搜档网
当前位置:搜档网 › 阻力型垂直轴风力发电机

阻力型垂直轴风力发电机

阻力型垂直轴风力发电机概述

早在1300多年前,中国就已经出现一种古老的垂直轴风车,它利用风力来灌溉,如下图所示,它是由8个风帆组成的风轮。而在1000年前,波斯也建造了垂直轴的风车来带动他们磨谷的

石磨。水平轴风力发电机最早出现在欧洲,要比垂直

轴风力发电机晚很多年,所以垂直轴风力发电机可以

称为所有风力发电机的先驱。而垂直轴风力发电机根

据驱动力的不同又可以分为升力型和阻力型垂直轴风

力发电机,本文主要介绍阻力型垂直轴风力发电机。

1.阻力型风力发电机的工作原理

阻力型垂直轴风力发电机风轮的转轴周围,有一对或者若干个凹凸曲面的叶片,当它们处于不同方位时,相对于它的来风方向所受的推力F是不同的。风力作用于上述物体上的空气动力差别也很大。作用力F可表示为:F=1/2?ρ?S·V??C

其中ρ——空气密度,一般取1.25(kg/m?)

S——风轮迎风面积

V——来流风速

C——空气动力系数

以半球为例,当风吹到半球凹面一侧,c值为1.33,当风吹到半球凸面一侧时,c值为0.34。对于柱面,当风吹向凹面和凸面时,系数c分别为2.3和1.2。由于组成风轮的叶片不对称性和空气阻力的差异,风对风轮的作用就形成了绕转轴的驱动力偶,整个风轮随即转动。

阻力型风力发电机的种类及其性能

1.杯式风速计是最简单的阻力型风力发电机。

https://www.sodocs.net/doc/8f19176193.html,fond风轮

这是受到离心式风扇和水力机械中的banki涡轮启示而设计成的一种阻力推进型垂直轴风

力发电机,它的名称是根据它的发明者——法国的lafond的名字而得名的。

这种叶片形状的凹面及凸面在受到风力作用后,空气阻力系数差别很大,加上叶片在风里运转时,先使气流吹向一侧,然后运动着的叶片又使气流流向另一侧,这样就产生了一个附加驱动力矩,故这种风轮有较大的启动力矩,它在风速2.5M/s时就能正常起动运转,但是效率较低,能量输出大概是同样迎风面积的水平轴风力发电机的一半。

3.savonius(萨沃尼斯)式风轮(简称“s”轮)

这种风力发电机是在1924年由芬兰工程师savonius发明的,并于1929年获得专利。这种风轮最初是专为帆船提供动力而设计的。它由两个半圆筒组成,其各自中心相错开一段距离。其中D为风轮直径,d为叶片直径,e为间隙。最早形式的结构其相对偏置量为:e/d=1/3。s型风轮是阻力型风力发电机。凹凸两叶片上,风的压力有一个差值,而其气流通过叶片时要转折180°,形成一对气动力偶。阻力型风轮的旋转速度都不会大于风速,也就是尖速比不会超过1。一般情况下,S型的尖速比在0.8和1之间,它的起动力矩大,所以气动性能好,

多用于带动泵,抽水或压气,也常利用其启动容易的特性,作为达里厄风轮的辅助起动风轮。由于它形状简单,可以使用一些现成材料,如汽油桶等,由使用者自行制造,其缺点在于材料利用率低,对于给定的结构材料,得到的风轮迎风面积小。另外,当在大风中出现高速转速状况时,难以控制,除了刹车机构外,没有任何现成的风速过高时限制转速的控制手段。

新型垂直轴风力发电机

简介

MUCE新型垂直轴风力发电机(H型)设计原理

针对目前众多网友对新型垂直轴风力发电机(H型)的设计原理比较感兴趣,特在此将部分设计原理以及技术指标作详细地阐述,希望能给各位朋友予以更深入地了解。

最早的垂直轴风力发电机是一种圆弧形双叶片的结构(Φ型或称为达里厄),由于其受风面积小,相应的启动风速较高,一直未得到大力发展,我国也在前几年做了一些尝试,但效果始终不理想。针对一些朋友问及:为何当初采用Φ型设计而没有用现在这种H型结构?实际上,这和科技的发展特别是电脑的发展密切相关的,由于H型垂直轴风力发电机的设

计需要非常大量的空气洞力学计算以及数字模拟计算,采用人工的方法计算一次至少需要几年的时间,而且不是一次计算就能得到正确的结果,所以在计算机还不是很发达的年代,人们根本无法完成这一设计构思。

由于特殊应用场合的需要,2001年我国率先开始了这项研究,并且在以后两年的时间里不断对产品进行改进,在2003年初,产品走向成熟,并在海岛以及边疆大量采用以这种新型垂直轴风力发电机为主要设备的风光互补系统。

目前,世界上主要以MUCE公司和日本某公司为该产品的主要研发和生产单位。

H型垂直轴风力发电机的技术原理:

一、技术原理

该技术采用空气动力学原理,针对垂直轴旋转的风洞模拟,叶片选用了飞机翼形形状,在风轮旋转时,它不会受到因变形而改变效率等;它用垂直直线4-5个叶片组成,由4角形或5角形形状的轮毂固定、连接叶片的连杆组成的风轮,由风轮带动稀土永磁发电机发电送往控制器进行控制,输配负载所用的电能。

该技术原理根据空气片条理论,实际计算可选取垂直风机旋转轴的切面进行计算模型,按叶片实际尺寸,每个叶片的旋转轴心距离为N米;用CFD技术进行模拟气动系数计算,计算原理采用离散数字方法求解翼形断面的气动力,用网格方法对雷诺数流动涡量分布比较形成高雷诺数下对Navier-Stokes方程进行数字模拟计算的原理结果。

采用稀土永磁材料发电的原理,配套与空气洞力学原理的风轮,采用直驱式结构进行旋转发电。

专利技术:一种风力发电机(专利号:ZL200420081310.2)

二、功率特性

根据H型风力发电机的原理,风轮的转速上升速度提高较快(力矩上升速度快),它的发电功率上升速度也相应变快,发电曲线变得饱满(如下图)。在同样功率下,垂直轴风力发电机的额定风速较现有水平轴风力发电机要小,并且它在低风速运转时发电量也较大。

三、结构

由于此种设计结构采用了特殊空气洞力学原理、三角形向量法的连接方式以及直驱式结构的原理,使得风轮的受力主要集中于轮毂上,因此抗风能力较强;此种设计的特性还体现在对周围环境的影响上,运转时无噪音以及电磁干扰小等特点使得新型垂直轴风力发电机优越性非常明显。

垂直轴直线叶片永磁发电机风力发电电源系统结构图

附:现有垂直轴风力发电电源比较:

目前,生产该类型垂直轴风力发电电源系统产品最多的是日本(2002年开始研究),还有英国、加拿大等国目前也在研制中,这些国家的大部分产品在风轮设计当中采用平行连接杆,这种方式对发电机输出轴要求较高,并且结构相对复杂,现场安装程序也偏多。另外,从力学方面分析,H型垂直轴风力发电机功率越大、叶片越长、平行杆的中心点与发电机轴的中心点距离越长,抗风能力就越差,因此,MUCE采取的是三角形向量法,弥补了上述的一些缺点。

风电设备市场需求分析

近年来,新兴市场的风电发展迅速。在国家政策支持和能源供应紧张的背景下,中国的风电特别是风电设备制造业也迅速崛起,已经成为全球风电最为活跃的场所。2006年全球风电资金中9%投向了中国,总额达16.2亿欧元(约162.7亿元人民币)。2007年,中国风电装机容量已排名世界第五。

中国巨大的风电市场以及廉价的劳动力成本,吸引了大量国外风电巨头纷纷在中国设厂,或采取与国内企业合资的方式,生产的产品都被贴上了中国制造的标签。中国制造的风电设备产品占据越来越大的市场份额,风机产品正在经历一个由全球制造向中国制造的转变。

由于风电属于新能源范畴,无论是成本还是技术同传统的火电、水电相比还有较大的差距,因而风电的快速发展需要国家政策的大力扶持。纵观风电发展迅速的国家如德国、西班牙、印度,无一例外地都给予风电产业巨大的政策优惠。中国对风电的政策支持由来已久,力度也越来越大,政策支持的对象也由过去的注重发电转向了注重扶持国内风电设备制造。国家的政策支持将是风电设备制造业迅猛发展的根本保障,随着中国国产风机设备的自主制造能力不断加强,国家的政策支持力度也将越来越大,风电设备制造业面临难得的历史发展机遇。

前景

中国正逢风电发展的大好时机,风电设备市场需求增加。另外,除了风电设备整机需求不断增加之外,叶片、齿轮箱、大型轴承、电控等风电设备零部件的供给能力仍不能完全满足需求,市场增长潜力巨大。因此中国风电设备制造业景气持续。

扩展阅读:

1 垂直轴风力发电机(VAWT)论坛:https://www.sodocs.net/doc/8f19176193.html,/vawt

2 新能源应用解析:https://www.sodocs.net/doc/8f19176193.html,/blog/lujianzhou/

3 风电设备市场需求分析:https://www.sodocs.net/doc/8f19176193.html,/20078/12007810262.html

阻力型垂直轴风力发电机

阻力型垂直轴风力发电机概述 早在1300多年前,中国就已经出现一种古老的垂直轴风车,它利用风力来灌溉,如下图所示,它是由8个风帆组成的风轮。而在1000年前,波斯也建造了垂直轴的风车来带动他们磨谷的 石磨。水平轴风力发电机最早出现在欧洲,要比垂直 轴风力发电机晚很多年,所以垂直轴风力发电机可以 称为所有风力发电机的先驱。而垂直轴风力发电机根 据驱动力的不同又可以分为升力型和阻力型垂直轴风 力发电机,本文主要介绍阻力型垂直轴风力发电机。 1.阻力型风力发电机的工作原理 阻力型垂直轴风力发电机风轮的转轴周围,有一对或者若干个凹凸曲面的叶片,当它们处于不同方位时,相对于它的来风方向所受的推力F是不同的。风力作用于上述物体上的空气动力差别也很大。作用力F可表示为:F=1/2?ρ?S·V??C 其中ρ——空气密度,一般取1.25(kg/m?) S——风轮迎风面积 V——来流风速 C——空气动力系数 以半球为例,当风吹到半球凹面一侧,c值为1.33,当风吹到半球凸面一侧时,c值为0.34。对于柱面,当风吹向凹面和凸面时,系数c分别为2.3和1.2。由于组成风轮的叶片不对称性和空气阻力的差异,风对风轮的作用就形成了绕转轴的驱动力偶,整个风轮随即转动。 阻力型风力发电机的种类及其性能 1.杯式风速计是最简单的阻力型风力发电机。

https://www.sodocs.net/doc/8f19176193.html,fond风轮 这是受到离心式风扇和水力机械中的banki涡轮启示而设计成的一种阻力推进型垂直轴风 力发电机,它的名称是根据它的发明者——法国的lafond的名字而得名的。 这种叶片形状的凹面及凸面在受到风力作用后,空气阻力系数差别很大,加上叶片在风里运转时,先使气流吹向一侧,然后运动着的叶片又使气流流向另一侧,这样就产生了一个附加驱动力矩,故这种风轮有较大的启动力矩,它在风速2.5M/s时就能正常起动运转,但是效率较低,能量输出大概是同样迎风面积的水平轴风力发电机的一半。 3.savonius(萨沃尼斯)式风轮(简称“s”轮) 这种风力发电机是在1924年由芬兰工程师savonius发明的,并于1929年获得专利。这种风轮最初是专为帆船提供动力而设计的。它由两个半圆筒组成,其各自中心相错开一段距离。其中D为风轮直径,d为叶片直径,e为间隙。最早形式的结构其相对偏置量为:e/d=1/3。s型风轮是阻力型风力发电机。凹凸两叶片上,风的压力有一个差值,而其气流通过叶片时要转折180°,形成一对气动力偶。阻力型风轮的旋转速度都不会大于风速,也就是尖速比不会超过1。一般情况下,S型的尖速比在0.8和1之间,它的起动力矩大,所以气动性能好,

风力发电机介绍

风能发电机 一风力机的分类 风力机按照风轮轴所在的位置分为:水平轴风力机HAWT (Horizontal-axis wind turbines)和垂直轴风力机V AWT (V ertical-axis wind turbines),如图1所示。 图1 两种类型的风力机 这两种类型的风力机各有优缺点: 垂直轴风力机V AWT的优点有:(1) 无需偏航对风系统;(2) 设备在地面,安装维护方便;(3) 制造工艺简单,造价低。其缺点为:(1) 难以自启动;(2) 易失速;(3) 风能利用率低。 水平轴风力机HAWT的优点有:(1) 转轮相对较高;(2) 占地面积小;(3) 风能利用率高。其缺点为:(1) 叶片悬臂梁固定,受力大;(2) 设备安装在塔柱顶部,安装维护困难。 其中,水平轴风力机HAWT制作工艺成熟,风能利用率高而被广泛采用。 二风力机的构成 下面以水平轴风力机HAWT为例,介绍风力机的组成。 风力发电机主要由风轮(叶片和轮毂)、机舱、高速轴、低速轴、增速齿轮箱、发电机、调向装置、调速装置、刹车制动装置、塔架、避雷装置等组成,如图2所示。 风力机的组成分为三部分: 1. 旋转部件主要为风轮,将风能转化为低速旋转的机械能。 2. 发电部件风力机的核心部件,包括发电机、调向装置、调速装置、高速轴、低 速轴、增速齿轮箱。通过增速齿轮箱将低速旋转变成合适的高速旋转。 3. 支撑部件包括塔架和旋转关节。

图2风力机的组成 三风力机的工作原理 风力发电是将风能转换为机械能,再由机械能转换为电能,所以,风力资源的好坏将是影响风力发电成本的最重要的因素。风速会随着高度的增加而变大,如图3所示。 图3 风速与高度的关系 风力发电机出力受风速变化的影响,图4是风机的典型出力曲线图。 图4 风力机的典型出力曲线

垂直轴风力发电机基础清单

垂直轴风力发电机基础清单 垂直轴风力发电机基础清单 作为一种新兴的可再生能源,风力发电越来越受到全球范围内的关注 和重视。与传统的水平轴风力发电机相比,垂直轴风力发电机因其独 特的结构和工作原理而备受瞩目。本文将深入探讨垂直轴风力发电机,并提供一份基础清单,旨在帮助读者全面了解、理解和应用这一创新 技术。 一、垂直轴风力发电机的基本概念 1.1 垂直轴风力发电机是什么? 垂直轴风力发电机(Vertical Axis Wind Turbine,简称VAWT)是一种通过风能转换为电能的装置。与传统的水平轴风力发电机不同,VAWT的主要特点是其旋转轴线垂直于地面,而非平行于地面。 1.2 垂直轴风力发电机的工作原理 VAWT利用风能驱动叶片旋转,通过转动的动力传递系统将机械能转 化为电能。其工作原理与水力发电机类似,但替代了水流,使用了风

能作为输入。 二、垂直轴风力发电机的优势和应用领域 2.1 垂直轴风力发电机的优势 (1)适应性强:相比于水平轴风力发电机,VAWT在风向和风速的变化中表现更为稳定,适应性更强。 (2)低空中阻力小:VAWT的叶片在低空中布局,可以更好地利用近地风资源,减小了建筑物和地形对风能利用的干扰。 (3)直立式结构:垂直轴风力发电机具有直立式结构,便于安装、维护和检修。 2.2 垂直轴风力发电机的应用领域 (1)城市环境:由于VAWT的适应性强和低空中阻力小的特点,它可以在城市环境中进行广泛应用,如楼宇、公共设施等。 (2)离网电力供应:VAWT可以作为离网电力供应的可行解决方案,将风能转化为电能,满足偏远地区的电力需求。

三、垂直轴风力发电机基础清单 在进行垂直轴风力发电机项目时,以下基础清单是必不可少的: 3.1 地勘和环境评估:在选择竖轴风力发电机安装位置前,必须进行地质勘察和环境评估,以确保地质条件和环境环境适合风力发电设备的安装。 3.2 设备选择和采购:根据项目需求和场地条件,选择合适的垂直轴风力发电机设备,并与供应商协商采购事宜。 3.3 施工和安装:根据安装要求和设计图纸进行施工和安装工作,确保垂直轴风力发电机设备的正确安装和连接。 3.4 网络连接和电力输送:将垂直轴风力发电机与电力网络连接,并建立相应的电力输送系统,以实现电能的输送和应用。 3.5 运维和维护:定期巡视、清洁和维护垂直轴风力发电机设备,确保其正常运行和长期使用。 四、个人观点和理解 作为写手,我认为垂直轴风力发电机作为一种新兴的可再生能源技术

活动计划

活动计划

资料整编 垂直轴风力发电机 (简称VAWT)是全新的风洞力原理所设计的新产品,和日本一家公司几乎同时开始研制,经过5年左右的发展,这种类型的产品已获得全球范围内许多专家的认可,将成为今后中小型风力发电机发展方向。VAWT具有较多显著特点,下面逐一说明: 安全性 由于VAWT采用了垂直叶片和三角形双支点设计,并且主要受力点集中于轮毂,因此叶片脱落、断裂和叶片飞出等问题得到了较好的解决。 噪音 VAWT采用了水平面旋转以及叶片应用飞机机翼原理设计,使得噪音降低到在自然环境下测量不到的程度。抗风能力 VAWT的水平旋转和三角形双支点设计原理,使得它受风压力小,可以抵抗每秒45米的超强台风。 回转半径 VAWT由于其设计结构和运转原理的不同,比其他形式风力发电具有更小的回转半径,节省了空间,同时提高了效率。 发电曲线特性 由于VAWT的运转特性,它的启动风速低于其他形式的风力发电机,发电功率的上升幅度较平缓,因此在5-8米风速范围内,它的发电量较其他类型的风力发电机高10%—30%。 利用风速范围

VAWT采用了特殊的控制原理,使它的适合运行风速范围扩大到2.5—25m/s,在最大限度利用风力资源的同时获得了更大的发电总量,提高了风电设备使用的经济性 刹车装置 VAWT可配置机械手动和电子自动刹车两种,在无台风和超强阵风的地区,仅需设置手动刹车即可。 运行维护 由于VAWT采用直驱式永磁发电机,无需齿轮箱和转向机构,定期(一般每半年)对运转部件的连接进行检查即可。 桨叶式风力机是一种阻力型风力机,因它的叶片形状而得名。这种风力机的关键集中在如何减少逆风方向叶片的阻力,对此有许多设计方案。使用遮风板的,也有改变迎风角的,不过桨叶式风力机的效率很低,除了在日本局部地区曾经使用过外,实际上几乎没有制造和使用的实例。一般来说,这种风力机归类为垂直轴型,但是也有把它设计成水平轴的。 风机种类及特征:垂直轴风力发电机 (1)萨布纽斯式风力机 萨布纽斯式风力机是20年代发明的垂直轴风力机,它以发明者萨布纽斯的名字命名(我国有时称它为S型风力机)。这种风力机通常由两枚半圆筒形的叶片所构成,也有用三一四枚的。这种风力机往往上下重叠多层。效率最大不超过10%,能产生很大的扭矩。在发展中国家有人用它来提水、发电等。 (2)费特·肖奈达式风力机 这种风力机是由德国费特公司的工程师肖奈达发明的,费特·肖奈达螺旋桨垂直地安装在船底下部作为船的推进器。推进器圆周的叶片,在刁;同的位置上能够改变方向,因随着叶片的角度和回转速度不同,其升

垂直轴风力发电机

垂直轴风力发电机 增加概述及概述图片垂直轴风力发电机在风向改变的时候无需对风,在这点上相对于水平轴风力发电机是一大优势,它不仅使结构设计简化,而且也减少了风轮对风时的陀螺力。 目录 垂直轴风力发电机的分类 垂直轴风力发电机发展 风力发电设备行业的发展 新型垂直轴风力发电机(H型)一、技术原理 二、功率特性 三、结构 附:现有垂直轴风力发电电源比较: 垂直轴风力发电机的特点 现状垂直轴风力发电机的分类 垂直轴风力发电机发展 风力发电设备行业的发展 新型垂直轴风力发电机(H型)一、技术原理 二、功率特性 三、结构 附:现有垂直轴风力发电电源比较: 垂直轴风力发电机的特点 现状 展开编辑本段垂直轴风力发电机的分类 尽管风力发电机多种多样,但归纳起来可分为两类:①水平轴风力发电机,风轮的旋转轴与风向平行;②垂直轴风力发电机,风轮的旋转轴垂直于地面或者气流方向。利用阻力旋转的垂直轴风力发电机有几种类型,其中有利用平板和被子做成的风轮,这是一种纯阻力装置;S型风车,具有部分升力,但主要还是阻力装置。这些装置有较大的启动力矩,但尖速比低,在风轮尺寸、重量和成本一定的情况下,提供的功率输出低。达里厄式风轮是法国G.J.M达里厄于19世纪30年代发明的。在20世纪70年代,加拿大国家科学研究院对此进行了大量的研究,现在是水平轴风力发电机的主要竞争者。达里厄式风轮是一种升力装置,弯曲叶片的剖面是翼型,它的启动力矩低,但尖速比可以很高,对于给定的风轮重量和成本,有较高的功率输出。现在有多种达里厄式风力发电机,如Φ型,Δ型,Y型和H型等。这些风轮可以设计成单叶片,双叶片,三叶片或者多叶片。其他形式的垂直轴风力发电机有马格努斯效应风轮,他由自旋的圆柱体组成,当它在气流中工作时,产生的移动力是由于马格努斯效应引起的,其大小与风速成正比。有的垂直轴风轮使用管道或者漩涡发生器塔,通过套管或者扩压器使水平气流变成垂直气流,以增加速度,偶写还利用太阳能或者燃烧某种燃料,是水平气流变成垂直方向的气流。 编辑本段垂直轴风力发电机发展 垂直轴风力发电机——使风电建筑一体化成为可能风力发电和太阳能发电一样,最初是为了解决应急电源和边远地区供电而开发出来的产品,因而在最初发展并不是很快。到了上个世纪二、三十年代,全球经济危机带来的能源紧张,让世界各国的专家想到了以风力发电作为补充能源的可行性。第二次世界大战后,各国纷纷进行研究,由于当时的技术水

风力发电机的分类

o根据风力发电机旋转轴的区别,风力发电机可以分为水平轴风力发电机和垂直轴风力发电机。 1、水平轴风力发电机: 旋转轴与叶片垂直,一般与地面平行,旋转轴处于水平的风力发电机。 2、垂直轴风力发电机: 旋转轴与叶片平行,一般与地面吹垂直,旋转轴处于垂直的风力发电机。 垂直轴风力发电机目前占市场主流的是水平轴风力发电机,平时说的风力发电机通常也是指水平轴风力发电机。目前水平轴风力发电机的功率最大已经做到了5wm左右。垂直轴风力发电机虽然最早被人类利用,但是用来发电还是近10多年的事。与传统的水平轴风力发电机相比,垂直轴风力发电机具有不用对风向,转速低,无噪音等优点,但同时也存在起动风速高,结构复杂等缺点,这都制约了垂直轴风力发电机的应用。 根据定桨矩失速型风机和变速恒频变桨矩风机的特点,国内目前装机的电机一般分为二类: 1、异步型 (1)笼型异步发电机; 功率为600/125kW750kW 800kW 1250180kW 定子向电网输送不同功率的50Hz交流电; (2)绕线式双馈异步发电机;功率为1500kW 定子向电网输送50Hz交流电,转子由变频器控制,向电网间接输送有功或无功功率。 2、同步型 (1)永磁同步发电机; 功率为750kW 1200kW 1500kW 由永磁体产生磁场,定子输出经全功率整流逆变后向电网输送50Hz交流电。 (2)电励磁同步发电机;

由外接到转子上的直流电流产生磁场,定子输出经全功率整流逆变 后向电网输送50Hz交流电。 ?风力发电机的图解 o一、风力发电机分解图 1.风机总成 2.叶片 3.轮毂般 4.前罩 5.螺栓 6.平垫圈 7.防松螺母 8.螺母 9.弹簧垫 10.法兰 11.螺栓 12.防松螺母 13.避雷针 14.减震器 二、风力发电机应用系统结构图 ?风力发电机的特点 o1、高效率 2、微风启动 3、长寿命 4、免维护 5、防锈

风力机的类型与结构

风力机的类型与结构 从能量转换的角度看,风力发电机组由两大部分组成。其一是风力机,它的功能是将风能转换为机械能;其二是发电机,它的功能是将机械能转换为电能。 1.风力机的类型 风力机的种类和式样很多,难以一一尽述。但由于风力机将风能转变为机械能的主要部件是受风力作用而旋转的风轮,因此,风力机依风轮的结构及其在气流中的位置大体上可分为两大类:一类为水平轴风力机,一类为垂直轴风力机。 1.1水平轴风力机 水平轴风力机的风轮围绕一个水平轴旋转,工作时,风轮的旋转平面与风向垂直,如图121所示。风轮上的叶片是径向安置的,与旋转轴相垂直,并与风轮的旋转平面成一角度φ(安装角)。风轮叶片数目的多少,视风力机的用途而定。用于风力发电的风力机一般叶片数取1~4(大多为2片或3片),而用于风力提水的风力机一般取叶片数12~24。叶片数多的风力机通常称为低速风力机,它在低速运行时,有较高的风能利用系数和较大的转矩。它的起动力矩大,起动风速低,因而适用于提水。叶片数少的风力机通常称为高速风力机,它在高速运行时有较高的风能利用系数,但起动风速较高。由于其叶片数很少,在输出同样功率的条件下比低速风轮要轻得多,因此适用于发电。水平轴风力机随风轮与塔架相对位置的不同而有上风向与下风向之分。风轮在塔架的前面迎风旋转,叫做上风向风力机。风轮安装在塔架的下风位置的,则称为下风向风力机。上风向风力机必须有某种调向装置来保持风轮迎风。而下风向风力机则能够自动对准风向,从而免除了调向装置。但对于下风向风力 机,由于一部分空气通过塔架后再吹向风轮,这样,塔架就干扰了流过叶片的气流而形成所谓塔影效应,使性能有所降低。 1.2垂直轴风力机 垂直轴风力机的风轮围绕一个垂直轴旋转,如图122所示。

小型达里厄垂直轴风力发电机技术发展中的一些伪科学问题

小型达里厄垂直轴风力发电机技术发展中的一些 伪科学问题 随着风力发电新能源技术的发展,达里厄型垂直轴风力发电机受到越来越多的研发关注。在中国市场上出现了一些产品,这些产品大致分两类;第一类是升力阻力结合型风力机,常采用磁悬浮或无铁芯发电机来降低启动力矩;第二类是低尖速比高实度升力型风力发电机,其实度(叶片宽度总和与叶轮周长的比)大于0.2,峰值功率尖速比(叶片线速度与风速的比)小于1.5; 第一类风力机号称具有如下技术特点: 1. 发电效率高,功率系数(风力机风轮吸收的风功率经过发电机和变流设备转换后发送到电网或者电池的电功率与风力机风轮截面在来风垂直平面内投影内的风能动能功率之比)很高; 2. 机械摩擦阻力矩极低,由此启动风速低,可以有效利用低风段的风能,提高发电量;第二类风力机号称具有如下技术特点: 1. 发电效率高,功率系数很高; 2. 风轮启动力矩大,由此启动风速低,可以有效利用低风段的风能,提高发电量; 对第一类风力机作如下批判: 1. 采用升、阻结合的风力机,根据空气动力学原理和实验证明其效率很低,功率系数不会超过0.1,更不用说一些产品翼型不好。特别是在售的产品,没有一家获得符合

iec61400-2功率特性检测方法的权威机构的检测报告; 2. 无铁芯发电机在理论上先天就具有效率低,成本高的特点。应用于风力机的无铁芯发电机均采用盘式外永磁转子结构,引起线圈发热严重,高温下线圈绝缘材料寿命降低,磁钢用量远超过普通铁芯发电机;线圈制造性差,成本高。一句话,无铁芯发电机的成本功率比远高于普通铁芯发电机; 3. 所谓利用低风段发电是个错误结论。低风段一般指2-4米/秒风速段;在这个风速段,风力能量本来就已经极低,在使用风力机发电有经济效益的地方,年均风速至少要达到5米/秒以上。在这样的风区,2-4米的风能占到年发电量一个很小的百分比。再有,在2-4米/秒的时候,风力机的出力只有额定(11m/s)时出力5%以内,此时发电机、变流器等的效率比额定点的效率要低很多,导致在2-4米/秒能最后发到用户端的能量极少。 对第二类风力机作如下批判: 1. 采用高实度和尖速比低于1.5的风力机,根据空气动力学原理和实验证明其效率也很低,功率系数不会超过0.15。特别是在售的产品,没有一家获得符合iec61400-2功率特性检测方法的权威机构的检测报告; 2. 启动风速的降低是以高实度为代价的,导致叶片数量增加或者叶片宽度和体积的增加,增加了风力机成本;另外低尖速比也导致了风力发电机转速较低,导致转矩较大,需要配置较大体积和重量的发电机,导致风力机进一步成本增加;目前在售的一些垂直轴产品,其每千瓦价格比水平轴要高出2倍以上,而且其额定功率和发电量还是虚假的。

风力发电机组的构成与分类

风力发电机组的构成与分类 从不同角度分析,风力发电机组有多种分类方式。图1-1所示为风力发电机组的配置关系,可以清楚地说明风力发电机组的分类。 图1-1 风力发电机组的配置关系 一、风力发电机组的构成 不同类型的风力发电机组其组成不完全相同,主要包括风轮、传动系统、发电机系统、制动系统、偏航系统、控制系统、变桨系统等,风力发电机组的主要组成部分如图1-2所示。

图1-2 风力发电机组的主要组成部分 1—叶片;2—轮毂;3—机舱;4—叶轮轴与主轴连接;5—主轴;6—齿轮箱;7—刹车机构;8—联轴器;9—发电机;10—散热器;11—冷却风扇;12—风速仪和风向标;13—控制系统;14—液压系统;15—偏航驱动;16—偏航轴承;17 —机舱盖;18—塔架;19—变桨距部分 1.风轮 风轮是将风能转化为动能的机构,风力带动风轮叶片旋转,再通过齿轮箱将转速提升,带动发电机发电。风力机通常有两片或三片叶片,叶尖速度50~70m/s。在此叶尖速度下,通常三叶片风轮效率更好,两叶片风轮效率仅降低2%~3%。对于外形均衡的叶片,叶片少的风轮转速更快,但会导致叶尖噪声和腐蚀等问题。三叶片风轮的受力更平衡,轮毂结构更简单。 早期的风力机叶片为钢制和铝制,随着科技的发展,目前叶片材料多采用玻璃纤维复合材料(GRP)和碳纤维复合材料(CFRP)。对于小型的风力发电机组,如风轮直径小于5m,在选择材料上,通常更关心效率而不是重量、硬度或叶片的其他特性。对于大型风力发电机组,对叶片特性要求较高,所以材料的选择更为重要。世界上大多数大型风力机的叶片是由GRP制成的。 2.传动系统

风力机的传动机构一般包括低速轴、高速轴、齿轮箱、联轴节和制动器等,但不是所有风力机都必须具备这些环节。有些风力机的轮毂直接连接到齿轮箱上,不需要低速传动轴;也有些风力机(特别是小型风力机)设计成无齿轮箱的,风轮直接与发电机相连接。 齿轮箱是传动装置的主要部件。它的主要功能是将风轮在风力作用下产生的动能传递给发电机并使其达到相应的转速。通常风轮的转速很低,远达不到发电机发电所要求的转速,必须通过齿轮箱齿轮副的增速作用来实现,因此也将齿轮箱称为增速箱。如600kW的风力机风轮转速通常为27r/min,相应的发电机转速通常为1500r/min。 3.发电机系统 发电机系统主要由发电机、循环变流器、水循环装置(电机、水泵、水箱等)或空冷装置等组成。核心是发电机,也是本书的重点,关于风力发电机组的分类将在1.2节讨论,发电机及其控制的详细内容将在后面各章中详细分析。 4.制动系统 风力发电机组的制动分为气动制动与机械制动两部分。风的速度很不稳定,在大风的作用下,风轮会越转越快,系统可能被吹垮,因此常常在齿轮箱的输入端或输出端设置刹车装置,配合叶尖制动(定桨距风轮)或变桨距制动装置共同对机组传动系统进行联合制动。 5.偏航系统 偏航系统使风轮扫掠面积总是垂直于主风向。中小型风力机可用舵轮作为对风装置,其工作原理大致为:当风向变化时,位于风轮后面的两个舵轮(其旋转平面与风轮旋转平面垂直)旋转,并通过一套齿轮传动系统使风轮偏转,当风轮重新对准风向后,舵轮停止转动,对风过程结束。 大中型风力机一般采用电动的偏航系统来调整风轮并使其对准风向。偏航系统一般包括异步风向的风向标、偏航电机、偏航行星齿轮减速器、回转体大齿轮等。其工作原理为:风向标作为异步元件将风向的变化用电信号传递到偏航电机控制回路的处理器中,经过比较后处理器给偏航电机发出顺时针或逆时针的偏航命令,为了减少偏航时的陀螺力矩,电机转速将通过同轴连接的减速器减速后,

风力发电原理及生产过程

风能发电的主要形式有三种:一是独立运行;二是风力发电与其他发电方式(如柴油机发电)相结合;三是风力并网发电。由于并网发电的单机容量大、发展潜力大,故本文所指的风电, 未经特别说明,均指并网发电。 1、小型独立风力发电系统 小型独立风力发电系统一般不并网发电,只能独立使用,单台装机容量约为100瓦-5千瓦,通常不超过10千瓦。它的构成为:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。因风量不稳定,故小型风力发电机输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市 电,才能保证稳定使用。 2、并网风力发电系统 德国、丹麦、西班牙等国家的企业开发建立了评估风力资源的测量及计算机模拟系统,发展变桨距控制及失速控制的风力机设计理论,采用新型风力机叶片材料及叶片翼型,研制出变极、变滑差、变速恒频及低速永磁等新型发电机,开发了由微机控制的单台及多台风力发电机组成的机群的自动控制技术,从而大大提高了风力发电的效率及可靠性。在此基础上,风力发电机单机装机容量可以达到600千瓦以上。不少国家建立了众多的中型及大型风力发 电场,并实现了与大电网的对接。 现代风力发电机多为水平轴式。一部典型的现代水平轴式风力发电机包括叶片、轮毂(与叶片合称叶轮)、机舱罩、齿轮箱、发电机、塔架、基座、控制系统、制动系统、偏航系统、液压装置等。其工作原理是:当风流过叶片时,由于空气动力的效应带动叶轮转动,叶轮透过主轴连结齿轮箱,经过齿轮箱(或增速机)加速后带动发电机发电。目前也有厂商推出无齿轮箱式机组,可降低震动、噪音,提高发电效率,但成本相对较高。 风力发电机并不能将所有流经的风力能源转换成电力,理论上最高转换效率约为59%,实际上大多数的叶片转换风能效率约介于30-50%之间,经过机电设备转换成电能后的总输出效率约为20-45%。一般市场上风力发电机的启动风速约为2.5-4米/秒,于风速12-15米/秒时达到额定的输出容量。当风速更高时,风力发电机的控制机构将电力输出稳定在额定容量左右,为避免过高的风速损坏发电机,大多于风速达20-25米/秒范围内停机。一般采用旋角节制或失速节制方式来调节叶片之气动性能及叶轮的输出。依据目前的技术,3米/秒左右的风速(微风的程度)便可以进行发电。但在进行风场评估时,通常要求离地10米高 的年平均风速达到5-5.5米/秒以上。

风电场主要设备介绍及其基本理论

风电场主要设备介绍及其基本理论 【摘要】:本文主要讲述风电场电气部分的系统构成和主要设备,包括与风电场电气相关的各主要内容,对于研究风力发电系统的工程技术人员、系统设计人员有一定的指导意义。 【关键词】:风电场垂直轴水平轴 1 风力发电机的类型 风力发电机多种多样,归纳起来可分为两类:①水平轴风力发电机,风轮的旋转轴与风向平行;②垂直轴风力发电机,风轮的旋转轴垂直于地面或者气流方向。 1.1水平轴风力发电机 水平轴风力发电机可分为升力型和阻力型两类。 升力型风力发电机旋转速度快,阻力型旋转速度慢。对于风力发电,多采用升力型水平轴风力发电机。大多数水平轴风力发电机具有对风装置,能随风向改变而转动。对于小型风力发电机,这种对风装置采用尾舵,而对于大型的风力发电机,则利用风向传感元件以及伺服电机组成的传动机构。 风力机的风轮在塔架前面的称为上风向风力机,风轮在塔架后面的则称为下风向风机。水平轴风力发电机的式样很多,有的具有反转叶片的风轮,有的在一个塔架上安装多个风轮,以便在输出功率一定的条件下减少塔架的成本,还有的水平轴风力发电机在风轮周围产生漩涡,集中气流,增加气流速度。 1.2垂直轴风力发电机 垂直轴风力发电机在风向改变的时候无需对风,在这点上相对于水平轴风力发电机是一大优势,它不仅结构设计简化,而且也减少了风轮对风时的陀螺力。 利用阻力旋转的垂直轴风力发电机有几种类型,其中有纯阻力装置的风轮;S型风车,具有部分升力,但主要还是阻力装置。这些装置有较大的启动力矩,但尖速比低,在风轮尺寸、重量和成本一定的情况下,提供的功率输出低。 达里厄式风轮 是法国G.J.M达里厄于19世纪30年代发明的。在20世纪70年代,加拿大国家科学研究院对此进行了大量的研究,现在是水平轴风力发电机的主要竞争者。达里厄式风轮是一种升力装置,弯曲叶片的剖面是翼型,它的启动力矩低,但尖速比可以很高,对于给定的风轮重量和成本,有较高的功率输出。现在有多

风力发电机组的故障处理和运维措施

风力发电机组的故障处理和运维措施 【摘要】改革开放以来,我国经济增长快速,社会发展也越来越快,电力资源在我们生活中的作用逐渐显现出来。电力资源类型广泛,其中风力发电作用不可小觑。其充分地利用了风力资源,满足人们的生活所需。但是,生活中运用风力发电机时,因为各方面的因素,经常会产生故障问题,这对于整个发电组的日常工作有着不利的影响,因此发电厂以及工作人员需要采用相关的运维措施来维护风力发电组正常使用,本文通过分析风力发电机组在日常生活中经常出现的问题,提出相关的优化措施,希望对风力发电的运行有一定的参考。 【关键词】风力发电组;故障处理;运维措施 1.风力发电概述 风力发电在我们日常生活以及社会经济发展中,都有着重要作用,并且得到了广泛地应用。风力发电的工作流程是借助自然界中的风能,在发电设备的作用下,出现风能—机械能—电能的转化现象,风力发电有着清洁、再生等优点。风力发电一方面满足人们生活中对电的需求,另一方面符合当下我国经济发展的相关要求,推动我国经济发展。近年来,我国风力发电得到了广泛应用,风力发电规模正在慢慢扩大。但是在实际的使用中,风力发电依然有着不少故障问题,这对于风力发电组的日常工作有着不利影响,因此相关工作人员需要对风力发电产生的故障进行检查以及运维,通过技术手段进行处理,让风力发电组可以正常工作。 1.风力发电机种类 2.1水平轴风力发电机 水平轴风力发电机是风力发电机组中常用到的种类,它有升力型发电机以及阻力型发电机两种类型。升力型旋转速度要比后者快许多。日常生活中大多采用的也是升力型。大部分的水平轴风力发电机都有着对风装置,它使发电机可以跟着风的运动方向而发生转动。

风力发电机的分类及各自特点总结

风力发电机的分类及各自特点总结 风力发电机的分类及各自特点总结 广州绿欣风力发电机提供更多绿色环保服务请登录查询 风力发电机的分类及各自特点总结 风力发电机组的分类及各自特点风力发电机组主要由两大部分组成:风力机部分——它将风能转换为机械能; 发电机部分——它将机械能转换为电能。 根据风机这两大部分采用的不同结构类型、以及它们分别采用的技术方案的不同特征,再加上它们的不同组合,风力发电机组可以有多种多样的分类。 (1)如依风机旋转主轴的方向(即主轴与地面相对位置)分类,可分为: “水平轴式风机”——转动轴与地面平行,叶轮需随风向变化而调整位置; “垂直轴式风机”——转动轴与地面垂直,设计较简单,叶轮不必随风向改变而调整方向。 (2)按照桨叶受力方式可分成“升力型风机”或“阻力型风机”。 (3)按照桨叶数量分类可分为“单叶片”“双叶片”“三叶片”和“多叶片”型风机;叶片的数目由很多因素决定,其中包括空气动力效率、复杂度、成本、噪音、美学要求等等。 大型风力发电机可由1、2或者3片叶片构成。

叶片较少的风力发电机通常需要更高的转速以提取风中的能量,因此噪音比较大。而如果叶片太多,它们之间会相互作用而降低系统效率。目前3叶片风电机是主流。从美学角度上看,3叶片的风电机看上去较为平衡和美观。 (4)按照风机接受风的方向分类,则有“上风向型”——叶轮正面迎着风向(即在塔架的前面迎风旋转)和“下风向型”——叶轮背顺着风向,两种类型。 上风向风机一般需要有某种调向装置来保持叶轮迎风。 而下风向风机则能够自动对准风向,从而免除了调向装置。但对于下风向风机,由于一部分空气通过塔架后再吹向叶轮,这样,塔架就干扰了流过叶片的气流而形成所谓塔影效应,使性能有所降低。 (5)按照功率传递的机械连接方式的不同,可分为“有齿轮箱型风机”和无齿轮箱的“直驱型风机”。 有齿轮箱型风机的桨叶通过齿轮箱及其高速轴及万能弹性联轴节将转矩传递到发电机的传动轴,联轴节具有很好的吸收阻尼和震动的特性,可吸收适量的径向、轴向和一定角度的偏移,并且联轴器可阻止机械装置的过载。 广州绿欣风力发电机提供更多绿色环保服务请登录查询 而直驱型风机则另辟蹊径,配合采用了多项先进技术,桨叶的转矩可以不通过齿轮箱增速而直接传递到发电机的传动轴,使风机发出的电能同样能并网输出。这样的设计简化了装置的结构,减少了故障几率,优点很多,现多用于大型机组上。 (6)根据按桨叶接受风能的功率调节方式可分为:

风力发电的基本原理

风力发电的基本原理 5.1风能 5.11风的形成 风的形成及其特点:空气的流动现象称为风。风是空气由于受热或受冷而导致的从一个地方向另一个地方的移动。空气的运动遵循大气动力学和热力学变化的规律。 5.12风能密度一慨念 风能密度,是气流垂直通过单位截面积(风轮面积)的风能,空气在1秒内以速度为V流过单位面积产生的动能称为风能密度,是表征一个地方风能资源多少的一个指标。 中国风能密度资源分布图 5.13风能密度一简介 风能密度 风能密度(wind-power density )是气流在单位时间内垂直通过单位面积的风能W0.5 p V3瓦/米2,通过单位截面积的风所含的能量称为风能密度,常以瓦/平方米来表示。它是描述一个地方风能潜力的最方便最有价值的量,但是在实际当中风速每时每刻都在变化,不能使用某个瞬时风速值来计算风能密度,只有长期风速观察资料才能反映其规律,故引出了平均风能密度的概念。

风能密度是决定风能潜力大小的重要因素。风能密度和空气的密度有直接关系,而空气的密度则取决于气压和温度。因此,不同地方、不同条件的风能密度是不同的。一般说,海边地势低,气压高,空气密度大,风能密度也就高。在这种情况下,若有适当的风速,风能潜力自然大。高山气压低,空气稀薄,风能密度就小些。但是如果高山风速大,气温低,仍然会有相当的风能潜力。所以说,风能密度大,风速又大,则风能潜力最好。 5.14风能密度一定义 风能密度:空气在1秒内以速度为V流过单位面积产生的动能称为风能密度。 5.15风能密度一公式 风能密度公式 E -丄pV3P 2 式中:E为风能(瓦); 为空气密度(公斤/立方米); V为风速(米/秒); F为垂直于风速的截面积(平方米)。 5.16风能密度公式: 在与风能公式相同的情况下,将风轮面积定为1平方米(A=1m2时所具有的功率为 F = 1毋叭 式中p为空气密度,V为风速。衡量一地风能大小,要视常年平均风能的多少而定,即 2 式中为平均风能密度,T为总时数。 5■仃风能密度一分类 5.171平均风能密度 因为风速的随机性很大,用某一瞬时的风速无法来评估某一地区的风能潜力,因此将平均风速代入W 0.5 p V3瓦/米2式得出平均风能密度。 W 1/T / 0.5 p V3dt W该段时间0 —T内的平均风能密度p ――空气密度(p的变化可以忽略不计)V――对应T时刻的风速 W p /2T / V3dt = p /2N 刀Vi3

风力发电基本知识

风力发电基础知识 风力发电是把风的动能转为电能。风能作为一种清洁的可再生能源,越来越受到世界各国的重视。其蕴量巨大,全球的风能约为2.74×10^9MW,其中可利用的风能为2×10^7MW,比地球上可开发利用的水能总量还要大10倍。风很早就被人们利用--主要是通过风车来抽水、磨面等,而现在,人们感兴趣的是如何利用风来发电。 中文名 风力发电 外文名 wind power generation 使用介质 自然风力 资源 约10亿kW 资源 我国风能资源丰富,可开发利用的风能储量约10亿kW,其中,陆地上风能储量约2.53亿kW(陆地上离地10m高度资料计算),海上可开发和利用的风能储量约7.5亿kW,共计10亿kW。而2003年底全国电力装机约5.67亿kW。 风是没有公害的能源之一。而且它取之不尽,用之不竭。对于缺水、缺燃料和交通不便的沿海岛屿、草原牧区、山区和高原地带,因地制宜地利用风力发电,非常适合,大有可为。海上风电是可再生能源发展的重要领域,是推动风电技术进步和产业升级的重要力量,是促进能源结构调整的重要措施。我国海上风能资源丰富,加快海上风电项目建设,对于促进沿海地区治理大气雾霾、调整能源结构和转变经济发展方式具有重要意义。 国家能源局2015年9月21日发布数据显示,到2015年7月底,纳入海上风电开发建设方案的项目已建成投产2个、装机容量6.1万千瓦,核准在建9个、装机容量170.2万千瓦,核准待建6个,装机容量154万千瓦。这与2014年末

国家能源局《全国海上风电开发建设方案(2014-2016)》规划的总装机容量1053万千瓦的44个项目相距甚远。为此,国家能源局要求,进一步做好海上风电开发建设工作,加快推动海上风电发展。 利用 风是一种潜力很大的新能源,十八世纪初,横扫英法两国的一次狂暴大风,吹毁了四百座风力磨坊、八百座房屋、一百座教堂、四百多条帆船,并有数千人受到伤害,二十五万株大树连根拔起。仅就拔树一事而论,风在数秒钟内就发出了一千万马力(即750万千瓦;一马力等于0.75千瓦)的功率!有人估计过,地球上可用来发电的风力资源约有100亿千瓦,几乎是现在全世界水力发电量的10倍。目前全世界每年燃烧煤所获得的能量,只有风力在一年内所提供能量的三分之一。因此,国内外都很重视利用风力来发电,开发新能源。 利用风力发电的尝试,早在二十世纪初就已经开始了。三十年代,丹麦、瑞典、苏联和美国应用航空工业的旋翼技术,成功地研制了一些小型风力发电装置。这种小型风力发电机,广泛在多风的海岛和偏僻的乡村使用,它所获得的电力成本比小型内燃机的发电成本低得多。不过,当时的发电量较低,大都在5千瓦以下。目前,据了解,国外已生产出15,40,45,100,225千瓦的风力发电机了。1978年1月,美国在新墨西哥州的克莱顿镇建成的200千瓦风力发电机,其叶片直径为38米,发电量足够60户居民用电。而1978年初夏,在丹麦日德兰半岛西海岸投入运行的风力发电装置,其发电量则达2000千瓦,风车高57米,所发电量的75%送入电网,其余供给附近的一所学校用。 1979年上半年,美国在北卡罗来纳州的蓝岭山,又建成了一座世界上最大的发电用的风车。这个风车有十层楼高,风车钢叶片的直径60米;叶片安装在一个塔型建筑物上,因此风车可自由转动并从任何一个方向获得电力;风力时速在38公里以上时,发电能力也可达2000千瓦。由于这个丘陵地区的平均风力时速只有29公里,因此风车不能全部运动。据估计,即使全年只有一半时间运转,它就能够满足北卡罗来纳州七个县1%到2%的用电需要。 历史

风力发电机的分类特点

目录 目录 ................................................................................................... 错误!未定义书签。风力发电机组的分类特点 ..................................................................... 错误!未定义书签。1按照风轮形式分类 .............................................................................. 错误!未定义书签。 1.1垂直轴风力发电机组 .................................................................. 错误!未定义书签。 1.2水平轴风力发电机组 .................................................................. 错误!未定义书签。 1.2.1 下风向风力发电机 ............................................................. 错误!未定义书签。 ......................................................................................................... 错误!未定义书签。2按照有无齿轮箱分类 .......................................................................... 错误!未定义书签。 2.1直驱型风力发电机 ...................................................................... 错误!未定义书签。 2.2双馈式风力发电机 ...................................................................... 错误!未定义书签。 2.3直驱型风力发电机和双馈型风力发电机的特性比较 .............. 错误!未定义书签。3按功率调节方式分类 .......................................................................... 错误!未定义书签。 3.1 定桨距风力发电机 ..................................................................... 错误!未定义书签。 3.2变桨失速型风力发电机组 .......................................................... 错误!未定义书签。 ......................................................................................................... 错误!未定义书签。 3.2.2 变桨距风力发电机组输出功率的特点 ............................. 错误!未定义书签。

垂直轴风力发电机研究报告

垂直轴风力发电机研究报告LT

能完全转化为风轮机械能,其风能利用率C p 为 m w =p P C P =风力机输出的机械功率输入风轮的功率 其中P m 为风力机输出的机械功率;P w 为风力机输入的风能。 目前大多数垂直轴风机风能利用率能达到0.4左右。如按0.4的风能利用率来计算,风机功率为1000W ,则风能为W 25004.0/1000=。 根据上面公式可以求得400025.1/5000/225003==⨯=ρSv ,若满载额定风速为20m/s 的话,S=0.5m 2,显然设定的额定风速越低,S 将越大。 L r S ⨯⨯=2,S 为扫风的截面积,r 是翼片距轴的距离也是风轮的半径,L 为翼片的高。 如要达到1000W 的风机功率,则扫风截面积不能小于0.5m 2,则若r 取0.25m 的话,L 为1m 。可以采用目前天津工厂顶部风机形状。 风力机转矩: m N v R C p T p ⋅=⨯⨯⨯⨯⨯===82.062025.04.025.114.35.05.02 32 3λπρω 2.3 叶尖速比λ 叶尖速比λ表示风轮在不同风速中的状态,用叶片的圆周速度和风速之比来衡量。 v R v πRn ωλ==2 式中:n -风轮的转速,/r s ; ω-风轮角速度,/rad s ; R ―风轮半径,m 。 尖速比决定了风轮的功率,对于定桨距风轮,随风速的增加其转速也增加。在这种情况下,输出功率(同风速的立方成正比)也增加。但是输出功率增加并不意味着风能利用率也增加,一般而言,减速比和风能利用率曲线近似一条倒抛物线。 根据叶尖转速比λ与C p 的关系及C p 与输出功率之间关系,我们可以知道在风速固定时,不同的转速即对应不同的叶尖转速比,也即对应不同的C p 值,也即对应不同的输出功率,这样如果设定不同的风速,就可以得到风力机在不同风速下输出功率与转速的关系,如下图所示:

相关主题