搜档网
当前位置:搜档网 › 公差分析软件CETOL-6-sigma实例

公差分析软件CETOL-6-sigma实例

使用公差分析软件CETOL 6 σ进行公差分析的实例

----汽车锁具公差分析案例

针对汽车锁具Pro/E模型,采用Pro/E完全集成环境下的公差分析软件CETOL 6 σ,来做公差模型的创建,基于CETOL提供的系统矩(SOTA法)算法,做统计和极限二种情况下的公差分析。

一.锁具质量关心焦点

作为汽车座椅锁具,其质量的好坏,关系到汽车驾乘人员乘坐的舒适性和安全性。锁具在开锁时,希望能够充分打开,不要与其他零部件之间产生干涉,即顺利打开。锁具在闭锁时,能够经受得住外力的冲击,不至于产生突然脱开现象。在锁具的任何状态,都要求锁具动作部件能够与电器设备很好地连接,在电控装配的驱动下,锁具能够准确地运转到指定的位置。根据设计功能要求,把项目细分到具体的状态上,在运动部件的具体指定位置,做功能要求的详细设定。

1)一个关键质量要求就是爪轮在打开时要远离侧板的开口槽,这是为了确保爪轮不会与锺棒产生干涉。如图1所示。

test

2)锁轮上的孔,在完成机械装配后,需要从这个孔里穿电缆线,来接通电源。根据座椅的设计要求,为了保证电缆线能与

机械设备能可靠地连接,电缆线过孔必须在位于基准孔名义值的正负2个mm之间。如果尺寸超过了上极限,锁具就会出现卡死现象,如果超过了下极限,电缆线就不能很好地与电器设置连接,导致零件废弃和成本增加。

图 2 闭锁时的测量尺寸

另外一个关键尺寸就接触力位置,这个接触力与作用方向一致,是在爪轮和中轮之间,接触力矢量的位置决定了是否有足

够的闭锁运动来保持锁具在冲压载荷的情况仍能正常闭锁,加工和装配偏差都有可能这些关键质量要求产生失效,过紧的公差会增加成本也有可能导致产品无法加工。为了生产高质量低成本的产品,有必要在设计阶段就能理解所有这些问题。

二. 创建公差分析目标

公差分析的前提首先要确定装配性能尺寸,对于锁具装配体,需要确定具体的装配状态。实施步骤如下:

1) 启动CETOL软件的分析器。

a.启动Pro/E。

b.启动CETOL,路径:开始/程序/sigmetrix/CETOL 6 sigma v8.2 for Pro ENGINEER/CETOL v8.2 Modeler。

c.打开锁具装配体。

d. 配置CETOL与Pro/E同步

2) 打开CETOL选项菜单。

a.从工具-选项栏目选择,在偏差标签栏设置 ,如图3

b. 在图表和高亮显示设置栏,设置如下:如图4

图3:设置公差选项 图4:图表和高亮显示设置 c. 在分析和报告栏设置如下: :

3) 设置锁具在打开和关闭时的测量尺寸如下:如图6、7所示

图5:分析和报告栏设置 图6 打开时的测量尺寸设置

图7 关闭时的测量尺寸设置

三.公差装配模拟

创建装配公差模型需要在CETOL重建零部件之间的装配关系,零部件在装配体的实际装配位置决定了误差的传播方式和传播结果

。对于锁具首先确定侧板作为装配体的装配基准件,在CATIA工作树,把零件按照实际装配顺序在工作树上调整顺序。

由于前面定义了锁具在不同的运动状态下的装配关系,因此,需要指定锁具在打开时和关闭时对应具体的零件,在这里确定锁

具在打开时的各个零部件之间的装配关系,因此,只考虑爪轮销、爪轮、中轮销、中轮、锁轮销、锁轮、止位销、侧板这些部

件之间的装配关系。锁具安装时,把侧板放在工作树的第一个位置,CETOL软件自动认为侧板为固定不动的零件,接着安装止位销,定义圆柱销和侧板内孔约束,根据顺序定义爪轮销与侧板和爪轮之间的装配关系,后面一步需要定义中轮销与侧板和中轮

之间的装配关系,打开时,需要定义爪轮与止位销之间的约束关系,这样就完整定义了锁具在打开状态下的各个部件之间的装

配关系。具体装配如图8所示。

对于锁具在锁紧情况的装配关系定义,可以沿用打开时已有的各个部件的装配约束,在后续添加棒锺和一个虚拟平面,棒

锺和爪轮之间有接触约束,虚拟平面代表了爪轮与中轮接触时的接触力方向,通过虚拟平面控制爪轮与中轮之间准确的接触位置。其装配关系如图9所示。

图8 锁具在打开状态下的装配约束关系的定义

图9 锁具在关闭状态下的装配约束关系的定义

四.零件尺寸公差和形位公差的创建

各个零件之间的装配关系定义完成后,定义各个零件的尺寸公差和形位公差,如图10、11所示。

图10 尺寸公差定义 图11 形位公差的定义

五.求解

定义完成各个零件的尺寸约束,在CETOL模型图表和顾问窗口下检查定义尺寸约束的完整性和自由度,另外通过在配置下检查各个零件的装配自由度,保证整个装配体不产生过约束和欠约束,特别在v8.2版本增加针对个别零件的自由度检查功能,这样保证精确定义具体零部件。选择运行新的分析,弹出求解对话框如下图12锁具求解界面,这里选择求解一阶敏感度求解,导数的扩展点为公差中点。

图12 锁具求解界面

六.分析结果解释及输出报告

(1)理想装配状态下的公差分析

在CETOL界面启动结果分析器,结果显示4个求解尺寸的最大值和最小值,极限求解的值不具有应用价值,因为本产品是采用大批量生产,所以统计结果才更有意义,在这里假设所有输入的尺寸在满足公差要求的前提下,工艺过程能力为1,即cpk=1,统

计分析结果显示如下图,各个输出尺寸的sigma值和合格率。

图13 理想装配下的分析结果

从上面的结果可以得知,锁具在关闭状态下三个测量尺寸的sigma值分别为0.69、6.41和1.13,其在统计状态下的质量合格率为51.03%、100%和73.97%,打开状态的测量尺寸的sigma值为3.53,质量合格率为99.96%。 CableHoleX和Claw Force Offset 的统计质量没有达到sigma等于3的质量要求,其分布如图14和图15,Claw Tip Clearance的分布图如图16所示:

图14 CableHoleX的分布图 图15 Claw Force Offset的分布图 图16 Claw Tip Clearance的分布图 (2) 实际装配状态下的公差分析

上一次的分析都是假设所有的装配的理想装配下的装配质量预测,由于本求解主要是要考虑锁具在工作状态下的装配质量,此时需要根据结构力学分析结果重新输入各个零件尺寸参数,同时在有预紧力作用的情况下,爪轮与爪轮轴之间不再是完全同心

的状态,中轮和中轮轴之间也是不同心的状态,根据实际装状态需要重新定义装配关系。图17,18分别显示爪轮与爪轮轴 的实际和理想装配位置。

图17 爪轮与爪轮轴实际装配位置 图18 爪轮与爪轮轴理想装配位置

根据实际的装配状态的重新设置,启动求解器进行分析求解,得到如下分析结果如下:

图19 实际装配关系下的分析结果

从上面的结果可以得知,锁具在关闭状态下三个测量尺寸的sigma值分别为1.50、6.41和2.00,其在统计状态下的质量合格率为86.76%、100%和95.45%;打开状态的测量尺寸的sigma值为2.25,质量合格率为97.52%。 CableHoleX、Claw Force Offset和Claw Tip Clearance 的统计质量没有达到sigma等于3的质量要求,其统计分布图如下:

图20 CableHoleX 的分布图 图21 Claw Force Offset 的分布图 图22 Claw Tip Clearance 的分布图

从上述二种结果数据可以看出,考虑了装配体的实际装配状态,终轮中心到基准的水平距离CableHoleX中心尺寸和接触到基准中心的偏移距离Claw Force Offset发生了偏移,而且基本与目标尺寸一致,质量有较大改善,sigma值分别由0.69,1.13提升到1.50,2.00,而打开状态下的另外一个关心尺寸Claw Tip Clearance质量出现了下降,sigma值由3.53下降到2.25,这也是由于接触位置的偏移导致实际测量尺寸与目标尺寸产生偏差。理论装配为设计提供了参考,但是实际装配状态的模拟更符合生产实际,其结果直接指导设计。

七.分析结果解释及优化

根据上述的设置完成后,得到各个输出尺寸与输入尺寸的贡献度数值排序,贡献度给出输入尺寸公差对输出装配尺寸的贡献因子排序。贡献度数据指导设计合理的公差分配,根据输出尺寸的统计质量要求,把相关的贡献度数值高的尺寸公差做调整得到,达到快速提高装配质量的目的。

CETOL独特的算法决定了它能够计算输入尺寸相对输出尺寸的敏感度数值排序,敏感度考虑零件尺寸的名义值发生潜在变化时,对输出装配尺寸名义值的影响度排序。输入尺寸分为线性尺寸和角度尺寸二大类,在输出结果,分别结出各个线性尺寸和角度尺寸敏感度数值大小排序。绿色长条表示敏感度的数值来正值,紫色长条表示敏感度的数值为负值,也就是输入尺寸的变化方向相对输出尺寸的变化方向是相反的。

本案例中,尺寸CableHoleX及Claw Force Offset质量较低原因是不合理的公差,我们通过对贡献度较高的公差进行优化,使他们的sigma值达到可接受的范围。图23、24、25、26分别是优化前后优化后的分析结果:

图23 CableHoleX优化前的分析结果

图24 Claw Force Offset优化前的分析结果

图25 CableHoleX优化后的分析结果

图26 Claw Force Offset优化后的分析结果

我们通过图27及优化后的分析结果中,得到在打开状态下,尺寸Claw Tip Clearance主要是因为产品质量的分布中心发生偏移引起,因此我们只需要更改对其结果影响的名义值尺寸,就能够保证sigma值达到3,又因为我们已经对关闭状态下的三个尺寸优化完毕,因此只能修改该尺寸敏感度影响的尺寸,如图28所示,尺寸12.55只影响尺寸Claw Tip Clearance的敏感度,其他三个尺寸对该尺寸不敏感。

图27 Claw Tip Clearance优化前的分析结果

图28 尺寸Claw Tip Clearance的敏感度列表

统计公差分析方法概述

统计公差分析方法概述(2012-10-23 19:45:32) 分类:公差设计统计六标准差 统计公差分析方法概述 一.引言 公差设计问题可以分为两类:一类是公差分析(Tolerance Analysis ,又称正计算) ,即已知组成环的尺寸和公差,确定装配后需要保证的封闭环公差;另一类是公差分配(Tolerance Allocation ,又称反计算) ,即已知装配尺寸和公差,求解组成环的经济合理公差。 公差分析的方法有极值法和统计公差方法两类,根据分布特性进行封闭环和组成环公差的分析方法称为统计公差法.本文主要探讨统计公差法在单轴向(One Dimension)尺寸堆叠中的应用。 二.Worst Case Analysis 极值法(Worst Case ,WC),也叫最差分析法,即合成后的公差范围会包括到每个零件的最极端尺寸,无论每个零件的尺寸在其公差范围内如何变化,都会100% 落入合成后的公差范围内。 <例>Vector loop:E=A+B+C,根据worst case analysis可得 D(Max.)=(20+0.3)+(15+0.25)+(10+0.15)=45.7,出现在A、B、C偏上限之状况 D(Min.)=(20-0.3)+(15-0.25)+(10-0.2)=44.3,出现在A,B、C偏下限之状况 45±0.7适合拿来作设计吗? Worst Case Analysis缺陷: ?设计Gap往往要留很大,根本没有足够的设计空间,同时也可能造成组装困难; ?公差分配时,使组成环公差减小,零件加工精度要求提高,制造成本增加。

以上例Part A +Part B+ Part C,假设A、B、C三个部材,相对于公差规格都有3σ的制程能力水平,则每个部材的不良机率为1-0.9973=0.0027;在组装完毕后所有零件都有缺陷的机率为:0.0027^3=0.000000019683。这表明几个或者多个零件在装配时,同一部件的各组成环,恰好都是接近极限尺寸的情况非常罕见。 三.统计公差分析法 ?由制造观点来看,零件尺寸之误差来自于制程之变异,此变异往往呈现统计分布的型态,因此设计的公差规格常被视为统计型态。 ?统计公差方法的思想是考虑零件在机械加工过程中尺寸误差的实际分布,运用概率统计理论进行公差分析和计算,不要求装配过程中100 %的成功率(零件的100 %互换) ,要求在保证一定装配成功率的前提下,适当放大组成环的公差,降低零件(组成环) 加工精度,从而减小制造和生产成本。 ?在多群数据的线性叠加运算中,可以进行叠加的是『变异』值。 四.方和根法 计算公式(平方相加开根号) 假设每个尺寸的Ppk 指标是1.33并且制程是在中心

公差分析

例子1公差(Tolerancing) 1-1概论 公差分析将有系统地分析些微扰动或色差对光学设计性能的影响。公差分析的目的在于定义误差的类型及大小,并将之引入光学系统中,分析系统性能是否符合需求。Zemax内建功能强大的公差分析工具,可帮助在光学设计中建立公差值。公差分析可透过简易的设罝分析公差范围内,参数影响系统性能的严重性。进而在合理的费用下进行最容易的组装,并获得最佳的性能。 1-2公差 公差值是一个将系统性能量化的估算。公差分析可让使用者预测其设计在组装后的性能极限。设罝公差分析的设罝值时,设计者必须熟悉下述要点: ●选取合适的性能规格 ●定义最低的性能容忍极限 ●计算所有可能的误差来源(如:单独的组件、组件群、机械组装等等…) ●指定每一个制造和组装可允许的公差极限 1-3误差来源 误差有好几个类型须要被估算 制造公差 ●不正确的曲率半径 ●组件过厚或过薄 ●镜片外型不正确 ●曲率中心偏离机构中心

●不正确的Conic值或其它非球面参数 材料误差 ●折射率准确性 ●折射率同质性 ●折射率分布 ●阿贝数(色散) 组装公差 ●组件偏离机构中心(X,Y) ●组件在Z.轴上的位置错误 ●组件与光轴有倾斜 ●组件定位错误 ●上述系指整群的组件 周围所引起的公差 ●材料的冷缩热胀(光学或机构) ●温度对折射率的影响。压力和湿度同样也会影响。 ●系统遭冲击或振动锁引起的对位问题 ●机械应力 剩下的设计误差 1-4设罝公差 公差分析有几个步骤须设罝: ●定义使用在公差标准的」绩效函数」:如RMS光斑大小,RMS波前误差,MTF需求, 使用者自定的绩效函数,瞄准…等 ●定义允许的系统性能偏离值 ●规定公差起始值让制造可轻易达到要求。ZEMAX默认的公差通常是不错的起始点。 ●补偿群常被使用在减低公差上。通常最少会有一组补偿群,而这一般都是在背焦。 ●公差设罝可用来预测性能的影响 ●公差分析有三种分析方法: ?灵敏度法 ?反灵敏度法

公差计算方法全套汇编

2012年12月20日不详 关键字: 六西格玛机械公差设计的RSS分析 1.动态统计平方公差方法 RSS没有充分说明过程均值的漂移,总是假设过程均值在名义设计规格的中心,这就是为什么能力最初看起来比较充分,但实际中这种情况是很少的原因,特别是在制造过程中工具受到磨损的时候。因此就有必要利用C来调整每一个名义设计值已知的或者估计的过程标准偏差,以此来说明过程均值的自然漂移,这一方法就称为动态统计平方公差方法(Dynamic Root-Sum-of-Squares Analysis, DRSS)。实际上,这种调整会使标准偏差变大,因而会降低装配间隙概率。 调整后就以一个均值累积漂移的临界值是否大于等于4.5来衡量六西格玛水平,即时,DRSS模型就简化为一个RSS模型,这一特征对公差分析有许多实际意义。从这一意义上讲,DRSS模型是一个设计工具,也是一个分析工具。因为DRSS模型考虑均值随时间的随机变异的影响,所以称之为动态模型。 2.静态极值统计平方公差方法 当假设的均值漂移都设定在各自的极值情况时,这种方法称为静态极值统计平方公差方法( Worse-Case Static Raot- Surn- of-Squares Anlysis, WC-SRSS),这一方法可以认为是一种极值情况的统计分析方法。为了有效地研究任意假定的静态条件,需要将公式(2-10)分母项中的偏倚机制转移到分了项中(注意:当均值漂移大于2σ时,就不能应用上述转换),同时必须用Cp,代替分母中的Cpk:

实际上,所有偏倚机制都可以利用来表示,但是当过程标准偏差改变时,如果利用作为转换日标,名义间隙值也会改变,这样就违背了均值和方差独立的假设。也就是说,用作为描述均值漂移的基础使得均值和方差之间正相关。而利用k为动态和静态分析提供了一个可行的和灵活的机制,同时保证了过程均值和方差的独立性。 3.设计优化 利用IRSS作为优化基础,当考虑5RS5和WC-SRSS作为基础时其逻辑和推理是相同的。(1)优化零部件的名义尺寸 在任一给定的需求条件和过程能力条件下,重新安排公式(2-10)就得到该优化方程的表达式:

codev公差分析

问题背景 对于任何需要制造的系统,公差分析都是一个必需的复杂的互动过程。包括:?确定制造和装配公差目标?确定制造和调校补偿器,以及补偿方案 成功公差分析需要能够精确预测单个公差的灵敏度和整个系统的实际加工性能,包括补偿器的影响。当使用了合适的工具,公差分析能够降低:?非重复成本如设计时间,定义装调过程?重复性成本如系统制造,装配和调校因此公差分析可以帮助降低成本。 显微物镜案例?数值孔径0.65?放大率40倍?筒长180mm?视场直径0.5mm?可见光波长(d,F,C)?目标分辨率450线对每毫米 系统结构图

光扇图和场曲图 轴上视场和全视场点列图 MTF曲线和数值

从上面的图形可以看出,标称系统受限于:?轴向色差?横向色差?色球差?场曲 预期的公差分配目标:?限制450线对多色MTF下降■0.7视场内最大下降0.1■全视场最大下降0.15 公差方案?以默认TOR分析起始,确立基准性能并找出问题所在■默认反灵敏度模式计算引起相同性能下降的每个公差值?根据中间结果,执行额外分析■添加或删除被偿器■调整公差极限■固定单个公差到指定值■修改公差,符合光机模型 操作步骤1)运行默认公差,确定问题所在 轴上视场TOR结果

2)尝试替代偏心补偿偏心由表面8..9构成的透镜, 轴上视场TOR结果 3)确定可以修改的公差极限对于回滚和元件偏心,优质的制造设备可以保证±0.0065mm的总体指示偏差

对于此显微物镜,我们允许元件偏心和胶合元件回滚公差比默认值更严格一些,同样允许0.25环的不规则度。 保持套样板公差,最后一个透镜的厚度和偏心公差。此时,公差设置已经在轴上和全视场达到目标要求,但是在0.7视场依然不达标。

公差计算

问题5-1:公差计算 1.题目内容:配合件尺寸计算,根据所列已知条件,求其它各项填入表中。 2.公差与配合计算公式: 孔的上偏差ES=D max-D 孔的下偏差EI=D min-D 轴的上偏差es=d max-d 轴的下偏差ei=d min-d 孔的公差T h= D max- D min=ES-EI 轴的公差T s= d max - d min=es-ei 配合公差:T f=T h+T s 极限间隙X max= ES-ei,X min= EI-es 极限过盈Y max= EI-es,Y min= ES-ei 3.分析解答: 公差与偏差的计算,带入上面对应的公式,公式中只要已知两个值就可

以计算出第三个值。 (1)Φ40 6 7 s H ,基本尺寸为40。 (2)对于孔H7,可判断它的下偏差EI=0,且已知孔公差T h = 根据孔的公差T h = D max - D min =ES-EI 得ES= T h +EI=,D max =, D min =40, (3)对于轴s7,已知es=,轴公差T s = 根据轴的公差T s = d max - d min =es-ei , 得ei=es-T s = d max =, d min =, (4)配合公差 T f =T h +T s =+= (5)因为是过渡配合,所以存在最大间隙和最大过盈 极限间隙X max = ES-ei=极限过盈Y max = EI-es== (6)画公差带图 公差带图的关键是零线和孔轴的公差带。 4.总结拓展:公差计算的题目很多,这类问题是考核的一个重要部分,学生在考试中有关公差配合计算题答题情况不理想。学生在遇到这类问题时,往往会放弃答题。其实这类题目很简单,只要记住公式,将已知数据带入公式进行简单的运算,就可以得到所要答案。计算非常简单,在运算的过 +41 +16

公差计算方法大全

六西格玛机械公差设计的RSS分析 2012年12月20日不详 关键字: 六西格玛机械公差设计的RSS分析 1.动态统计平方公差方法 RSS没有充分说明过程均值的漂移,总是假设过程均值在名义设计规格的中心,这就是为什么能力最初看起来比较充分,但实际中这种情况是很少的原因,特别是在制造过程中工具受到磨损的时候。因此就有必要利用C来调整每一个名义设计值已知的或者估计的过程标准偏差,以此来说明过程均值的自然漂移,这一方法就称为动态统计平方公差方法(Dynamic Root-Sum-of-Squares Analysis, DRSS)。实际上,这种调整会使标准偏差变大,因而会降低装配间隙概率。 调整后就以一个均值累积漂移的临界值是否大于等于4.5来衡量六西格玛水平,即时,DRSS 模型就简化为一个RSS模型,这一特征对公差分析有许多实际意义。从这一意义上讲,DRSS

模型是一个设计工具,也是一个分析工具。因为DRSS模型考虑均值随时间的随机变异的影响,所以称之为动态模型。 2.静态极值统计平方公差方法 当假设的均值漂移都设定在各自的极值情况时,这种方法称为静态极值统计平方公差方法( Worse-Case Static Raot- Surn- of-Squares Anlysis, WC-SRSS),这一方法可以认为是一种极值情况的统计分析方法。为了有效地研究任意假定的静态条件,需要将公式(2-10)分母项中的偏倚机制转移到分了项中(注意:当均值漂移大于2σ时,就不能应用上述转换),同时必须用Cp,代替分母中的Cpk: 实际上,所有偏倚机制都可以利用来表示,但是当过程标准偏差改变时,如果利用作为转换日标,名义间隙值也会改变,这样就违背了均值和方差独立的假设。也就是说,用作为描述均值漂移的基础使得均值和方差之间正相关。而利用k为动态和静态分析提供了一个可行的和灵活的机制,同时保证了过程均值和方差的独立性。 3.设计优化 利用IRSS作为优化基础,当考虑5RS5和WC-SRSS作为基础时其逻辑和推理是相同的。(1)优化零部件的名义尺寸

尺寸链计算方法-公差计算

尺寸链计算 一.基本概念 尺寸链是一组构成封闭尺寸的组合。 尺寸链中的各个尺寸称为环。零件在加工或部件在装配过程中,最后得到的尺寸称为封闭环。组成环又分为增环和减环,当尺寸链中某组成环的尺寸增大时,封闭环的尺寸也随之增大,则该组成环称为增环。反之为减环。 补偿环:尺寸链中预先选定的某一组成环,可以通过改变其大小或位置,使封闭环达到规定要求。 传递系数ξ:表示各组成环对封闭环影响大小的系数。增环ξ为正值,减环ξ为负值。通常直线尺寸链的传递系数取+1或-1. 尺寸链的主要特征: ①.尺寸连接的封闭性;②.每个尺寸的变化(偏差)都会影响某一尺寸的精度。 二.尺寸链的分类 1.按应用范围分 工艺尺寸链:在零件加工过程中,几个相互联系的工艺尺寸形成的封闭链。 装配尺寸链:在设计或装配过程中,由几个相关零件的有关尺寸形成的封闭链。 2. 按构成尺寸链各环的空间位置分 线性尺寸链:各环位于平行线上 平面尺寸链:各环位于一个平面或相互平行的平面,各环不平行排列。 空间尺寸链:各环位于不平行的平面,需投影到三个座标平面上计算。 3.按尺寸链的形式分 a)长度尺寸链和角度尺寸链 b)装配尺寸链装、零件尺寸链和工艺尺寸链 c)基本尺寸链与派生尺寸链 基本尺寸链指全部组成环皆直接影响封闭环的尺寸链 派生尺寸链指一个尺寸链的封闭环为另一个尺寸链组成环的尺寸链。

d)标量尺寸链和矢量尺寸链 三. 基本尺寸的计算 把每个基本尺寸看成构成尺寸链的各环,验算其封闭环是否符合设计要求。是设计中尺寸链计算时首先应该进行的工作。 目前产品生产中经常出现错误的环节,大部分是基本尺寸链错误。特别是测绘设计的产品。由于原机的制造误差,测量系统的误差以及尺寸修约的误差,往往会使测绘设计与原设计产生很大的偏差,所以必须进行基本尺寸链的计算 四.解尺寸链的主要方法 根据零件尺寸的要求和相关标准确定零件尺寸公差,然后按照解尺寸链的最短途径原理的方法对尺寸公差进行验算和修正。 为了提高零件的装配精度,与其有关各零件表面形成的尺寸链环数必须最少。 a)极值法(完全互换法) 各组成环的公差之和不得大于封闭环的公差 即Σδi≤δN 不适合环数很多的尺寸链 b)概率法(不完全互换法) 设A表示组成环的算术平均值,σ表示均方根偏差,则一般各环的公差取±3σ。 σ=∑- i n A Xi/) ( c)选配法 将尺寸链中组成环的公差放大到经济可行的程度,然后选择合适的零件进行装配。 尺寸链计算程序 ①基本尺寸计算依据产品标准、产品装配图、零件图 ②公差设计计算可以先按推荐的公差等级标准选取公差值,然后按互换法进 行计算调整,决定各组成环的公差与极限偏差。 ③公差校核计算校核封闭环公差与极限偏差。 五. 计算举例

统计公差分析方法概述

统计公差分析方法概述(总5 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

统计公差分析方法概述(2012-10-23 19:45:32) 分类:公差设计统计六标准差 统计公差分析方法概述 一.引言 公差设计问题可以分为两类:一类是公差分析(Tolerance Analysis ,又称正计算) ,即已知组成环的尺寸和公差,确定装配后需要保证的封闭环公差;另一类是公差分配(Tolerance Allocation ,又称反计算) ,即已知装配尺寸和公差,求解组成环的经济合理公差。 公差分析的方法有极值法和统计公差方法两类,根据分布特性进行封闭环和组成环公差的分析方法称为统计公差法.本文主要探讨统计公差法在单轴向(One Dimension)尺寸堆叠中的应用。 二.Worst Case Analysis 极值法(Worst Case ,WC),也叫最差分析法,即合成后的公差范围会包括到每个零件的最极端尺寸,无论每个零件的尺寸在其公差范围内如何变化,都会100% 落入合成后的公差范围内。 <例>Vector loop:E=A+B+C,根据worst case analysis可得 D(Max.)=(20++(15++(10+=,出现在A、B、C偏上限之状况 D(Min.)=++=,出现在A,B、C偏下限之状况 45±适合拿来作设计吗 Worst Case Analysis缺陷: 设计Gap往往要留很大,根本没有足够的设计空间,同时也可能造成组装困难; 公差分配时,使组成环公差减小,零件加工精度要求提高,制造成本增加。

最新公差计算方法大全资料

六西格玛机械公差设计的RSS分析2012年12月20日不详 关键字: 六西格玛机械公差设计的RSS分析 1.动态统计平方公差方法 RSS没有充分说明过程均值的漂移,总是假设过程均值在名义设计规格的中心,这就是为什么能力最初看起来比较充分,但实际中这种情况是很少的原因,特别是在制造过程中工具受到磨损的时候。因此就有必要利用C来调整每一个名义设计值已知的或者估计的过程标准偏差,以此来说明过程均值的自然漂移,这一方法就称为动态统计平方公差方法(Dynamic Root-Sum-of-Squares Analysis, DRSS)。实际上,这种调整会使标准偏差变大,因而会降低装配间隙概率。 调整后就以一个均值累积漂移的临界值是否大于等于4.5来衡量六西格玛水平,即时,DRSS 模型就简化为一个RSS模型,这一特征对公差分析有许多实际意义。从这一意义上讲,DRSS 模型是一个设计工具,也是一个分析工具。因为DRSS模型考虑均值随时间的随机变异的影响,所以称之为动态模型。 2.静态极值统计平方公差方法 当假设的均值漂移都设定在各自的极值情况时,这种方法称为静态极值统计平方公差方法( Worse-Case Static Raot- Surn- of-Squares Anlysis, WC-SRSS),这一方法可以认为是一种极值情况

的统计分析方法。为了有效地研究任意假定的静态条件,需要将公式(2-10)分母项中的偏倚机制转移到分了项中(注意:当均值漂移大于2σ时,就不能应用上述转换),同时必须用Cp,代替分母中的Cpk: 实际上,所有偏倚机制都可以利用来表示,但是当过程标准偏差改变时,如果利用作为转换日标,名义间隙值也会改变,这样就违背了均值和方差独立的假设。也就是说,用作为描述均值漂移的基础使得均值和方差之间正相关。而利用k为动态和静态分析提供了一个可行的和灵活的机制,同时保证了过程均值和方差的独立性。 3.设计优化 利用IRSS作为优化基础,当考虑5RS5和WC-SRSS作为基础时其逻辑和推理是相同的。(1)优化零部件的名义尺寸 在任一给定的需求条件和过程能力条件下,重新安排公式(2-10)就得到该优化方程的表达式:

PROE中公差分析参考指南

Parametric Technology Corporation Pro/ENGINEER? Wildfire? 4.0 Tolerance Analysis Extension Powered by CETOL?Technology 参考指南

? 2008 Parametric Technology Corporation 版权所有。保留所有权利。 Parametric Technology Corporation 及其子公司 (通称“PTC”) 的用户和培训文档受美国和其它国家/地区版权法的保护,并受许可协议的约束,复制、公开发行和使用此文档受到严格限制。PTC 在此同意,依据适用软件的许可协议规定,拥有软件使用权的用户允许以印刷形式复制本文档 (如果软件媒介中提供),并且仅限内部/个人使用。任何复印件都应包括 PTC 版权通告和由 PTC 提供的其它专利通告。未经 PTC 明确授权许可,不得复制培训材料。未经 PTC 事先书面许可,本文档不得公开、转让、修改或简化为任何形式 (包括电子媒介),也不允许以任何手段传播、公开发行或出于此目的进行复制。 此处所描述的信息仅作为一般信息提供,如有更改恕不另行通知,并且不能将其解释为 PTC 的担保或承诺。本文档中如有错误或不确切之处,PTC 概不负责。 本文档中所述软件在有书面许可协议的条件下提供,其中包括重要的商业秘密和专利信息,并受美国和其它国家/地区版权法的保护。未经 PTC 事先书面许可,本软件不能以任何形式在任何媒介中复制或分发、公开至第三方,或者以任何软件许可证协议所不允许的方式使用。 未经授权使用软件或其文档,将会引起民事赔偿和刑事诉讼。 若需了解重要的版权、商标、专利和授权信息,请考虑如下选项:针对 Windchill 产品,请选择产品页面底部的“关于Windchill”。针对 InterComm 产品,请在“帮助”主页上单击 2007 年版权信息链接。其他产品,则单击产品主菜单上的“帮助”>“关于”。 美国政府有限权利说明 依据FAR 12.212(a)-(b) (1995年10月) 或 DFARS 227.7202-1(a) 和227.7202-3(a)(1995年6月),本文档以及其中所述的软件属于商用计算机文档和软件,只在有限商业许可下提供给政府。对于上述条款规定日期之前政府获得的文档资料和软件,其使用、复制或公开受 DFARS 252.227-7013(1988 年 10 月)中“技术资料和计算机软件条款权利”(Rights in Technical Data and Computer Software Clause) 下的 (c)(1)(ii) 子条款或 FAR 52.227-19(c)(1)-(2)(1987 年 6 月) 中“商用计算机软件限制权 利”(Commercial Computer Software-Restricted Rights) 所适用限制条件的约束。 01012008 Parametric Technology Corporation, 140 Kendrick Street, Needham, MA 02494 USA

6 西格玛标准公差计算公式.

六西格玛管理系列讲座之一 什么是6西格玛管理?当人们谈论世界著名公司-通用电器(GE)的成功以及世界第一CEO-杰克.韦尔奇先生为其成功制定的三大发展战略时,都会不约而同地提出这样的问题。 如果概括地回答的话,可以说6西格玛管理是在提高顾客满意程度的同时降低经营成本和周期的过程革新方法,它是通过提高组织核心过程的运行质量,进而提升企业赢利能力的管理方式,也是在新经济环境下企业获得竞争力和持续发展能力的经营策略。因此,管理专家Ronald Snee先生将6西格玛管理定义为:“寻求同时增加顾客满意和企业经济增长的经营战略途径。” 如果展开来回答的话,6西格玛代表了新的管理度量和质量标准,提供了竞争力的水平对比平台,是一种组织业绩突破性改进的方法,是组织成长与人才培养的策略,更是新的管理理念和追求卓越的价值观。 让我们先从6西格玛所代表的业绩度量谈起: 符号σ(西格玛)是希腊字母,在统计学中称为标准差,用它来表示数据的分散程度。我们常用下面的计算公式表示σ的大小: 如果有两组数据,它们分别是1、2、3、4、5;和3、3、3、3、3;虽然它们的平均值都是3,但是它们的分散程度是不一样的(如图1-1所示)。如果我们用σ来描述这两组数据的分散程度的话,第一组数据的σ为1.58,而第二组数据的σ为0。假如,我们把数据上的这些差异与企业的经营业绩联系起来的话,这个差异就有了特殊的意义。 假如顾客要求的产品性能指标是3±2(mm),如果第一组数据是供应商A所提供的产品性能的测量值,第二组数据是供应商B所提供的产品性能的测量值。显然,在同样的价格和交付期下,顾客愿意购买B的产品。因为,B的产品每一件都与顾客要求的目标值或理想状态最接近。它们与顾客要求的目标值之间的偏差最小。 假如顾客要求的产品交付时间是3天。如果第一组数据和第二组数据分别是供应商A和B每批产品交付时间的统计值,显然,顾客愿意购买B的产品。因为,B每批产品的交付时间与顾客要求最接近。尽管两个供应商平均交付时间是一样的,但顾客的评判,不是按平均值,而是按实际状态进行的。 假如顾客要求每批产品交付数量是3件。如果第一组数据和第二组数据分别是供应商A和B每批产品

内螺纹小径的计算与公差

内螺纹小径的计算与公差 a. 内螺纹小径的基本尺寸计算(D1) 螺纹小径基本尺寸=内螺纹基本尺寸-螺距×系数 例:内螺纹M8的小径基本尺寸 8-1.25×1.0825=6.646875≈6.647 b. 内螺纹6H级的小径公差(以螺距为基准)及小径值计算 P0.8 +0. 2 P1.0 +0. 236 P1.25 +0.265 P1.5 +0.3 P1.75 +0.335 P2.0 +0.375 P2.5 +0.48 内螺纹6H级的下限偏差公式D1+HE1即内螺纹小径基本尺寸+偏差 注:6H级的下偏值为“0” 内螺纹6H级的上限值计算公式=D1+HE1+TD1即内螺纹小径基本尺寸+偏差+公差 例:6H级M8内螺纹小径的上限值 6.647+0=6.647 6H级M8内螺纹小径的下限值 6.647+0+0.265=6.912 c. 内螺纹6G级的小径基本偏差(以螺距为基准)及小径值计算 P0.8 +0.024 P1.0 +0.026 P1.25 +0.028 P1.5 +0.032 P1.75 +0.034

P2.0 +0.038 P2.5 +0.042 内螺纹6G级的小径下限值公式=D1+GE1即内螺纹基本尺寸+偏差 例: 6G级M8内螺纹小径的下限值 6.647+0.028=6.675 6G级M8内螺纹小径的上限值公式D1+GE1+TD1即内螺纹基本尺寸+偏差+公差 例: 6G级M8内螺纹小径的上限值是6.647+0.028+0.265=6.94 注:①内螺纹的牙高直接关系到内螺纹的承载力矩的大小,故在毛坯生产中应尽量在其6H级上限值以内 ②在内螺纹的加工过程中,内螺纹小径越小会给加工具——丝锥的使用效益有所影响.从使用的角度讲是小径越小越好,但综合考虑时一般采用小径的在中限至上限值之间,如果是铸铁或铝件时应采用小径的下限值至中限值之间 ③内螺纹6G级的小径在毛坯生产中可按6H级执行,其精度等级主要考虑螺纹中径的镀层,故只在螺纹加工时考虑丝锥的中径尺寸而不必考虑光孔的小径。

公差分析软件CETOL-6-sigma实例

使用公差分析软件CETOL 6 σ进行公差分析的实例 ----汽车锁具公差分析案例 针对汽车锁具Pro/E模型,采用Pro/E完全集成环境下的公差分析软件CETOL 6 σ,来做公差模型的创建,基于CETOL提供的系统矩(SOTA法)算法,做统计和极限二种情况下的公差分析。 一.锁具质量关心焦点 作为汽车座椅锁具,其质量的好坏,关系到汽车驾乘人员乘坐的舒适性和安全性。锁具在开锁时,希望能够充分打开,不要与其他零部件之间产生干涉,即顺利打开。锁具在闭锁时,能够经受得住外力的冲击,不至于产生突然脱开现象。在锁具的任何状态,都要求锁具动作部件能够与电器设备很好地连接,在电控装配的驱动下,锁具能够准确地运转到指定的位置。根据设计功能要求,把项目细分到具体的状态上,在运动部件的具体指定位置,做功能要求的详细设定。 1)一个关键质量要求就是爪轮在打开时要远离侧板的开口槽,这是为了确保爪轮不会与锺棒产生干涉。如图1所示。 test

2)锁轮上的孔,在完成机械装配后,需要从这个孔里穿电缆线,来接通电源。根据座椅的设计要求,为了保证电缆线能与

机械设备能可靠地连接,电缆线过孔必须在位于基准孔名义值的正负2个mm之间。如果尺寸超过了上极限,锁具就会出现卡死现象,如果超过了下极限,电缆线就不能很好地与电器设置连接,导致零件废弃和成本增加。 图 2 闭锁时的测量尺寸 另外一个关键尺寸就接触力位置,这个接触力与作用方向一致,是在爪轮和中轮之间,接触力矢量的位置决定了是否有足

够的闭锁运动来保持锁具在冲压载荷的情况仍能正常闭锁,加工和装配偏差都有可能这些关键质量要求产生失效,过紧的公差会增加成本也有可能导致产品无法加工。为了生产高质量低成本的产品,有必要在设计阶段就能理解所有这些问题。 二. 创建公差分析目标 公差分析的前提首先要确定装配性能尺寸,对于锁具装配体,需要确定具体的装配状态。实施步骤如下: 1) 启动CETOL软件的分析器。 a.启动Pro/E。 b.启动CETOL,路径:开始/程序/sigmetrix/CETOL 6 sigma v8.2 for Pro ENGINEER/CETOL v8.2 Modeler。 c.打开锁具装配体。 d. 配置CETOL与Pro/E同步 2) 打开CETOL选项菜单。 a.从工具-选项栏目选择,在偏差标签栏设置 ,如图3 b. 在图表和高亮显示设置栏,设置如下:如图4

公差分析技术在特种车设计与制造中的应用

公差分析技术在特种车设计与制造中的应用 发表时间:2019-01-25T14:20:25.223Z 来源:《建筑细部》2018年第14期作者:高一恺 [导读] 随着科技的发展和消费者对产品要求的提高,企业亟需在产品制造、装配、使用等阶段减少成本,减低研发周期以提高自身竞争力。 扬州伏尔坎机械制造有限公司江苏扬州 225000 摘要:随着我国综合实力的不断提升,我国的生产技术水平有了较大的改善,在这样的现实条件之下,特种车设计实现了快速的发展,在制造以及设计特种车的过程之中,大部分的工作人员会采取公差分析技术来积极的缩短开发周期,在保障车辆生产质量的前提之上,更好的实现各类生产资源的优化配置和利用,文章以公差分析技术为切入点,深入分析该技术在特种车设计和制造之中的应用情况。 关键词:公差分析;特种车设计;制造 1 前言 随着科技的发展和消费者对产品要求的提高,企业亟需在产品制造、装配、使用等阶段减少成本,减低研发周期以提高自身竞争力。零件的制造偏差、装配偏差和工况偏差直接影响装配体关键尺寸的分布,从而影响产品使用性能。因此,在产品开发阶段进行公差分析,研究制造、装配和工况偏差对装配体关键尺寸的影响,有助于提高产品质量,降低生产成本。在过去的几十年中有大量的学者投身于公差分析的研究中,且已取得大量成果。提出了一种在CAD支撑环境下的制造误差建模方法,用齐次坐标变换来描述制造偏差的传递;利用小位移旋量的原理,对三维公差建模方法进行了研究;在公差分析时综合考虑了零件的尺寸、形位公差以及零件配合相对位置,研究了零件偏差累积对产品性能的影响。 2 公差分析技术 公差分析技术以不同零部件的尺寸为切入点,通过工差计算的形式来积极的分析各类零部件在装配之后闭环公差验证的不同技术手段,因此相关的技术操作者以及设计工作人员在应用该技术时,直接将其称之为工程的验证技术。在对工程分析结果进行分析时,如果最终所计算出来的结果不符合设计的时间要求和标准,那么就必须要对尺寸链环以及各零部件的工差进行不断的优化和升级。从目前来看,公差分析技术在使用时主要以三种不同的类型为主,具体包括极值法方和根法以及蒙特卡洛模拟法,其中蒙特卡洛模拟法需要以前期的实验方案制定为切入点和核心,通过对随机变量的深入分析和研究来了解最终的期望值,积极地凸显不同变量的数字特征和优势。 相关的操作工作人员在实践时提出,这种方法能够有效的对非线性的装配函数尺寸工差进行后续的分析和处理,另外对于车辆制造以及设计领域来说,大部分主要以整车四轮定位为切入点,积极的对不同的整车外观间隙进行分析和研究,每一个方法都需要耗费大量的时间和精力,技术人员需要以大量系统的样本采集为切入点,通过对前期具体装备的深入分析来了解后期的装配函数情况,最终的函数方程分量会产生一定的变化,因此需要进行重新的运算和分析。 从目前来看,大部分的分析软件都在实践之中获得了广泛的应用,方和根法则需要在保障闭环公差以及各组成环公差服从于正态分布的基础之上,深入的研究项同线性状态函数之间的相关性,该方法能够以更为贴切的计算手段保障实际的分析结果符合生产装配工差。其中工作人员需要通过对特种车车身公差进行分析,了解不同计算方法的应用要求,保证该方法能够真正的体现一定的可操作性和实用性。 但是在实际生产的过程之中,零件极有可能会受到组装的影响,其中焊接方法和工装磨损以及装配手法会导致实际的数值产生较大的变化,同时最终所获取的计算结果不符合实际的工作要求。如果采取极值法来进行工程分析,那么就需要假设各个零部件的尺寸都为极限值,但是实际上这种现象的产生概率比较低,大部分的装备函数主要以非线性的为主,大部分的操作环节相对比较简单,同时计算量较小,因此可以以现有的汽车零部件计算为切入点,了解各环节之间的相关性,充分的发挥不同尺寸公差分析的作用。 3 公差分析技术在特种车设计与制造中的应用 特种车设计与制造分析: 如果站在宏观的角度对特种车的制造以及设计进行分析,那么不管是重量还是外扩的尺寸都极大的超过了普通车辆的设计极限值,同时该车辆的用途相对比较特殊,设计人员需要充分的考虑各种影响因素,结合制造以及设计的实质要求积极的采取有效的设计手段和技术,不断提高特种车的制动性能和稳定性。设计工作者需要充分的考虑在不同行驶状态之下,车辆的真实表现,保障其能够在坡道行驶时不产生倾翻和滑动,同时还能够及时的制动。为了有效的实现这一目的,工作人员需要保证前期设计的整体性和全面性,结合车辆总体结构设计的实质要求,积极的分析稳定性提升的具体情况。其次,在车辆设计时,工作人员需要做好前期的四轮定位,保证特种车能够在稳定直线行驶的过程之中,尽量的避免转向机件磨损,保证车辆机械的完成特殊的作业任务和运输任务。 另外在质量制造时必须要落实好前期的车辆装配工作,从整体上促进性能作用的发挥,在前期制造以及设计环节,工作人员需要以公差分析技术为切入点,积极的结合开发设计过程之中的各类现实问题继续研究。为了能够保障零部件以及工装工差分配的合理性,实现各类环节的优化升级,管理部门以及供应商需要在保障产品尺寸质量系统管理优化的基础之上,不断的加强不同生产制造环节之间的联系,有效的解决零部件工差匹配的问题,从而更好的将特种车的设计和制造成本控制在最低的范围之内。另外在前期整体设计阶段之中,工作人员需要以公差分析技术为依据,明确前期四轮定位的参数尺寸公差值,并为该环节的工作提供坚实的技术保障和依据,促进整体设计质量和水平的提升,尽量避免后期生产制造所存在的各类缺陷和不足。 4 在特种车制造中的应用 在特种车制造阶段,工作人员可以结合公差分析技术了解装配尺寸公差的数据要求,积极的开展不同环节的分析工作,从整体上促进车辆装配质量的提升。对于不同类型的特种车型装配来说,实际的装配极易出现各类问题,技术操作者在对各类缺陷进行分析以及研究时,首先需要了解不同的状态分布情况,采取方和根法来进行尺寸公差分析,只有这样才能够从整体上促进特种车设计质量和水平的提升。 5 在特种车设计中的应用 在前期车辆整体设计的过程中,工作人员需要结合特种车设计的实质要求,明确和前期四轮定位的实质情况。一般来说,前期的四轮定位会受到车身自身稳定性的影响,同时实际的安装会存在许多的偏差,不管是零部件制造偏差还是后期的装配偏差都会导致最终的参数

公差计算方法大全(完整资料).doc

【最新整理,下载后即可编辑】 六西格玛机械公差设计的RSS分析 2012年12月20日不详 关键字: 六西格玛机械公差设计的RSS分析 1.动态统计平方公差方法 RSS没有充分说明过程均值的漂移,总是假设过程均值在名义设计规格的中心,这就是为什么能力最初看起来比较充分,但实际中这种情况是很少的原因,特别是在制造过程中工具受到磨损的时候。因此就有必要利用C来调整每一个名义设计值已知的或者估计的过程标准偏差,以此来说明过程均值的自然漂移,这一方法就称为动态统计平方公差方法(Dynamic Root-Sum-of-Squares Analysis, DRSS)。实际上,这种调整会使标准偏差变大,因而会降低装配间隙概率。 调整后就以一个均值累积漂移的临界值是否大于等于4.5来衡量六西格玛水平,即时,DRSS模型就简化为一个RSS模型,这一特征对公差分析有许多实际意义。从这一意义上讲,DRSS模型是一个设计工具,也是一个分析工具。因为DRSS模型考虑均值随时间的随机变异的影响,所以称之为动态模型。

2.静态极值统计平方公差方法 当假设的均值漂移都设定在各自的极值情况时,这种方法称为静态极值统计平方公差方法( Worse-Case Static Raot- Surn- of-Squares Anlysis, WC-SRSS),这一方法可以认为是一种极值情况的统计分析方法。为了有效地研究任意假定的静态条件,需要将公式(2-10)分母项中的偏倚机制转移到分了项中(注意:当均值漂移大于2σ时,就不能应用上述转换),同时必须用Cp,代替分母中的Cpk: 实际上,所有偏倚机制都可以利用来表示,但是当过程标准偏差改变时,如果利用作为转换日标,名义间隙值也会改变,这样就违背了均值和方差独立的假设。也就是说,用作为描述均值漂移的基础使得均值和方差之间正相关。而利用k 为动态和静态分析提供了一个可行的和灵活的机制,同时保证了过程均值和方差的独立性。 3.设计优化 利用IRSS作为优化基础,当考虑5RS5和WC-SRSS作为基础时其逻辑和推理是相同的。 (1)优化零部件的名义尺寸 在任一给定的需求条件和过程能力条件下,重新安排公式(2-10)就得到该优化方程的表达式:

标准公差计算

标准公差计算 A1 基本尺寸分段 表A1基本尺寸分段 计算各基本尺寸段的标准公差和基本偏差时,公式中的D用每一尺寸段中首尾两个尺寸(D1和D2)的几何平均值,即: D = √D1×D2 IT5至IT18的标准公差 Ⅰ,基本尺寸至500 mm 的标准公差 i = 0.45√D + 0.001D 式中:i —μm D —基本尺寸段的几何平均值,mm

Ⅱ,基本尺寸大于500~3 150 mm 的标准公差的由来 等级IT1至IT18的标准数值作为标准公差因子I的函数,由表A2所列计算公式计算: I = 0.004D + 2.1 式中:i —μm D —基本尺寸段的几何平均值,mm。 表A2 标准公差计算公式 A2 标准公差数值的修约 等级至IT11的标准公差计算结果按表A3的规则修约。 等级大于IT11的标准公差数值是由IT7至IT11的标准公差数值延伸来的,故不需要再修约。 表3 等级至IT11的标准公差数值修约μm

A3 基本偏差的由来 A3.1 轴的基本偏差 轴的基本偏差见表3 给出的公式计算。 A3.2 孔的基本偏差 孔的基本偏差按表3 给出的公式计算。 但以下情况例外: a)基本尺寸大于3-500mm,标准公差等级大于IT8的孔的基 本偏差N,其数值(ES)等于零。 b)在基本尺寸大于3-500mm的基孔制或基轴制配合中,给 定某一公差等级的孔要与更精一级的轴相配(例如H7/p6 和P7/h6),并要求具有同等的间隙或过盈。此时,计算 的孔的基准偏差应附加一个△值,即: ES=ES(计算值)+△ 式中:△是基本尺寸段内给定的某一标准公差等级IT n与更精一级的标准公差等级IT(n-1)例如:基本尺寸段18—30mm的P7:△= IT n —IT(n-1) = IT7 —IT6 =21 —13 = 8 μm

相关主题