检验? 解: 耐用时间(小时) 灯管数(只)f 组中值x xf f x x 2)(- 800以下 10 750 7500 484000 800-900 15 850 12750 216000 900-1000 35 950 33250 14000 1000-1100 25 1050 26250 160000 1100以上 15 1150 17250 486000

SPSS统计分析1:正态分布检验

正态分布检验 一、正态检验的必要性[1] 当对样本是否服从正态分布存在疑虑时,应先进行正态检验;如果有充分的理论依据或根据以往积累的信息可以确认总体服从正态分布时,不必进行正态检验。 当然,在正态分布存疑的情况下,也就不能采用基于正态分布前提的参数检验方法,而应采用非参数检验。 二、图示法 1、P-P图 以样本的累计频率作为横坐标,以安装正态分布计算的相应累计概率作为纵坐标,把样本值表现为直角坐标系中的散点。如果资料服从整体分布,则样本点应围绕第一象限的对角线分布。 2、Q-Q图 以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为指教坐标系的散点。如果资料服从正态分布,则样本点应该呈一条围绕第一象限对角线的直线。 以上两种方法以Q-Q图为佳,效率较高。 3、直方图 判断方法:是否以钟形分布,同时可以选择输出正态性曲线。 4、箱式图 判断方法:观测离群值和中位数。 5、茎叶图 类似与直方图,但实质不同。 三、计算法 1、峰度(Kurtosis)和偏度(Skewness) (1)概念解释 峰度是描述总体中所有取值分布形态陡缓程度的统计量。这个统计量需要与正态分布相比较,峰度为0表示该总体数据分布与正态分布的陡缓程度相同;峰度大于0表示该总体数据分布与正态分布相比较为陡峭,为尖顶峰;峰度小于0表示该总体数据分布与正态分布相比较为平坦,为平顶峰。峰度的绝对值数值越大表示其分布形态的陡缓程度与正态分布的差异程度越大。 峰度的具体计算公式为: 注:SD就是标准差σ。峰度原始定义不减3,在SPSS中为分析方便减3后与0作比较。 偏度与峰度类似,它也是描述数据分布形态的统计量,其描述的是某总体取值分布的对称性。这个统计量同样需要与正态分布相比较,偏度为0表示其数据分布形态与正态分布的偏斜程度相同;偏度大于0表示其数据分布形态与正态分布相比为正偏或右偏,即有一条长尾巴拖在右边,数据右端有较多的极端值;偏度小于0表示其数据分布形态与正态分布相比为负偏或左偏,即有一条长尾拖在左边,数据左端有较多的极端值。偏度的绝对值数值越大表示其分布形态的偏斜程度越大。 偏度的具体计算公式为:

(完整word版)统计学三大分布与正态分布的关系

统计学三大分布与正态分布的关系 [1] 张柏林 41060045 理实1002班 摘要:本文首先将介绍 2分布,t 分布,F 分布和正态分布的定义及基本性质, 然后 用理论说明2分布,t 分布,F 分布与正态分布的关系,并且利用数学软件 MATLAB 来验证之. 1.三大分布函数[2] 1.1 2分布 2(n )分布是一种连续型随机变量的概率分布。这个分布是由别奈梅 (Benayme )赫尔默特(Helmert )、皮尔逊分别于1858年、1876年、1900年所发 现,它是由正态分布派生出来的,主要用于列联表检验。 定义:若随机变量X 1,X 2,…X n 相互独立,且都来自正态总体 N (0,,),则称 统计量 2 =x ; X ;…+X ;为服从自由度为n 的2分布,记为 2 2 ~ (n ). 2 分布的概率密度函数为 1 x e 2 x 0 J x 0 其中伽玛函数(X ) e t t x 1dt,x 0, 2 分布的密度函数图形是一个只取非负值 的偏态分布,如下图? x 2 n 2° f(x; n)

2(n2) ,X!,X2相互独立,则X! X2~ 2g n2); 性质3: n 时,2(n) 正态分布; 性质4:设2~ 2(n),对给定的实数 (0 1),称满足条件: P{ 2 2(n)} 2(、f(x)dx (n) 的点2(n)为2(n)分布的水平的上侧分位数. 简称为上侧分位数.对不同的与n,分位 数的值已经编制成表供查 分布,是由英国统计学家戈赛特在1908年“student的'笔名 布在数理统计中也占有重要的位置. 1), Y?2(n), X,Y相互独立,,则称统计量T —X VY/ n 分布,记为T~t( n). 为 性质1: E( 2(n)) n,D( 2(n)) 2n ; 性质2:若X! 2(nJ,X2

统计学第九章抽样与抽样估计

第九章抽样与抽样估计 一、单项选择题 1、抽样极限误差是指抽样指标和总体指标之间(D)。 A.抽样误差的平均数B.抽样误差的标准差 C.抽样误差的可靠程度D.抽样误差的最大可能范围 2、样本平均数和总体平均数(B)。解析:样本平均数是以总体平均数为中心,在其范围内变动(P213) A.前者是一个确定值,B.前者是随机变量, 后者是随机变量后者是一个确定值 C.两者都是随机变量D.两者都是确定值 3、某场要对某批产品进行抽样调查,一直以往的产品合格率分别为90%,93%, 95%,要求误差范围小于5%,可靠性为95.45%,则必要样本容量应为(B)。A.144B.105C.76D.109 4、在总体方差不变的条件下,样本单位数增加3倍,则抽样误差(C)。 A.缩小1/2B.为原来的3/√3C.为原来的1/3D.为原来的2/3 5、在其他条件不变的前提下,若要求误差范围缩小1/3,则样本容量(B)。 A.增加9倍B.增加8倍 C.为原来的2.25倍D.增加2.25倍 6、抽样误差是指(C)。解析:这题考的是抽样误差的定义(P213) A.在抽查过程中由于观察、测量等差错所引起的误差 B.在调查中违反随机原则出现的系统误差 C.随机抽样而产生的代表性误差 D.人为原因所造成的误差 7、在一定的抽样平均误差条件下(A)。

A.扩大极限误差范围,可以提高推断的可靠程度 B.扩大极限误差范围,会降低推断的可靠程度 C.缩小极限误差范围,可以提高推断的可靠程度 D.缩小极限误差范围,不改变推断的可靠程度 8、抽样平均误差是(B)。解析:这题考的是抽样平均误差的定义(P214)A.总体的标准差B.样本的标准差 C.抽样指标的标准差D.抽样误差的平均差 9、对某种连续生产的产品进行质量检验,要求每隔一小时抽出10分钟的产品进行检验,这种抽查方式(D)。 A.简单随机抽样B.类型抽样 C.等距抽样D.整群抽样 10、先将总体各单位按主要标志分组,再从各组中随机抽取一定单位组成样本,这种抽样形式被称为(C)解析:这题考的是抽样调查的几种不同的方式的定义(P211)。 A.简单随机抽样B.机械抽样 C.分层抽样D.整群抽样 11、事先确定整体范围,并对整体的每隔单位都编号,然后根据《随机数码表》 或抽签的方式来抽取样本的抽样组织形式,被称为(B)。 A.简单随机抽样B.机械抽样 C.分层抽样D.整群抽样 12、在同样条件下,不重复抽样的抽样标准误差于重复抽样的抽样的标准误差相 比,(A)。 A.前着小于后者B.前者大于后者 C.两者相等D.无法判断 13、在重复的简单随机抽样中,当概率保证程度从68.27%提高到95.45%时(其 他条件不变),必要的样本容量将会(C)。

统计学答案 第八章 抽样与抽样分布

第八章抽样与抽样分布 一、名词解释 1、统计抽样:按照随机原则从被研究现象的总体中,抽取一部分单位进行观察,然后根据 观察的结果运用数理统计的原理,来估计总体综合指标或者对总体综合指标的某种假设进行 检验。 2、重复抽样:是从总体中每抽出一个样本单位后,把结果记录下来,随即将该单位放回到 总体中去,使它和其余的单位在下一次抽选中具有同等被抽中的机会,再抽取第二个单位,直至抽取n个单位为止。 3、不重复抽样:一个单位被抽中后不再放回总体,然后再从所剩下的单位中抽取第二个单位,直到抽出n个单位为止,这样的抽样方法不可能使一个总体单位被重复抽中,所以称为 不重复抽样。 4、简单随机抽样:在从总体中随机抽取n个单位作为样本时,要使得每一个总体的单位都 有相同的机会(概率)被抽中。 5、分层抽样:在抽样之前先将总体的单位划分为若干层(类),然后从各个层中抽取一定数 量的单位组成一个样本,这样的抽样方式称为分层抽样,也称为分类抽样。 6、系统抽样:在抽样中先将总体各单位按某种顺序排列,并按某种规则确定一个随机起点, 然后,每隔一定的间隔抽取一个单位,直至抽取n个单位形成一个样本。这样的抽样方式称 为系统抽样,也称等距抽样或机械抽样。 7、整群抽样:调查时,先将总体划分成若干群,然后再以群作为调查单位从中抽取部分群, 进而对抽中的各个群中所包含的所有个体单位进行调查或观察,这样的抽样方式称为整群抽样。 8、总体分布:总体是我们关心的若干个元素的集合,总体中每个元素的取值是不同的,这些 观察值所形成的相对频数分布就是总体分布。 9、样本分布:是指一个样本中各观察值所形成的相对频数分布。 10.抽样分布:某个样本统计量的抽样分布,从理论上说就是在重复选取容量为n的样本时, 由该统计量的所有可能取值形成的相对频数分布。 11、比率:是指总体(或样本)中具有某种属性的单位与全部单位总数之比。 12、样本比率的抽样分布:在重复选取容量为n的样本时,由样本比率的所有可能取值形成 的相对频数分布称为样本比率的抽样分布。 二、判断题 1、× 2、√ 3、× 4、× 5、√ 6、× 7、√ 8、√ 9、× 10、√ 三、选择题 1、A 2、A 3、B 4、B 5、C 6、D 7、D 8、D 9、C 10、D 11、C 12、B 13、C 14、C 15、A 16、D 17、A 18、B 19、C 20、B 21、B 22、B 23、B 24、A 25、A 四、简答题 1、简述统计抽样的基本特点。

统计学三大分布及正态分布的关系

统计学三大分布与正态分布的关系 [1] 张柏林 41060045 理实1002班 摘要:本文首先将介绍2χ分布,t 分布,F 分布和正态分布的定义及基本性质, 然后用理论说明2χ分布,t 分布,F 分布与正态分布的关系,并且利用数学软件MATLAB 来验证之. 1.三大分布函数[2] 1.12χ分布 2()n χ分布是一种连续型随机变量的概率分布。这个分布是由别奈梅(Benayme)、赫尔默特(Helmert)、皮尔逊分别于1858年、1876年、1900年所发现,它是由正态分布派生出来的,主要用于列联表检验。 定义:若随机变量12n ,,X X …X 相互独立,且都来自正态总体01N (,) ,则称统计量222 212n =+X X χ++…X 为服从自由度为n 的2χ分布, 记为22~()n χχ. 2χ分布的概率密度函数为 122210(;),2()200n x n x e x n f x n x --?≥??=Γ???? ,2χ分布的密度函数图形是一个只取非负值的偏态分布,如下图.

卡方分布具有如下基本性质: 性质1:22(()),(())2E n n D n n χχ==; 性质2:若221122(),()X n X n χχ==,12,X X 相互独立,则21212~()X X n n χ++; 性质3:2 n χ→∞→时,( n )正态分布; 性质4:设)(~2 2n α χχ,对给定的实数),10(<<αα称满足条 件:αχχα χα ==>?+∞ ) (2 22)()}({n dx x f n P 的点)(2 n α χ为)(2n χ分布的水平α的上侧分位数. 简称为上侧α分位数. 对不同的α与n , 分位数的值已经编制成表供查 用. 2()n χ分布的上α分位数 1.2t 分布 t 分布也称为学生分布,是由英国统计学家戈赛特在1908年“student ”的笔名 首次发表的,这个分布在数理统计中也占有重要的位置. 定义:设2 ~0~X N χ(,1),Y (n ),,X Y 相互独立,,则称统计量/T Y n = 服从自由度为n 的t 分布,记为~()T t n .

贾俊平《统计学》(第5版)课后习题-第6章 统计量及其抽样分布【圣才出品】

第6章 统计量及其抽样分布一、思考题 1.什么是统计量?为什么要引进统计量?统计量中为什么不含任何未知参数? 答:(1)设12n X X X ,, …,是从总体X 中抽取的容量为n 的一个样本,如果由此 样本构造一个函数12()n T X X X ,,…,,不依赖于任何未知参数,则称函数12()n T X X X ,,…,是一个统计量。 (2)在实际应用中,当从某总体中抽取一个样本后,并不能直接应用它去对总体的有关性质和特征进行推断,这是因为样本虽然是从总体中获取的代表,含有总体性质的信息,但仍较分散。为了使统计推断成为可能,首先必须把分散在样本中关心的信息集中起来,针对不同的研究目的,构造不同的样本函数。 (3)统计量是样本的一个函数。由样本构造具体的统计量,实际上是对样本所含的总体信息按某种要求进行加工处理,把分散在样本中的信息集中到统计量的取值上,不同的统计推断问题要求构造不同的统计量,所以统计量不包含未知参数。 2.判断下列样本函数哪些是统计量?哪些不是统计量? 1121021210310410()/10 min() T X X X T X X X T X T X μ μσ =+++==-=-…,,…,()/答:统计量中不能含有未知参数,故1T 、2T 是统计量,3T 、4T 不是统计量。

3.什么是次序统计量? 答:设12n X X X ,, …,是从总体X 中抽取的一个样本,()i X 称为第i 个次序统计量,它是样本 12()n X X X ,,…,满足如下条件的函数:每当样本得到一组观测值12X X ,,…,n X 时,其由小到大的排序 (1)(2)()()i n X X X X ≤≤≤≤≤……中,第i 个值()i X 就作为次序统计量()i X 的观测值,而(1)(2)()n X X X ,,…,称为次序统计量,其中(1)X 和()n X 分别为最小和最大次序统计量。 4.什么是充分统计量? 答:在统计学中,假如一个统计量能把含在样本中有关总体的信息一点都不损失地提取出来,那对保证后边的统计推断质量具有重要意义。统计量加工过程中一点信息都不损失的统计量通常称为充分统计量。 5.什么是自由度? 答:统计学上的自由度是指当以样本的统计量来估计总体的参数时,样本中独立或能自由变化的变量的个数。 6.简述2 χ分布、t 分布、F 分布及正态分布之间的关系。答:(1)随机变量X 1,X 2,… X n 相互独立,且都服从标准正态分布,则它们的平方和21 n i i X =∑服从自由度为n 的2 χ分布。(2)随机变量X 服从标准正态分布,Y 服从自由度为n 的2 χ分布,且X 与Y 独立,

统计学常用分布及其分位数

§1、4 常用得分布及其分位数 1、 卡平方分布 卡平方分布、t 分布及F 分布都就是由正态分布所导出得分布,它们与正态分布一起,就是试验统计中常用得分布。 当X 1、X 2、… 、Xn 相互独立且都服从N(0,1)时,Z=∑i i X 2 得分布称为自由度等于n 得2χ分布,记作Z ~2χ(n),它得分布 密度 p(z )=??? ????>??? ??Γ--,,00,2212122其他z e x n z n n 式中得??? ??Γ2n =u d e u u n ?∞+--012,称为Gamma 函数,且()1Γ=1, ?? ? ??Γ21=π。2χ分布就是非对称分布,具有可加性,即当Y 与Z 相互独立,且Y ~2χ(n ),Z ~2χ(m ),则Y+Z ~2χ(n+m )。 证明: 先令X 1、X 2、…、X n 、X n+1、X n+2、…、 X n+m 相互独立且都服从N(0,1),再根据2χ分布得定义以及上述随机变量得相互独立性,令 Y=X 21+X 22+…+X 2n ,Z=X 21+n +X 22+n +…+X 2m n +, Y+Z= X 21+X 22+…+X 2n + X 21+n +X 22+n +…+X 2m n +, 即可得到Y+Z ~2χ(n +m )。 2、 t 分布 若X 与Y 相互独立,且 X ~N(0,1),Y ~2χ(n ),则Z =n Y X 得分布称为自由度等于n 得t 分布,记作Z ~ t (n ),它得分布密度 P(z)=)()(221n n n ΓΓ+2121+-???? ??+n n z 。 请注意:t 分布得分布密度也就是偶函数,且当n>30时,t

统计学三大分布与正态分布的差异

申请大学学士学位论文 大学 学士学位论文 统计学三大分布与正态分布的差异年级专业: 学生: 指导教师:

统计学三大分布与正态分布的差异 中文摘要 统计学是应用数学的一个分支,主要通过利用概率论建立数学模型,收集所观察系统的数据,进行量化的分析、总结,并进而进行推断和预测,为相关决策者提供依据和参考。它被广泛的应用在各门学科之上,从物理和社会科学到人文科学,甚至被用来工商业及政府的情报决策之上。而对数据的分析过程中就需要利用到数据的分布来研究分类。 在实际遇到的许多随机现象都服从或近似服从正态分布。而由正态分布构造的三大分布在实际中有广泛的应用,因为这三大分布不仅有明确的背景,而且其抽样分布的密度函数有明显表达式,研究三大分布与正态分布有助于研究实际事例,比如经济安全与金融保险领域、人口统计等。 本文讨论了三大分布与正态分布,并将它们之间的密度函数进行比较说明. 第二章介绍了正态分布的定义、性质,三大分布的定义、性质。 第三章介绍了正态分布与三大分布的密度函数,并将它们之间的密度函数进行比较关键词:正态分布;三大分布;密度函数 The Difference between the Three Statistical Distributions and the Normal Distribution Abstract Statistics is a branch of applied mathematics, the mathematical models are mainly established by the probability and statistics theory based on the collecting

统计学第5-6章 正态分布、 统计量及其抽样分布

第5-6章 统计量及其抽样分布 正态分布 5.1.1定义:当一个变量受到大量微小的、独立的随机因素影响时,这个变量一般服从正态分布或近似服从正态分布。 概率密度曲线图 例如:某个地区同年龄组儿童的发育特征:身高、体重、肺活量等 某一条件下产品的质量 如果随机变量X 的概率密度为 22 ()21 (),2x f x e x μσπσ --=-∞<<∞ 则称X 服从正态分布。 记做 2 (,)X N μσ,读作:随机变量X 服从均值为μ,方差为2 σ的正态分布 其中, μ-∞<<∞,是随机变量X 的均值,0σ>是是随机变量X 的 标准差

5.1.2正态密度函数f(x)的一些特点: ()0 f x≥,即整个概率密度曲线都在x轴的上方。 曲线 () f x相对于xμ =对称,并在xμ = 处达到最大值, 1 () 2 fμ πσ = 。 1 μ< 2 μ< 3 μ 曲线的陡缓程度由 σ 决定:σ越大,曲线越平缓;σ越小,曲线越陡峭当 x 趋于无穷时,曲线以x轴为其渐近线。 标准正态分布 当 0,1 μσ == 时,

2 2 1 () 2x f x e π- = , x -∞<<∞ 称 (0,1) N 为标准正态分布。 标准正态分布的概率密度函数: ()x ? 标准正态分布的分布函数: ()x Φ 任何一个正态分布都可以通过线性变换转化为标准正态分布 设 2 (,) X Nμσ ,则 (0,1) X Z N μ σ - = 变量 2 11 (,) X Nμσ与变量2 22 (,) Y Nμσ相互独立,则有 22 1212 +(+,+) X Y Nμμσσ 5.1.3 正态分布表:可以查的正态分布的概率值()1() x x Φ-=-Φ 例:设 (0,1) X N,求以下概率

统计学习题答案_第4章__抽样与抽样分布

第4章 抽样与抽样分布——练习题(全免) 1. 一个具有64=n 个观察值的随机样本抽自于均值等于20、标准差等于16的总体。 ⑴ 给出x 的抽样分布(重复抽样)的均值和标准差 ⑵ 描述x 的抽样分布的形状。你的回答依赖于样本容量吗? ⑶ 计算标准正态z 统计量对应于5.15=x 的值。 ⑷ 计算标准正态z 统计量对应于23=x 的值。 解: 已知 n=64,为大样本,μ=20,σ=16, ⑴在重复抽样情况下,x 的抽样分布的均值为 a. 20, 2 b. 近似正态 c. -2.25 d. 1.50 2 . 参考练习4.1求概率。 ⑴x <16; ⑵x >23; ⑶x >25; ⑷.x 落在16和22之间; ⑸x <14。 解: a. 0.0228 b. 0.0668 c. 0.0062 d. 0.8185 e. 0.0013 3. 一个具有100=n 个观察值的随机样本选自于30=μ、16=σ的总体。试求下列概率的近似值: 解: a. 0.8944 b. 0.0228 c. 0.1292 d. 0.9699 4. 一个具有900=n 个观察值的随机样本选自于100=μ和10=σ的总体。 ⑴ 你预计x 的最大值和最小值是什么? ⑵ 你认为x 至多偏离μ多么远? ⑶ 为了回答b 你必须要知道μ吗?请解释。 解:a. 101, 99 b. 1 c. 不必 5. 考虑一个包含x 的值等于0,1,2,…,97,98,99的总体。假设x 的取值的可能性是相同的。则运用计算机对下面的每一个n 值产生500个随机样本,并对于每一个样本计算x 。对于每一个样本容量,构造x 的500个值的相对频率直方图。当n 值增加时在直方图上会发生什么变化?存在什么相似性?这里30,10,5,2====n n n n 和50=n 。 解:趋向正态 6. 美国汽车联合会(AAA )是一个拥有90个俱乐部的非营利联盟,它对其成员提供旅行、 金融、保险以及与汽车相关的各项服务。1999年5月,AAA 通过对会员调查得知一个4口之家出游中平均每日餐饮和住宿费用大约是213美元(《旅行新闻》Travel News ,1999年5月11日)。假设这个花费的标准差是15美元,并且AAA 所报道的平均每日消费是总体均值。又假设选取49个4口之家,并对其在1999年6月期间的旅行费用进行记录。 ⑴ 描述x (样本家庭平均每日餐饮和住宿的消费)的抽样分布。特别说明x 服从怎样

统计学常用分布

二项分布(,)B n p n 为试验次数,p 为每次成功概率 {}x x n x n p X x C p q -== 其中1p q += (),()E X np Var X npq == ()()tX t n E e q pe =+其中t -¥<<¥ 解释:n 重贝努里实验中正好成功x 次的概率 几何分布()Geo p p 为成功概率 ()x P X x pq == 2(),()E X q p Var X q p == ()(1),ln tX t E e p qe t q =-<- 解释:n 重贝努里实验中首次成功正好在第x+1次 负二项分布(,),1NB k p k >,k 为成功次数,01p <<,p 为成功概率 1{}x k x k x P X x C p q +-== 2(),()E X kq p Var X kq p == ()(),ln 1tX k t p E e t q qe =<-- 解释:贝努里实验系列中第k 次成功正好出现在第x +k 次实验上地概率 泊松分布()P l {},0! x P X x e x l l l -==> (),()E X Var X l l == (1)()t tX e E e e l -=,t -¥<<¥ 解释:贝努里概型中的实验次数很大,但每次成功的概率很小,平均成功次数接近于常数

均匀分布(,)U a b 1 (),X f x a x b b a =<<-;(),X x a F x a x b b a -=<<- 2 ()(),()212a b b a E X Var X +-== 11 ()(1)()r r r b a E X r b a ++-=+- 正态分布2(,)N m s 2 1) 2()x X f x m s -- = 2(),()E X Var X m s == 22 1 2()t t tX E e e m s += 对数正态分布2log (,)N m s 2 1 ln () 2()x X f x m s --=2 221 22(),()(1)E X e Var X e e m m s s ++==- 22 1 2()t t t E X e m s += 解释:如果X~2log (,)N m s ,则logX ~2(,)N m s 指数分布()Exp l ()x X f x e l l -=,()1x X F x e l -=- 21 1 (),()E X Var X l l == (1) ()r r r E X l G += 1()(1,X t M t t l l -=-<

(完整word版)统计学三大分布与正态分布的关系

统计学三大分布与正态分布的关系[1] 张柏林 41060045 理实1002班 摘要:本文首先将介绍2χ分布,t 分布,F 分布和正态分布的定义及基本性质, 然后用理论说明2χ分布,t 分布,F 分布与正态分布的关系,并且利用数学软件MATLAB 来验证之. 1. 三大分布函数[2] 1.12χ分布 2()n χ分布是一种连续型随机变量的概率分布。这个分布是由别奈梅 (Benayme)、赫尔默特(Helmert)、皮尔逊分别于1858年、1876年、1900年所发现,它是由正态分布派生出来的,主要用于列联表检验。 定义:若随机变量12n ,,X X …X 相互独立,且都来自正态总体01N (,) ,则称统计量222 212n =+X X χ++…X 为服从自由度为n 的2χ 分布,记为22~()n χχ. 2χ分布的概率密度函数为 122210(;),2()200n x n x e x n f x n x --?≥??=Γ???? ,2χ分布的密度函数图形是一个只取非负值的偏态分布,如下图.

卡方分布具有如下基本性质: 性质1:22(()),(())2E n n D n n χχ==; 性质2:若221122(),()X n X n χχ==,12,X X 相互独立,则21212~()X X n n χ++; 性质3:2 n χ→∞→时,( n )正态分布; 性质4:设)(~2 2n α χχ,对给定的实数),10(<<αα称满足条件: αχχαχα==>? +∞ ) (2 22 )()}({n dx x f n P 的点)(2 n α χ为)(2n χ分布的水平α的上侧分位数. 简称为上侧α分位数. 对不同的α与n , 分位数的值已经编制成表供查用. 2()n χ分布的上α分位数 1.2t 分布 t 分布也称为学生分布,是由英国统计学家戈赛特在1908年“student”的笔名首次发表的,这个分布在数理统计中也占有重要的位置. 定义:设2 ~0~X N χ(,1),Y (n ),,X Y 相互独立,,则称统计量/T Y n = 服从自由度为n 的t 分布,记为~()T t n . t 分布的密度函数为

统计学第5-6章 正态分布 统计量其抽样分布

第5-6章 统计量及其抽样分布 5.1正态分布 5.1.1定义:当一个变量受到大量微小的、独立的随机因素影响时,这个变量一般服从正态分布或近似服从正态分布。 概率密度曲线图 例如:某个地区同年龄组儿童的发育特征:身高、体重、肺活量等 某一条件下产品的质量 如果随机变量X 的概率密度为 22 ()21 (),2x f x e x μσπσ --=-∞<<∞ 则称X 服从正态分布。 记做 2 (,)X N μσ:,读作:随机变量X 服从均值为μ,方差为2 σ的正态分布 其中, μ-∞<<∞,是随机变量X 的均值,0σ>是是随机变量X 的标准差 5.1.2正态密度函数f(x)的一些特点: ()0f x ≥,即整个概率密度曲线都在x 轴的上方。 曲线 ()f x 相对于x μ=对称,并在 x μ=处达到最大值,

1 () 2 fμ πσ = 。 1 μ< 2 μ< 3 μ 曲线的陡缓程度由 σ 决定:σ越大,曲线越平缓;σ越小,曲线越陡峭当 x 趋于无穷时,曲线以x轴为其渐近线。 标准正态分布 当 0,1 μσ == 时, 2 2 1 () 2 x f x e π - = , x -∞<<∞ 称 (0,1) N 为标准正态分布。

标准正态分布的概率密度函数: ()x ? 标准正态分布的分布函数: ()x Φ 任何一个正态分布都可以通过线性变换转化为标准正态分布 设 2 (,) X Nμσ : ,则 (0,1) X Z N μ σ - =: 变量 2 11 (,) X Nμσ :与变量2 22 (,) Y Nμσ :相互独立,则有 22 1212 +(+,+) X Y Nμμσσ : 5.1.3 正态分布表:可以查的正态分布的概率值()1() x x Φ-=-Φ 例:设 (0,1) X N :,求以下概率 (1) ( 1.5) P X< (2) (2) P X> (3) (13) P X -<≤

统计学题目ch4抽样估计

(一)填空题 1.抽样推断是按照,从总体中抽取样本,然后以样本的观察结果来估计总体的数量特征。 2.抽样调查可以是抽样,也可以是抽样,但作为抽样推断基础的必须是抽样。 3.抽样调查的目的在于认识总体的。 4.抽样推断运用的方法对总体的数量特征进行估计。 5.在抽样推断中,不论是总体参数还是样本统计量,常用的指标 有、和方差。 6.样本成数的方差是。 7.根据取样方式不同,抽样方法有和两种。 8.重复抽样有个可能的样本,而不重复抽样则有个可能的样本。N为总体单位总数,n为样本容量。 9.抽样误差是由于抽样的而产生的误差,这种误差不可避免,但可以。 10.在其他条件不变的情况下,抽样误差与成正比,与成反比。 11.样本平均数的平均数等于。 12.在重复抽样下,抽样平均误差等于总体标准差的。 13.抽样极限误差与抽样平均误差之比称为。 14.总体参数估计的方法有和两种。 15.优良估计的三个标准是、和。 16.样本平均误差实质是样本平均数的。 (二) 单项选择题 1、抽样推断是建立在()基础上的。 A、有意抽样 B、随意抽样 C、随机抽样 D、任意抽样 2、抽样推断的目的是() A、以样本指标推断总体指标 B、取得样本指标 C、以总体指标估计样本指标 D、以样本的某一指标推断另一指标 3、抽样推断运用()的方法对总体的数量特征进行估计。 A、数学分析法 B、比例推断算法 C、概率估计法 D、回归估计法 4、在抽样推断中,可以计算和控制的误差是() A、抽样实际误差 B、抽样标准误差 C、非随机误差 D、系统性误差 5、从总体的N个单位中抽取n个单位构成样本,共有()可能的样本。 A、1个 B、N个 C、n个 D、很多个(但要视抽样方法而定) 6、总体参数是() A、唯一且已知 B、唯一但未知 C、非唯一但可知 D、非唯一且不可知 7、样本统计量是() A、唯一且已知 B、不唯一但可抽样计算而可知 C、不唯一也不可知 D、唯一但不可知

(仅供参考)如何统计分析非正态分布的数据

如何统计分析非正态分布的数据 小飞看了9月23日医咖会微信推送的“降糖药物利拉鲁肽,还能治疗心衰吗?”的研究(FIGHT 研究)后[1],不明白研究方法II中的Wilcoxon秩和检验到底是什么,于是来找小咖讨论。 小飞:Wilcoxon秩和检验到底是个什么鬼? 小咖:这是一种非参数检验方法。 小飞:非参数检验又是个什么鬼啊? 小咖:平时我们常用的t检验、卡方检验、方差分析等方法都要求样本服从特定的分布(比如t检验要求样本服从正态分布),这些方法被称为参数检验方法。但有些数据并不符合参数检验的要求,最常见的情况是数据不符合正态分布,这时可以使用非参数检验的方法。 非参数检验有很多种,Wilcoxon秩和检验就是其中一种。 小飞:不明觉厉...你还是来个栗子呗。

小咖:好吧。某医生为了评价A药对绝经后妇女的骨质疏松症是否有效,将30名绝经后妇女随机分为两组,干预组研究对象15例,给予A药+乳酸钙治疗;对照组15例,仅给予乳酸钙治疗。24周之后观察两组L2-4骨密度的改善率。数据如下图: 两组骨密度改善率(%) 干预组对照组 ID 改善率ID 改善率 1 -0.20 1 -0.83 2 0.21 2 0.26 3 1.86 3 0.48 4 1.97 4 1.03 5 2.31 5 1.06 6 2.80 6 1.19 7 3.30 7 1.27 8 3.60 8 1.71 9 4.31 9 1.75 10 4.40 10 2.33 11 5.29 11 2.66 12 5.87 12 2.80 13 6.06 13 3.22 14 6.08 14 3.34 15 7.00 15 3.34 小飞:嗯,我明白了。对于这种两组平行设计、结局是不符合正态分布的连续变量,就应当使用Wilcoxon秩和检验对吧? 小咖:很聪明,给你满分。接下来给你演示一下用SPSS 22.0怎么操作。 (1)数据录入SPSS

相关主题