搜档网
当前位置:搜档网 › (论文)电力电缆故障分析及定位方法

(论文)电力电缆故障分析及定位方法

(论文)电力电缆故障分析及定位方法
(论文)电力电缆故障分析及定位方法

电力电缆故障分析及定位方法

张玉涛北京首都机场动力能源有限公司

摘要:本文介绍了电力电缆故障类型、测试步骤和定位方法,特别是目前最有效的高压电弧反射法及通过电缆路径仪测量路径和深度的发放。

关键词电缆故障脉冲反射电弧反射精定点电缆路径定位测深

一、前言

随着首都机场的高速发展和城市规划的要求,各种架空缆线逐步埋入地下,特别是电力电缆,各种类型的地埋电力电缆在机场供电系统得到广泛应用,也在冶金、石化、矿山、机场、港口等企事业单位得到普遍应用。

首都机场高压电缆长度目前达到了1600公里,覆盖面积达38平方公里。虽然这种供电的优点是显而易见的,但是电力电缆在使用过程中一旦发生故障,特别是高阻故障,很难测出故障的确切位置,不能及时排除故障,恢复送电,往往造成停电停产的重大经济损失。随着首都机场电网改造、电缆搬迁和故障电缆的修复等原因,原有的电缆图纸已不能正确反映电缆的敷设路径和埋深,尤其是奥运会临近,基础建设的加快,外力对电缆的破坏显得日益突出,成为影响电缆安全运行的主要因素,给电网安全带来了极大的威肋。因此为了保证电缆的安全运行,就需要对电缆进行有效地探测,建立完善的电缆线路管理系统。所以如何快速准确测出电缆故障是机场供电部门的首要课题。

本文重点介绍电力电缆故障类型、测试步骤、并着重介绍电弧反射精定点法及电缆路径仪定位法这两种电缆定位方法。希望通过本文的研究提高首都机场地区电缆故障的处理速度。

二、电缆参数

电力电缆故障是指在供电过程中发生干扰、局部电流不均匀造成的。为确定电缆故障位置。必须了解电力电缆的各种参数分布,来推断和测试故障点。电力电缆可看成有许多多的电阻(R)、电导(G)、电容(C)和电感(L)等效元件相联接组成的,这些元件称为电缆的分布参数。一小段电缆的等效电路图如图1所示

图1:一小段电缆的等效电路

理论上要求这些参数均匀的分布在整条电缆中,也就是说这些参数与电缆总长要成比

例。这些参数不仅适用于两条线芯之间,而且也适用于线芯与屏蔽之间。

当电缆发生故障时,初步确定电缆故障位置起决定作用的参数为特征阻抗和波速度(V)。

1、电缆的特性阻抗z表示导线某一点上特性电压与特性电流之比,因此它不受位置和时间的限制,只与电缆结构、绝缘材料和导体材料有关。

2、波速度V

波速度V是指脉冲电压波从电缆一端传到另一端需要一定时间,是电缆长度与传播时间之比。

如果在运行和测试状态下的这些电缆特性参数均无变化,即可认为这条电缆无故障,但只要电缆某个位置存在特胜阻抗发生变化,电缆的均匀性就会受到影响,电缆就称为有故障电缆。

三、电力电缆故障类型分析

由于电力电缆的绝缘材料、运行方式、工作电压等不同,导致了大量的各种各样电缆故障,按故障性质分主要有:接地故障、短路故障、断线故障、闪络故障和综合故障;按故障电阻值分为:低阻故障和高阻故障。传统上把电缆故障点的直流电阻小于电缆特性阻抗称为低阻故障,反之则称为高阻故障。

1、接地故障

电缆-线芯或数线芯接地而发生的故障。当电缆绝缘由于各种原因被击穿后发生低阻接地故障或高阻接地故障,按脉冲反射仪测试波形划分,一般接地电阻在1 KΩ以下为低阻故障,以上为高阻故障。

2、短路故障

电缆线芯之间绝缘完全破损形成短路而发生的故障。一般线芯之间电阻R F小于l OΩ。

3、断线故障

电缆一线芯或数线芯断开而发生的故障。通常是由于电缆线芯被短路电流烧断或外力破坏引起。

4、闪络故障

电缆进行试验时绝缘间隙放电,造成绝缘击穿,此为击穿故障。在某种情况下,绝缘击穿后又恢复正常,即使提高试验电压也不再击穿,此为封闭性故障。此时电缆存在故障,但该故障点没有形成通道,这两种故障都属于闪络故障。该故障大多情况发生在电缆

接头或终端内,主要表现为:当试验电压升到某一值时,电缆泄漏电流突然升高,并且测量表针呈规律性摆动,降低电压时现象消失,测量绝缘电阻值仍很高。

5、综合故障

同时具有上述两种以上的故障称为综合故障。

四、电力电缆故障测试步骤

当电缆发生故障后,为确定电缆故障位置,主要可分为三步:

1、识别故障并确定故障性质

将电缆脱离供电系统,首先用兆欧表测量每相对地绝缘电阻,如果绝缘电阻为零,再用万用表测量故障电阻,以判断是高阻故障还是低阻故障,然后测量相间绝缘电阻,判断是否存在相间短路,有准确的电缆故障性质判定结论后,便可选择合适的测试方法和仪

器。

2、电缆故障预定位

从电缆一端测试,给出测试端到故障点的距离,也就是地埋电缆从测试端到故障点的长度。

3、电缆故障精定位

由于地埋电缆的长度在地面丈量会存在误差,再加上脉冲反射仪(TDR或雷达)的测距误差,所以需要对故障点进行精确定点。

五、电力电缆故障预定位方法

从电缆故障类型可分为断线故障、低阻绝缘故障、高阻绝缘故障和闪络故障,不同故障所采用的测试方法和测试仪器也不同,必须分别对待。

1、低压脉冲法

低压脉冲法可对断线故障、短路故障、低阻故障和电缆全长进行预定位,同时也可识别电缆的中间接头。其原理为:脉冲发射仪给电缆发射低压脉冲,该脉冲沿电缆传播直到特性阻抗不匹配点(如断线点、短路点、终端点等),在这些点上会引起脉冲波的反射,并返回到测试端,脉冲反射仪给出测试轨迹,见图2。

图2:低压脉冲法测试示意图

故障距离L是由下面公式计算:

L=V t/2

其中,V是波速度,如油浸纸绝缘电缆的波速度为160 m/μs,交联聚乙烯绝缘电缆的波速度为172 m/μt s。t是发射脉冲从测试端到故障点,再由故障点返回到测试端的往返时间,由脉冲反射仪测出,单位为微秒(μs)。

2、高压弧反射法

关于电缆的高阻故障、闪络故障,低压脉冲法就无能为力了,但可设法使故障电阻瞬时短路,就可以用脉冲反射仪测出故障波形。这一测试过程的设想就为高压弧反射法诞生奠定了基础,该方法可用于查寻高阻故障、闪络故障。主要设备有:直流高压单元、高压冲击单元、脉冲发生器、祸合单元、脉冲反射仪。

直流高压给高压冲击单元中的电容器充电,然后由球隙放电,产生一个高压脉冲传输到故障电缆的线芯,高压脉冲在故障点击穿燃弧,高阻故障点瞬时产生闪络放电,故障点由于电弧接地而导通,呈现低阻状态,同时脉冲发生器由内部通信装置触发而产生低玉测量脉冲,此脉冲在故障点处由于电弧短路而被反射,从而测出故障轨迹波形。

脉冲反射仪自动把f民玉波形和高压波形显示在屏幕上,故障点处会有明显的发散,见图3,兰色曲线为故障电缆的全长波形,红色曲线为高阻或闪络故障波形,故障点自动定位。

图3:高压弧反射法测试示意图

六、电力电缆故障精定点方法

当给故障电缆线芯加上一个足够高的冲击电压和冲击能量时,故障点会击穿并发生闪络放电,在故障点就会产生相当大的“啪、啪”放电声,这种声音可传到地面,一般闪络放电间隔为6-15秒。

1、声测定点法

当电缆故障预定位给出故障距离后,在故障电缆测试端给故障线芯加上冲击高压,使故障点闪络放电,同时用定点仪(含探头、接收机、耳机)在预定故障点附近的地面来听测

故障点的放电声,听测出最响点,即为故障点的准确位置,见图4。

图4:声测定点示意图

2、声磁同步定点法

当采用冲击放电时,在故障点除产生放电声外,还会产生高频电磁波向地面传播。在地面用声磁探头可同时接收声信号和磁信号,电磁波起辅助作用,用来确定所听到的声音是否是故障点的放电声,由于声波与电磁波的传播速度不同,在地面每一点可用声磁同步定点仪测出声信号和磁信号的时间差,时间差最小点即为故障点的准确位置,见图5

图5:声磁时间差测定点示意图

3、音频感应法

当电缆故障点处于相间短路或相地短路(死接地)时(R F< 10(Ω),用冲击放电器冲击,故障点不放电,也就是说故障点不产生放电声,所以不能用声测法精定故障点。此时应采用音频感应法来探测定位故障点。该方法需要相当的故障测试经验和对电缆各方面的情况(如接头位置、埋设深度等)有详细的了解,才能取得较好的效果。

其测试原理是多芯电缆纽绞结构,当音频信号传输到电缆故障线芯时,在故障点前会产生有规则升降的电磁信号,到故障点电磁信号突然增大,过故障点电磁信号下降并保持均

匀,见图6。

图6:音频感应法定位示意图

七、电缆路径仪的探测技术和性能分析

电磁法[3]是电缆路径探测和深度测量常用而又有效的方法,所用探测设备就是电缆路径仪,随着技术的进步,各种仪器的性能及适用范围也各不相同。以下将重点介绍该类仪器的技术特点及适用范围,以便供使用单位选择合适的仪器。

1、电磁法探测的原理

由于敷设在地下的电缆与周围的土壤介质在导电性、导磁性、密度或其他理化性质上存在着差异,从而能被探测、识别和区分。目前应用于电缆探测的方法大致有电磁法、直流电法、地震波法、放射性跟踪法和地质雷达等。其中电磁法由于探测精度高、操作简便、抗干扰能力强、适用范围广、成本低,效率高等特点而成为电缆探测工作中最常用的方法。

电磁法探测电缆,主要是利用电磁感应原理。当采用专用的发射机向待测电缆施加(直连或感应)一定频率的信号电流I后,该电流在待测电缆中流动并在其周围空间产生一个电磁场,其强度H可由下式确定H=K·(I/R),式中K为场强系数,I为电流强度,R为电缆周围任意一点距电流中心的距离,如图1所示,图中P为电缆周围任意一点,I为电流强度,R为P点距电流中心的距离,H为P点的电场强度,Hx为场强的水平分量,Hz为场强的垂直分量。用接收机在地面上测量该电磁场的强度及其分布便可确定被测电缆的位置和埋深,实现被测电缆的定位。

图1:电缆周围电磁场会布

2、信号连接方式

电缆路径仪从发射机的连接方式来讲可分为直连法、夹钳祸合法、磁感应法。下面分别叙述:

直连法是将发射机一端接地,另一端接到被测电缆上(此时要确保电缆不带电),这样由发射机发出的信号直接加到被查电缆上。它的特点是:信号强、定位、定深精度高,易分辩相邻电缆,见图2。

图2:直连方式示意图

夹钳藕合法利用电缆路径仪配备的夹钳,夹套在电缆上,通过夹钳的感应线圈把信号直接加到电缆上,见图3。

图3:夹钳祸合方式示意图

这种方法的特点是信号强,定位、定深精度高,尤其是运行中的电缆,不需停电便可测试。

磁感应法是将发射机放置在电缆上方,利用发射机的发射线圈产生电磁场,从而在电缆中产生感应电流,该电流在电缆周围产生二次电磁场,接收妇L接收电缆周围产生的二次电磁场信号,从而可定位电缆。其特点是发射、接收均不需接地,操作灵活,方便、效率

高、效果好。可用于搜索电缆,但在电缆密集或相邻电缆较近的场合,应慎用,见图4。

图4:磁感应方式示意图

上述三种方法可以有效的定位已知电缆,然而对于未知来源和去向的电缆,就需要另一种方法一盲查,来定位电缆,如施工前对工地的勘察。盲查需要两个操作者,一人手提发射机,另一人操作接收机。两者相距约35英尺(12m),平行横向和纵向走过被测地区。当操作者一起横向走过被测地区,经过地下电缆时,接收机指示电缆存在,在搜索路线上标出各电缆的位置。见图5。在横向搜索完成后,搜索方向改变90度,搜索同一地区。两个方向搜查结束后,回到出发点,再用磁感应法(见图4)跟踪各标出的电缆。

图5:盲查示意图

3、电缆定位、定深的方法

从接收机定位方法来讲分为两大类:极大值法、极小值法。

在电缆周围空间任一点处,由电缆中流动的电流信号产生的电磁场的场强H是由该信号电流的电流强度I和该点距电流中心的距离R决定的。而该点的场强H在空间上可沿水平方向分解为水平分量Hx,可用水平线圈探测;而沿垂直方向可分解为垂直分量Hz,可用竖直线圈探测。在电缆上半空间电磁场的水平分量Hx和垂直分量Hz的分布特征如图1所

示。

极大值法是用水平线圈测量电磁场的水平分量,由于电缆形成二次电磁场的水平分量在电缆正上方时为最大,所以在电缆正上方投影位置上出现最大值,见图6。

图6:极大值法示意图

极小值法是用竖直线圈测量电磁场的垂直分量,由于电缆正上方垂直分量为零,故在电缆正上方为极小值,见图7。

图7极小值法示意图

极大值法的特点是磁场幅度大且宽,易发现电缆极小值法定位精度高且受附近电缆影响

较大,故而可先采用极大值法找到电缆大致位置,然后用极小值精确定位。

电缆路径仪常用的两种测深方法:一种是直读法;一种是45o法。

直读法是利用上下两个线圈测量电磁场的梯度从而确定电缆埋深。在接收机中设置测深按钮,用指针表头或数字显示器直接读出电缆的埋深,这种方法比较简单、方便、快捷,见图8。该测深方法在电磁场信号弱时误差较大。

图8:直读法测深示意图

45o测深法是先精确定位电缆位置,然后用探测线圈与地面成45o角状态,再沿着电缆方向横向移动,寻找“极小值”点,该极小值点与定位点之间的距离11或I2,等于电缆的埋深T,见图9。该方法测深较为准确,而且可以减小由磁场变形引起的误差。此外,如果操作者想定位公用地沟中的某一导体,而发射机的信号可能感应到更浅或导电性好的导体。如果遇到此种情况,用深度按钮测量时,可能测得不合理的深度,而用45度法测量,可以进一步确定多个导体的存在,以及多个导体的深度。首先找到第一根导体的深度,然后继续离开导体,标出各导体的深度。然后向另一侧移动,见图10。

图9 :45o测深法示意图

图10:公用地沟中多个导体深度测量示意图

总之,选用何种测深方法,应根据使用的仪器和现场实际情况而定。不论采用那种方法,在测深点前后各4米范围内应是单一电缆,中间不应有分支或弯曲,且相邻电缆不要太近,否则影响测深精度。

4、电缆路径仪选型

为了帮助使用单位以较低的投入获得最大的效益,在众多国外、国内电缆定位产品中选择适合本单位需要的仪器,在此,本文从技术性能方面提出以下几点选型原则,供大家参考。

(1)平面定位方式

定位电缆平面位置是电缆探测中最重要的一步,电缆定位精度取决于仪器所具备的定位方法,目前定位方法有极大值法(用水平线圈探测)、极小值法(用垂直线圈探测)及最佳极大值洲水平线圈与垂直线圈同时探测)。换句话说,电缆定位仪的定位方法越多,定位精度越高,抗干扰越强。

(2)工作频率

工作频率选择的合适与否直接影响着探测效果的好坏。比如:选择了较高的工作频率,对有接头的电缆有较好的挥侧农果,但是信号衰减快,抗干扰性差.篇感应到相邻电缆上,难以区分相邻电缆二相反,较低的频率信号衰减慢,探测距离大,抗干扰性强,易区分相邻电缆,但对有接头的电缆探测效果较差。因此,要求电缆路径仪应具有2一3档频率,这样就克服了以往仪器灵敏度差、抗干扰性差等弱点,提高了分辨能力。

(3)探测深度和距离

探测深度主要取决于发射机的输出功率,就磁感应法而言,发射机放置于地面给电缆施加电磁场,如果发射机输出功率小就很难给电缆祸合信号,以至在地面无法探测到电缆周围的电磁场信号。目前电缆路径仪的输出功率为:<1W-2W-3W-5W-l0W->l0W等。电缆的探测距离与发射机的输出功率成正比。

(4)测深精度

目前,许多电缆路径仪采用直读法、45o法探测电缆埋深,直读法操作简单,显示直观,只有在电磁场信号较或时,才具有较高的测深精度。45o法测深较稳定,且能避免磁场变形引起的干扰

(5)区分平行电缆

当探测单一电缆时,一般电缆路径仪均具有较好的探测精度。但当平行电缆同时存在时,就很难区分哪一条是要找的电缆,解决这一问题的方法就是探测电缆的电流信号大小。目标电缆中电流值大,而相邻电缆电流值小;这样就解决了平行电缆的区分问题,见图11。

图11:区分相邻导体示意图

八、结束语

搞好电缆的探测工作,对城市的建设和发展将起到不可忽视的作用,而且越来越受到人们的极大关注。电缆故障测寻既要有好的测试设备又要求测试人员的经验积累,才能快速、准确定位故障点。对每一次故障测试都要不断分析,特别要了解电缆参数、相间相地电阻、测试电压高低、故障波形等资料,以选取正确电缆路径探测法,从而提高电缆故障处理速度。只有不断对大量的现场数据进行分析、研究、总结,才能逐步掌握电缆故障测试的规律。

参考文献

[1]张栋国,孙雷,《电力电缆及其故障分析与测试》,陕西科学技术出版社,1994年4月

[2]徐丙根等《电力电缆故障探测技术》,机械工业出版社,2001年4月

[3]周作春.浅谈城市直埋电缆的标志问题[J].高电压技术,2004,30(增刊):1,3.

[4]徐永铭.电力电缆的路径测定及识别[C].广州:全国电力系统电力电缆专业运行工作网,2000.

高压电气设备检修试验问题与处理方式分析

高压电气设备检修试验问题与处理方式分析 发表时间:2018-10-14T10:37:09.510Z 来源:《电力设备》2018年第19期作者:王杰 [导读] 摘要:高压电气设备试验是保证高压电气设备安全与稳定运行的重要手段,是电气设备检修工作中的重要环节之一。 (内蒙古电力(集团)有限责任公司巴彦淖尔电业局乌拉特中旗供电分局内蒙古自治区 015300) 摘要:高压电气设备试验是保证高压电气设备安全与稳定运行的重要手段,是电气设备检修工作中的重要环节之一。在当今电力事业高速发展,高度重视电力系统运行安全与可靠的背景下,认知并掌握高压电器设备检修试验存在的问题,并探寻有效解决对策具有重要现实意义与研究价值。基于此,以高压电气设备检修试验为研究对象,就其存在的问题与对策进行了分析,挚爱提升检修试验质量,促进高压电气试验优化发展。 关键词:高压电气设备;检修试验;技术问题 高压电气设备检修试验,主要是指通过利用一定的检测与试验分析方法或措施,对电气设备的绝缘能力与运行稳定情况进行的试验,侧重于保障电气设备运行的安全性与可靠性。因此,在电力系统运行中,高压电气设备检修试验的好快将直接影响整个电力系统。故加强关于高压电气设备检修试验问题与对策的研究已经成为相关企业及工作人员关注的重点问题,对推进电力事业长效发展具有重要意义。 1、35KV高压电缆故障分析 电缆故障的产生大致是以下原因造成:制造质原因、设计原因、施工原因、外力破坏等四大类: (1)厂家制造过程中容易出现的问题有绝缘偏心、绝缘屏蔽厚度不均匀、绝缘内有杂质、内外屏蔽有突起、交联度不均匀、电缆受潮、电缆金属护套密封不良等,甚至有些是投入使用后才发现,隐患无穷。另外是高压电缆接头的制造,电缆接头分为电缆终端接头和电缆中间接头,不管什么接头形式,电缆接头故障一般都出现在电缆绝缘屏蔽断口处,因为这里是电应力集中的部位,因制造原因导致电缆接头故障的原因有应力锥本体制造缺陷、绝缘填充剂问题、密封圈漏油等原因。其次是电缆接地系统,其系统包括电缆接地箱、电缆接地保护箱(带护层保护器)、电缆交叉互联箱、护层保护器等部分。一般容易发生的问题主要是因为箱体密封不好进水导致多点接地,引起金属护层感应电流过大。另外护层保护器参数选取不合理或质量不好氧化锌晶体不稳定也容易引发护层保护器损坏。 (2)施工质量原因。因为施工质量导致高压电缆系统故障的事例很多。主要原因有以下几个方面。一是现场条件比较差,电缆和接头在工厂制造时环境和工艺要求都很高,而施工现场温度、湿度、灰尘都不好控制。二是电缆施工过程中在绝缘表面难免会留下细小的滑痕,半导电颗粒和砂布上的沙粒也有可能嵌入绝缘中,另外接头施工过程中由于绝缘暴露在空气中,绝缘中也会吸入水分,这些都给长期安全运行留下隐患。三是安装时没有严格按照工艺施工或工艺规定没有考虑到可能出现的问题。四是竣工验收采用直流耐压试验造成接头内形成反电场导致绝缘破坏。五是因密封处理不善导致。中间接头必须采用金属铜外壳外加PE或PVC绝缘防腐层的密封结构,在现场施工中保证铅封的密实,这样有效的保证了接头的密封防水性能。 (3)设计原因。因电缆受热膨胀导致的电缆挤伤导致击穿。交联电缆负荷高时,线芯温度升高,电缆受热膨胀,在隧道内转弯处电缆顶在支架立面上,长期大负荷运行电缆蠕动力量很大,导致支架立面压破电缆外护套、金属护套,挤入电缆绝缘层导致电缆击穿。 (4)外力破坏,由于外部其他施工造成已有电缆被破坏。 2、电缆故障查找 电缆差动保护装置的误动作概率小,因此差动保护跳闸后就可以认定为该回路出现故障,从而改变运行方式,开通临时供电。以往曾经采取的电缆故障仪测距及人工巡线的方法查找故障点,由于电缆击穿后的现象不尽相同,故障点查找困难。往往测出来的故障点离真正的故障点较远,延误了查找时间。即使偶尔故障点测距较准确,但由于故障点太小不明显及隧道内电缆敷设等原因,巡线人员仍不易发现。采用高压脉冲放电法进行查找故障点,准确率比较高。如2016年 1 #线电缆故障跳闸,采用高压脉冲放电法进行查找,75min后找到故障点。 2.1高压脉冲放电法 地铁35kV电缆在轨道行区明敷或电缆沟敷设,因此在进行高压脉冲放电法试验时,电压经过芯线只对电缆自身的屏蔽层或支架放电,对工作人员不会造成伤害,比较安全可靠。以下介绍该原理。 电压经B1调压器调压后,试验变压器B2升压,限流电阻R1在此作限流作用,硅堆D2整流后向电容器C充电。当充电在一定值时,使放电间隙击穿放电,试验电压便经过放电间隙向电缆放电。由于电缆故障点处较低,因此在故障点处击穿放电后再通过监听放电声音,准确查找故障点。 2.2故障查找操作 按图1接线,D点接故障电缆的芯线,电缆屏蔽层需要可靠接地。限流电阻R1及放电间隙必须悬空或放置于干燥绝缘台上。确认接线正

电力电缆故障原因及常用的检测方法(超全讲解)

https://www.sodocs.net/doc/a32405777.html, 电力电缆故障原因及常用的检测方法(超全讲解)盲目的进行电缆故障查找工作往往费时费力而且无法准确的进行故障定点判断,这不是因为电缆故障种类的复杂造成,而是因为电缆周边环境所造成的。 1、电力电缆基础理论 我们目前采用的电缆故障查找方法离不开:故障诊断、粗测定点与精确定点三个步骤。但是往往在实际测试中能够确定故障类型,做到粗测定点,但是却无法真正精确定点进行开挖。这种原因的形成是因为客观存在的我们听得到的因素(公路或施工处振动噪声过大等原因)和看不到的因素(电缆走向、电缆埋设深度过深、故障点在积水中、电缆施工时余留不规范等原因)所造成的。因此在电缆故障查找前通过电缆施工、运行管理人员明确电缆长度、电缆走向、周边特殊情况、中间头位置、周边是否存在施工等要因是电缆故障查找前不可或缺的准备工作。 2、电缆故障原因及测量仪器 了解电缆故障的原因,对于减少电缆的损坏,快速地判定出故障点是十分重要的。

https://www.sodocs.net/doc/a32405777.html, 注:(HZ-TC电缆故障测试仪) 电缆故障测试仪是我公司根据用户要求,从现场使用考虑,精心设计和制造的全新一代便携式电缆故障测试仪器。它秉承我们一贯高科技、高精度、高质量的宗旨,将电缆测试水平提高到一个新境界。 电缆故障测试仪(闪测仪)可用于检测各种电缆的低阻、高阻、短路、开路、泄漏性故障以及闪络性故障,可准确的检测地下电缆的故障点位置、电缆长度和电缆的埋设路径。具有测试准确、智能化程度高、适应面广、性能稳定以及轻巧便携等特点。仪器采用汉字系统,高清晰度显示,界面友好。

https://www.sodocs.net/doc/a32405777.html, 电缆寻迹及故障定点是由路径仪、定点仪、T型探头、A字架、听筒等组成。本仪器是电缆故障定位测试的专用仪表,适用测试对象为具有金属导体(线对、护层、屏蔽层)的各种电缆。其主要功能为对地绝缘不良点的定位测试,线缆路径的探测以及线缆埋深的测试。 注:(HZ-TCD全智能多次脉冲电缆故障测试仪) 全智能多次脉冲电缆故障测试仪是我公司为了迎合电力工业电力时代的到来,在集成了电缆故障测试行业的诸多精品方案,以IT时代的快速发展为契机,将单片机及笔记本式的电缆故障测试仪彻底摒弃,在嵌入式计算机平台的基础上打造出适合电缆故障测试行业自身特点的网络化电缆故障测试服务平台,并且系统化得集成了USB通信技术,触摸屏技术,3G 通信技术,极大提高了仪器的使用功能和利用价值以及便捷的现场环境操作。考虑到现在地

关于电力电缆故障分析与诊断技术探讨 费利定

关于电力电缆故障分析与诊断技术探讨费利定 发表时间:2018-11-14T20:13:48.483Z 来源:《基层建设》2018年第28期作者:曾维炎费利定[导读] 摘要:随着我国社会与经济的发展,工农业生产以及人民生活水平快速提高,用电量也快速增加,同时社会各界对于电力的需求量也在增加,对于电网的安全运行有了更高的要求,如何确保配网电力电缆的安全成为了一个相当重要的问题。 浙江省送变电工程有限公司浙江杭州 310016 摘要:随着我国社会与经济的发展,工农业生产以及人民生活水平快速提高,用电量也快速增加,同时社会各界对于电力的需求量也在增加,对于电网的安全运行有了更高的要求,如何确保配网电力电缆的安全成为了一个相当重要的问题。因此,在配网电力电缆的使用与运行的过程之中如何快速、准确地定位故障的类型以及故障点就显得非常的重要,因此需要加强对配网电力电缆故障监测的研究。 关键词:电力电缆;故障;诊断技术随着我国社会经济发展进步,电力行业迅猛发展,人们在用电方面的需求不断增大,对于电力系统的要求也越来越高。当前电力已经逐渐发展成为人们生活、生产过程中一项主要动力来源,电力电缆属于电力传输的主要介质。很多企业在电力电缆敷设方面以埋地电缆方式为主,这种电力输送方式能够将电缆与外界环境有效隔绝,避免电缆与环境之间相互作用,使电缆的运行和维护得到简化,供电安全性和可靠性有显著提高。 1 常见的电力电缆故障分析 1.1 高阻故障 如果故障区域电缆绝缘电阻值超过电缆本身电阻值,则属于高阻故障,具体可分为三种不同类型,分别是断路故障、闪络性故障、高阻泄露故障,其中闪络性故障主要是指试验电压升高时引起电流表值突然升高,试验电压下降情况下电流值回归正常,但是电缆绝缘阻值仍比较大,在故障点未有电阻通道出现,只在闪络性表面故障;高阻泄露故障,这种故障主要指在高压绝缘测试时,随着试验电压的增加,泄露电流值也会有明显升高,试验电压在上升至额定值时,泄露电流会超过最大允许值。 1.2 机械损伤 导致机械损伤的原因有三种,其一是受到外力的破坏,比如在施工过程或者运输过程中发生意外损伤,对电缆造成影响,其二是敷设造成损坏,尤其是过大拉力作用下,绝缘材料出现损伤,或者保护层发生损坏,其三是自然力的作用,在受到自然压力下两端的接头会出现膨胀电缆,护套开裂,并且还会受到气候变化的影响,产生自然缩涨。 1.3 因绝缘层破损引发的故障 绝缘层的老化、破损对输电电路的损害是不可估量的,而造成绝缘层老化、破损的原因有很多,除上述几种原因外,还要其他几种常见的原因。(1)腐蚀影响,由于一些电力电缆铺设环境存在腐蚀性较强的物质,在长期腐蚀侵蚀下,电力电缆的绝缘层遭到损坏引发故障问题。(2)摩擦损伤,在电力电缆与金属结构重合的地方,电缆与金属结构长期摩擦造成绝缘层破损,也会导致电力电缆受潮引发故障。(3)动物啃咬,电力电缆容易受到老鼠、白蚁等动物的啃咬造成绝缘层破损,导致电力电缆受潮,进而引发短路问题。 2 电力电缆故障的类型 电力电缆故障类型呈现出多样性,第一是因为低电阻接地或者短路导致故障的发生,简而言之便是电缆线路一相或者多相导体对地,绝缘电阻比正常的阻值要低,且导体具有连续性,常见的类型有单相接地、两相接地等。第二是因为电阻接地或者短路所导致的故障,该故障类型同第一点相似,但仍旧存在差别,主要是接地或短路电阻具有良好的芯线连接,较为常见的类型包括单相接地、两相接地等;第三种是开路故障电缆的各相导体均符合相应的绝缘电阻,但是针对导体进行的连续性实验结果却存在不连续的一项或者数项导体,虽然没有发生断开,但是却无法将电压及时传送给电缆终端,这种情况下则会导致故障的发生,较为常见的便是单相与两相、三相断线。 3 电力电缆故障的诊断技术 3.1 动态监测电缆负荷 电缆超负荷运行情况下会严重缩短绝缘层使用寿命,电力电缆运行中需要注意避免电缆的超负荷运行,结合电网分布以及电缆特性做好载流量的合理分配,降低电缆负荷控制在合理范围,及时更换无法满足电力输送要求电缆,使电缆运行安全稳定性得到保证。另外,还需要采取针对性技术措施做好电缆载流量的动态监测,当有超负荷情况出现时,及时采取处理措施,最大限度降低电缆故障发生率。 3.2 电桥检测法 所谓的电桥检测法主要是指在电缆中要利用双臂电桥测量出流经新线的电流阻值,然后对电缆的长度进行测量,严格按照电阻与电缆长度之间所存在的关系,对电缆之中所存在的故障点加以计算,其中在应用电桥检测法对故障进行诊断的时候,需要多角度分析,尤其要对短路点接触加以诊断,对小于一欧姆的电缆芯线间的短路接触阻值进行计算,要将故障的误差保持在三米以下,其中需要注意的是对于超过一欧姆故障连接处阻值的故障,则需要应用高电压烧穿技术,将其电阻下降到标准数值以下,然后继续利用电桥检测法进行测量。从本质上分析,利用电桥检测法对电力电缆故障进行诊断,可以提高精度测量,减少电桥连接线。 3.3 万用表法 在配网电力电缆的故障监测过程中,在万用表法之中短接了电缆内的金属屏蔽层以及电缆芯,也就是配网电力电缆的终端,而始端测量短接的电阻值,如果测得的电阻值读数为无穷大,那么就代表配网电力电缆系统之中存在有开路故障,如果电阻值的读数比线芯的两倍还要高,那么就代表系统之内出现了似断非断的故障。如果配网电力电缆采用的是三芯电缆结构,接入了金属屏蔽层,那么就需要考虑中终端位置,对屏蔽层进行短接,然后使用万用表接入开始位置,对三相间的实际电阻值进行直接测量,对绝缘层的电阻值进行掌握。而对于没有金属屏蔽层的情况,只需要检测相间电阻就可以,以对配网电力电缆的性能以及质量进行判断。 3.4 声音测量法 声音测量法主要是指检测诊断电缆故障的时候需要根据放电过程中所释放的声音进行判断,高压电缆的线芯对绝缘层闪络的放电比较适用于声音测量方法,需要应用直流耐压试验机对电力电缆故障加以诊断。其中,当电容器达到固定电压值的时候,要根据电缆故障新线放电,这个时候放电会发出滋滋的声音,可以靠听觉查出故障所在的位置,对于敷设在地下电缆如发生故障,首先需要对电缆的走向加以确定,并且在最大放电声音区域内放大设备,查找故障的发生位置,主要的方法是利用低音器缓慢地在电缆的走向处进行移动,在放电声最大的区域仔细检测。

高压电缆故障分析判断与故障点查找

高压电缆故障分析判断与故障点查找 随着我国的市场经济与现代化科技水平的不断发展提升,加快促进了我国城乡基础设施的建设。而对于高压电缆而言,其主要作用为连接电气设备与传输电能,因具备优质的稳定性与安全性的特点,得到了我国全国范围内广泛应用与普及。但是高压电缆在日常运作中也会受到诸多因素的影响,例如不可预判的自然雷电灾害、忽略了使用年限超龄等,极易引发高压电缆故障,对城乡稳定供电产生困扰。基于此,为了有效及时的采取科学合理的措施解决高压电缆故障,我国电力工作者需要对高压电缆故障的分析判断能力与精确定位故障点能力进行提升。 标签:高压电缆;故障成因;故障点判断;故障点定位 高压电缆在电力系统中因占地面积小与送电可靠性高,电力工作者为了加强供电安全性与电厂规划布局、外观美化等性能方面逐渐深入了高压电缆的应用,并且高压电缆的正确合理运用还会对后续的电力系统维护保养工作提供基础保障。然而由一些因素导致可能会对稳定工作中的高压电缆造成一系列的负面影响,从而造成危害高压电缆正常供电运行的故障出现,为了有效排除故障,电力工作者将高压电缆故障的成因进行深度分析与探究对保证社会大众的生活生产用电极具现实意义[1]。 一、高压电缆故障成因 1机械损伤 电力工作者对高压电缆工作实际操作前,未对相关区域单位部门上报与获得批准,私自进行人工打桩或者机械开挖,其过程中发生人为误操作等情况,皆可能导致高压电缆断线故障。另外,电力工作者完成对线缆或线管的敷设安装后,对高压电缆标志牌未明确标明,一旦电缆受到过大的外力时,也会造成高压电缆的断线。经相关调查,这类高压电缆线路故障成因最为普遍。 2绝缘胶层老化变质 电力系统在经过长时间运行后会发生电流流经电缆发热现象,而后长期发热现象得不到有效缓解就会导致电流流经电缆的温度不断升高,从而对电缆的绝缘胶层造成一定程度的破坏;除此之外,铁塔地下土壤中存在的酸碱性物质等自然因素,久而久之也会腐蚀电缆的绝缘外套。 3电缆施工技术 一方面,在高压电缆安装时,电力工作者未根据相关技术标准进行违规造作。另一方面,在电力建筑工程中也会出现不同程度的下沉情况,让电缆承受了较大的压力,皆会导致高压电缆断线与短路的故障发生。

高压电力电缆故障原因分析及其试验措施 王晓华

高压电力电缆故障原因分析及其试验措施王晓华 发表时间:2017-11-20T18:07:17.050Z 来源:《电力设备》2017年第19期作者:王晓华1 许文强2 聂立贤3 [导读] 摘要:随着我国经济的快速发展,“城乡一体化”的基础设施不断建设完善,国家和社会以及人们对电力的需求发生了巨大的变化,电力消耗与日俱增,为了可以保证国家和社会以及人们正常的用电需求,高压电力电缆已经投入使用,高压电力电缆不仅可以保证电能的质量,而且还能保证日常用电量的巨大消耗 (1.国网河北省电力公司检修分公司;2.国网冀北电力有限公司;3.国网河北省电力公司检修分公司) 摘要:随着我国经济的快速发展,“城乡一体化”的基础设施不断建设完善,国家和社会以及人们对电力的需求发生了巨大的变化,电力消耗与日俱增,为了可以保证国家和社会以及人们正常的用电需求,高压电力电缆已经投入使用,高压电力电缆不仅可以保证电能的质量,而且还能保证日常用电量的巨大消耗。所以,加强合理使用高压电力电缆,提高电力企业电力传输的质量和效率,进而促进国家电力行业的稳定、可持续发展。 关键词:高压电力电缆;故障分析;试验研究 引言 随着国家越来越重视电力发展程度,在输电、运转方面也给予高度的关注,特别是在高压电力电缆方面,分析其正常运行状态、常见的故障及其原因以及有效的实验方法,保证高压电力电缆的正常使用,俨然已经成为了社会科学研究学者和国家电力管理部门关注的重点之一。在积极、有效扩大电力电缆的使用范围的同时,加强对高压电力电缆的快速准确的故障诊断和维修以及强化线路布置管理,从而促进国家电力事业的发展,提高了电力传输效率和运行的质量。 1 探测电力电缆故障的意义以及故障出现的原因 当高压电力电缆运行使用到一定年限之后,其故障发生的概率会逐年增加,风险也随着逐年加大。因为电力电缆大多是埋在地下,一旦出现故障时很难找出,如果路径不清楚,故障点测距不够准确,就更加大了查找的难度,不仅仅浪费了大量的时间,也很容易造成严重的损失或伤害。因此,准确探测电力电缆故障无论是对人身安全还是对社会生产都有着非常重要的作用及意义。长期以来,引发高压电力电缆故障的原因大致分为以下几点: (1)由高压电力电缆的生产制造引起的电缆故障能够涵盖到电缆接头、本体等。一般情况下,因为现代制造工艺的不断进步,电力电缆本体缺陷引发的电缆故障率比较小,但是在实际生产中,厂家为赶工期或是没能按照生产规定进行抢工,加大了这种概率。电缆金属护套密封不良、绝缘屏蔽厚度不均匀、绝缘偏心、绝缘内有杂质等问题是在高压电力电缆生产过程中出现最频繁的问题; (2)高压电力电缆的安装必须要严格按照工艺规定进行施工,然而在电力电缆进行安装时环境比较差,现场湿度、温度、灰尘等都不易被控制,一些沙粒等杂质进入电缆绝缘中可能都会对其长期运行留下安全隐患。电力电缆项目在竣工验收的时候也应该要严格按照试验要求进行; (3)高压电力电缆因为长期在电和热的作用下,绝缘材料会长时间处于高温状态,加上长久以来受到强电磁场的影响,大大加快了绝缘层老化程度。电缆过热的主要原因是超负荷运行,再加上因为环境封闭所引起的通风质量较差,这都会严重影响电缆的绝缘层使用寿命。除此之外,电缆接头作为传输电缆的重要组成部分,其安装工作量比较大。但因为现场施工不到位的原因,难以避免绝缘带层间会有杂质和气隙,这也加剧电缆绝缘层的老化变质; (4)据相关统计表明,机械外力破坏所引起的电缆故障占到高压电力电缆总故障的半数以上,主要因为在城市发展中的地表塌陷、土地翻新等操作牵引力太大,会严重损伤电缆,甚至会引起电缆破裂或者断路现象出现。 2 高压电力电缆试验方法 目前针对国内高压电力电缆故障原因和维修予以了高度重视,如何提高电力电缆的有效性,提高其绝缘性能,延长使用寿命,使其具有耐高温、抗有毒气体的性能成为社会科学研究学者和国家电力企业关注的焦点之一。当前对高压电力电缆进行实验的主要方法是交流耐压法。 2.1谐振耐压试验 谐振电压在业内也被称为串联谐振。该方法通常适用于试验品无法满足试验电压要求方面,它具有很大的电流容量,可以满足任何电压被试品的需求。串联谐振耐压试验方法主要是通过改变试验系统实验频率和电感量,让回路一直处于谐振的状态,其具有重量轻、体积小、携带方便、理论资料成熟、价格低廉、广泛适用的优点,值得一提的是,其所需的实验仪器也很多,因此,在业内被称为优缺点并存的试验方法。 2.2振荡电压试验 高压电力电缆使用直流电源进行有效的充电,当达到试验电压的标准之后,进行放电间隙击穿后,通过电感线圈工作进行集中放电的就是振荡电压试验。该试验对高压电力电缆施加一种khz级别的衰减震荡波电压,成为高压电力电缆试验方法的有效途径之一。 3 目前我国电缆试验方法中的问题 国内目前阶段,在针对高压电力电缆试验的过程中,直流耐压存在的缺陷和问题最为严重,其主要表现为: (1)在直流电压和交流电压双重电压的作用下,橡塑绝缘高压电力电缆的绝缘层存在着一定的电场,其电场相对比较稳定,但是分布情况却是完全不一样的。电力电缆试验在这种情况下进行,完全无法充分反映问题的具体原因及其位置,存在缺陷和问题的设备元件不但不会被电压击穿,而且其击穿的部分也不会有任何问题反映。 (2)通常情况下,高压电力电缆主要质量问题是其不配套的生产设备、不严格的质量管理所造成的。像橡塑绝缘高压电力电缆绝缘出现问题,在直流试验进行的时候,将会随之发生积累效应,增加了老化的现象,造成不断缩短高压电力电缆使用寿命。 4 加强高压电力电缆故障以及实验方法管理的策略 4.1加强高压电力电缆故障措施 (1)在线监测高压电缆负荷电流,防范电缆重载运行:高压电力电缆长时间重载运行,会导致电缆本体温度过高,加快绝缘老化,易在电缆绝缘薄弱环节出现绝缘击穿(如接头处),极大地影响电缆寿命。因此,应根据电缆的运行数据,及时调整负荷分配。 (2)使用质量可靠的电缆及制作附件,并严把验收关:电缆及制作附件应选用信誉好、质量可靠的生产厂家,并经由专业人员进行

浅析电力电缆故障诊断与监测 刘国昌

浅析电力电缆故障诊断与监测刘国昌 发表时间:2019-05-17T10:23:48.903Z 来源:《电力设备》2018年第32期作者:刘国昌1 张伟平2 刘利昌3 [导读] 摘要:由于社会的不断发展,使得我国的电缆技术也在逐渐变化和进步,很多新涌现出的技术开始逐步应用到实际领域当中。 (大庆油田矿区服务事业部园林绿化公司黑龙江大庆市 163712) 摘要:由于社会的不断发展,使得我国的电缆技术也在逐渐变化和进步,很多新涌现出的技术开始逐步应用到实际领域当中。不过显然,相关的各类技术并不能攻克全部电缆故障问题,应该在实际的处理当中,利用相对精确度高一些的故障距离检测方式,以便在缩短维修故障时间的同时,让其产生的危害影响最小化。 关键词:电力电缆;故障诊断;监测 1导言 目前,从城市的发展和人们的生活水平状况来看,城市的整体建设规划正在不断完善,电力电缆线路在城市规划中也得到了越来越广泛的应用,与传统的线路类型相比,电力电缆能起到更好的电力资源传递效果。在电力电缆发生故障的时候,需要在第一时间完成故障地点的定位,然后尽快查找故障发生的原因,解决故障,减少中断供电的时间,提高供电的稳定性,以免影响人民群众正常的用电需求。 2电力电缆故障原因 电力电缆故障的首要原因就是绝缘介质老化变质。由于电力电缆长期持续性工作,使得电缆的外部绝缘材料会发生一定的变化,同时加之外部因素的影响,就会造成电缆严重降低绝缘能力。第二,就是电力电缆绝缘介质受潮。由于电力电缆的接头处本身的质量问题以及安装技术问题,通常情况下,电力电缆的接头处都会发生结构不密封的现象。因此,就会导致电缆的接头处经常出现受潮的现象。同时,电缆线也会存有一定的缺陷,从而造成了电缆的绝缘介质极其容易受到环境因素的影响,从而使得电缆无法正常使用。第三,就是电力电缆过热。当电力电缆线路被铺设到地下时,电缆的绝缘介质的内部就会经常出现气隙游离的情况,进而就是造成严重电力电缆出现局部过热的问题。尤其是对于一些电力电缆内部通风速度低于外部通风速度的线路,其更加会容易出现电力电缆线路过热的现象。一旦电力电缆出现局部线路过热,那么就容易导致线路外部绝缘体老化,从而降低电力电缆外部绝缘效果。第四,就是机械损伤的原因。当电力电缆投入到实际当中进行使用的过程中,往往会出现一些外部因素造成电力电缆损伤的情况。由于电力电缆的接头处或者绝缘处受到损伤,导致严重影响其正常使用。通常情况下,电力电缆的误伤有以下几方面:①其它施工项目在进行项目施工过程中对电力电缆造成了误伤。②在进行施工过程中由于施工人员的不规范操作使得电力电缆的绝缘保护层出现了损伤。③由于一些自然因素使得电力电缆的接头处或者是绝缘体受到伤害。第五,材料自身缺陷。在进行电力电缆线制造过程中,由于制造材料不规范以及在进行施工的过程中施工人员没有对电力电缆线进行成品检查,故而使得电力电缆线出现了外部绝缘体缺损的现象。同时,由于电缆在进行连接时需要一些零部件进行辅助,而这些零部件在进行加工时没有达到质量要求,故而当对其进行使用时,就会使得两根电力电缆线之间就会出现接触不严的现象,从而造成电力电缆出现故障。 3电力电缆故障诊断方法 3.1脉冲检测法 在对电力电缆进行故障诊断的过程中,脉冲检测法是一种基本的、应用范围广泛的检测方法。脉冲检测法中还分为不同的方法,包括低压脉冲法、脉冲电压法、脉冲电流法等。而脉冲检测法的检测原理就是与脉冲发射器发出相应的脉冲波,而后在出现故障的电力电缆线的节点位置就会出现相应的反射脉冲。通过对反射脉冲的时间间隔以及速度进行相应的记录,就能够较为准确的确定电力电缆出现故障的位置,而后通过对反射脉冲波进行相应的对比后对电缆出现的故障进行判断,从而为解决电力电缆的故障提供良好的数据基础。 3.2声音检测法 在对电力电缆进行故障诊断的过程中,声音检测法是一种最简单的检测方法,声音检测法的根本原理就是根据电力电缆放电过程中所发出的声音,通过对声音的进而最终判断出电力电缆故障的位置,从而迅速的解决故障。而对于敷设在明处的电力电缆线来说,由于电力电缆线发出的声音相对较小,无法通过声音来识别出电力电缆故障的具体位置。故而,相关工作人员就需要首先对电缆线的走向进行分析,而后在通过对扩音设备的应用来判断故障发生的具体位置。 3.3电容电流的检测法 一般情况下,电力电缆处于工作状态时,线路中的芯片与大地就会形成分布均匀的电容,并且与此同时,电力电缆的线路长度还会与电容量之间形成一定的线性关系。而对电流电容进行检测的方式就是根据的这一原理,通常情况下,这种电力电缆故障检测方法更多的偏向于芯片故障方面。而在对芯线进行相应的检查时,首先需要对电缆的头部进行检查,而后对电流电容进行相应的检测,最后对电缆的尾部进行检查。检查完毕后,将正常的电力电缆芯线与故障的芯线进行对比,从而找出故障位置。 3.4电桥检测法 电桥检测法的原理是利用双臂电桥来检测电力电缆线内部的电阻值,然后确定电缆线的长度,根据电缆线的长度和电阻值的变化规律来找出不符合规律的地方,确定电缆线的故障位置。利用电桥检测法检测电力电缆的故障时,需要保证检测数值的准确,尽可能的缩短电缆连接线的路径。 4对高压电缆故障的监控管理 4.1故障性质的分析和判别 当故障产生以后,首先应该分析和判别该故障的性质类型,掌握其导致的原因,比如:常见的存在着高阻和低阻的差别;很多故障是集合了多种因素的故障,还有一些为单项性质的故障;当然也包括了一些电缆短路的情况,那么结合故障间的差异,应该予以更有针对性的解决方案。而借助监测方面的技术,可以有效分析当前的数据参数,以便达到最为理想的维修护理成效。 4.2故障电缆距离方面的测量 当明确故障的性质类型以后,结合其形成原因,加以大概估测,并依靠先进的监测技术,有效对其距离实施测量和判别,尽可能把范围进行缩小,利用更快的速度发觉故障位置,显然,此环节应该有效利用监测技术,对故障的具体范围加以锁定,成为电缆故障当中不容忽视的流程内容。 4.3精准定位故障的位置

电力电缆故障原因及其普通地检测方法(超全讲解)

电力电缆故障原因及常用的检测方法(超全讲解)盲目的进行电缆故障查找工作往往费时费力而且无法准确的进行故障定点判断,这不是因为电缆故障种类的复杂造成,而是因为电缆周边环境所造成的。 1、电力电缆基础理论 我们目前采用的电缆故障查找方法离不开:故障诊断、粗测定点与精确定点三个步骤。但是往往在实际测试中能够确定故障类型,做到粗测定点,但是却无法真正精确定点进行开挖。这种原因的形成是因为客观存在的我们听得到的因素(公路或施工处振动噪声过大等原因)和看不到的因素(电缆走向、电缆埋设深度过深、故障点在积水中、电缆施工时余留不规范等原因)所造成的。因此在电缆故障查找前通过电缆施工、运行管理人员明确电缆长度、电缆走向、周边特殊情况、中间头位置、周边是否存在施工等要因是电缆故障查找前不可或缺的准备工作。 2、电缆故障原因及测量仪器 了解电缆故障的原因,对于减少电缆的损坏,快速地判定出故障点是十分重要的。

注:(HZ-TC电缆故障测试仪) 电缆故障测试仪是我公司根据用户要求,从现场使用考虑,精心设计和制造的全新一代便携式电缆故障测试仪器。它秉承我们一贯高科技、高精度、高质量的宗旨,将电缆测试水平提高到一个新境界。 电缆故障测试仪(闪测仪)可用于检测各种电缆的低阻、高阻、短路、开路、泄漏性故障以及闪络性故障,可准确的检测地下电缆的故障点位置、电缆长度和电缆的埋设路径。具有测试准确、智能化程度高、适应面广、性能稳定以及轻巧便携等特点。仪器采用汉字系统,高清晰度显示,界面友好。 电缆寻迹及故障定点是由路径仪、定点仪、T型探头、A字架、听筒等组成。本仪器是电缆故障定位测试的专用仪表,适用测试对象为具有金属导体(线对、护层、屏蔽层)的各种电缆。其主要功能为对地绝缘不良点的定位测试,线缆路径的探测以及线缆埋深的测试。

电力电缆故障的原因分类

电力电缆故障的原因分类 地下电力电缆故障复杂多变,引起电力电缆故障的原因分类大致可归纳为以下几类。 1. 机械损伤 由机械损伤引起的电缆故障占电缆事故很大的比例。有些机械损伤很轻微,当时并未造成故障,要在数月甚至数年后损伤才发展成故障。造成电缆的机械损伤的主要原因有: (1)安装时损伤。安装时不小心碰伤电缆;机械牵引力过大拉伤电缆;过度弯曲折伤电缆。 (2)直接受外力损伤。在安装后的电缆路径上或附近进行土建施工,使电缆直接受外力损伤。 (3)行驶车辆的震动或冲击性负荷也会造成地下电缆的铅(铝)包裂损。 (4)因自然现象造成的损伤。如中间接头或终端头的内绝缘胶膨胀而胀裂外壳或电缆护套;装在管口或支架上的电缆外皮擦伤;因土地沉降引起过大拉力,拉断中间接头或导体。

2. 绝缘受潮 绝缘受潮后会引起电缆耐压下降而产生故障。电缆受潮的主要原因有: (1)因接头盒或终端盒结构不密封或安装不良而导致进水。(2)电缆制造不良,金属护套有小孔或裂缝。 (3)金属护套因被外物刺伤或腐蚀穿孔。 3. 绝缘老化变质 绝缘老化会引起电缆耐压下降而产生故障。电缆老化的主要原因有:(1)电缆介质内部的渣质或气隙,在电场作用下产生游离和水解。(2)电缆过负荷或电缆沟通风不良,造成局部过热。 (3)油浸纸绝缘电缆的绝缘物流失。 (4)电力电缆超时限使用。 4. 过电压 过电压会使有缺陷的电缆绝缘层发生电击穿,引起电缆故障。其主要原因有:大气过电压(如雷击);内部过电压(如操作过电压)。

5. 设计和制作工艺不良 电缆头与中间设计和制作工艺不良,也会引起电缆故障。其主要原因为:电场分布设计不周密;材料选用不当;工艺不良,不按规程要求制作。 电缆故障的性质与分类 1. 以故障材料特征分类 可分为串联故障、并联故障及复合故障三类。 (1)串联故障 串联故障(金属材料缺陷)是指电缆一个或多个导体(包括铅、铝外皮)断开的故障。它是广义的电缆开路故障。因缆芯的连续性受到破坏,形成断线或不完全断线。不完全断线尤其不容易发现。串联故障具体可分为:一点开断、多点开断、一相断线、多相断线等。(2)并联故障 并联故障(绝缘材料缺陷)是指导体对外皮或导体之间的绝缘水平下降,不能承受正常运行电压而发生的短路故障。它是广义的电缆短路故障。这类故障由于缆芯之间或缆芯对外皮间的绝缘破坏而形成短路、接地、闪络击穿等现象,在现场出现频率较高。并联故障具体可分为:一相接地、两相接地、两相短路、三相短路等。

电力电缆故障探测方法

电力电缆故障探测 摘要:该文介绍了电力电缆故障探测工作中,常用的几种探测方法及在应用效果上的分析和比较。 关键词:电力电缆;故障探测 随着电力电缆在城市电网中的应用日益广泛,运行时间越久,故障会越来越频繁,如何及时有效地处理故障,保证城市供电和电网的正常运行,就要看是否能够快速准确地判定故障性质和地点。为解决这项课题,淮北供电公司于2002年购置了一套YM型电缆故障探测议,开始是给配电工区使用,后给修试所实验班使用,对公司所辖的电缆进行故障探测。经过积极探索和分析研究判断,在多次的电缆故障探测工作中发挥了极好的作用和效果,也积累了丰富的经验,现对电缆故障发生的原因、性质、探测原理与方法、实际运用进行探讨。 1 电缆故障原因 导致电缆发生故障的原因是多方面的,现将常见的几种主要原因归纳如下: 机械损伤。电缆的很多故障是由于敷设安装时造成的机械损伤或敷设后在电缆线路上施工造成的外力损伤,而直接引起的。有时虽然损伤轻微,但在几个月甚至几年后其损伤部位的绝缘将逐渐降低而导致击穿。 设计和制作工艺不良,不按规程要求制作,往往是形成电缆故障的重要原因。 化学、电腐蚀。电缆外铅皮电腐蚀导致潮气侵入,绝缘破坏。 电缆的制造缺陷。 由于电缆长期过负荷运行,电缆的温度会随之升高,尤其在炎热的夏季,电缆的温升,常常导致电缆薄弱处和对接接头处首先被击穿。 电缆绝缘物的流失。 2 电缆故障预定位的方法 在电缆故障定位中最重要的一步就是鉴别电缆故障类型。一旦故障发生,判断故障类型,根据故障类型和本单位的设备条件选择合适的探测方法,直接影响着对事故处理的速度。实际上,电缆可能在任何位置发生任何类型的故障,能否快速排除故障取决于现场工作人员的实际经验。通常用万用表来测定故障电缆电阻,按电阻大小把电缆故障分为两组:低阻故障——小于100kΩ;高阻故障——大于100kΩ。每种类型的电缆故障需要特殊的方法进行预定位,常用的比较有效的预定位方法如下。 2.1 低压脉冲反射法 这种测量方法是将高频率的低压脉冲发送到电缆中,该脉冲沿电缆传播,直到阻抗失配的地方,如中间接头、T接头、短路点、断路点和终端头等,在这些点上都会引起波的反射,反射脉冲回到电缆测试端时被试验设备接收。实践证明现场绝大多数故障电缆,采用低压脉冲反射法是无法测量故障位置的,其所反射的波形只能测试电缆全长。图1为低压脉冲反射标准波形图。

浅析高压电缆故障分析及解决方法

浅析高压电缆故障分析及解决方法 发表时间:2019-04-11T14:01:57.313Z 来源:《河南电力》2018年19期作者:周荣斌[导读] 本人根据作者实践,按照高压电缆故障产生的原因进行分类,并按照不同类别给出具体解决方案活建议,希望能为同仁提供借鉴 周荣斌 (福建省万维新能源电力有限公司福建福州 350003)摘要:本人根据作者实践,按照高压电缆故障产生的原因进行分类,并按照不同类别给出具体解决方案活建议,希望能为同仁提供借鉴。 关键词:高压电缆;故障分析;电力1.高压电缆故障原因分析 按照故障产生的原因进行分类,高压电缆故障大致分为以下几类:厂家制造原因、施工质量原因、设计单位设计原因、外力破坏四大类。下面进行分类介绍: 1.1厂家制造原因 厂家制造原因根据发生部位不同,又分为电缆本体原因、电缆接头原因两类。 一是电缆本体制造原因。一般在电缆生产过程中容易出现的问题有绝缘偏心、绝缘屏蔽厚度不均匀、绝缘内有杂质、内外屏蔽有突起、交联度不均匀、电缆受潮、电缆金属护套密封不良等,有些情况比较严重可能在竣工试验中或投运后不久出现故障,大部分在电缆系统中以缺陷形式存在,对电缆长期安全运行造成严重隐患。 二是电缆接头制造原因。高压电缆接头以前用绕包型、模铸型、模塑型等类型,需要现场制作的工作量大,并且因为现场条件的限制和制作工艺的原因,绝缘带层间不可避免地会有气隙和杂质,所以容易发生问题。电缆接头分为电缆终端接头和电缆中间接头,不管什么接头形式,电缆接头故障一般都出现在电缆绝缘屏蔽断口处,因为这里是电应力集中的部位,因制造原因导致电缆接头故障的原因有应力锥本体制造缺陷、绝缘填充剂问题、密封圈漏油等原因。 1.2施工质量原因 因为施工质量导致高压电缆系统故障的事例很多,主要原因有以下几个方面:一是现场条件比较差,电缆和接头在工厂制造时环境和工艺要求都很高,而施工现场温度、湿度、灰尘都不好控制。二是电缆施工过程中在绝缘表面难免会留下细小的滑痕,半导电颗粒和砂布上的沙粒也有可能嵌入绝缘中,另外接头施工过程中由于绝缘暴露在空气中,绝缘中也会吸入水分,这些都给长期安全运行留下隐患。三是安装时没有严格按照工艺施工或工艺规定没有考虑到可能出现的问题。四是竣工验收采用直流耐压试验造成接头内形成反电场导致绝缘破坏。五是因密封处理不善导致。中间接头必须采用金属铜外壳外加PE或PVC绝缘防腐层的密封结构,在现场施工中保证铅封的密实,这样有效的保证了接头的密封防水性能。 1.3设计原因 因电缆受热膨胀导致的电缆挤伤导致击穿。交联电缆负荷高时,线芯温度升高,电缆受热膨胀,在隧道内转弯处电缆顶在支架立面上,长期大负荷运行电缆蠕动力量很大,导致支架立面压破电缆外护套、金属护套,挤入电缆绝缘层导致电缆击穿。 2.高压电缆头制作技术 电缆终端头是将电缆与其他电气设备连接的部件,电缆中间头是将两根电缆连接起来的部件,电缆终端头与中间头统称为电缆附件。电缆附件应与电缆本体一样能长期安全运行,并具有与电缆相同的使用寿命。 2.1高压电缆头的基本要求 良好的电缆附件应具有以下性能,线芯联接好,主要是联接电阻小而且联接稳定,能经受起故障电流的冲击;长期运行后其接触电阻不应大于电缆线芯本体同长度电阻的1.2倍;应具有一定的机械强度、耐振动、耐腐蚀性能;此外还应体积小、成本低、便于现场安装。绝缘性能好:电缆附件的绝缘性能应不低于电缆本体,所用绝缘材料的介质损耗要低,在结构上应对电缆附件中电场的突变能完善处理,有改变电场分布的措施。 2.2电场分布原理 高压电缆每一相线芯外均有一接地的(铜)屏蔽层,导电线芯与屏蔽层之间形成径向分布的电场。也就是说,正常电缆的电场只有从(铜)导线沿半径向(铜)屏蔽层的电力线,没有芯线轴向的电场(电力线),电场分布是均匀的。 在做电缆头时,剥去了屏蔽层,改变了电缆原有的电场分布,将产生对绝缘极为不利的切向电场(沿导线轴向的电力线)。在剥去屏蔽层芯线的电力线向屏蔽层断口处集中。那么在屏蔽层断口处就是电缆最容易击穿的部位。电缆最容易击穿的屏蔽层断口处,我们采取分散这集中的电力线(电应力),用介电常数为20~30,体积电阻率为108~1012Ω?cm 材料制作的电应力控制管(简称应力管),套在屏蔽层断口处,以分散断口处的电场应力(电力线),保证电缆能可靠运行。 为尽量使电缆在屏蔽层断口处电场应力分散,应力管与铜屏蔽层的接触长度要求不小于20mm,短了会使应力管的接触面不足,应力管上的电力线会传导不足(因为应力管长度是一定的),长了会使电场分散区(段)减小,电场分散不足。一般在20~25mm左右。 预制式安装要求比热缩的高,难度大。管式预制件的孔径比电缆主绝缘层外径小2~5mm。中间接头预制管要两头都套在电缆的主绝缘层外,各与主绝缘层连接长度不小于10mm。电缆主绝缘头上不必削铅笔头(在电缆芯线上尽量留半导体层)。铜接管表面要处理光滑,包适量填料。 关键技术问题是附件的尺寸与待安装的电缆的尺寸配合要符合规定的要求。另外也需采用硅脂润滑界面,以便于安装,同时填充界面的气隙,消除电晕。预制附件一般靠自身橡胶弹力可以具有一定密封作用,有时可采用密封胶及弹性夹具增强密封。预制管外面同热缩的一样,半导体层和铜屏蔽层,最外面是外护层。 3.电缆终端电应力控制方法

高压电力电缆故障分析及诊断处理_0

高压电力电缆故障分析及诊断处理 在新经济常态下,城市和农村对用电的需求越来越大,因此高压电力电缆在城乡电网输变电中得到了广泛运用。如果高压电力电缆在试验、生产、施工等环节质量有问题,那么在投入使用中,受运行环境、化学、机械等因素的影响,将造成绝缘老化等问题,最终造成电缆运行发生故障。 标签:高压电力电缆;故障;诊断 1 高压电力电缆故障主要类型 高压电力电缆故障类型多种多样,其中经常见到的故障有如下5种。第一,接地故障。导体和地面连接在一起,此过程中若电阻不存在统计意义,那么就属于安全接地。还有种情况为电阻不能被忽略,此时就可以产生低电阻或高电阻接地的情况。第二,断线故障。高压电力电缆在实际运行的过程中,在外力的作用下会出现各类突发状况,如被大风刮断等,电缆断开之后,电力输送也会中断,该区域中的电能供应就会出现瘫痪的情况。第三,绝缘故障。电缆绝缘在产生问题之后,会出现漏电事故。第四,短路。电力电缆短路后,可以会造成火灾,亦或是烧毁电力设备。第五,闪络故障。电流值异常升高,监控电力表针存在闪络摆动的情况,电压下降之后此情况会消失,但电缆绝缘阻值居高不下,表明高压电缆存在故障。 2 高压电缆故障的分析判断 2.1 高压电缆故障原因 高压电力电缆故障原因较多:电缆敷设过程中,施工人员技能水平不足使本体外护套受损或架设时牵引力太大引起电缆损伤,导致潮气进入电缆,使得电缆在投运前就存在严重缺陷;选择的电缆质量不过关,绝缘达不到相关的标准,导致出现风化、裂口、受潮等情况;随着人们用电需求的不断增加,电缆长期持久输送电能,有些处于超负荷运行状态;城市基建项目为了赶工期,往往不能及时清楚辨析电缆的走向就施工,导致直埋电缆遭到外力破坏;电缆在输送电能的过程中会产生热量,这些热量不能有效排解,就会加速电缆的老化。 2.2 高压电缆故障的分析 电力电缆故障分析和处理一般都是事后进行调查维修,主要包括以下步骤:首先进行故障检测,检测故障是否依然存在,辨别正常和故障的电缆芯线,同时确定故障类型;然后进行故障测距,确定故障发生的大概距离,为精准定位故障点提供准确的相关信息;最后进行精测定位,在故障测距的基础上,实现故障点精准定位,以便及时开展检修。目前的测距方法有电桥法、低压脉冲反射法、脉冲电压法、脉冲电流法、直流高压闪络法、冲击高压闪络法、二次脉冲法等,这些方法根据不同的原理都可粗略测定故障距离;精确定位方法有声测定点法、音

电力电缆故障诊断

https://www.sodocs.net/doc/a32405777.html, 电力电缆故障诊断 背景及意义 电力电线可以分为电缆线路和架空线路。一般来说,电缆线路比架空线路成本要高。但是,电缆具有传送同等功率损耗少、受外界环境影响小、安全可靠、占地少、优化 线路、改造及美化环境等优点,因此被广泛使用于城镇市区、发电厂、变电站及地下、海底、隧道等复杂环境。特别在城市配电网中,电缆正在逐步取代架空线⑷,成为城 市电网的主力军。 随着电缆广泛使用,面临的电力电统故障诊断的难题也愈加严峻。首先,电缆主要 敷设于隧道、地底甚至海底等环境,敷设的环境复杂隐蔽,导致电缆故障点的查找、 修复较架空线更为困难。其次,我国首批城市电缆大致在九十年代开始使用,逾多年,不少的电缆线路开始进入老年期。部分电缆线路由于投入时间较早,巳经出现绝缘老 化故障。参照故障发展的一般规律,电缆故障出现的概率应该符合洛盆曲线,即在整 个使用寿命的初期和晚期的故障率较高,在中期的故障率较低。可以预见随着电缆使 用年限的进一步增加,我国的电缆线路故障会迈入频发期。众所周知,电缆故障造成 的突发性停电事件会给用户的生命、财产安全带来严重的威胁,甚至会造成恶劣的社 会影响。避免电缆故障带来的损失是众望所归。因此,做好电力电缆故障预警及故障 快速、准确定位时科技界必须担当的职责,客观形式给我国电力科技人员提出了更高 的要求。第二届全国电气设备状态盟测与故障诊断研讨会指出电缆故障诊断的发展趋 势是从电缆现有的“预防性维修转为“预知性维修”,从”到期必修’’和故障维修”转为该修则修,即通过对电缆绝缘在线监控,在提前预知电缆故障隐患的前提下,实 现对故障的及时、准确定位。综上所述,研究基于电缆绝缘在线监控的预警方法,提 前发现电缆故障隐患可以减少停电事故,降低因停电而产生的经济损失,甚至是政治 影响、生命代价。 研究并探寻提高电缆故障定位的精度的方法有着重要的学术意义和实际应用价值。 这一难题的研究攻克在微电子技术,传感器技术、计算机及控制技术高度发展的今天 已经有好的物质基础,一旦突破将有着良好的应用前景。 电缆故障原因及类型 电缆故障的原因众多,电缆故障的形式也千差万别。为了方便进行电缆故障诊断的 研究,需要对电缆故障原因与类型进行合理的分类。按照故障原因的分类,可将故障 分为如下几类如地层变动挤压、人为等外力因素引起的机械损伤,绝缘老化,绝缘受湖,过电压,过热,设计不良和产品质量缺陷。其中,绝大部分故障初期并不会对电

相关主题