搜档网
当前位置:搜档网 › 含定性变量的回归模型

含定性变量的回归模型

含定性变量的回归模型
含定性变量的回归模型

含定性变量的回归模型

一、自变量中含有定性变量的回归模型

在回归分析中,对一些自变量是定性变量的情形先量化处理,引入只取0和1 两个值的虚拟自变量。例如,在研究粮食产量问题,需考虑正常年份和干旱年份,对这个问题就可以引入虚拟变量D ,令D=1表示正常年份,D=0表示干旱年份。当在某些场合定性自变量可能取多类值时,例如考虑销售量的季节性影响,季节因素分为春、夏、秋、冬4种情况。为了用定性自变量反映四个季度,可以引入自变量??

?==,其他

,春季0111x x ,??

?==,其他

,夏季0122x x ,??

?==,其他

,秋季0133x x ,??

?==,其他

,冬季0144x x ,如

果这样引入会出现一个问题,即自变量4321,,,x x x x 之和恒等于1,构成了完全多重共线性。所以,一个定性变量有k 类可能的取值时,只需要引入k-1个0-1型自变量。所以在分析季节因素的时候,引入3个0-1自变量即可。

例1 某经济学家想调查文化程度对家庭储蓄的影响,在一个中等收入的样本框中,随机调查了13户高学历家庭与14户中低学历的家庭,因变量y 为上一年家庭储蓄增加额,自变量x1为上一年家庭总收入,自变量x2表示家庭学历,高学

建立y 对x1,x2的线性回归模型,回归方程为:y

?=-7976+3826x1-3700x2 这个结果表明,中等收入的家庭每增加1万元收入,平均拿出3826元作为储蓄。高学历家庭每年的平均储蓄额少于低学历的家庭,平均少3700元。 如果不引入家庭学历定性变量x2,仅用y 对家庭年收入x1做一元线性回归,得判定系数R^2=0.618,拟合效果不好。

家庭年收入x1是连续型变量,它对回归的贡献也是不可缺少的。如果不考虑家庭年收入这个自变量,13户高学历家庭的平均年储蓄增加额为3009.31元,14户低学历家庭的平均年储蓄增加额为5059.36元,这样会认为高学历家庭每年的储蓄额比低学历的家庭平均少5059.36-3009.31=2050.05元,而用回归法算

出的数值是3824元,两者并不相等。

用回归法算出的高学历家庭每年的平均储蓄额比低学历的家庭平均少3824元,这是在假设两者的家庭年收入相等的基础上的储蓄差值,或者说是消除了家庭年收入的影响后的差值,因而反映了两者储蓄额的真实差异。而直接由样本计算的差值2050.05元是包含有家庭年收入影响在内的差值,是虚假的差值。所调查的13户高学历家庭的平均年收入额为3.8385万元,14户低学历家庭的平均年收入额为3.4071万元,两者并不相等。

需要指出的是,虽然虚拟变量取某一数值,但这一数值没有任何数量大小的意义,它仅仅用来说明观察单位的性质或属性。 二、单因素方差模型

推断统计中的单因素方差分析、无交互作用的双因素方差分析和有交互作用的双因素方差分析模型,都可以转化为0-1型自变量的回归分析模型。下面以单因素方差为例。下面给出的先是单因素方差分析的结果。

单因素方差分析:行业因素是否影响投诉次数

零售业 旅游业 航空公司 家电制造业

57 68 31 44 66 39 49 51 49 29 21 65 40 45 34 77 34 56 40 58 53 51 44

方差分析:单因素方差分析

SUMMARY

组 观测数 求和 平均 方差 零售业 7 343 49 116.6667 旅游业 6 288 48 184.8 航空公司 5 175 35 108.5 家电制造业 5 295 59

162.5

方差分析

差异源 SS df MS F P-value F crit 组间 1456.609 3 485.536232 3.406643 0.038765 3.12735 组内 2708 19 142.526316 总计 4164.609 22

将上面的单因素方差分析转化为0-1型自变量的回归分析模型。

设ij y ),,2,1(j n i =是正态总体),(2σμj N ),,2,1(c j =的样本,原假设为

c H μμμ=== 210:,记j

ij ij y μ

ε-=,则有),0(~2σεN ij ,进而有ij j ij y εμ+=,

)

,,2,1(j n i =,),,2,1(c j =,

记∑==c

j j

c

1

1

μμ,μ

μ-=j j

a ,则有ij j ij a y εμ++=,

引入0-1型自变量ij x ,将上式表示为ij ic c i i ij x a x a x a y εμ++++= 2211,其中

??

?≠===1,01,111j x j x i i 当当,???≠===2,02,122j x j x i i 当当……. ???≠===c j x c j x ic

ic 当当,0,1,即为多元线性回归模型。但其中存在一个问题,就是c 个自变量之和恒等于1,存在完全的多重共线性。为此需要删除ic x 建立回归模型ij ic c i i ij x a x a x a y εμ++++=--112211 即可。这个回归方程的显著性检验的原假设为:0:1210====-c a a a H ,由μμ-=j j a 可知。方差分析的原假设和回归方程的假设是等价的。作回归方程的F 检验与单因

素方差分析的F 检验是等价的。下面将刚才的例子转化为0-1型自变量的回归分析模型。将例子的数据整理如下。

投诉次数(y ) 行业 x1

x2 x3 57 零售业 1 0 0 66 零售业 1 0 0 49 零售业 1 0 0 40 零售业 1 0 0 34 零售业 1 0 0 53 零售业 1 0 0 44 零售业 1 0 0 68 旅游业 0 1 0 39 旅游业 0 1 0 29 旅游业 0 1 0 45 旅游业 0 1 0 56 旅游业 0 1 0 51 旅游业 0 1 0 31 航空公司 0 0 1 49 航空公司 0 0 1 21 航空公司 0 0 1 34 航空公司 0 0 1 40 航空公司 0 0 1 44 家电制造业 0 0 0 51 家电制造业 0 0 0 65 家电制造业 0 0 0 77 家电制造业 0 0 0 58 家电制造业 0

对上面数据进行回归分析,得到结果如下所示。

SUMMARY OUTPUT

回归统计

Multiple R 0.591404124

R Square 0.349758837

Adjusted R

Square 0.24708918

标准误差11.93843858

观测值23

方差分析

df SS MS F Significance F

回归分析 3 1456.609 485.5362 3.406643 0.038764525

残差19 2708 142.5263

总计22 4164.609

Coefficients 标准误差t Stat P-value Lower 95% Upper 95% C 59 5.339032 11.05069 1.03E-09 47.82527753 70.17472 x1 -10 6.990434 -1.43053 0.168807 -24.63114617 4.631146 x2 -11 7.229084 -1.52163 0.144571 -26.13064575 4.130646 x3 -24 7.550532 -3.17858 0.004946 -39.80344407 -8.19656 从线性回归的方差分析表可以看出,单因素方差分析表和回归模型的方差分析表是一样的。从回归系数表中还可以看出X3的回归系数与其它系数存在差异,这与方差分析的多重比较分析结果也是一样的。

所以,如果所建立的回归模型其中的自变量全是定性变量,称这样的回归模型为方差分析模型,如果模型中既包含数量变量,又包含定性变量,其中以定性自变量为主,称这样的模型为协方差模型。

三、自变量中含有定性变量的回归模型的应用

1、分段回归

在实际问题中,会碰到某些变量在不同的影响因素范围内变化趋势截然不同,例如经济问题涉及经济政策较大调整时,调整前与调整后的变化幅度会有很大不同。对于这种问题,有时用多种曲线拟合效果仍不能令人满意。如果做残差分析,会发现残差不是随机的,而具有一定的系统性。对这类问题可以考虑分段回归的方法来处理。

例:

做出y 与x1的散点图,可以看出当生产批量大于500时,成本可能服从另一种线性关系,可以考虑由两段构成的分段线性回归,这可以通过引入一个0-1型虚拟自变量实现。假定回归直线的斜率在x=500处改变。则可以建立回归模型:

i

i i i i D x x y εβββ+-++=)500(210,其中??

?≤=>=500

,0500,1i i i i x D x D 当当,为了方便起见,引

入两个新的自变量x1,x2。这有i i x x =1,i i i D x x )500(2-=,其中x1为生产批量,x2数值列在表中,这样回归模型可以转化为i i i i x x y εβββ+++=22110,该式子可以分解为两个线性回归方程:当5001≤x 时,110)(x y E ββ+=,当5001>x 时,则得到12120)()500()(x y E ββββ++-=,于是1β和21ββ+分别是两条回归线的斜率,0β和20500ββ-是2个y 的截距。用普通最小二乘法拟合回归方程得:

y

?=5.895-0.00395x1-0.00389x2,利用模型可说明生产批量小于500时,每增加1个单位批量,单位成本降低0.00395;生产批量大于500时,每增加1个单位批量,单位成本降低0.00395+0.00389=0.00784美元;这里只是为了说明分段回归的方法,进一步做统计检验会发现x2的系数并不显著,这里不过多讨论。 2、回归系数相等的检验

在第一个例子的问题中,引入0-1型自变量的方法是假定储蓄增加额y 对家庭收入的回归斜率1β与家庭年收入无关,家庭年收入只影响回归常数项0β,这个假设是否合理,还需要作统计检验,检验方法是引入如下含有交互效应的回归模型

i

i i i i i x x x x y εββββ++++=21322110,其中y 为上一年家庭储蓄增加额,x1为上

一年家庭总收入,x2表示家庭学历,高学历家庭x2=1,低学历家庭x2=0。所以回归模型可以分解为对高学历和对低学历家庭的两个线性回归模型,分别为:

高学历家庭x2=1: i i i x y εββββ++++=13120)()(

低学历家庭x2=0: i i i x y εββ++=110 可见,高学历家庭的回归常数为20ββ+,回归系数为31ββ+;低学历家庭的回归常数为0β,回归系数为1β。要检验这两个回归方程的回归系数相等,等价于检验回归模型参数的假设检验0:30=βH ,当拒绝0H 时,认为3β≠0,这时高学历与低学历家庭的储蓄回归模型实际上被拆分为两个不同的回归模型。当接受0H 时,认为3β=0,这时高学历与低学历家庭的储蓄回归模型是如下形式的联合回归模型i i i i x x y εβββ+++=22110。 四、因变量是定性变量的回归模型 1、定性因变量的回归方程的意义

设y 是只取0,1的定性变量,考虑简单线性回归模型i i i x y εββ++=10,在这种y 只取0,1的情况下,因变量均值i i x y E 10)(ββ+=有着特殊的意义。由于i y 是0-1型贝努力随机变量,则得如下概率分布i i y P π==)1(,根据离散型随机变量期望的定义,可得i i i x y E 10)(ββπ+==,所以,作为由回归函数给定的因变量均值i i x y E 10)(ββ+=是由自变量水平为i x 时i y 的概率。对因变量均值的这种解释既适应于这里的简单线性回归函数,也适用于复杂的多元回归函数。当因变量是0,1时,因变量均值总是代表给定自变量时y=1的概率。 2、定性因变量回归的特殊问题 (1)离散非正态误差项

对一个取值为0和1的因变量,误差项i i i x y 10ββε--=只能取两个值:当

1=i y 时,i i i x πββε-=--=1110 当0

=i y 时,i i i x πββε-=--=10 显然,

误差项i ε是两点型离散分布,当然正态误差回归模型的假定就不适用了。 (2)零均值异方差

当因变量是定性变量时,误差项i ε仍然保持零均值,这时出现的另一个问题是误差项i ε的方差不相等。0-1型随机变量i ε的方差为:)()(i i y D D =ε

)1(i i ππ-==)1)((1010i i x x ββββ--+,可以看到 i ε的方差依赖于i x ,是异方差,

不满足线性回归方程的基本假定,最小二乘估计的效果也就不会好。

(3)回归方程的限制

当因变量为0,1虚拟变量时,回归方程代表概率分布,所以因变量均值受到如下限制:1)(0≤=≤i i y E π,对一般的回归方程本身并不具有这种限制,线性回归方程i i x y 10ββ+=将会超出这个限制范围。

五、logistic 回归模型

1、分组数据的logistic 回归模型

针对0-1型因变量产生的问题,应该对回归模型做两个方面的改进。 第一,回归函数应该改用限制在[0,1]区间内的连续曲线,而不能再沿用直线回归方程。限制在[0,1]区间内的连续曲线有很多,例如所有连续型随机变量的分布函数都符合要求,常用的是Logistic 函数与正态分布函数。Logistic 函数的形式为 :x

x

x e

e

e

x f -+=

+=

111)(

第二,因变量i y 本身只取0,1两个离散值,不适于直接作为回归模型中的因变量。由于回归函数i i i x y E 10)(ββπ+==表示在自变量为i x 的条件下i y 的平均值,而i y 是0-1型随机变量,因而i i y E π=)(就是在自变量为i x 的条件下i y 等于1的比例。这提示我们可以用i y 等于1的比例代替i y 本身作为因变量。 分组数据的logistic 回归只适用于大样本的分组数据,对小样本的未分组数据不适用。

分组数据的logistic 回归首先要对频率作logistic 变换,变换公式为

)1ln(

i

i i p p p -=',这个变换要求0

≠=

'i

i i n m p 或1,当存在0=i m 或i i n m =时,可

以用如下的修正公式计算样本频率1

5,0++=

i i i n m p ,分组数据的logistic 回归存

在异方差性,需要采取加权最小二乘估计。出来权函数)1(i i i i p p n w -=之外,也可以通过两阶段最小二乘法确定权函数。第一阶段是用普通最小二乘拟合回归模

型。第二阶段是从第一阶段的结果估计出组比例i p

?,用权数)?1(?i i i i p p n w -=作加权最小二乘回归。

2、未分组数据的logistic 回归模型

六、多类别logistic 回归

七、因变量顺序数据的回归

第五章 虚拟变量模型和滞后变量模型

1. 表5.1中给出了中国1980—2001年以城乡储蓄存款新增额代表的居民当年储蓄及以GNP 代表的居民当年收入的数据。以1991年为界,判断1991年前和1991年后的两个时期中国居民的储蓄—收入关系是否已发生变化。 表5.1 1980—2001年中国居民储蓄与收入数据 单位:亿元 年份 储蓄S GNP 年份 储蓄S GNP 1980 118.5 4517.8 1991 2072.8 21662.5 1981 124.2 4860.3 1992 2438.4 26651.9 1982 151.7 5301.8 1993 3217 34560.5 1983 217.1 5957.4 1994 6756.4 46670 1984 322.2 7206.7 1995 8143.5 57494.9 1985 407.9 8989.1 1996 8858.5 66850.5 1986 615 10201.4 1997 7759 73142.7 1987 835.7 11954.5 1998 7127.7 76967.2 1988 728.2 14922.3 1999 6214.3 80579.4 1989 1345.4 16917.8 2000 4710.6 88228.1 1990 1887.3 18598.4 2001 9430 94346.4 估计以下回归模型: 0123()i i i i i i Y X D D X u ββββ=++++ 其中i D 为引入的虚拟变量:1,19910,1991i D ?=?? 年前年后 对上面的模型进行估计,结果如下: 所以表达式为: 15350.0751981.90.032()i i i i i Y X D D X =+-+ (1.40) (4.45) (-1.38) (0.37)

非参数回归模型

非参数回归模型 非参数回归模型也叫多元回归模型,它是一种脱离于混沌理论的多条路段分析方法。它是对当前路段和几条相邻路段的交通流信息对当前路段进行交通流预测的单条路段分析的扩展。它不需要先验知识,只需要有足够的历史数据即可。它的原理是:在历史数据库中寻找与当前点相似的近邻,并根据这些近邻来预测下一时间段的流量。该算法认为系统所有的因素之间的内在联系都蕴含在历史数据中,因此直接从历史数据中得到信息而不是为历史数据建立一个近似模型。非参数回归最为一种无参数、可移植、预测精度高的算法,它的误差比较小,且误差分布情况良好。尤其通过对搜索算法和参数调整规则的改进,使其可以真正达到实时交通流预测的要求。并且这种方法便于操作实施,能够应用于复杂环境,可在不同的路段上方便地进行预测。能够满足路网上不同路段的预测,避免路段位置和环境对预测的影响。随着数据挖掘技术左键得到人们的认可和国内外学者的大量相关研究,使得非参数回归技术在短时交通流预测领域得到广泛应用。 非参数回归的回归函数()X g Y =的估计值()X g n 一般表示为: ()()∑==n i i i i n Y X W X g 1 其中,Y 为以为广策随机变量;X 为m 维随机变量;(Xi,Yi )为第i 次观测值,i=1,...,n ;Wi(Xi)为权函数.非参数回归就是对g(X)的形状不加任何限制,即对g (X )一无所知的情况下,利用观测值(Xi,Yi ),对指定的X 值去估计Y 值。由于其不需要对系统建立精确的数学模型,因此比较适合对事变的、非线性的系统进行预测,符合对城市交通流的预测,同时可以与历史平均模型实现优缺点的互补。 K 近邻法 Friedman 于1977年提出了K 近邻法。其并不是让所有的数据都参与预测,而是以数据点到X 点的距离为基础,甲醛是只有离X 最近的K 个数据被用来估计相应的g(X)值。可以引入欧式空间距离d ,然后按这个距离将X1,X2,...,Xn 与X 接近的程度重新排序:Xk1,...,Xkn,取权值如下: Wki(X:X1,...,Xn)=ki,i=1,..,n 将与X 最近的前K 个观测值占有最大的权K=1,其余的观测值赋予权值k=0.最终得到应用于短时交通流预测的K 近邻法可表示为: ()()()()K t V t V g t V K i i ∑=+==+111

应用回归分析含定性变量的回归模型第九章课后答案

第9章 含定性变量的回归模型 思考与练习参考答案 9.1 一个学生使用含有季节定性自变量的回归模型,对春夏秋冬四个季节引入4个0-1型自变量,用SPSS 软件计算的结果中总是自动删除了其中的一个自变量,他为此感到困惑不解。出现这种情况的原因是什么? 答:假如这个含有季节定性自变量的回归模型为: 其中含有k 个定量变量,记为x i 。对春夏秋冬四个季节引入4个0-1型自变量,记为D i ,只取了6个观测值,其中春季与夏季取了两次,秋、冬各取到一次观测值,则样本设计矩阵为: 显然,(X,D)中的第1列可表示成后4列的线性组合,从而(X,D)不满秩,参数无法唯一求出。这就是所谓的“虚拟变量陷井”,应避免。 当某自变量x j 对其余p-1个自变量的复判定系数2 j R 超过一定界限时,SPSS 软件将拒绝这个自变量x j 进入回归模型。称Tol j =1-2 j R 为自变量x j 的容忍度(Tolerance ),SPSS 软件的默认容忍度为0.0001。也就是说,当2j R >0.9999时,自变量x j 将被自动拒绝在回归方程之外,除非我们修改容忍度的默认值。 而在这个模型中出现了完全共线性,所以SPSS 软件计算的结果中总是自动删除了其中的一个定性自变量。 9.2对自变量中含有定性变量的问题,为什么不对同一属性分别建立回归模型,而采取设虚拟变量的方法建立回归模型? 答:原因有两个,以例9.1说明。一是因为模型假设对每类家庭具有相同的斜率和误差方差,把两类家庭放在一起可以对公共斜率做出最佳估计;二是对于其他 t t t t kt k t t D D D X X Y μαααβββ++++++=332211110 ????? ? ?? ? ? ? ?=00011001011000101001 0010100011 )(6 16515414313212111k k k k k k X X X X X X X X X X X X D X,??? ??? ? ??=k βββ 10β??? ??? ? ??=4321ααααα

实验(二)多变量线性回归模型Microsoft Word 文档

实验(二)多变量回归模型及面板数据初步处理 【实验目的】 掌握多变量线性回归模型的参数估计及相关内容 【实验内容】 建立多变量线性回归模型,回归参数估计,散点图,残差图等。建立面板数据库并处理数据。 【实验步骤】 实验步骤一:如何在数据表删除某一列数据,或在两列数据中插入一列数据, 在数据表删除某一列数据的操作:双击数据组标示→打开数据组表→编辑一组数据→点击鼠标右键→拉出一菜单→点击Remove Series。 在两列数据中插入一列数据:双击数据组标示→打开数据组表→编辑一组数据→点击鼠标右键→拉出一菜单→点击Insert Series。 实验步骤二:建立面板数据库并处理数据。 向EViews6.0中输入截面数据名称的时候,应先建立一个合并数据(Pool)对象。 ★选择EViews6.0主菜单Object→New Object→Pool ★在Pool中输入 _BJ _TJ _HB _LN _SHH _JS _ZHJ _FJ _SHD _GD _HN ★在Pool窗口点击name,保存。 ★在Pool窗口点击sheet,打开一个窗口,输入GDP?,RENKOU?,GSH?,GZH?。就得到一个东部地区GDP,RENKOU,GSH,GZH的Poolsheet(面板数据表)。 ★在Pool窗口点击define,回到Pool的标示窗口;点击Pool的标示窗口sheet,打开一个窗口,输入GDP?,RENKOU?,GSH?,GZH?。得到GDP,RENKOU,GSH,GZH的Poolsheet (面板数据表)。 ★Pool序列的序列名使用的是基本名和“?”占位符。例如,GDP?代表: GDP_BJ——北京GDP GDP_TJ——天津GDP GDP_HB——河北GDP GDP_LN——辽宁GDP

自回归模型的参数估计案例

自回归模型的参数估计案例 案例一: 建立中国长期货币流通量需求模型。中国改革开放以来,对货币需求量(Y)的影响因素,主要有资金运用中的贷款额(X)以及反映价格变化的居民消费者价格指数(P)。 长期货币流通量模型可设定为 120e t t t t P Y X βμββ=+++ (1) 其中,e t Y 为长期货币流通需求量。由于长期货币流通需求量不可观测,作局部调整: 11()e t t t t Y Y Y Y δ---=- (2) 其中,t Y 为实际货币流通量。 将(1)式代入(2)得短期货币流通量需求模型: 0121(1)t t t t t Y X P Y δβδβδβδδμ-=+++-+ 表1中列出了1978年到2007年我国货币流通量、贷款额以及居民消费者价格指数的相关数据。 表1 年份 货币流通量Y (亿元) 居民消费者价格指数P (1990年=100) 贷款额X (亿元) 1978 212.0 46.2 1850.0 1979 267.7 47.1 2039.6 1980 346.2 50.6 2414.3 1981 396.3 51.9 2860.2 1982 439.1 52.9 3180.6 1983 529.8 54.0 3589.9 1984 792.1 55.5 4766.1 1985 987.8 60.6 5905.6 1986 1218.4 64.6 7590.8 1987 1454.5 69.3 9032.5

1988 2134.0 82.3 10551.3 1989 2344.0 97.0 14360.1 1990 2644.4 100.0 17680.7 1991 3177.8 103.4 21337.8 1992 4336.0 110.0 26322.9 1993 5864.7 126.2 32943.1 1994 7288.6 156.7 39976.0 1995 7885.3 183.4 50544.1 1996 8802.0 198.7 61156.6 1997 10177.6 204.2 74914.1 1998 11204.2 202.6 86524.1 1999 13455.5 199.7 93734.3 2000 14652.7 200.6 99371.1 2001 15688.8 201.9 112314.7 2002 17278.0 200.3 131293.9 2003 19746.0 202.7 158996.2 2004 21468.3 210.6 178197.8 2005 24031.7 214.4 194690.4 2006 27072.6 217.7 225347.2 2007 30375.2 228.1 261690.9 对局部调整模型0121(1)t t t t t Y X P Y δβδβδβδδμ-=+++-+运用OLS 法估计结果如图1: 图1 回归估计结果 由图1短期货币流通量需求模型的估计式: 1202.50.03577.45570.7236t t t t Y X P Y -=-+++

(精品)第五章-虚拟变量模型和滞后变量模型

第五章虚拟变量模型 1.表5.1中给出了中国1980—2001年以城乡储蓄存款新增额代表的居民当年储蓄及以GNP 代表的居民当年收入的数据。以1991年为界,判断1991年前和1991年后的两个时期中国居民的储蓄—收入关系是否已发生变化。 年份储蓄S GNP 年份储蓄S GNP 1980 118.5 4517.8 1991 2072.8 21662.5 1981 124.2 4860.3 1992 2438.4 26651.9 1982 151.7 5301.8 1993 3217 34560.5 1983 217.1 5957.4 1994 6756.4 46670 1984 322.2 7206.7 1995 8143.5 57494.9 1985 407.9 8989.1 1996 8858.5 66850.5 1986 615 10201.4 1997 7759 73142.7 1987 835.7 11954.5 1998 7127.7 76967.2 1988 728.2 14922.3 1999 6214.3 80579.4 1989 1345.4 16917.8 2000 4710.6 88228.1 1990 1887.3 18598.4 2001 9430 94346.4 估计以下回归模型: 0123 () i i i i i i Y X D D X u ββββ =++++ 其中 i D为引入的虚拟变量: 1,1991 0,1991 i D ? =? ? 年前 年后 对上面的模型进行估计,结果如下: 所以表达式为:

15350.0751981.90.032()i i i i i Y X D D X =+-+ (1.40) (4.45) (-1.38) (0.37) 从2β和3β的t 检验值可以知道,这两个参数显著的为0,所以1991年前和1991年后两个时期的回归结果是相同的。 下面用邹式检验来验证上面对于两个时期的回归结果相同的结论是否正确。 过程如下: 输入要验证的突变点,本例为1991年。 输出结果如下:

基于核估计的多变量非参数随机模型初步研究

基于核估计的多变量非参数随机模型初步研究 王文圣1,丁晶1 (1.四川大学水利水电学院,四川成都 610065) 摘要:本文基于核估计理论构造了多变量非参数模型。该模型是数据驱动的、不需识别和假定序列相依形式和概率分布形式的一类随机模型,克服了多变量参数模型的不足。实例统计试验表明,建议的多变量非参数模型是有成效的,为随机水文学发展提供了一些新思路。 关键词:核估计;多变量非参数模型;随机模拟;实用性检验 中图分类号:P333.9文献标识码:A 流域水资源的开发利用,不仅需要单站水文信息,而且需要流域内各站的水文信息。进行多站水文序列模拟的一个重要手段就是建立多站(变量)随机模型。目前,多变量随机模型[1]比较成熟的有自回归模型和解集模型。这两类模型的共同点是用有限个参数的线性函数关系描述水文现象。因此简便实用,能表征水文序列的统计特性和一般变化规律,但缺点也明显:①水文序列是一时间不可逆过程,而参数模型描述的是可逆过程,因此大多数参数模型难以反映其涨落不对称性;②水文现象受流域下垫面、人类活动、气候等多因素影响而变化错综,是一个高度复杂的非线性系统,而多数参数模型仅能表征变量及变量之间的线性相依结构,忽略了占据重要位置的非线性性;③水文变量概率密度函数复杂且未知,某一指定概率分布与真实分布存在着差异。如图1、2所示,正态分布、P-Ⅲ型分布都与直方图相差甚远,但χ2检验并不拒绝P-Ⅲ型分布和正态分布;而核估计和k最近邻估计与直方图比较接近。即概率分布具有不确定性;④模型参数由于抽样误差和估计方法不同具有不确定性。 为克服参数模型之不足,文献[2]提出了单变量非参数模型,径流模拟表明是满意的。在此基础上,本文基于核估计理论构造了多变量非参数模型。该模型避开了序列相依形式和模型结构的假设,不涉及模型参数估计,能反映各种复杂关系,较参数模型优越。以中国金沙江流域屏山站和宜宾—屏山区间两站日流量过程随机模拟为例,对建议模型进行了应用研究。 1 核估计理论[3] 1.1 多维核估计定义设X为d维随机变量,X1,X2,……X n为X的一样本。X的概率密度函数f(X)的核估计定义如下: (1)

多元线性回归实例分析报告

SPSS--回归-多元线性回归模型案例解析!(一) 多元线性回归,主要就是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程 为: 毫无疑问,多元线性回归方程应该 为: 上图中的 x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示: 那么,多元线性回归方程矩阵形式为: 其中:代表随机误差, 其中随机误差分为:可解释的误差与不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样) 1:服成正太分布,即指:随机误差必须就是服成正太分别的随机变量。 2:无偏性假设,即指:期望值为0 3:同共方差性假设,即指,所有的随机误差变量方差都相等 4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。 今天跟大家一起讨论一下,SPSS---多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。数据如下图所示:

点击“分析”——回归——线性——进入如下图所示的界面:

将“销售量”作为“因变量”拖入因变量框内, 将“车长,车宽,耗油率,车净重等10个自变量拖入自变量框内,如上图所示,在“方法”旁边,选择“逐步”,当然,您也可以选择其它的方式,如果您选择“进入”默认的方式,在分析结果中,将会得到如下图所示的结果:(所有的自变量,都会强行进入) 如果您选择“逐步”这个方法,将会得到如下图所示的结果:(将会根据预先设定的“F统计量的概率值进行筛选,最先进入回归方程的“自变量”应该就是跟“因变量”关系最为密切,

(完整版)多元线性回归模型公式

二、多元线性回归模型 在多要素的地理环境系统中,多个(多于两个)要素之间也存在着相互影响、相互关联的情况。因此,多元地理回归模型更带有普遍性的意义。 (一)多元线性回归模型的建立 假设某一因变量y 受k 个自变量k x x x ,...,,21的影响,其n 组观测值为(ka a a a x x x y ,...,,,21), n a ,...,2,1=。那么,多元线性回归模型的结构形式为: a ka k a a a x x x y εββββ+++++=...22110(3.2.11) 式中: k βββ,...,1,0为待定参数; a ε为随机变量。 如果k b b b ,...,,10分别为k ββββ...,,,210的拟合值,则回归方程为 ?=k k x b x b x b b ++++...22110(3.2.12) 式中: 0b 为常数; k b b b ,...,,21称为偏回归系数。 偏回归系数i b (k i ,...,2,1=)的意义是,当其他自变量j x (i j ≠)都固定时,自变量i x 每变化一个单位而使因变量y 平均改变的数值。 根据最小二乘法原理,i β(k i ,...,2,1,0=)的估计值i b (k i ,...,2,1,0=)应该使 ()[]min (2) 1 2211012 →++++-=??? ??-=∑∑==∧ n a ka k a a a n a a a x b x b x b b y y y Q (3.2.13) 有求极值的必要条件得 ???????==??? ??--=??=??? ??--=??∑∑=∧=∧n a ja a a j n a a a k j x y y b Q y y b Q 110) ,...,2,1(0202(3.2.14) 将方程组(3.2.14)式展开整理后得:

第五章-含虚拟变量的回归模型

Econometrics 第五章虚拟变量回归模型(教材第六章)

第五章虚拟变量回归模型 第一节虚拟变量的性质和引入的意义 第二节虚拟变量的引入 第三节交互作用效应 第四节含虚拟变量的回归模型 学习要点 虚拟变量的性质,虚拟变量的设定

5.1 虚拟变量的性质和引入的意义 虚拟变量的性质 f定性变量 性别(男,女) 婚姻状况(已婚,未婚) 受教育程度(高等教育,其他) 收入水平(高收入,中低收入) 肤色(白人,有色人种) 政治状况(和平时期,战争时期) f引入虚拟变量(Dummy Variables)

1、分离异常因素的影响,例如分析我国GDP的时间序列,必须考虑“文革”因素对国民经济的破坏性影响,剔除不可比的“文革”因素。 2、检验不同属性类型对因变量的作用,例如工资模型中的文化程度、季节对销售额的影响。 3、提高模型的精度,相当与将不同属性的样本合并,扩大了样本量,从而提高了估计精度)。 5.1 虚拟变量的性质和引入的意义

5.2 虚拟变量的引入 虚变量引入的方式主要有两种 f加法方式 虚拟变量与其它解释变量在模型中是相加关系,称为虚拟 变量的加法引入方式。 加法引入方式引起截距变动

5.2 虚拟变量的引入 f 虚拟变量的作用在于把定性变量“定量化”:通过赋值0和1,0表示变量不具备某种性质,1表示具备。 f 例,0代表男性,1代表女性;0代表未婚,1代表已婚;等等。 f 这类取值为0和1的变量称为虚拟变量(dummy variables ),通常用符号D 表示。 f 事实上,模型可以只包括虚拟变量(ANOVA 模型): 其中,0,1,i i D D ==男性;女性。 12i i i Y B B D u =++

多元线性回归模型

引子:中国汽车的保有量会超过1.4亿辆吗? 中国经济的快速发展,居民收入不断增加,数以百万计的中国人开始得以实现拥有汽车的梦想,中国也成为世界上成长最快的汽车市场。 中国交通部副部长在“中国交通可持续发展论坛”上作出预测:“2020年,中国的民用汽车保有量将比2003年的数字增长6倍,达到1.4亿辆左右”。(资料来源:人民网、新华网、中新网)是什么因素导致了中国汽车数量的快速增长? 影响中国汽车行业发展的因素并不单一,经济增长、消费趋势、市场行情、业界心态、能源价格、道路发展、内外环境、相关政策……,都会使中国汽车行业面临机遇和挑战。 怎样分析多种因素对汽车市场的影响? 分析中国汽车业行业未来的趋势,应当具体分析这样一些问题: 中国汽车市场发展的状况如何(用销售量观测) 影响中国汽车销量的主要因素是什么?(如收入、价格、费用、道路状况、政策、环境等) 各种因素对汽车销量影响的性质怎样?(正、负) 各种因素影响汽车销量的具体数量关系是什么? 所得到的数量结论是否可靠? 中国汽车行业今后的发展前景怎样?应当如何制定汽车的产业政

策? 很明显,只用一个解释变量已经很难分析汽车产业的实际发展,而简单线性回归模型又不能解决多变量问题的分析,还需要寻求有多个解释变量的回归分析方法。 第三章 多元线性回归模型 本章讨论: 如何将简单线性回归的研究方式推广到多元的情况: ● 多元线性回归模型 ● 多元线性回归参数的估计及区间估计 ● 多元线性回归方程的拟合优度 ● 多元线性回归的显著性检验 ● 多元线性回归预测 第一节 多元线性回归模型及古典假定 一、多元线性回归模型的定义 一般形式:对于有1k -个解释变量的线性回归模型,可表示为 与简单线性回归模型不同,模型中的(1,2,,)j j k β=是偏回归系数,样本容量为n 。 偏回归系数: 控制其他解释量不变的条件下,第j 个解释变量的单位变动对被 (1,2,,)k ki i X u i n β+ ++=

含定性变量的回归模型

含定性变量的回归模型 一、自变量中含有定性变量的回归模型 在回归分析中,对一些自变量是定性变量的情形先量化处理,引入只取0和1 两个值的虚拟自变量。例如,在研究粮食产量问题,需考虑正常年份和干旱年份,对这个问题就可以引入虚拟变量D ,令D=1表示正常年份,D=0表示干旱年份。当在某些场合定性自变量可能取多类值时,例如考虑销售量的季节性影响,季节因素分为春、夏、秋、冬4种情况。为了用定性自变量反映四个季度,可以引入自变量?? ?==,其他 ,春季0111x x ,?? ?==,其他 ,夏季0122x x ,?? ?==,其他 ,秋季0133x x ,?? ?==,其他 ,冬季0144x x ,如 果这样引入会出现一个问题,即自变量4321,,,x x x x 之和恒等于1,构成了完全多重共线性。所以,一个定性变量有k 类可能的取值时,只需要引入k-1个0-1型自变量。所以在分析季节因素的时候,引入3个0-1自变量即可。 例1 某经济学家想调查文化程度对家庭储蓄的影响,在一个中等收入的样本框中,随机调查了13户高学历家庭与14户中低学历的家庭,因变量y 为上一年家庭储蓄增加额,自变量x1为上一年家庭总收入,自变量x2表示家庭学历,高学 建立y 对x1,x2的线性回归模型,回归方程为:y ?=-7976+3826x1-3700x2 这个结果表明,中等收入的家庭每增加1万元收入,平均拿出3826元作为储蓄。高学历家庭每年的平均储蓄额少于低学历的家庭,平均少3700元。 如果不引入家庭学历定性变量x2,仅用y 对家庭年收入x1做一元线性回归,得判定系数R^2=0.618,拟合效果不好。 家庭年收入x1是连续型变量,它对回归的贡献也是不可缺少的。如果不考虑家庭年收入这个自变量,13户高学历家庭的平均年储蓄增加额为3009.31元,14户低学历家庭的平均年储蓄增加额为5059.36元,这样会认为高学历家庭每年的储蓄额比低学历的家庭平均少5059.36-3009.31=2050.05元,而用回归法算

人口增长率的非参数自回归预测模型

收稿日期:2006201204 作者简介:巩永丽(1980—),女,山西永济人,西安理工大学硕士研究生,主要从事应用概率统计方面的研究. 山西师范大学学报(自然科学版)第21卷第1期Journal of Shanxi Nor mal University Vol .21 No .12007年3月 Natural Science Editi on M ar .2007 文章编号:100924490(2007)0120038205 人口增长率的非参数自回归预测模型 巩永丽1 ,张德生1 ,武新乾2 ,姜爱平 1 (11西安理工大学理学院,陕西西安710054;21西北工业大学,陕西西安710072) 摘 要:针对传统的人口增长预测模型不能理想地捕获我国人口增长率数据的非线性性特征,本文基于局部线性非参数估计理论,对我国建国以来的年人口增长率建立了非参数自回归NAR (1)模型,并对 2000年~2003年的年人口增长率进行了预测,计算结果表明,相对于参数自回归模型而言,非参数自回 归模型能够很好地解决人口增长预测这一非线性问题,预测精度较高.关键词:非参数估计;非参数自回归模型;预测中图分类号:O29 文献标识码:A 0 引言 我国是一个发展中国家,又是世界上人口最多的国家,人口问题一直是制约我国经济和社会发展的首要因素,因此,能否对人口增长做出比较准确的预测,对于加速推进我国现代化建设有着极为重要的现实 意义.对于人口增长预测,传统的方法有增长曲线模型、灰色系统模型、系统动力学模型、自回归模型等.增长曲线模型预测方法 [1] 相对简单,但是精度不高;灰色系统模型 [1] 主要是对人口增长趋势波动进行分析, 它在预测资料不全或资料的波动太大、不平稳的发展趋势效果较好;系统动力学模型[1] 在分析问题、收集 资料、建立模型和求证的过程中都要消耗一定的财力、物力和人力,还需要占用大量的计算机工作时间,而且建模人员的专业水平也直接影响模型的质量和结果.自回归模型由于是线性参数化形式,难以较好的解决人口增长预测这一非线性问题.因此,本文尝试利用非参数估计方法,建立我国人口增长率的非参数自回归预测模型,结果表明非参数自回归模型用于人口预测可以获得令人满意的结果,可为相关部门制定人口政策提供科学的依据. 1 非参数自回归预测模型基本原理 1.1 非参数自回归模型 非参数自回归模型(NAR (p ))为:Y t =m (X t )+εt ,其中,解释性变量X t ∈R p 由响应变量(或被解释性变量)Y t ∈R 的一些滞后项所组成(p 为正整数);随机误差序列{εt }独立同分布,E (εt )=0, E (ε2t )=σ2 ,并且εt 与X s ,s ≤t 相互独立;未知函数m (? )称为条件均值函数(或自回归函数).1.2 非参数预测 对一组平稳时间序列{Y t },t =1,2,...,n,我们的目的是对确定的正整数k,k ≥1,预测Y n +k 的值.非参数自回归模型对未知值Y n +k 进行预测的计算步骤如下: (1)对这组平稳时间序列建立相应的非参数自回归模型 Y t =m (X t )+εt (1)

基于非参数回归模型的短期风电功率预测 (1)

基于非参数回归模型的短期风电功率预测 王彩霞,鲁宗相,乔 颖,闵 勇,周双喜 (电力系统国家重点实验室,清华大学电机系,北京市100084) 摘要:随着风电接入规模的增加,风电功率预测日益重要。非参数估计方法是模型估计和预测的典型方法之一,在国内短期风电功率预测中尚无应用。文中将非参数回归技术应用于短期风电功率预测,包括风电功率点预测和风电功率概率区间预测。首先,基于非参数回归模型,建立风速与风电功率之间的转换模型,得到风电功率的点预测值;其次,基于经验分布模型与非参数回归技术,建立风电功率预测误差的概率分布函数,得到风电功率预测值的概率区间。以内蒙古某风电场为例,验证了将非参数回归技术应用于风电功率预测的有效性。关键词:风力发电;功率预测;点预测;概率区间预测;非参数回归 收稿日期:2010 02 13;修回日期:2010 06 17。 0 引言 近年来,并网型风电发展迅猛,风电的波动性已给电网调度带来严峻的挑战。风电功率预测是解决风电波动、实现风电与电力系统传统电源联合优化运行的关键技术之一。 风电功率预测按照预测的时间尺度划分一般分为超短期、短期和中长期预测[1]。超短期预测一般指6h 以内的预测,预测结果用于电力系统的在线优化运行,常采用基于历史风电功率数据的时间序列分析方法进行预测,例如自回归滑动平均(ARM A)模型[2 3]、Kalman 滤波[4]等。短期预测一般指对未来6h~48h 风电功率输出的预测,预测结果是电网安排日发电计划或进行电力市场交易的基础。中长期预测一般指未来几天的预测,预测结果主要用于安排风电机组的检修计划等。在实际应用中,短期预测和超短期预测应用较多。本文的研究对象为短期预测。 由于天气状况在未来6h~48h 内一般有较大的变化,因此,短期预测主要依赖于数值天气预报(numeric w eather predictio n,NWP ),通过建立NWP 的气象信息与风电功率输出之间的关系模型,将预测时段内的气象信息转换为风电功率输出。按建模方法的不同,短期风电功率预测可进一步分为物理方法和统计方法[5]。本文研究方法属于统计方法的范畴。 经过多年的积累,欧洲和美国已经有多款商业化的风电功率预测软件[6],如丹麦的WPPT 和Prediktor 、西班牙的SIPREOLICO 等。由于中国 的气候条件与欧美相比差异较大,因此有必要研究 适合中国风电场的风电功率预测方法。近几年,中国的风电功率预测研究也在逐步发展,但受气象服务条件的影响,预测方法大多基于历史数据和时间序列方法[7 9],对超短期预测较为有效,但对短期(如日前24h)风电功率的预测效果往往较差。随着风电的大规模接入,为电网安排发电计划服务的短期风电功率预测亟需展开。中国电力科学研究院开发 的基于NWP 的短期风电功率预测软件[10 11] ,采用的预测方法为反向传播(BP)神经网络,是一种在风电功率预测中应用广泛的典型方法。但是,神经网络方法对模型训练的时间较长,并且需要不断调试合适的隐含层神经元个数、合适的隐含层输出函数及合适的输出层输出函数等,才能得到收敛性较好的神经网络。非参数回归方法也是模型估计的典型方法之一,在国外已有采用基于统计模型的风电功率预测方法的范例[12]。非参数统计模型只需调整合适的窗宽即可应用模型进行预测,实用性比神经网络模型更佳。 本文以内蒙古某风电场为例,研究将非参数回归方法应用于国内短期风电功率预测的有效性。内蒙古气象局引进了美国国家大气研究中心(NCAR)和美国宾州大学(PSU)开发研制的第5代中尺度模式M M5(M esoscale Mo del 5),直接提供风机轮毂高度的NWP 信息,如风速、风向等。本文采用内蒙古气象局提供的NWP 数据,建立NWP 与风电功率输出之间的转换模型,得到风电功率的点预测值;基于经验分布模型和非参数回归方法,建立风电功率预测误差的概率分布函数,进而得到风电功率预测值的概率区间,辅助电网运行决策。 78 第34卷 第16期2010年8月25日V o l.34 No.16A ug.25,2010

浅谈多元线性回归模型及其应用

1多元线性回归模型的概念及基本假设 1.1多元线性回归模型的概念 多元线性回归模型是用两个或两个以上的解释变量来解释因变量的一种模型[] 1。设为Y 因变量,k X X X ,21 ,,为k 个用来说明Y 的被称为解释变量的不同变量,其中1X 恒等于1,则),,2,1(,221n i X X Y i ki k i i =++++=μβββ (1)式 称为多元线性回归模型。其中,),,2,1(n i i =μ为随即扰动项;参数k βββ,,,21 称为回归系数。若令 ?? ?? ? ? ? ??=??????? ??=??????? ??=??????? ??=n k kn n n k k n X X X X X X X X X X Y Y Y Y μμμμββββ 21212122212 1211121,,,,则(1)式可用矩阵形式表 示为:μβ+=X Y (2)式。 1.2多元线性回归模型的基本假设 1.2.1 随机扰动项的数学期望为零 即0)()()()(21=? ??? ??? ??=n E E E E μμμμ ,这意味着βX Y E =)(为线性回归模型(2)的总体回归函数。 1.2.2 随机扰动项i μ的方差相等 即221)()()(σμμμ====n D D D ,也称为同方差性。 1.2.3 随机扰动项μ和解释变量X 不相关 数学表达式为:0),(=X COV μ。 1.2.4 解释变量之间不存在多重共线性 所谓多重共线性是指解释变量之间存在完全或近似完全的线性相关[]2。 1.2.5 随机扰动项μ为服从正态分布的随机向量

2多元线性回归模型的参数估计 要想确定多元线性回归模型),,2,1(,221n i X X Y i ki k i i =++++=μβββ,则必须估计出回归系数k βββ,,,21 的值。在回归分析中,使用最广泛的方法是最小二乘法,一般称为普通最小二乘法[]3,即使残差平方和最小的回归系数的估计。设与总体回归模型(1)式对应的样本回归模型为: ),,2,1(,221n i X X Y i ki k i i =++++=∧ ∧ ∧ ∧ μβββ (4)式, 或用矩阵表示为:∧∧+=μβX Y ,其中∧β为总体回归系数β的最小二乘估计,∧ μ为残差向量。 根据最小二乘法的定义,在线性样本回归模型中,使残差平方和最小的回归系数的估计称为最小二乘估计。即使)()(' '∧∧ ∧ ∧--=ββμμX Y X Y 最小的∧ β。其中∧ 'μ是∧ μ的转置。为使∧ β最小,可将)()(' '∧∧ ∧ ∧--=ββμμX Y X Y 看作是∧ β的函数,则其关于∧β的一阶偏导数必须为零,即 02'2'' =+-=??∧ ∧ ∧ ∧ββ μμX X Y X )(,因此得到方程 Y X X X ' ' =∧ β,所以Y X X X '1')(-∧ =β。虽然计算过程十分复杂,但是在如今的计算 机时代可以运用相关的统计软件(如Eviews3.0)对回归系数进行估计。 3回归系数及回归方程的显著性检验 3.1 回归系数的显著性检验 运用上面的计算方法或者通过计算机的运行可以得出回归系数k βββ,,,21 的估计,但所估计的回归系数在给定的显著性水平α下是否具有显著性呢?这需 要给予相应的显著性检验,通常是构造t 统计量。那么在进行t 检验过程中需遵循以下四个步骤: ①提出原假设和备择假设: 原假设),,2,1(,0:0k j H j ==β,备择假设),,2,1(,0:1k j H j =≠β; ②作统计量:∧ ∧ ∧ = j S t j ββ,其中∧∧j S β为∧ j β的标准差;

因变量是定性变量的回归分析—Logistic回归分析

因变量是定性变量的回归分析一Logistic回归分析 一、从多元线性回归到Logistic回归 例这是200个不同年龄和性别的人对某项服务产品的认可的数据(logi.sav). 其中:年龄是连续变量,性别是有男和女(分别用1和0表示)两个水平的定性变量,而变量“观点”则为包含认可(用1表示)和不认可(用0表示)两个水平的定性变量。 从这张图可以看出什么呢? 从这张图又可以看出什么呢? 这里观点是因变量,只有两个值;所以可以把它看作成功概率为p的Bernoulli试验的结果. 但是和单纯的Bernoulli试验不同,这里的概率p为年龄和性别的函数. 必须应用Logistic回归。 二、多元线性回归不能应用于定性因变量的原因 首先,多元线性回归中使用定性因变量严重违反本身假设条件,即: 因变量只能取两个值时,对于任何给定的自变量值,e本身也只能取两个值。这必然会违 背线性回归中关于误差项e的假设条件。 其次,线性概率概型及其问题: 由于因变量只有两个值;所以可以把它看作成功概率p,取值范围必然限制在0—1的区间 中,然而线性回归方程不能做到。 另外概率发生的情况也不是线性的。 三、Logistic函数 Logistic的概率函数定义为: 我们将多元线性组合表示为: 于是,Logistic概率函数表示为: 经过变形,可得到线性函数: 这里,事件发生概率=P (y=1) 事件不发生概率=1-P (y=0) 发生比:(odds)—-门 1 -P 对数发生 比:log(odds)刑1_p)「ogit(p) 这样,就可将logistic曲线线性化为: 从P到logit P经历了两个步骤变换过程: 第一步:将p转换成发生比,其值域为0到无穷 第二步:将发生比换成对数发生比,其值域科为1- ::?二I 经过转换,将P^logit P,在将其作为回归因变量来解释就不再有任何值域方面的限制 了,即可线性化!

基于非参数GARCH模型的一种波动率估计方法

案例13 基于非参数GARCH 模型的一种波动率估计方法 一、文献及研究综述 波动率(volatility )是资产收益不确定性的衡量,它经常用来衡量资产的风险。一般来说,波动率越大,意味着风险越高。由于波动率在投资分析,期权定价等方面的重要性,近20年来一直是金融领域的一个研究热点,出现许多描述金融市场波动率的模型,最为典型的是Bollerslev (1986)提出的广义自回归条件异方差模型(GARCH 模型),而在实证中得到广泛应用的是其中的GARCH(1,1)模型,即条件方差不但依赖与滞后一期的扰动项的平方,而且也依赖于自身的滞后一期值,三者之间存在一种线形关系。针对三者之间的线形关系是否合适即能否用一种更有效的函数关系来描述的问题,人们进行了一些有意义的探索。Engel 和Gonzalez-Rivera(1991)采用半参数方法对条件方差进行建模,对扰动项的滞后值采取非参数形式,对条件方差自身的滞后值采用线形形式,两位的研究思路为人们以后的研究工作拓宽了思路。Peter Buhlmann 和Alexander J.MeNeil (2002)对三者之间的函数关系用一种非参数形式来描述,给出了一种全新的估计波动率的循环算法,并对这一全新的算法的可行性和有效性给出了证明,得出非参数形式的GARCH(1,1)对波动率的估计效果要强与参数形式的GARCH(1,1)。Antonio Cosma 和Fausto Galli (2005)利用Peter Buhlmann 和Alexander J.MeNeil 所提出的估计波动率的算法,对非参数形式的ACD 模型(Autoregressive Conditional Duration Model )的久期(duration)进行估计,也得出用该估计算法的非参数形式比参数形式的ACD 模型的估计效果优越。 本文采用非参数方法中的非参数可加模型,对条件方差采用非参数可加模型GARCH(1,1)形式进行建模,即对条件方差的滞后值和扰动项的滞后值分别采用不同的函数形式进行建模。估计方法是基于Peter Buhlmann 和Alexander J.MeNeil(2002)对非参数GARCH 估计时的算法思想,采取模拟数据和真实收益率数据分别同参数形式的GARCH(1,1)采用极大似然估计结果进行比较。文章下面的结构是:第二部分是有关方法的描述。第三部分是模拟实验。第四部分是实证部分。第五部分是本文结束语。 二、方法描述 ㈠ Bollerslev (1986)提出的标准的GARCH(1,1)形式: t t z ε=

多元线性回归模型

多元线性回归模型

多元线性回归模型 1 多元线性回归模型 1.1 多元回归模型的构建名称多元线性回归模型优先级高描述由于经济现象的复杂性,一个被解释变量往往受多个解释变量的影响.多元回归模型就是在方程式中有两个或两个以上自变量的线性回归模型.多元线性回归预测是用多元线性回归模型,对具有线性趋势的税收问题,使用多个影响因素所作的预测.要求输入有指标需要进行预测的cube.该cube由实施人员在实施过程中根据客户的具体需要定制,该cube中的各个测量值是相关的,各维度是与预测分析有联系的.处理由用户选择回归模型分析角度和分析指标(包括因变量和自变量.注意:此处的分析指标是指cube中的测量值,下同),系统进行回归方程的拟合以及假设检验.展示回归方程式及假设检验的结果,并利用回归方程式进行预测.具体操作步骤如下: 分析角度的选取依照以下原则: 1. 选择分析角度和分析指标(包括因变量和自变量). 若对时间序列数据的回归分析,时间维必须在同一层次上,否则,系统给出下列提示信息:"分析角度的选择有误,时间维必须在同一层次上,请做修改!",如果用户不做相应的修改,则回归模型不进行构建.其它的维度原则上只能选取一个成员,若存在选择多个的情况,系统给出相应的警告提示:"分析角度的选择可能有误,请检查!",但允许用户在不进行任何修改的情况下继续回归模型的构建;所选中的时间维成员个数必须多于"自变量的个数+3",否则给出下列提示信息:"数据量太少,不能完成回归模型的构建"; 若进行横截面数据的回归分析,除时间维外的其它维度中必须有一个是选择所有成员的,时间

维只能选择一个维成员,否则给出下列出错信息:"不同时间点的横截面数据没有可比性,不适合进行回归分析!" 如果用户不做相应的修改,则回归模型不进行构建.对于选取的所有成员的维度,其成员个数必须多于"自变量的个数+3",否则给出下列提示信息:"数据量太少,不能完成回归模型的构建"; 分析指标(包括自变量和因变量)的选取依照下列原则. 自变量的选择.自变量可以选择了多个分析指标. 因变量的选择.因变量只能选取一个指标,在编码时必须对其进行设置. 2. 回归方程的拟合回归分析原理是利用具有因果关系的经济变量的样本观测量,按照一定的实现原理来建立能够使被解释变量的计算值与实际值误差最小的回归方程,以此作为研究对象总体模型的估计参数.多元线性回归模型的构建就是求出因变量(以y表示)自变量(以表示,其中M为自变量的个数)的线性关系式: 回归模型的拟合就是利用最小二乘法求出参数的估计值(其中i=1,2,…,M).具体求解的过程如下:假设已从cube中读入了因变量(以y表示)的N(N>3)个数据,记为,自变量的(其中i=1,2,…,M)的N(N>3)个数据,记为,(注意:此处需要用一个N×M的二维数组存放自变量的数据,数组中的每一列存放一个测量值的数据,此处与报表中所显示的格式是相同的,在报表中,一个测量值的数据也是用一个列来显示的.)参数的计算请参见下面的文档: 3. 回归结果的呈现显示回归方程式在界面上显示回归方程式4. 回归模型的假设检验构建一个经济计量模型会涉及到模型的形式,自变量的参数,模型的总体效果等的问题,因此,利用最小二乘法估计参数构成一元线性回归模型后,还需要进行拟合优度检验,t检验和F

相关主题